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A B S T R A C T   

In this paper we present a Lattice Boltzmann model for food freezing, using the enthalpy method. Simulations are 
performed using the case study of freezing par-fried french fries. The action of par-frying leads to moisture 
removal from the crust region, which was treated via the initial conditions for the freezing model. Simulations 
show that under industrial-relevant freezing conditions, the crust region remains either unfrozen or only partially 
frozen. This result is important for the practical quality problem of dust, which is the phenomenon of fracturing 
of the crust during finish-frying. 

Next to the insight, the Lattice Boltzmann freezing model rendered for the case study of par-fried french fries, 
we pose that this freezing application is a comprehensive tutorial problem, via which food scientists can be 
conveniently introduced to the Lattice Boltzmann method. Commonly, the Lattice Boltzmann method has its 
value in solving complex fluid flow problems, but the complexity of these problems is possibly withholding food 
scientists to get familiar with the method. Our freezing is solved in 2D, and on a simple square lattice with only 5 
particle velocities (a D2Q5 lattice). We hope via this simple tutorial problem, the Lattice Boltzmann method 
becomes more accessible.   

1. Introduction 

In this paper, we present a Lattice Boltzmann (LB) scheme for the 
freezing of par-fried French fries. Freezing of food materials is domi-
nated by heat conduction through the food material, which is mathe-
matically equivalent to diffusion. For the Lattice Boltzmann method, 
diffusion is a simple process to model, and consequently, we think it is a 
nice tutorial problem to introduce the method to the food scientist. In a 
score of publications, we have shown the benefit of the Lattice Boltz-
mann method for complex fluid flow problems (Van der Graaf et al., 
2006)(Kromkamp et al., 2006), but we acknowledge that the complexity 
of these problems makes it hard for novice users from the food science 
area, to enter the field. Via addressing the food freezing problem, we 
think the LB method can be made more accessible. 

However, also for the experienced Lattice Boltzmann modeller, this 
paper is of interest, as it tackles a phase transition problem using the 
enthalpy method, which is not often used in the LB field, only in rare 
cases like (Huang et al., 2013; Huo and Rao, 2017). We note that in this 
study we target the food freezing problem at the length scale of the 
product, where the resolution of individual ice dendrites is not required. 
The various Lattice Boltzmann models tackling solidification/melting 
are recently reviewed (Samanta et al., 2022). Also, recently we have 
addressed food freezing at the dendrite scale, but that was developed for 

a different system, a frozen sugar solution, and implemented with the 
Finite Volume method (van der Sman, 2021). However, the phase field 
method is also commonly implemented in Lattice Boltzmann (Wang 
et al., 2019; Samanta et al., 2022). 

Phase transitions in food materials are of interest due to the broad 
temperature range of ice formation, making the material properties like 
thermal conductivity, specific heat, and enthalpy highly dependent on 
temperature, cf. (Van der Sman, 2008). 

As an example, we take the problem of freezing par-fried French 
fries. In several research projects, we have been investigating their 
quality problems arising in their processing at industrial scale (Van der 
Sman, 2018; van der Sman and van den Oudenhoven, 2023). This 
problem of simulation of the freezing of (par-fried) french fries is hardly 
investigated in food science. Studies approaching this problem are 
(LeBlanc et al., 1990)(Farid, 2002), but they either assumed 
semi-analytical or empirical models or spherical shapes of products. 
Recent reviews on food freezing, in general, are by Zhao and Takhar 
(2017); Fadiji et al. (2021). It is recommended to use the enthalpy 
method over the apparent specific heat method, which is more accurate 
in predicting the latent heat release during freezing (Mannapperuma 
and Singh, 1988, 2001) Scheerlinck et al. (2001) Agnelli et al. (2005) 
Kiani et al. (2015). This is the approach we will also take in our LB 
model. 
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In our case of frozen fries, the potato products are subject to par-
frying, where they are dipped shortly in a bath with frying oil (Van der 
Sman, 2018). The purpose of par-frying is to create a crust region with a 
decreased moisture content and to shorten the final frying process of the 
frozen product at the point of use (at the consumer’s home, or an 
out-of-home dining facility). In particular, we like to show with this 
study that this dehydrated crust region does not freeze, during the in-
dustrial freezing step. We think this factor is important for the problem 
of crust fracturing during finish-frying (van der Sman and van den 
Oudenhoven, 2023), and the occurrence of supercooling, which we will 
report in a subsequent paper. 

2. Model description 

The model describes the ice formation in par-fried French fries. The 
investigated fries have a square cross-section of width W = 9 mm. Its 
length is much larger than the width, and consequently, a 2D model, 
describing freezing in the cross-section, will suffice. Due to the action of 
par-frying, the model distinguishes crust and core regions. At the start of 
the freezing process, the crust region will have a lower moisture content 
than the core. Furthermore, the crust contains also extra sugars and salt, 
added in the processing to control colour and taste (van der Sman and 
van den Oudenhoven, 2023). The thermophysical properties of the food 
material will be computed based on the composition, and the amount of 
ice - cf. (Van der Sman, 2008) The model will be implemented with 
Lattice Boltzmann, based on the enthalpy method. For simplicity’s sake, 
we neglect any volume changes due to ice formation (which has a lower 
density than liquid water). We first describe the Lattice Boltzmann 
method, and subsequently, we give the relations for the material 
properties. 

2.1. Lattice Boltzmann model 

The Lattice Boltzmann method (LBM) is based on the classical 
Boltzmann equation, but with space, time, and particle velocity taking 
discrete values. The LBM describes the evolution of the distribution 
function of particles residing on a regular (Bravais) lattice, which is 
often a simple square or cubic lattice. The discrete set of particle ve-
locities ci takes the particles on lattice site x to (next) nearest neighbours 
at the subsequent time step: ci = Δxi/Δt, with Δxi the vectors connecting 
lattice site x to (next) nearest neighbours. This propagation of particles is 
sketched in Fig. 1. 

Following the propagation to neighbouring lattice sites, they collide 
with other particles arriving at the same lattice site, but from different 
directions. The collision step is modelled as relaxation towards the 
equilibrium distribution. For fluid flow, this equilibrium distribution 
would be the Maxwell-Boltzmann distribution. Often, a single 
relaxation-time τ is taken for the collision step (Chen and Doolen, 1998). 
The combined action of collision and propagation on the particle 

distribution function fi(x) is described by the following equation: 

fi(x+ ciΔt, t+Δt) − fi(x, t) = − ω[ fi(x, t) − f eq
i (x, t)] (1)  

f eq
i is the equilibrium distribution, and ω = Δt/τ. The physics described 

by the LBM is governed by the conserved quantities, which remain 
invariant during collisions. Hence, for fluid flow, the collisions need to 
conserve both mass and momentum. However, for diffusion, the colli-
sions only need to conserve mass (Van der Sman and Ernst, 1999). The 
mass density ρ is obtained from the zeroth order moment of the distri-
bution function, which remains invariant under collision: ρ(x, t) =
∑

i fi(x,t) =
∑

i f eq
i (x,t). In the case of fluid flow, the momentum density 

is obtained from the first-order moment: ρ(x, t)u =
∑

ici fi(x, t) =
∑

ici f eq
i (x,t). For the general case, the physics governing LBM is imposed 

via the moments of the equilibrium distribution. Up to the second order 
they are denoted as (van der Sman and Van der Graaf, 2008): 
∑

i
f eq

i = Φ

∑

i
f eq

i ci,α = Φuα

∑

i
f eq

i ci,αci,β = Φuαuβ + Γμδalphaβ

(2)  

with α and β indicating the Cartesian coordinates. δαβ representing the 
identity matrix, with δαβ = 1 if α = β, and δαβ = 0 if α ∕= β. We note, that 
for this general case, no physical meaning is assigned yet at φ, uα, μ, and 
Γ. The partial differential equation, that approximates the action of the 
LBM, is derived via the mathematical procedure of the Chapman-Enskog 
expansion (Van Der Sman, 2006). If the LBM only conserves mass (ρf), 
the governing equation becomes (Van Der Sman, 2006; van der Sman 
and Van der Graaf, 2008): 

∂tΦ + ∂αΦuα = ∂αM∂αμ (3)  

with the mobility M = Γ(1 /ω − 1
2)Δt. In the governing equation ∂α 

represents component the nabla vector operator ∇. The Einstein 
convention of summation over double indices is implied. This notation is 
commonplace in the field of LBM, and thus it is also used here. 

The above general scheme has been used for describing the 
convection-diffusion of a phase field, describing the microstructural 
development of emulsions (van der Sman and Van der Graaf, 2008). 
There φ is the order parameter of the phase field, uα is the velocity field, 
and μ is the chemical potential. Here, we will use the general expression 
to design a LB scheme, which simulates freezing following the enthalpy 
method. 

In the enthalpy method, the conserved quantity is energy (density), 
which should include the latent heat stored in the ice fraction. The en-
ergy density e of the freezing fry changes due to heat conduction: 

Fig. 1. The D2Q5 lattice used for freezing (left pane), 
with red dots indicating the lattice sites on a square 
Bravais lattice, and the arrows indicate the particle 
velocity set, bringing particles to nearest neighbours. 
D2Q5 lattice also has rest particles with zero velocity 
c0 = 0. The grey square indicates the Wigner-Seitz 
cell. In the right pane, we show a Wigner-Seitz cell 
at the corner of the computational domain, with 
particles moving out (fi) and into (fi*) the computa-
tional domain. Outgoing particles are collected in a 
ghost layer, surrounding the computational domain, 
their information is used to determine fi*, as deter-
mined by the boundary condition. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)   
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∂te = ∂αjα
jα = λeff ∂αT (4)  

jα is the heat flux due to conduction, with λeff the thermal conductivity, 
and T the temperature. The energy density is defined as: 

e = ρeff cp,eff (T − T0) − φicehice (5)  

ρeff is the mass density of the food material, cp,eff is the specific heat, T0 is 
the reference temperature (zero Celsius), φice is the volume fraction of 
ice, and hice is the latent heat of fusion for ice crystals (given in [J/m3]). 
Note that the latent heat contribution to e is negative, meaning that ice 
formation will generate heat. The material properties λeff, and ρeffcp,eff 
are is dependent on the amount of ice φice, as described below. 

The above partial differential equation can be modelled by LBM, 
under the condition of the following moments to the equilibrium par-
ticle distribution function: 
∑

i
f eq

i = e

∑

i
f eq

i ci,α = 0

∑

i
f eq

i ci,αci,β = Γc2(T − T0)δαβ

(6)  

For French fries, one can assume that the thermal conductivity is 
isotropic. Hence, the effective thermal conductivity can be linked to the 
relaxation parameter and Γ via: 

λeff = Γc2
(

1
ω −

1
2

)

Δt (7)  

The above constraints for the moments of the equilibrium distribution 
are already satisfied by a so-called D2Q5 lattice (Huang et al., 2013). 
This type of lattice is already shown in Fig. 1, which is a square lattice 
with uniform lattice spacing Δx, a rest particle with c0 = 0 and 4 other 
particles propagating to nearest neighbours with velocity |ci| = c =
Δx/Δt. 

The explicit expression of the equilibrium function, adhering to the 
above constraints is: 

f eq
i = wiΓc2(T − T0) (8)  

for i > 0, and 

f eq
0 = e −

∑

i>0
f eq

i (9)  

For the weight factors hold wi = 1
2. The actual temperature needs to be 

computed using Eq. (5), using the total energy density e. 
The computational domain is a quarter of the cross-section. We apply 

symmetric boundary conditions at x = 0 and y = 0. At x = 1
2 W, and y =

1
2 W we assume a constant temperature, equal to that of the freezing 
airflow. 

The boundaries of the computational domain coincide with the 
boundaries of the Wigner-Seitz cells of the Bravais lattice, at which we 
impose the boundary conditions, as is indicated in Fig. 1. We divide the 
square computational domain into N × N lattice cells, implying Δx =

1
2 H/N. 

The Dirichlet condition on the outer boundary is defined as follows: 

c(fi(x, t) − fi∗(x∗, t)) = je =
λeff

1
2 Δx

[T(x) − Tair] (10)  

je is the conductive heat flux through the outer boundary, with a normal 
vector parallel to ci, and with ci* = − ci. fi(x, t) are particles moving out of 
the computational domain, and fi∗(x∗, t)

)
are particles moving into the 

computational domain, cf. (Van der Sman, 1997). 
The symmetry boundary condition is: 

fi(x, t) − fi∗(x∗, t)) = 0 (11)  

This can be interpreted as a simple reflection of fi on the boundary. The 
magnitude of the timestep Δt is determined by the stability criteria of the 
diffusion LB scheme: 

Fo∗ =
αeff Δt
Δx2 <

1
2

(12)  

Fo* is the grid Fourier number, and αeff = λeff/ρeffcp,eff is the thermal 
diffusivity. Note, that the same stability condition holds for Finite Vol-
ume and Finite Difference schemes with Euler forward time integration. 
If ω = 1 the LBM is mathematically equivalent with these schemes (Van 
der Sman, 2006). 

2.2. Material properties 

From the local composition of the unfrozen phase, we compute the 
water activity and the freezing point. The composition is characterized 
by the mass fractions of unfrozen water (yw), starch (yc), sugars (ys), and 
salt (NaCl) (ya). The core region of the fry is assumed to contain only 
water and starch. 

The water activity is computed using the Flory-Huggins-Free-Volume 
(FHFV) theory (Van der Sman and Meinders, 2011), augmented with the 
Pitzer equation accounting for the contribution of the salt (Van der 
Sman, 2008, 2012). For the FHFV theory, the mass fractions are con-
verted into volume fractions, using known mass densities, cf. (Van der 
Sman, 2008). The FHFV theory takes the Tg of the starch/water system 
(Van der Sman, 2008), which is modified due to the presence of salt cf. 
(Van der Sman and Broeze, 2014). 

The relation between water activity aw and freezing point Tf is (Van 
der Sman and Meinders, 2011): 

ln(aw) =

(
1
Tf

−
1
T0

)
ΔHice

R
(13)  

with T0 the freezing point of pure water, ΔHice the latent heat of fusion 
for ice in (J/mol), R the universal gas constant. A convenient correlation 
between the mass fraction of ice yice and freezing point is the following 
(Van der Sman, 2008): 

yice = yw0
T − Tf

T − T0
(14)  

with yw0 the initial moisture content of the food in the unfrozen state. 
Ignoring the difference in the mass density of liquid water and ice, we 
convert the mass fractions into volume fractions φi. For simplicity, we 
take the thermal material properties of salt equal to that of carbohy-
drates. As the amount of salt is minor, the introduced error is negligible. 

The product of the effective mass density and effective specific heat 
is: 

ρeff cp,eff =
∑

i
φiρicp,i (15)  

and the effective thermal conductivity is modelled following Maxwell- 
Eucken (Van der Sman, 2008): 

λeff = λc
1 + (φice + (1 − φice)Q)Δ

1 + (1 − φice)QΔ
(16)  

with Q = 1
3. We neglect the tensorial character of the thermal conduc-

tivity induced by the dendritic growth of ice crystals along the direction 
of temperature gradient (van der Sman, 2021). λc is the thermal con-
ductivity of the continuous, unfrozen phase, and Δ = (λice − λc)/λc, is the 
relative difference of thermal conductivities between the dispersed and 
continuous phase. For the continuous phase, we take the simple parallel 
model (Van der Sman, 2008): 

R.G.M. van der Sman                                                                                                                                                                                                                          
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Fig. 2. Contour plots of the temperature and ice fraction distribution in the cross-section of a par-fried French fry after 5 min of freezing. The origin is at the center of 
the cross-section. 

Fig. 3. Profiles of temperature and ice mass fraction yice as a function of distance, for the first 5 min of freezing, at 1-min intervals (red to magenta). The top pane 
shows simulations for yw,crust = 0.62, and Tair = − 13oC, while the bottom pane shows results for yw,crust = 0.56, and Tair = − 8oC. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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λc =
φwλw + (φc + φs + φa)λs

φw + φc + φs + φa
(17)  

with λi the thermal conductivity of component i. The values of λi are 
taken from (Van der Sman, 2008). 

3. Experimental data 

Parfrying experiments are performed with 9 mm thick strips. Before 
parfrying, the strips are blanched, such that starch is fully gelatinized. 
Next, they are soaked in a brine with salt and sugar. Subsequently, 
minimal drying is performed to remove surface water. Before parfrying, 
the potato strips had a moisture content of yw = 0.775. 

The par-frying is performed for a range of temperatures, 170 ≤ Toil ≤

190oC, and residence times, 40 ≤ τfry ≤ 60 s. Furthermore, slices 1 mm 
thick has been cut from the fry, which also contains part of the core. We 
have determined the water, oil, salt, and sugar content of these slices. 
We found that dry matter decreases linearly with the input of thermal 
energy: Q ~ (Toil − Tboil)τfry = E. We assume that during par-frying the 
surface temperature quickly assumes the boiling temperature of Tboil =

100oC. Before parfrying, the amount of salt and sugar is 3% and 0.5% of 
the total weight. In parfrying experiments, we varied the thermal energy 
input, such that 3000 ≤ E ≤ 6000 K s, inducing a change in the water 
mass fraction of the sliced crust in the range 0.70 ≤ yw,slice ≤ 0.67. In our 
model, we will assume a crust region of thickness Λ = 0.5 mm. Hence, 
the mass fraction of water in the actual crust region ranges: 0.56 ≤ yw, 

crust ≤ 0.62. 
Before entering the freezing tunnel, the fries are cooled down. The 

average temperature of fries entering the freezing tunnel is Tinit = 30oC. 
The freezing air temperature can range from − 14 ≤ Tair ≤ − 8oC. For 
estimated airflow velocities (in the pore space between the fries) of 
about 2 m/s, we estimate a Nusselt number of Nu = 40, using the cor-
relation for a packed bed of cylinders by (Zhukauskas, 1987). From the 
definition of Nu = hextW/λeff, we obtain a heat transfer coefficient of hext 
≫ 1000 W/m2.K. Hence, we can assume that the outer surface takes the 
air temperature. 

4. Results 

Simulations are performed with N = 18. The crust region is assumed 
to be 0.5 mm, which is two lattice spacings thick. Via Eq. (7) the pa-
rameters Γ and ω are not uniquely defined. We have chosen for ω = 1.2, 
and Fo* = 0.2. During simulations, we have varied the freezing air 
temperature in the range − 14 ≤ Tair ≤ − 8oC, and 0.56 ≤ yw,crust ≤ 0.62, 
with yw,core = 0.775. Calculations show the initial freezing point of the 
core is Tf,core = − 0.135oC, while that of the crust ranges − 8.30 ≤ Tf,crust ≤

− 7.87oC. Residence times of fries in the freezer tunnel are in the range 
τfreeze = 11–15 min. 

In Fig. 2 we show a typical result of the simulation, showing contour 
plots of the temperature, and ice fraction after 5 min of freezing. 
Simulation is performed for yw,crust = 0.56, Tair = − 8oC. Results show 
that the crust region is still unfrozen (with φice ≈ 0. 

We compare the temperature profiles and ice fraction profiles along 
the horizontal axis for two extreme cases: a) yw,crust = 0.62, and Tair =

− 13oC, and b) yw,crust = 0.56, and Tair = − 8oC. Fig. 3 shows the profiles 
for the first 5 min of freezing at a time interval of 1 min. We observe that 
for Tair = − 13oC the fry is nearly fully frozen after 5 min, while for Tair =

− 8oC the ice front progresses somewhat slower (5 mm/min versus 7 
mm/min), and the crust region is still unfrozen. At Tair = − 13oC the crust 
region is fully frozen after 5 min, but the amount of ice is lower than the 
core region, because of its lower initial freezing point (Tf,crust ≈ − 8oC). 
For both freezing conditions hold that after 11 min the cores are fully 
frozen. For Tair = − 8oC the crust remains unfrozen, as its initial freezing 
point is near the freezing air temperature. 

We note that in practice the French fries move as a packed bed with a 
height of 8–12 cm. Consequently, the freezing air will warm up, while 

flowing through the packed bed. Consequently, not all fries will expe-
rience an ambient temperature equal to the setpoint of Tair, which will 
also change with time. It is probable that in practice it takes 11–15 min 
to freeze all fries in the packed bed. 

5. Conclusions 

In this paper we have presented a 2D Lattice Boltzmann model for the 
problem of food freezing, using the particular example of par-fried 
french fries as an example. Next to its relevance of providing insight 
into this freezing problem related to practical quality problems of french 
fries, this Lattice Boltzmann model is of interest to food scientists 
because of the relative simplicity of the physics of the problem, as 
compared to the complex fluid flow problems (where the LB method has 
particular merits). Furthermore, it is showing an implementation of the 
enthalpy method for phase transition problems, which is rarely 
addressed in the LB community (Samanta et al., 2022). 

For our case of freezing french fries, we have performed several 
simulations using fries with moisture already removed from the crust 
region, due to the action of parfrying. We have shown that for several 
practical processing conditions, the crust remains unfrozen, due to its 
lowered moisture content, and the amount of added sugars and salt. In 
other cases, the crust does get partially frozen, but much less than the 
core. These results are important inputs to the problem of crust frac-
turing during finish frying, as discussed in our companion paper (van der 
Sman and van den Oudenhoven, 2023). 

Finally, we also like to note the similarity of parfrying before 
freezing, with dehydrofreezing (Agnelli et al., 2005; James et al., 2014; 
Schudel et al., 2021). In this process, foods are subject to a dehydration 
process, often via osmotic dehydration. The aim is to lower the initial 
freezing point and thus reduce the amount of ice and damage formed 
during freezing. The reduction of the amount of ice formed will also 
increase the freezing rate, and thus reduce ice crystal size (Van der Sman 
et al., 2013). After the dehydration step, one can still expect large gra-
dients in moisture - leading to a strong variation of thermophysical 
properties. The presented Lattice Boltzmann model using the enthalpy 
method can also be used for freezing after dehydration. Due to the 
moisture gradients, one can also expect that some regions remain un-
frozen. The actual modelling of the dehydration, combined with the 
volume shrinkage, is still a challenge for the Lattice Boltzmann method - 
where one commonly assumes a fixed grid. For 1-D problems, we have 
adapted the Lattice Boltzmann method for deforming grids (Van Der 
Sman, 2014), but this has to be generalized to higher dimensions still. 
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