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Abstract 
 

In recent years, the doors of the social sciences have opened for the implementation of Machine 

Learning (ML) models. These models in fact grant the researcher an increased power to approximate 

the data generation process at study, and the possibility to take into consideration a larger number of 

variables. Given their structure optimized for prediction accuracy, Neural Networks, and in particular 

Long Term Short Memory (LSTM), are natural candidates to take upon the time series forecasting 

problem. They also have been found to outperform traditional econometrics, but only in specific 

settings. However, the functioning of these models in respect to traditional ones as well as in respect 

to time properties still remains unclear. This is particularly true when considering agricultural 

commodities future prices, as the implementation of Machine Learning in this sector cannot count on 

many studies.  

This research therefore compares the functioning as well as the performances of ML models versus 

traditional ones. The comparison is carried out across different scenarios, so to provide a clearer 

picture of when the ML models are more appropriate. The different scenarios are built around 

different pre-processing techniques, different forecast horizons as well as different clusters of 

variables considered. In addition to this, LSTM’s ability to pick up time elements of this dataset is 

assessed. 

The results highlight how LSTM models outperform traditional econometrics when forecasting over a 

long horizon (30 days), while the opposite can be said for a short horizon (7 days). No significant 

differences were found across pre-processing procedures nor cluster of variables. The LSTM were 

found not to be able to pick up neither seasonality nor trends.   
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Chapter I – Introduction 

1.1  Introduction 
The tremendous increase in data availability in the agricultural and environmental sector, paired with 

an outstanding progress in the computational power of computers, has opened several possibilities 

for the application of Machine Learning (ML) techniques in agricultural economics (Storm et al., 2019). 

Machine Learning is a term that comprises several techniques, from decision trees to neural networks.  

These techniques are often better equipped than traditional statistical tools to deal with big data, and 

therefore can contribute significantly to the understanding of agricultural price time-series 

(Mullainathan and Spiess, 2017). In particular, these ML models have as a primary goal prediction 

accuracy, and could therefore greatly impact how forecasting is carried out in this field. To compare 

the performances of these new techniques to traditional econometric forecasting techniques, in 

recent years some researchers have competed in forecasting contests: the M-competitions series 

(Hyndman, 2020). The astonishing results of the last competition were that complex approaches were 

finally able to outperform more simple methods, in contrast with what happened in previous 

competitions. Such results undermine the long-standing preference for model parsimony, and, 

according to some authors, sounded the “death knell” for traditional econometrics models, such as 

the Autoregressive Integrated Moving Average (Gilland, 2020). 

Nevertheless, one of the main unresolved issues pointed out by recent studies is the functioning of 

ML models as “black box”, meaning that often it is not clear how they behave compared to traditional 

econometrics (Mullainathan and Spiess, 2017; Sheikh and Jahirabadkar, 2018; Storm et al., 2019). In 

order to produce accurate forecasts, the model has to be able to deal with a number of time elements: 

such as seasonality, trends or unit root. These elements introduce non-stationarity in the data, 

hindering the possibility of making proper forecasts. Moreover, there are also theoretical properties 

that need to be addressed when dealing with time series, for instance cointegration of two or more 

series. Cointegration implies that there is some long-run equilibrium relation among non-stationary 

time-series variables that often has a structural cause (Verbeek, 2017). This long-run relationship can 

be made explicit and exploited for forecasting purposes.  

Dealing with all of these aspects largely depends on the pre-processing of the data, but there is a 

trade-off between transformation of the data and loss of information, and more or less flexible models 

are expected to react differently to this balance.  

1.2 Research Objective 
The objective of this research is to compare Machine Learning algorithms with time series 

econometrics models by analysing their differences and similarities and applying them on different 

pre-processed series of the same dataset. Particular focus is put on their forecasting performances as 

well as on which time elements are picked up by the Machine Learning models.  

This general objective leads to four sub-questions to be answered: 

• What are the characteristics of the selected ML and econometric models? 

• In which aspects do the models differ and in which aspects are they similar? 

• How do these models perform in forecasting agricultural commodities price series? 
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• How do ML models deal with time properties?  How do they perform in respect to models 

able of picking up cointegration? 

1.3 Background 
We start from studies demanding for a deeper analysis of the functioning of ML learning models 

applied to economics (Ahmed et al., 2010; Mullainathan and Spiess, 2017;  Storm et al., 2019), and 

decided to follow the most advanced procedure highlighted in studies concerning the forecasting of 

time-series data (Gilland, 2020;  Bandara et al., 2019).  

The subset of models that are discussed in this research are: 

1. Traditional econometric time series models: Autoregressive Integrated Moving Average 

model (ARIMA), as it is the predominant model that has been used in the past (Storm et al., 

2019). The acronym shows the key aspects of the model, which is composed by: an 

Autoregressive part (AR), capturing the relationship between a variable and its lagged values; 

the Integration order (I), representing the order of differencing needed to obtain a stationary 

series; the Moving Average part (MA), capturing the relationship between an observation and 

the errors of previous observations (Verbeek, 2017). Also its multivariate extensions, the 

Vector Autoregressive model and the Vector Error Correction Model will be presented and 

utilized.     

2. Machine Learning: The machine learning models to be utilized in this research belong to the 

family of neural networks. The general idea governing neural networks is, starting from input 

data, to obtain the mapping of the outcomes through a series of layers building a chain-like 

structure of functions (Storm et al., 2019). In particular, our model is a deep Long Short Term 

Memory (LSTM) neural network. 

The data set to be utilized is composed of time series of agricultural commodities prices retrieved from 

future markets, as explained in chapter III.  

1.4 Methodological Design 
Sub-questions 1 and 2 will be answered through a review of the existing scientific literature concerning 

the models. The third question will be answered running the models in Python, and then comparing 

the performances with the appropriate accuracy measures (Goodwin, 2020; Kolassa, 2020). 

Eventually, the last sub-question will be dealt with discussing the findings and results of the previous 

sub-questions.  

1.5 Content Overview 
After the introduction, in Chapter 2 the theory behind the models applied in this research is presented. 

Subsequently, the data set to be used is presented and the pre-processing procedures carried out are 

explained in detail in Chapter 3. Chapter 4 contains the methodology of the research: the 

specifications of the models will be reported;  the clustering we applied to the time series will be 

discussed; and the accuracy measures chosen will be explained. The results will be reported in Chapter 

5, highlighting their forecasting accuracy. Last, in Chapter 6 all the information gathered in the 

previous chapters is used to discuss the conclusions of the research and summarize its findings.  
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Chapter II – Theoretical Background 
In this chapter we present the theoretical background of the models that will be utilized in the 

empirical analysis. First, a brief introduction to the traditional models is given, focusing mainly on what 

characterizes these models and contributed to their wide adoption. Then, a simple explanation of the 

NN and the LSTM architecture is provided, with particular focus on the algorithm used in this analysis. 

2.1 Introduction 
Forecasting has a long tradition in human history. If the first objective of science is to understand 

nature, the immediate following one is trying to predict natural events before their manifestation. 

This intention does not only concern nature, but also the social environment and in particular what 

relates to economy.  

The most widely adopted model that was designed to take on this task is the Autoregressive Integrated 

Moving Average (ARIMA). This model tries to describe the relation between future and past 

observations of a certain variable, by modelling the patterns of the data generation process. To realize 

this model, the researcher has to look for seasonality, trends, structural breaks and lags. 

What characterizes Machine Learning (ML) on the other hand is the development of algorithms able 

to automatically learn by practice. This means that its ability on a certain task (e.g. prediction), as 

measured by a certain performance (e.g. accuracy), improves the more experience (e.g. data) the 

algorithm is exposed to. Ideally, the broader and wider is the dataset that the learning algorithm is 

fed, the better its performance will be.  

ML models are often called pure prediction algorithms (Efron, 2020) due to their nature. While 

traditional prediction methods are shaped by the original scientific goal of understanding nature, ML 

models are exclusively focused on high predictive accuracy, with no regards for estimation or 

attribution power (Efron, 2020). The natural data generation process is a “black box”: also the artificial 

one is a “black box”, but one that closely resembles the original one. Thanks to this resemblance, it 

can make very accurate predictions. 

We focus on a specific class of ML algorithms: Neural Networks (NN). In particular Long Short Term 

Memory Networks (LSTM) are described, as they were specifically designed to learn from sequential 

data, as in the case of time-series.   

2.2 Functioning of ARIMA models 
The rise of ARIMA models can be explained by the disappointing results that initial structural macro-

models bore in predictions. These models were based on theories coming from macro-economic 

(therefore structured), and often involved several variables to approximate the underlying data 

generation process. The failure of these models in the 1970s led to the development of unstructured, 

univariate models strongly data-driven: the ARIMA models. These models in fact tend to exploit the 

patterns in the data series, such as seasonality and trend, to make predictions for a single variable. To 

achieve this, ARIMA models combine autoregressive processes and moving average process, hence its 

name.  

An important aspect to take into consideration when trying to forecast with ARIMA models is the 

stationarity of the data. Stationarity is a property of time series, and essentially it concerns the 
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stability of the data generation process over time: a stationary series is stationary if its probability 

distribution is independent of time; while the opposite can be said for non-stationary series. There are 

many elements that can give rise to non-stationarity, for instance a trend, seasonality or unit roots.  

Stationarity is extremely important in forecasting, as we cannot reliably predict future observations if 

the law generating those observation changes as time passes. The ARIMA solution for this problem is 

to transform the time-series to be analysed, so to make it stationary. The most common 

transformations comprehend the pre-processing of the data to take care of the trend or the 

seasonality or first-differencing to get rid of units root. A series that becomes stationary after one first 

difference is said to be Integrated of order one, hence the “I” in ARIMA. For this to happen, there 

must be an exact unit root (Verbeek, 2017).  

2.3 VAR and VECM models 
ARIMA models can be extended to take into consideration also causal relationships with other time-

series variable, as it may improve the forecasting accuracy. This is the case with Vector Autoregressive 

(VAR) models. There are several variants to this model, all with the key concept of exploiting dynamic 

relationships among the variables in the system.  

The possible problem with this framework is that in case the variables are non-stationary, a spurious 

regression may occur. This is the scenario where two independent series, both containing a similar 

stochastic trend, seem to be related.  

Nevertheless, a possible solution can be found if the non-stationary series in the multivariate model 

have the same order of integration. In this scenario, there might be a cointegrating vector such that 

the combination of the two non-stationary series is integrated of order zero (stationary). We refer to 

this property as cointegration: it implies a long-run relationship among the variables, that reciprocally 

tend to bring each other towards a certain distribution, and it often has a theoretical explainable basis.  

To exploit this property Vector Error Correction Models (VECM) were designed. Following the Engle-

Granger representation theorem (Engle and Granger, 1987), in a system of cointegrated variables 

integrated of order one there must be a valid Error Correction Model representation. In this 

representation, the long run relationships between the variables are made explicit, and it is possible 

to take advantage of them for making forecasts. In principle these long-term relations should lead to 

better forecasts. 

2.4 Neural Networks 

2.4.1 Origins and development 
Neural Networks (NN) take their name from the functioning of biological neurons, but despite some 

similarities, the “artificial brain” and the natural one bear little resemblance to each other. 

Nevertheless, the analogy with a biological neuron is particularly suited to explain the original line of 

reasoning that led to the creation of the first Neuron model (McCulloch  and Pitts, 1943 ] that later on 

became the Perceptron (Rosenblatt, 1958) which gave rise to the Neural Networks models.  

A biological neuron is composed of three elements relevant for this example: the dendrites, which are 

the termination of the neuron from which stimuli and information (so the inputs) are received by the 

neuron; the nucleolus, which is the computational site of the neuron where the information is 

processed; and the axon, which is the terminal by which the response elaborated by the nucleolus (so 

the output) is transmitted to other neurons, or to the final destination of the message.  
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An artificial neuron (a Perceptron) follows the same logic: first, it receives the inputs from the outside; 

second, it processes the input by assigning them weights and biases (equivalent to coefficients in linear 

regression with biases equivalent to intercept), so to be able to filter or amplify information; last, the 

output, being the corrected weighted sum of inputs, is fed into an activation function. In biological 

neurons, every stimulus needs to overcome a certain threshold so to continue its transmission. It is 

possible to think about the activation function in the same way. Figure 1 provides an example in two 

dimensions for simplicity. The activation function f divides the plane in two regions. The algorithm 

only considers the inputs (x) whose output (y) belong to the green region (overcoming the established 

threshold).   

 

Figure 1: Activation function - simple visualization 

Finally, NN are composed of layers – where each layer consist of several neurons – interconnected at 

various intensity among themselves. They are also composed of three types of layers: the input layer, 

receiving the input; the output layer, providing the final output; and the hidden layers, carrying out 

intermediate computations. Depending on how the neurons are connected within the layer, but also 

among layers as well as the type of connections, it is possible to obtain different kind of layers. By 

increasing the number of hidden layers, it is possible to increase the model ability to deal with complex 

functions, enhancing its flexibility. This data-driven model generalizability is what made NN 

particularly attractive to data scientist, as it enables to perform accurate prediction without being 

constrained by assumptions (Staudemeyer and Morris, 2019). In particular, neural networks can be 

used for classification and forecasting purposes. 

2.4.2  The structure 
There are four key elements for constructing a NN: the graph, the loss function, the optimizer and the 

initialization. In this section, a brief introduction to these elements is given while highlighting the main 

aspects of the algorithm functioning.  

The graph: 

The combination of connected neurons builds the graph, which is the approximation of the function 

we want to model. This final function will be conditional on all the parameters of the graph (weights 

and biases) as well as on the different activation functions in each node.  
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The loss function: 

The weights and biases on which the graph depends have to be estimated. The learning phase of a 

neural network is the process by which the models choose the values of these variables so to ensure 

the best fit to the function we are trying to model. This in practice is an optimization problem, where 

the objective value is called a loss function as it represents the error (or distance) between our 

estimates and the real value we are aiming for. Depending on the task we are instructing our NN for 

(regression or classification) there are several loss functions that can be applied (Mean Square Error 

MSE, Mean Absolute Error MAE or Binary/Categorical Cross Entropy). 

The optimizer: 

Due to the high complexity of the function it is infeasible to obtain an analytical solution by computing 

the derivatives due to the huge number of parameters, and we have to rely on heuristics to find the 

optimal function. One of the most common heuristics is the Gradient Descent, which allows to find a 

minimum point following the direction in which the gradient is decreasing. The problem with this 

solution is that there is no guarantee of finding the global minima, and therefore we have to do with 

local minima. Moreover, the result is highly dependent on the starting point from which we compute 

the derivative. The Gradient Descent updates the parameters based on their previous value, the 

gradient and a parameter called learning rate. The setting of the learning rate is a critical point in 

constructing a NN, as a too low value would bring this process to converge in an excessive amount of 

time, while a too high value would make the process diverge. Equation (1) describes how the 

parameters for the model, i.e. weights (W) and biases (B) are updated via learning. This mechanism is 

what enables models to learn from the data, and it is one of the most relevant differences with 

traditional models.  

 [W,B]t+1 = [W,B]t – η* 1/n ∑∇W, B* loss[Yi, g(xi|W,B)]  (1) 

 

 W=weights η = learning rate t = current time step          loss = loss function considered 

 B= biases 1/n= average Yi,xi = vectors of data ∇W, B = gradient operator     g = the graph 

In fact, also in econometrics we have to deal with loss functions (e.g. sum of squares), but given their 

relatively simplicity in terms of parameters to be estimated, there it is possible to compute the exact 

solution, in contrast with what happens with more complex models. When the training starts, a Neural 

Network assigns values to its parameters (W and B) to minimize the loss function, while at the same 

time computing the value for a certain metric. This metric is what allows to monitor the performances 

of the model. For instance when considering a forecasting task, the most common metric is the 

accuracy. The NN is then able to improve by iteratively updating these parameters, taking into 

consideration the minimization of the loss function as well as the improvement of the metric 

considered. Each iteration of the algorithm is called an epoch. The update of the parameters depends 

on the learning rate η and the gradient operator ∇W, B: these two elements govern the scouting of the 

model to improve its fit to the data. The larger the dataset available, the larger the pool from which 

the NN can extract its parameters’ values. In this way, the model can learn from the data.  

The most critical point that makes the implementation of NN  feasible is Backpropagation (Rumelhart 

et al., 1986). This algorithm computes the values for the parameters of each layer starting from the 

last one and moving backwards, exploiting the chain rule of derivatives to avoid redundant 

calculations. Nevertheless this method generally did not bear great results, as it suffered from 
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overfitting or underfitting (Staudemeyer and Morris, 2019). To address this issue, the most common 

technique is the k-fold cross validation. The dataset is shuffled and divided in k groups. A group is 

selected and it is set as test group, and the remaining data is used for training the model. This process 

is iterated k-times, each time selecting a different sub-sample as a test set. After each training, the 

evaluation score is computed and retained and eventually the best model is selected.   

The initialization:  

In the Gradient Descent method, weights and biases need initial values so to start the computation of 

the gradient. These initial values are chosen or computed from a uniform or normal distribution.   

2.5 Regularization and Overfitting  
One of the key differences between the traditional methods and ML ones is the concept of overfitting 

and regularization. To produce accurate forecast in the future, the model should not approximate the 

underlying data generation process perfectly, picking up every aspect of it. Otherwise, we would be 

able to make reasonable prediction only in the case in which the future observations of a certain 

variable will have the same exact distribution. This concept, to some extent, related to non-

stationarity, and represents a way by which NN address this issue: since we expect the observations 

in the future to vary from the past observations, we leave for room for flexibility in the model. The 

right balance between fitting the data and flexibility can be calibrated before forecasting on the 

training set.  

Neural Networks, due to their high approximation power, can easily overfit, while this is not typically 

the case with simpler models such as the ARIMA. In order to overcome this problem, it is possible to 

recur to regularization strategies, aimed at decreasing the goodness of fit of the models. Classical 

strategies for NN are limiting the number of epochs; including dropout in layers, discarding at random 

a selected percentage of the units of the previous layer; including regularizers, that apply penalties to 

how parameters are computed. The models used in this analysis make use of all these strategies.  

2.6 Recurrent Neural Networks 

2.6.1 Approaching Time-series 
Neural Networks proved to be extremely powerful models, able to achieve relevant results. 

Nevertheless, feedforward networks (going from an input layer to an output layer) do not take into 

consideration temporal states, and therefore they are limited to static tasks (for instance cross-

sectional data or pattern recognition in images) (Nielsen, 2019). This is an extremely relevant problem 

for time-series forecasting, where it is key to be able to consider the whole evolution of the variable 

we are considering over time and to respect the order of observation over time. 

 

To solve this issue Recurrent Neural Networks (RNN) were developed, addressing the problem in two 

ways. First, they are able to maintain an internal state carrying on the information processed 

previously. This is made possible by the presence of special hidden layers, commonly referred to as 

memory states, containing recurrently connected neurons. These layers accumulate the sequential 

information and maintain the knowledge acquired over time (Lazzeri, 2020) . Second, they iterate over 

the elements of the analysis: the networks utilize the output of the current step as part of the input 

for the next step during training. In this way, they obtain the ability to solve dynamic tasks (Lazzeri, 

2020).  
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The most common way of representing RNN to explain the features above is like a chain of repeating 

modules of neural networks: in this way, it is clear that the final output depends on the whole history 

of the variables (figure 2):  

 

 
 

 

Despite solving the time-sequence issue, RNN still encountered two other problems in their 

application and were not efficient. The first problem regards the Backpropagation (explained in the 

section above), that in the time-series context is called Backpropagation trough time, that led to the 

problem of Vanishing Gradients (Nielsen, 2019), hindering the learning phase which is not able to 

compute the optimal weights. The second problem is that the model has no control over what to 

remember. This is referred to as the long-term dependency problem: the inputs at the beginning of 

the time-series undergo a series of transformations (every time it is weighted and fed into the 

activation function), so that eventually is it impossible to assess which information has been taken 

into consideration and which has not.  

 

2.6.2 Long Short Term Memory Networks 
To address the two problems specified above, Long Short Term Memory (LSTM) networks were 

developed. LSTM are explicitly designed to control the vanishing gradient problem as well as learning 

effectively the long-term dependencies. 

Also the LSTM can be represented via a chain-like structure, but in this case there are several 

differences. The first one is a standalone memory cell containing a recurrently self-connected linear 

unit, the Constant Error Carousel (CEC). In this way, thanks to a state vector (Ct), it is possible for 

information to flow from cell state to cell state and to safeguard long-term dependencies 

(Staudemeyer and Morris, 2019). See figure 3. 

In addition to this, the LSTM is provided with gates allowing it to filter or add information to the CEC. 

They output values ranging from 0 to 1, using a sigmoid function or the hyperbolical tangent, to carry 

out this process: a value of zero means that no information is added, while a value of 1 means that 

the whole information is added to the cell state.  

Figure 2: Unfolding the RNN 
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Figure 3: LSTM Network unfold  

There are three types of gate (Staudemeyer and  Morris, 2019): 

• The forget gate: it determines how much of the information accumulated so far in the memory 

cell is to consider from now on 

ft = σ(Uf * xt + Wf * ht-1 + b)                                                                             (2) 

• The input gate: it determines how much the new output can contribute to the memory cell. 

In particular, first it decides which values to update (3), and then it computes the new 

candidate values for the memory cell (4). 

it = σ(Ui * xt + Wi * ht-1 + b)                                                                                                                        (3) 

c ̂̃t = φ(Uc * xt + Wc * ht-1 + b)                                                   (4) 

So that  

Ct = ft * Ct-1 + it* c̃̂t                                                                                                                (5) 

• The output gate: depending on the memory cell inner state, it controls how much information 

to use for generating the output. 

ot = σ(Uo * xt + Wo * ht-1 + b)                                                                (6) 

ht= ot* φCt            (7) 

 

Legend: 

U – input to hidden weights    f – forget vector 

W – hidden to hidden weights    i – input vector 

V – hidden to output weights    o –output vector 

σ – sigmoid function      b – biases  

φ – hyperbolic tangent function (tanh) 

C – state vector of the CEC, preserving long term dependencies 

H – is the hidden state: it is how the memory of the process is stored, and it is computed based on  

ht-1 and xt. It represents the overall information accumulated so far by the model.  

 

There are several variants to the LSTM model in respect to its inner structure, for instance the Gated 

Recurrent Unit (Cho, et al. 2014) version: in this model, the forget and input states are combined into 

a single update gate.  

 

Input at  
time t -1 

Hidden state  
at time t -1 

CEC 

Output gate 

Input gate 

Forget gate 
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Chapter III – Data 
In this chapter the data series used in the empirical analysis are presented and commented. In the 

first part, each time series is shown, and the most relevant information for each time series is 

summarized. In the second part, the focus shifts on the pre-processing procedures we applied on the 

data. More information about the dataset can be found in ANNEX A. 

3.1 Data Description  
The data utilized in this analysis are 13 time series measured at daily frequency. These series represent 

the stock quotations of future contracts traded on different market belonging to 6 categories: grains,  

financial indexes, animal products, metals, energies and currencies. The series were retrieved from 

Barchart (2020), a website gathering stocks and future contracts quotation while providing users 

insights on trends. Due to the fact that future contracts have a finite expiration date, in contrast to 

stocks that trade perpetually, nearest-series were used at each frequency so to obtain continuous 

series rolling from one contract to the next for the whole period considered.  

Grains: 

The first group of time series used in this analysis is represented by the future contract prices of grains, 

in particular corn, soybean, hard red wheat and spring wheat. This group of basic commodities is 

composed by the major cereals traded on the future markets, especially on the Chicago Mercantile 

Exchange and related. Figure 1 shows that these four price series follow a very similar trend, peaking 

and dropping simultaneously.    

 

Figure 4: Grains future prices per unit  from January 4th , 2000 till  July 23rd , 2020 

Financial Indexes: 

The second group of time series used in this analysis contains two indexes of stock market movements: 

the E-mini futures for the Standard & Poor 500 and the Nasdaq 100. The S&P 500 is an index composed 

of the market-capitalization weighted average of the largest 500 publicly traded U.S. firms (CME 

Group, 2020). The Nasdaq 100 is also a market-capitalization weighted index, but composed of the 
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100 most actively traded U.S. companies listed on the Nasdaq stock exchange, excluding the ones 

belonging to the financial industry (CME Group, 2020). E-mini futures are electronically exchanged 

future contracts representing a fraction1 of the value of the original future contract, introduced to 

make investments in indexes, such as the one presented here, affordable for small investors.  

Figure 2 shows the development of these three indices for the period January 2000 – July 2020. In the 

first part of the graph the series are characterized by an initial drop followed by a stable trend. In the 

second part, all three series follow an upward sloping trend. 

 

Figure 5: Financial indexes contract prices  from January 4th , 2000 till  July 23rd , 2020 

Animal products: 

The third group of time series consists in future contracts traded on the Chicago Mercantile Exchange 

related to animal production, namely Class III milk, feeder cattle and live cattle. Milk on future 

contracts is priced based on its final use: class III stands for the milk that is used for the production of 

hard cheese. The difference between feeder cattle and live cattle is in the production phase of the 

animal: feeders cattle are weaned calves usually weighting between 600 and 800 pounds that still 

needs to gain mass in order to be slaughtered, while live cattle are finished animals ready to be 

slaughtered and transformed (CME Group, 2020). Feeders cattle prices were selected as we expect to 

find a cointegrating relationship between this series and the ones for soy and corn, as these two highly 

energetic grains are the predominant feed used for the purpose of making cattle gain weight (Moreira 

et al., 2019).   

Figure 3 shows that the three series present a similar trend, characterized by rapid fluctuations over 

the whole period considered.  

 

 
1 For the Nasdaq 100 E-mini and Standard & Poor 500 E-mini the value is set at one fifth of the value of the 
original contracs. (CME group, 2020) 
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  Figure 6: Animal products prices per unit  from January 4th , 2000 till  July 23rd , 2020 

Metal: 

The fourth group of time series is the one composed by metals; in our case only by gold. Gold, as a 

product whose value is acknowledged all over the world, has always been perceived as a way to 

safeguard investor’s’ money against unstable geopolitical and macro-economic conditions (Barchart, 

2020).  

This time series shows an upward trend for most of the time period considered. The gold price 

temporarily dropped in the period 2011-2016, after which it increased again.  

 

Figure 7: Gold price per unit from January 4th , 2000 till  July 23rd , 2020 
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Energies:  

The fifth group is the one concerning energies. For the purpose of this research, we have taken into 

consideration the future prices for the Crude Oil WTI, natural gas and Gasoline RBOB.   

West Texas Intermediate Oil is an high quality oil sourced in Texas that is used as a global benchmark 

for oil, together with Brent crude oil and Dubai Crude (Barchart, 2020).  

Reformulated Blend-stock for Oxygenate Blending gasoline is a derived of crude oil. Nevertheless, 

RBOB market has its own supply and demand factors, as its production is affected for instance by 

different taxations in different jurisdictions [NYMEX, 2020]. This can also be seen in the two series 

patterns, not particularly similar. 

 

Figure 8: Crude Oil WTI, Natural Gas and Gasoline prices per unit  from January 4th , 2000 till  July 23rd , 2020 

Currencies: 

The last series is the U.S. dollar index. It is a geometrically averaged calculation of six currencies, 

adopted by the six most relevant U.S. trading partners, weighted against the U.S. dollar. It is calculated 

by taking into consideration the exchange rates among this currencies: as a result, the index provides  

guidance on the relative strength of the dollar versus the other currencies (Barchart, 2020).  The 

development over time is given in figure 9. 
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Figure 9: Euro FX and U.S. dollar index contract from January 4th , 2000 till  July 23rd , 2020 

3.2 Data Pre-Processing 
In order to ensure the correct functioning of Neural Networks (NN), data need to be pre-processed. 

Different time series with different scales in fact might prevent the model from learning effectively, 

by making diverge the parameters during the computations. As stated in the introduction, pre-

processing is also fundamental to deal with some time properties, such as seasonality, trends and unit 

roots: more in general, with non-stationarity.  

3.2.1 Comparison between LSTM and traditional models 

Rolling Window approach:  

The Rolling Window (RW) procedure is based on the most advanced pre-processing procedures 

utilized for LSTM, and in particular from Bandara et al. (2019). Within this method, there are three 

elements to take care of:  the stabilization of the variance, seasonality, and the trend. 

The stabilization of the variance was performed first, through a logarithmic transformation of the raw 

data. This transformation in practice reduce the scale of the data.  

The de-seasonalization was carried out using the STL package in R (Hyndman et al., 2015). This package 

divides the series into a trend, seasonal and remainder components, and allows for taking care 

through a robust procedure of deterministic seasonality (Bandara et al., 2019).   

Last, we eliminated the trends from the series. To achieve this, we utilized a rolling window approach 

computing the trend through the Tukey’s biweight estimator (Mosteller and Tukey, 1977; Hippke et 

al., 2019). The advantage of this technique, besides providing more accurate estimates of local trends, 

is that it does not introduces information from the training test to the test set, affecting the actual 

performances of the NN. 

First Difference approach: 

First-Differencing (FD) is the most common traditional approach to non-stationary series. This 

methods consist of subtracting from each observation of the series its previous observation, so to 
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obtain the difference between two consecutive observations. This difference, in case of a precise unit 

root, it’s stationary.  

Unprocessed data: 

Raw data are included in the analysis as the problem with pre-processing is that it causes the loss of 

information. In this case, removing the non-stationarity from the data prevent us to exploit the long 

run cointegrating relationship that might exist between two or more variables.  

On the databases obtained from the first two procedures, we decided to confront the performances 

of the LSTM versus the traditional models, VAR and ARIMA. In particular, we decided to compare the 

models first on a 30 days forecast horizon, and consequently on a 7 days forecast horizon. Both of 

these methods remove effectively non-stationarity from the series in our case, as tested with 

Augmented Dickey-Fuller and KPSS tests.  

Then, we proceeded to confront the LSTM performances on these two datasets versus the 

performances of the VECMs based on the real data. The reason for this choice was to confront these 

two kind of models in a realistic setting. 

The ultimate goal of this comparison is to understand how these two different kind of models relate 

and how they perform in respect to these different methods of pre-processing data. Different pre-

processing in fact entails two different aspects that need to be considered: first, a different set of time 

elements of the series that need to be modelled or learned by the models; second, a different amount 

of information left in the series. Therefore, we also aim at testing whether these procedures are worth 

in term of loss of information, or if it is better to exploit those information. 

3.2.2 Comparison across dataset for LSTM 
Another important aspect of this thesis is understanding which time elements the NNs are able to pick 

up. To do so, starting from the raw data we proceeded to remove one time property at a time utilizing 

the same techniques described above, to see how the model would perform. In addition to those 

transformation the data were also standardized, as it is common practice when using NN. We obtained 

the following subsets: 

• Unprocessed data, identified with the suffix “_un” 

• Trend data, where the seasonality is removed and the trend is kept. The models run on this 

dataset are identified by the suffix “_t” 

• Seasonal data, where the trend is removed and the seasonality is kept. The models run on 

this dataset are identified by the suffix “_s” 

In Bandara et al. (2019) in fact it is also stated that de-seasonalization should not be necessary when 

the time-series in the analysis present calendar features and/or homogeneous seasonality pattern. 

Our series are sampled on a daily basis, and can be expected to have homogeneous seasonality as the 

grains production cycle is defined by the growth season. 

By doing this, we should be able to understand which elements are preventing the LSTM from learning 

from the data.  

The differently processed datasets used in the analysis are summarized in table 1: 
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Table 1: Datasets used in the analysis 

Dataset Details Identifier 

Rolling  
window 

Logarithmic transformation  

Seasonality removed _rw 

Trend removed  
   

First  Unit root removed  
difference  _fd 

   
Unprocessed Standardization only for LSTM _n 

   
Trend Seasonality removed _t 

 Standardization  
   

Season Trend removed _s 
 Standardization  
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Chapter IV – Methodology 
In this chapter the methodology we applied to carry out the analysis is reported. Starting from how 

the data were clustered, the procedures to construct the models are explained in detail, and the 

specifics of each model are shown. At the end of the chapter, the accuracy measures utilized to 

compare the performances are discussed.  

This section, together with chapter II, provide some insights on the differences between the traditional 

econometrics and the Machine Learning models.  

4.1 Data Clustering 
Training the NN on a set of heterogeneous time-series could lead to a decrease in model performance. 

Therefore, Bandara et al. (2019) propose to cluster series as the initial step to take advantage of the 

similarities between the series. This clustering should be based on time properties of the series, such 

as frequency and seasonality. Clustering can also be based on a-priori knowledge that the researcher 

has on the data. For this reason, we decided to avoid this step in our analysis: the series we are 

considering all have the same frequency and relate to the same domain (commodity market).  

Therefore, the sub-groups on which the analysis is carried out are based on the authors knowledge, 

dividing the series into groups relating from the agricultural and economical point of view. This also 

allow us to assess to what extent the different methods can take advantage from considering an 

increasing number of variables. The resulting models are summarized in table 2. 

Table 2: Data clustering and resulting models 

Models Variables 

LSTM tot All variables are considered 
VAR tot  

  
LSTM 6 Considering only: 
VAR 6 Corn – Soybean – Hard Wheat – Spring Wheat – Feeder Cattle – Live Cattle 
VEC6  

  
LSTM 4 Considering only: 
VAR 4 Corn – Soybean – Hard Wheat – Spring Wheat 
VEC 4  

  
ARIMA Only Corn is considered 

  

4.2 Building the Models 

4.2.1 Traditional models 
 The following procedure was applied for constructing the VAR and ARIMA models both on the RW 

dataset as well as the FD one: 

• Check for stationarity of each series, by means of the Augmented Dickey-Fuller test as well as 

the KPSS (Verbeek, 2017). All series were found to be integrated of order zero.  
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• The univariate model was determined by using the Autocorrelogram and Partial 

Autocorrelation graph, and consequent white-noise error tests. The choice for autoregressive 

processes or moving averages was guided by the obtainment of white noise errors, as well as 

parsimony, since there are no fundamental differences (Verbeek, 2017) 

• For the multivariate cases we proceeded with a VAR model, establishing optimal number of 

lags with varsoc. The choice for the number of lags and the stability of the VAR after the 

estimation was then checked through varwle and varstable routines.  

The following procedure was applied to construct the VEC models on the real dataset: 

• Cointegration was tested for through the Johansen test (Verbeek, 2017). The optimal number 

of lags is based on Information Criteria such as AIC and BIC and Likelihood Ratio tests.  

Once the models have been estimated, predictions for 30 and 7 days ahead were produced. The 

predictions are dynamic in the sense that the predictions for each time step are used recursively to 

predict the next step ahead. The reason we choose this option is that this is the most common method 

to make prediction when using ARIMA models, despite the risk of carrying over errors in consecutive 

predictions given an error in the beginning.  

The resulting final models are summarized in table 3.  

Table 3: Traditional models specifications 

                                                    Specifications  

Rolling Window dataset: First differenced dataset: 

VAR tot 2 lags, constant 2 lags, no constant 
         

VAR 6 2 lags, constant 2 lags, no constant 
         

VAR 4 3 lags, constant 3 lags, no constant 
         

ARIMA AR(1), I(0), constant AR(1,3), I(3), MA(7,9), no constant 
   

Unprocessed dataset 

VEC 6 2 lags, 2 cointegrating vector, constant 
 

2 lags, 1 cointegrating vector, constant 
    

VEC 4 

 

4.2.2 Neural Networks 
This thesis uses a specific training technique to overcome issues related with working with a 

sequenced dataset: the sliding window technique. K-cross fold validation in fact is not feasible in this 

context, as it will not preserve the chronological order of the observations.  

A simple way to visualize the sliding window approach is by considering a zipper mechanism, where 

each tooth on the string can be considered as a time step. The first part in this procedure is designing 

a window covering a certain number of steps. The window is trained over a fixed proportion of those 

steps (the teeth below the left side of the slider) and validated over the remaining part. Starting from 

the beginning of the sequence, the window is applied and the first set of parameters is computed. 

Then, this window (the zipper) is rolled over the sequence (the string), each time updating the 

parameters. The parameters computed of the last window of data are the final parameters for the 
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algorithm. In this way it is possible to cross-validate the parameters while preserving the temporal 

state of the data. 

Therefore, the first step for each of our models is the establishing of the sliding window. Considering 

the 30 days forecast horizon, we start from a window consisting of a total of 395 time steps, 365 of 

which are input steps and 30 output steps, sliding 180 time steps (roughly half a year) at time. This 

means that starting from the first observation, we feed the model a year of observations and validate 

the parameters by measuring the accuracy in predicting the following month. Then move to the 181st 

time step and repeat this operation, until reaching upon the observation 395 steps back from the last 

one. The same reasoning goes for the 7 days forecast horizon, where the sliding window has 7 output 

steps.  

The machine learning model is a Recurrent Neural Network, consisting of 4 layers fully interconnected 

among them: 3 LSTM layers, each of 512 units, and one Dense layer. The prediction from these models 

are produced directly all of 30 forecast contemporaneously. The specification is summarized in table 

4:  

Table 4: LSTM specifications 

 Layers Units Dropout 
rate 

Kernel 
regularizer 

Lambda Loss 
function 

LSTM 3 LSTM 
1 Dense 

 

512 
1 

0.3 L2 0.01 MSE 

1 Equal to the number of variables considered times the number of forecast horizon steps 

The LSTM tot, LSTM 6, and LSTM 4 have all the same architecture. What is different among them is 

the number of epochs on which they were trained. 

After pre-processing of the data, we proceeded with the division of the dataset into a training, 

validation and test sample, maintaining the order of the sequence. The training set is the portion of 

the data on which the parameters of the models are computed; while the validation set is the portion 

of the data used as a reference to evaluate the performances of the model. We ran the models on the 

training set and measured their performances on the validation data to calibrate the hyperparameters 

of the models, such as the number of units or the number of epochs. Once the models were 

performing satisfactorily on the validation set, we fed them the test set and obtained the future 

predictions.  

4.3 Accuracy Measures  
To compare the performances of the traditional models versus the Machine Learning one, the Mean 

Absolute Error (MAE), the Root Mean Square Error (RMSE) and the Mean Absolute Percentage Error 

(MAPE) were chosen. 

The choice of the MAE  as well as the RMSE was largely dictated by their  wide application in comparing 

different models on the same dataset. The first is computed as the arithmetic average of the sum of 

the absolute value of errors, defined as the difference between the real value and the prediction. The 

second is computed as the root of the quadratic difference between the observations and the 

predictions. RMSE in respect to MAE is suggested to be more susceptible to outliers (Hyndman and 

Koehler, 2006). 



23 
 

To provide a quick insight in the performances of the models, also the relative MAE is included in the 

table, using as the baseline performance the ARIMA model in each cluster. This was decided as the 

ARIMA model is traditionally the most commonly adopted model. 

In addition to those scale-dependent measure, the MAPE was chosen. This measure of accuracy is 

scale-independent as the absolute differences between the observations and the predictions is 

divided by the actual values before computing the mean error. 
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Chapter V -  Results 
In this chapter the results are presented, divided as introduced in the previous chapters: first the 

comparison on the Rolling Window dataset; second on the First-Differenced dataset; third the 

comparison between LSTM and VEC; and last the comparison of the performances of the LSTM across 

datasets. The accuracy measures are explained, but only the table for the first analysis is presented 

with all the measures. This is done as the measures rank almost in identical order the models within 

each analysis. See ANNEX B for the whole set of complete tables. Only the graphs with the forecast 

predictions comparison of the models using all variables are shown in each section. See ANNEX C for 

the whole set of graphs on all the different clusters.  

5.1 Results on Rolling Window Data 
Table 5 presents the performance measures for the models based on the Rolling Window dataset with 

a 30 days forecast horizon. It can be seen that the performance  decreases from the most complex to 

the simplest model. 

Table 5: Performances comparison on the Rolling Window approach on the 30 days forecast horizon 

RW – 30 days RMSE MAE MAPE RelMAE 

LSTM tot 10.28 8.30 2.44 0.53 
LSTM 6 10.75 8.36 2.45 0.53 
LSTM 4 10.56 8.30 2.44 0.53 
VAR tot 15.44 12.50 3.65 0.80 
VAR 6 16.61 13.45 3.93 0.86 
VAR 4 17.74 14.34 4.19 0.92 
UNI 19.26 15.66 4.57 1.00 

 

As stated in the introduction, one of the biggest 

advantage of NN is the ability to take into 

consideration an higher number of variables 

compared to traditional models. Nevertheless, 

from table 5 it is not possible to appreciate this 

fact. The performances of the LSTM models 

trained on different numbers of variables does 

not differ particularly in fact. On the other 

hand, surprisingly this seems the case with the 

VAR models. 

The forecasts for the traditional models are 

surprising, since these are commonly known to 

flatten out rapidly after the initial predicted 

steps. In figure 10, what’s preventing the series to flatten out is simply the fact that the models were 

run on the de-seasonalized and de-trended series. The seasonal component and the trend, eliminated 

during the pre-processing, were respectively added after the estimation, giving the impression that 

the predictions are better fitting the actual future values. In reality, this better fit is to be attributed 

to the pre-processing of the data.  

Figure 10: Forecast predictions - LSTM tot versus VAR tot - 
Rolling Window dataset on 30 days forecast                              
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Effectively therefore, the traditional forecast are flattening out with a downward trend, but this is 

partially obscured by the re-introduction of the time elements. The LSTM is able to perform better as 

it does not flatten out after the drop happening at July 6th . The fact that LSTM does not flatten out 

makes it suitable for longer forecast horizons. 

Considering the 7 days forecast horizon, as expected the accuracy of the models increased in respect 

to the 30 days forecast (figure 11), and there are some other relevant changes. It is possible to 

appreciate how the LSTM improves their performances the more variables they are fed to. On the 

other hand, the VAR models perform better when given only variables closely related2 to the one we 

are trying to predict. Moreover, it is possible to see how for shorter horizons more traditional models 

have better predictions.    

5.3 Results on First Difference Data 

 

Figure 12: Performances comparison on the First Difference approach on the 30 days forecast horizon 

Also in the case of using first differenced data the LSTM models are performing better than the 

traditional models (figure 12). Surprisingly, the LSTM 6 model is the one performing better than a 

simple univariate ARIMA model. 

The predictions from the classical models on this dataset are similar to what we would expect from 

them. In fact, after a few time steps they perfectly flatten out. The ARIMA model, given the fact that 

it only deviates slightly from the last observation more or less predicts the mean of these future 

observations. In fact, it displays the second higher performances within the group, but this is due to 

 
2 The regression of Soybean, Hard Wheat and Spring Wheat showed significant parameters; and these 
variables were found in the VECM to be in a long run relationship. 

Figure 11: Performances comparison on the Rolling Window approach on the 7 days forecast horizon 
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the fact that the last future prices are very close the initial ones. Also in this case it is possible to see 

that the LSTM predictions do not flatten out, allowing to forecast for a longer horizon. 

 

Figure 13:  Performances comparison on the First Difference approach on the 7 days forecast horizon 

On the shorter forecast horizon, the traditional models are performing better (figure 13). This 

scenario, with first-differencing is the situation where normally the VAR models would be used. This 

supports what was notable also in the Rolling Window dataset, that more rigid models perform better 

on shorter forecast horizons.  

5.4 LSTM versus VECMs 

 

Figure 14: Performances comparison LSTM versus VECMs approach on the 30 days forecast horizon 

Much like in the previous comparisons, on the longer forecast horizon the LSTM models are 

performing better than the traditional ones (figure 14).  Also in this case, the VECMs are flattening out 

as expected. Their forecasts are not fitting the data, despite the increased amount of information that 

the VECMs could in theory exploit to make predictions by means of the cointegrtaing relations. This 

result is particularly disappointing as the coefficients of the estimated cointegration relationship were 

found to be statistically significant, and to some extent showcase the weaknesses of relying on these 

kind of methods to build the model (Breiman, 2004). While the LSTMs predictions manage to describe 

satisfactorily well the future observations, given the non-stationarity of the series, VECMs one are 

trending downward and getting further from their target.  
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Figure 15:  Performances comparison LSTM versus VECMs approach on the 7 days forecast horizon 

In contrast with what happened in the previous comparisons, even with the shorter forecast horizon 

the VEC models do not outperform the LSTM (figure 15).  

It is possible to notice that except for the First Difference case with a 7 days forecast horizon, the 

VECMs are performing better than the relative VARS. This finding support what stated in the 

introduction: there is a trade off between the pre-processing of the dataset, and therefore how 

accessible the dataset is made for the model, and the amount of information in the dataset.  

However, this increased amount of information did not enable VECMs to outperform LSTMs. There is 

possible intuition as to why the increased amount of information did not enable the VECMs to 

outperform the LSTM models. It can be thought that the dynamics of the long-run relationships 

between the variables might be different than the ones contained in the forecast horizon, meaning 

that they would need a longer horizon to come into play and actually improve the forecast. 
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5.5 LSTM across Datasets: 

 

Figure 16: Performances comparison LSTM  across datasets on the 30 days forecast horizon 

From Figure 16 it is possible to understand how fundamental pre-processing is for Neural Network 

functioning. Beside the hindering of the learning phase if the dataset is not scaled properly, the LSTM 

fed on unprocessed data is not able to pick up certain time elements, with extreme consequences for 

the forecast accuracy.   

When fed with the dataset where the seasonality was removed, but not the trend (figure 16, top right 

graph), the LSTM produces forecast which are completely out of scale. As suggested by Bandara et al.  

(2019), the trend in fact might be particularly difficult for the LSTM to pick up.  

Also when fed with the raw data (figure 16, bottom left graph), that were only standardized to make 

the training possible, the LSTM produces results which are completely out of scale.  

Last, when fed with the dataset where the trend was removed, but not the seasonality (figure 16, 

bottom right graph), the prediction by the models get closer to the actual observed data, but are still 

completely out of boundary. It is interesting to observe how the unprocessed data, containing both 

seasonalities and trends, is more suited for making predictions than the dataset containing only the 

trend (figure 16, table).  

5.6 Discussion 
In this  section the results from all the analyses are charted together to provide a comparison of the 

effectiveness of the pre-processing and the importance of the number of variables as well as the 

forecast horizon.  Figure 17 shows the MAE of all models divided by pre-processing procedures and 

forecast horizon.  
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Figure 17: LSTM versus traditional performances comparison across number of variables,  datasets and forecast horizons 

From figure 17, it is possible to draw some conclusions about the performance of the LSTM as well as 

the traditional models: 

• The LSTM models outperform with almost double accuracy in the longer forecast horizon; 

However, for the shorter forecast horizon the picture is mixed 

• The LSTM is able to take into consideration a large number of variables, but in this analysis it 

does not seems like it is able to capitalize on it, except for the third case. The same goes for 

the VAR models, as there are no significant difference between models comprehending a 

different number of variables 

• Using the Rolling Window approach or the First Difference does not seems to have a great 

impact on the 30 days forecast horizon, where only a few models change their performances 

slightly. On the 7 days forecast horizon it makes a relevant difference which method to use, 

in particular for the VAR models. 

To recap, both of the two pre-processing methods present advantages and disadvantages. Starting 

from the Rolling Window approach, it allows to use very different time series in the analysis, that 

could otherwise be very disruptive for the analysis due to their dissimilarities. This is particularly true 

for the LSTM. This justifies their widespread adoption for machine learning analysis in most of the 

scientific domains, but it might be more suited per application such as the one seen in the M-

competitions (Hyndman, 2020) rather than forecasting agricultural future prices. These series in fact 

are characterized by having defined time series characteristics3, and therefore do not need such heavy 

pre-processing.    

To this end, after you perform this many pre-processing steps on the database, what it is basically left 

is almost white noise. In this case it was a perfect AR(1) model. This can be considered as a loss of 

information. Ideally, the model should be able to pick up all of these different elements and make 

predictions after them. The seasonality, the trend on more in general the non-stationarity are 

elements of the time-series and as such they are part of the prediction problem.  

 

 
3 For instance the frequency is dictated by the future market, while the seasonality dictated by nature. 
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The increased amount of information contained 

in the natural dataset, in particular the long run 

relationships, allows the VECMs to score a lower 

MAE than the correspondents VAR models. The 

comparison between the LSTM and the VECMs 

does not really provide us final results. It is hard 

to believe that the neural network could be able 

to pick up the long term relationships among 

variables, especially given the pre-processing 

that the data underwent. Nevertheless, the 

machine learning models are outperforming the 

traditional ones including the VECM (figure 18).  

Figure 19 provides an idea of how relevant it is for 

the LSTM to have properly processed data for the 

analysis.  

Differently to what suggested in Bandara et al. ( 

2019), in our case the LSTM was not able to pick 

up seasonality when trained on a set of similar 

time series.  

Particularly interesting is that the data where 

only the trend was left performed worse than the 

raw dataset, also containing the trend. This 

element supports what is stated previously, that 

pre-processing of the data introduces bias and assumption, modifying what is actually modelled by 

the series.  

Given the implications in this final section of the discussion, it is possible to understand how the 

procedures used to train the LSTM on non-stationary data, containing seasonality, trends or 

cointegrating relationships have still room for improvement.  

Figure 18: Performance comparison LSTM versus VECMs – 30 
days forecast horizon 

Figure 19: LSTM performance comparison across datasets 
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Chapter VI – Conclusion and Implications 
In this last chapter the answers from the analysis to the research questions are proposed. First, the 

conclusions and implications from the analysis are drawn. Then, critical reflections on the research are 

exposed and discussed, providing the limitations as well as the way forward from this analysis. 

6.1 Conclusions 
Machine Learning models and the traditional ones from econometrics display many differences. These 

differences can be found in the way they try to solve the forecasting problem; in the resulting 

structure; and in their building procedure. However, there are also some similarities that can be 

highlighted.   

VAR models approach the forecasting problem by trying to describe reality. Consequently, the 

structure is shaped by the researcher who selects the variables that are considered relevant, the lags 

and every other specification. This is done by mean of statistical tests, and guided by parsimony. The 

problem with this parametric approach is that the reins are left to the researchers, who tries to 

represents an underlying truth that might not even exist (Efron, 2020), or that might be valid only for 

a specific range in time. Moreover, every test carried out in order to justify the choices of our model 

introduces assumptions, which eventually will make the forecasting only applicable in a specific frame 

which might be very distant from the real data generation process (DGP). In our analysis, the results 

of the sum of these elements is a model which has confused idea about what is making the prices 

move, as shown in [figure 20]. 

 

In this figure in fact it is possible to see that the model manages to represent some relationships that 

are reasonable, as the price for soybean Granger causing the price of class III milk, but many other 

representation are misrepresented, like the feeder cattle price Granger causing the two financial 

indexes.  

Eventually, VAR models are relatively simple models, where the relationships among variables, 

although not perfectly accurate, can be interpreted. This relative simplicity, implying a lower fit on the 

training data, allows for a greater flexibility in the predictions, which will be less constrained by the 

past.  

On the other hand, Neural Networks are highly complex non-parametric models, which abandon the 

goal of explaining the data generation process to instead mimic it. The ultimate goal is the one of 

prediction accuracy: the choice of the variables and the estimation of the parameters is guided by the 

performances, and not by significance tests or explanatory power. In doing this, the researcher is not 

called into question by the models, which automatically computes a very large number of parameters 

that eventually are not interpretable. As such they might be recreating a situation like in figure 20 or 

Figure 20: Granger causality in VAR tot - First Difference dataset 
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even worse. The positive side of this complexity, which is the ability to fit the training data perfectly, 

is actually a downside in prediction: NN risks in fact of being too much constrained by the past data.  

The linking chain between these two domains is the ARIMA model, which combines characteristics 

from both models. In fact, the ARIMA model like the other traditional models has a simple and 

interpretable structure, but in stark contrast it is not aimed at understanding the underlying DGP. 

Similarly to Neural Networks, it aims at exploiting the patterns in the series to make forecast.   

For what concern the procedures, the main differences refer to the effort and time required to the 

researcher. The traditional models construction is pretty straightforward, much of the issues that 

might arise have been covered during the many years of these models implementation and overall, is 

not particularly time-consuming. The construction of the Neural Network architecture in contrast 

presents many pitfalls, and require much time for calibration and actual implementation of the model. 

Consider for instance the issue of regularization to avoid overfitting, an aspect which is completely 

absent in the traditional econometric due to the different functioning of the models.   

The last relevant difference lies in the very structure of the models, and it plays a major role in 

determining the results of the comparisons. Traditional models are based on a distribution (also called 

surface) plus error formulation (Efron, 2020): this kind of structure is expected to encounter 

difficulties when modelling a non-stationary series, as this implies that distribution it is trying to model 

is not stable over time. On the other hand, Neural Networks are adaptive models, which are more 

suited in this situation thanks to their adjustable parameters (Efron, 2020; Badach, 1980). This 

difference, as a matter of fact, provides a solid advantage to the LSTM models.  

In our comparisons the Neural Networks were able to outperform the traditional methods when 

applied both datasets, but only in the longer forecast horizon. Much of this success has also to be 

attributed the ability of the NN to not flatten out after few time steps. The shorter forecast horizon in 

contrast is dominated by the VARs, that being more rigid, and therefore less sensitive to noise, can 

still find application in settings like one presented in our analysis.   

It is not possible from our analysis to draw definitive conclusions on how LSTM relate to cointegration. 

In particular, it is not inferable whether the neural network would be able in theory to pick up the long 

run relationship. What can be said is that in our analysis, it is not reasonable to assume that the LSTMs 

actually pick up the cointegration relationships, given the fact that they must be trained on pre-

processed data where the non-stationarity was removed.  

In fact, pre-processing has revealed to be of uttermost importance when training the LSTM. In the 

absence of an initial de-seasoning and de-trending the neural networks were not able to train 

effectively, producing forecast completely out of scale. These results showcase the difficulties of LSTM 

to learn these time properties, even in context where learning should be feasible (Bandara et al., 

2019).  

One more time, the highlight ultimately is on how the true question should not be which model 

performs better, but which model is more adequate to fit the problem. Eventually, the ultimate goal 

of a scientist should be to have a broad range of techniques, to solve the broad range of problems 

that are presented to him (Breiman, 2004).  
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6.2 Critical Reflections 
The analysis carried out in this thesis presents many strong points and provides many interesting 

insights from which follow-up research may continue to explore the functioning of Machine Learning 

models in respect to agricultural time series and traditional econometrics. However, it also displays 

some limitations. 

One important issue to consider when evaluating the performances reported is the different way by 

which the forecasts are outputted by the models. The LSTM we implemented is a sequence to 

sequence model, meaning that from an input sequence it directly inputs a sequence of outputs. In 

contrast, the traditional models make forecasts in a dynamic (or autoregressive) way, meaning that 

each forecast is used as an additional information for the following forecast. There are obliviously 

consequences from these different behaviours: it can be thought that the traditional models perform 

worse on the longer forecast horizon as they carry the errors from the previous forecasts all the way 

to the end; while they perform better on the shorter forecast horizon as they can take into 

consideration more information.  

Another issue that needs to be considered is that the comparison was carried out on non-stationary 

series. Even though we take care of this element through pre-processing, the impacts on the final 

performances are not negligible, in particular given the different nature of the two models. As it is also 

stated in the conclusions, NN have an advantage over traditional models being adaptive models. To 

have a fair comparison, it would be needed to benchmark our results with a performance comparison 

on stationary series.  

Another limitation concerns the amount of data available. What makes Machine Learning models 

interesting is their ability of taking into consideration a higher number of variables in respect to 

traditional models (Efron, 2020; Storm et. al.,2019), as well as an increased number of observations. 

Since it is suggested that NNs need time series of sufficient length to be trained effectively (Bandara 

et al., 2019), it would be useful to benchmark our results with the performances on the models on 

larger datasets. Also a comparison in the opposite direction would be interesting, decreasing the 

length of the series: this could be done both by truncation, but also by decreasing the frequency of 

the data. This would also allow us to determine how NN performs when faced with data at different 

frequency, and therefore noise.  

The strengths of this research on the other hand lies in the procedure applied to pre-process the data, 

referring to the Rolling Window one, as well as the ML model utilized which are both the state of the 

art for what concerns time series forecasting. Even though there is still plenty to explore to frame in 

which scenarios LSTM models would be fit, they are certainly promising for forecasting agricultural 

prices.  

The possible ways forward from this research move in two directions. The first is more practical, and 

concerns the expansion of the comparison on different dataset and with different pre-processing 

procedures, to confirm or deny the results of this analysis. The second is more theoretical, and it is 

directed at answering more technical questions such as the relationship between regularization and 

non-stationarity. It is in fact our opinion that regularization could be considered as a strategy 

implemented by NN to deal with non-stationarity, by allowing more flexibility in the forecasts in 

respect to the past.   
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ANNEX A 
 

 

Table A1: Future contracts specifications for grains at daily frequency 

Futures 
Contract 

Symbol Expiration  Exchange Period Number of 
Observations 

 
Corn 

 
ZCU 

 
September 
2020 

 
CBOT 

 
04/01/2000 – 
23/07/2020 

 
5174 

 
Soybean 

 
KEU 

 
September 
2020 

 
KBCT 

 
04/01/2000 – 
23/07/2020 

 
5174 

 
Hard Red 
Wheat 

 
ZSU 

 
September 
2020 

 
CBOT 

 
04/01/2000 – 
23/07/2020 

 
5174 

 
Spring 
Wheat 

 
MWU 

 
September 
2020 

 
MGEX 

 
04/01/2000 – 
23/07/2020 

 
5174 

 

Table A2: Future contracts specifications for Currencies and Energies at daily frequency 

Futures 
Contract 

Symbol Expiration  Exchange Period Number of 
Observations 

 
U.S. Dollar 
Index 

 
DXU 

 
September 
2020 

 
ICE/US 

 
04/01/2000 – 
23/07/2020 

 
5174 

 
Natural Gas 

 
NGZ 

 
December 
2020 

 
NYMEX 

 
04/01/2000 – 
23/07/2020 

 
5174 

 
Crude Oil 
WTI 

 
CVL 

 
September 
2020 

 
NYMEX 

 
04/01/2000 – 
23/07/2020 

 
5174 

 

Table A3: Future contracts specifications for Gold and Financial indexes at daily frequency 

Futures 
Contract 

Symbol Expiration  Exchange Period Number of 
Observations 

 
Gold 

 
GCV 

 
October 2020 

 
COMEX 

 
04/01/2000 – 
23/07/2020 

 
5174 

 
Nasdaq 100 
E-mini 

 
NQU 

 
 

 
CME 

 
04/01/2000 – 
23/07/2020 

 
5174 

 
S&P 500 E-
mini 

 
ESZ 

 
October 2020 

 
CME 

 
04/01/2000 – 
23/07/2020 

 
5174 
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Table A4: Future contracts specifications for Animal products at daily frequency 

Futures 
Contract 

Symbol Expiration  Exchange Period Number of 
Observations 

 
Milk Class III 

 
GLX 

 
November 
2020 

 
COMEX 

 
04/01/2000 – 
23/07/2020 

 
5174 

 
Feeder Cattle 

 
DFU 

 
September 
2020 

 
CBOT 

 
04/01/2000 – 
23/07/2020 

 
5174 

 
Live Cattle 

 
LEV 

October 2020 
 

 
CME 

 
04/01/2000 – 
23/07/2020 

 
5174 
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ANNEX B  
Table B1: Performances comparison on the Rolling Window approach on the 7 days forecast horizon 

RW – 7 days RMSE MAE MAPE RelMAE 

LSTM tot 6.28 5.63 1.68 0.87 
LSTM 6 8.03 7.19 2.14 1.11 
LSTM 4 11.09 10.26 3.06 1.59 
VAR tot 7.69 7.17 2.15 1.11 
VAR 6 8.00 7.50 2.25 1.16 
VAR 4 6.91 6.42 1.92 0.99 
UNI 6.94 6.47 1.94 1.00 

 

Table B2: Performances comparison on the First Difference approach on the 30 days forecast horizon 

FD – 30 days RMSE MAE MAPE RelMAE 

LSTM tot 11.17 7.96 2.31 1.07 
LSTM 6 9.91 6.93 2.02 0.93 
LSTM 4 13.60 9.49 2.75 1.27 
VAR tot 17.42 14.76 4.31 1.98 
VAR 6 16.85 14.19 4.15 1.90 
VAR 4 16.91 14.26 4.16 1.91 
UNI 10.31 7.46 2.18 1.00 

 

Table B3: Performances comparison on the First Difference approach on the 7 days forecast horizon 

FD – 7 days RMSE MAE MAPE RelMAE 

LSTM tot 5.85 5.09 1.53 0.69 
LSTM 6 5.20 4.44 1.33 0.60 
LSTM 4 5.19 4.47 1.34 0.61 
VAR tot 4.57 3.83 1.14 0.52 
VAR 6 4.61 3.83 1.14 0.52 
VAR 4 4.75 3.95 1.17 0.54 
UNI 7.86 7.35 2.20 1.00 

 

Table B4: Performances comparison LSTM versus VECMs on the 30 days forecast horizon 

Cointegration RMSE MAE MAPE RelMAE 

LSTM_rw 10.28 8.30 2.44 1 
LSTM_fd 11.17 7.96 2.31 0.96 
VEC 6 14.29 11.26 3.28 1.36 
VEC 4 15.52 12.44 3.63 1.50 
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Table B5: Performances comparison LSTM versus VECMs on the 7 days forecast horizon 

Cointegration RMSE MAE MAPE RelMAE 

LSTM_rw 6.28 5.63 1.68 1.00 
LSTM_fd 5.85 5.09 1.53 0.90 
VEC 6 6.96 6.37 1.91 1.13 
VEC 4 7.18 6.63 1.99 1.18 

 

Table B6: Performances comparison for LSTM across datasets on the 30 days forecast horizon 

Time elements RMSE MAE MAPE RelMAE 

LSTM_rw 10.28 8.30 2.44 1.00 
LSTM_fd 11.17 7.96 2.31 0.96 
LSTM_n 249.35 249.17 74.17 30.02 
LSTM_t 863.11 862.98 256.76 103.97 
LSTM_s 36.45 34.45 10.36 4.15 
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ANNEX C 
 

 

Figure C1: Forecast predictions - LSTM 6 vs VAR 6 & LSTM 4 vs VAR 4– Rolling Window dataset on 30 days forecast 

 

Figure C2: Forecast predictions - LSTM 6 vs VAR 6 & LSTM 4 vs VAR 4– Rolling Window dataset on 7 days forecast 

 

Figure C3: Forecast predictions - LSTM 6 vs VAR 6 & LSTM 4 vs VAR 4– First Difference dataset on 30 days forecast 
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Figure C4: Annex C Figure 4: Forecast predictions - LSTM 6 vs VAR 6 & LSTM 4 vs VAR 4– First Difference dataset 


