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Abstract 
Phages, viruses that infect bacteria, are found in a wide range of environments and have developed 

advanced strategies to survive in these surroundings. To get a better understanding of their stability 

under thermal stress, this project performed analyses of the strategies phages use to withstand heat. 

Structural phage protein surfaces were classified and compared with each other. This gave insight into 

the wide diversity of these proteins and was used to predict thermostability using machine learning 

models. Using two ways of assessing thermostability, random forest models were created for proteins 

separated by structural class. Proteins were characterized using structural features such as the 

compactness or surface charge density of the protein and using sequential features retrieved using the 

deep learning embedding of UniRep. 75,567 structures of proteins were retrieved from the novel 

AlphaFold database and were checked for inaccuracies using a custom filtering pipeline, filtering out 

22,843 low confidence entries and 23,454 loose structures. Model performance was found to inversely 

correlate with protein class diversity, indicating that within protein classes different strategies are used 

to withstand thermal stress. Combining different classes in one model led to lower predictive 

performance, confirming the high diversity between phage protein classes. The best performing model 

with an F1 score of 0.52 used structural features and 16S rRNA GC% estimated temperatures for the 

shaft class. This is far better than forced positive classification (F1=0.08) and showed the importance 
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of charged and turn surface residues in shaft proteins for thermostability. The use of phages in phage 

therapy to battle antibiotic-resistant bacteria and medicine delivery through phage design are very 

promising. However, problems regarding preparation and stabilization currently complicate the 

implementation of these phage applications. The novel characterizations of phage proteins in this 

project can be used to more accurately depict phages for phage therapy & design.  

Introduction 
Phages are viruses that infect bacteria. They are highly abundant and diverse biological entities. Phages 

are found in environments at many different temperatures, acidities and osmotic pressures [1]. Due 

to this diversity, they can be used in a plethora of situations. Phages consist of nucleic acids and 

proteins. They reproduce via the lytic cycle 

(Figure 1) or the lysogenic cycle in which they 

reproduce together with the host cell. The lytic 

cycle starts with a phage virion, the vehicle a 

phage uses outside of a host. A phage virion 

binds to a host bacterial cell and injects its 

genome into the cell. After injection, the phage 

DNA is replicated and proteins are translated. 

These are assembled into new virions and are 

released upon lysis of the cell [2]. When the 

phage is structured in its virion, it is open to 

external factors which could be a very dangerous 

phase for the phage. The surface proteins of the 

virion play a big part in its protection against 

these factors like extreme temperatures, 

low/high pH environments or organic solvents. 

They provide stability, which can be defined as 

the time a virion can remain infectious in the 

environment [3].  

If it would be known how these proteins give rise to more stable phages, phages can be adapted or 

engineered to suit needs for specific high or low temperature situations. This is useful for various 

applications of phages. Phage therapy e.g. can be of great use to battle general bacterial infections and 

in non-bacterial situations with anti-inflammatory effects or by interacting with the immune system to 

protect human health [4]. The biggest impact however could be to use phage therapy to combat 

antibiotic-resistant bacteria [5]. The emergence of these bacteria is a big threat to the current 

healthcare system. Phage therapy could be a big step in resolving this issue. However, phage therapy 

still faces multiple challenges itself. These are mainly found in the preparation and stabilization of 

phages [6]. While some phages can be kept frozen, others show huge drops in infectivity. Some phages 

can be assembled quickly in high heat while others suffer from denaturation.  

Currently, little is known about the structure of phage proteins in these differing temperatures. This 

can be explained due to the focus of research on other, non-bacterial, viruses which are found in 

environments with even more extreme conditions [7]. While some thermophilic phages are well 

known, these are more anecdotal examples. Broad studies on general properties in structural proteins 

of thermophilic phages are lacking [8], [9]. More information is available for other, non-bacterial 

viruses, which show for example a high number of disulfide bonds between coat proteins to enhance 

thermostability [10]. It is also known that thermophilic proteins in general show higher compactness 

and have more charged amino acid residues on their water-accessible surfaces [11]. Additionally, there 

Figure 1: Lytic life cycle of a bacteriophage. 1) A phage binds 

to a bacterial cell. 2) The phage DNA is replicated and 

transcribed/translated and virion is assembled from 

structural proteins. 3) New virions which have been formed 

are released from the cell upon lysis. Created with 

Biorender.com 
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is some research on the survivability of phages in extreme conditions, such as different temperatures, 

but this does not take the 3D structure of the proteins into account. These studies mainly focus on 

genomic and morphological differences between phages [1]. 

With the availability of the novel AlphaFold [12] database, many new possibilities have opened up for 

in-depth analyses of protein structures. AlphaFold is a tool that can predict a protein 3D structure from 

an amino acid sequence with an unprecedentedly high accuracy when compared to other tools. It is 

among others being used to characterize structural elements, model interactions, investigate ligand 

binding sites [13] and opened up new possibilities in secondary structure predictions using machine 

learning [14]. Using this tool, over 200 million new structures have become available for use in the 

Protein Data Bank. This allows for characterization of phage protein structures on a large scale. This 

project focuses on the 3D structure of surface proteins as a basis for explaining thermal stability of 

phages. The surfaces are especially interesting as these are in direct contact with the environment and 

as such could explain more about potential interactions. It tries to answer how virion proteins differ 

for phages found in low/high-temperature conditions and how these proteins differ structurally. To 

achieve this, surfaces of virion proteins have to be characterized using structural features after which 

they can be compared through different protein classes and conditions. 

Some structural features are known to correlate with thermal stability in general. These features will 

be used as a basis for this project to check for any predictive value towards thermostability in phage 

proteins. For example, the number of charged residues on the surface strongly increased at the 

expense of polar non-charged residues for thermophilic proteins [11]. As the surface charge density is 

highly related to the number of charged residues, it is also of interest. Other features like the secondary 

structure composition and packing density are found to differ between proteins found at different 

temperatures so can also be considered [15]. Lastly, an increase in protein compactness is also found 

when comparing mesophilic and thermophilic proteins [11]. Combining these features using a machine 

learning model, could paint a complete picture of the strategy phages use to enhance their 

thermostability.  

Material & Methods 

Data collection 
358,797 sequences of phage structural proteins were retrieved from the curated database of PhANNs 

[16] on 12 September 2022. As these phage proteins have different functions, it can be expected that 

they have very different structures. This curated database has the big advantage that all proteins are 

already classified by 10 different functions which makes it easier to compare to each other. These 

classes are displayed in Figure 2. Protein structures in the same class are more similar, and they could 

also be impacted by temperature in a similar manner allowing for easier identification of specific 

strategies used per class. In the database, misannotated proteins were already manually removed by 

the creators of the PhANNs database. The proteins from PhANNs were retrieved from the NCBI 

database.  
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Figure 2: The 10 different structural classes used in this project for phage proteins. [16], [17] 

The GenBank & RefSeq IDs from PhANNs were mapped to UniProt IDs for easier access of the Alphafold 

database using the UniProt online ID mapping tool. However, many of the GenBank and RefSeq entries 

have no stored cross reference and could thus not be mapped to UniProt. To overcome this, all 

GenBank and RefSeq entries were mapped to the Identical Protein Groups (IPG) database from NCBI 

[18]. This contains many identical proteins, of which many are cross-referenced in the UniProt 

database. After removing redundant entries, the new dataset was mapped to UniProt resulting in 

121,695 proteins, a twofold increase compared to the original 64,279 proteins which could 

immediately be mapped due to the presence of a UniProt cross-reference.  

Alphafold predictions for the UniProt database were retrieved from the Alphafold online database. As 

Alphafold is relatively new and updates are still being released, the structures were updated halfway 

through the project on 21 November 2022, so after the 1 November update. As not all UniProt entries 

have corresponding entries in the Alphafold database, the dataset currently consisted of 75,567 PDB 

files.  

Data filtering 
Alphafold provides a confidence score per amino acid residue, which can be used to filter out low 

quality structures. A residue with a confidence score lower than 70% was defined as a low confidence 

residue (LCR). While one individual LCR does not have a big influence on the overall structure, multiple 

together can drastically change the protein structure and its surface, which is crucial for this project. 

Multiple thresholds were set to create different quality classifiers for the proteins. First, 22,843 

structures with over 25% LCRs were removed. Next, LCRs at the terminals of the proteins were 

removed as these are expected to have little influence on the total structure of the protein, while still 

clouding overall surface patterns. Terminals were taken as 10% of the residues of the proteins. LCRs 
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were removed starting from the ends until a 

residue with high (>70%) confidence was reached 

or until the 10% boundary was reached. 10,966 

proteins contained no more LCRs after this step 

and were stored in the most stringent dataset, 

ready for use in this project. For the next filtering 

condition, no continuous stretch of 15 LCRs in the 

protein was allowed. This threshold was chosen 

due to the nature of the protein backbone 

forming closed loops [19]. Proteins with such a 

continuous stretch can be too flexible to be 

trusted as an accurate structure as shown in 

Figure 3. 16,271 proteins without such a stretch 

were stored in the most stringent dataset for 

further analyses, while the others were checked 

for LCRs in secondary structures. These secondary 

structures can have a large influence on the 

overall structure of the protein. Secondary 

structures were assigned using DSSP 2.3.0 [20] with default parameters. 2,033 proteins with less than 

20% of their LCRs in secondary structures were stored in the most stringent dataset. For the remaining 

23,454 proteins, the structure was cut off at the ends of the 15 LCR stretches and the biggest 

substructure was kept in a separate dataset. These were again checked for LCRs in secondary 

structures resulting in 0 proteins lost due to this step. Unless stated otherwise, the most strictly filtered 

dataset was used in the next steps of this project, consisting of 29,270 protein structures. Filtering 

steps are shown in Figure 4. 

 

Figure 4: Filtering pipeline for curating and parsing AlphaFold structures based on confidence scores. The last step in the 
orange box parsed proteins into their biggest substructure, optionally available for further analysis. 

Feature calculation 
For characterizing the structures, features were selected and calculated using multiple different tools 

and custom python scripts. Surface accessibility of the amino acid residues was determined using 

NACCESS V2.1.1 [21] with default parameters. A residue was counted as a surface residue at a relative 

Figure 3: Alphafold prediction of UniProt entry A0A0A0G5R6. 
Low confidence residues are shown in yellow/red. A big 
stretch of LCRs can be seen in the middle of the proteins, 
leading to a potential untruthful structure. For this reason, the 
LCR stretch and accompanying smallest domain are filtered 
out. 
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solvent accessibility higher than 10.0. The residue was identified as polar, aromatic or charged based 

on Supplementary table A in the appendix. Compactness Z was calculated using the following equation 

[22]. 

𝑍 = 𝐴𝑆𝐴𝑆𝑢𝑟𝑓 (36𝜋𝑉𝑂𝐿2)1 3⁄⁄  

Here ASASurf is the accessible surface area (calculated with NACCESS), and VOL is the volume, calculated 

using ProteinVolume 1.3 [23] with a volume probe radius of 0.08 Å. Surface charge was determined 

using PDB2PQR 3.4.1 [24] disregarding solvent water molecules to speed up computation and APBS 

1.5 [25] with default parameters. Output files from these various tools were parsed and combined 

using custom python scripts into one individual csv file for each protein function class. These scripts 

are stored on https://git.wur.nl/joran.schoorlemmer/js_bif_thesis.  

Sequence-based features were retrieved to verify the findings from the structural features. This was 

done using the deep learning tool UniRep [26]. This tool uses amino acid embedding approaches to 

reveal information directly from the protein sequence and as such can be used to extract properties 

at the protein level. The model creating 64 dimensions was used, all 64 dimensions were extracted for 

each protein and were used as sequential features for further analysis in this project. 

To get insight into the various features, descriptive statistics were performed. A principal component 

analysis (PCA) was performed per protein class to check the distribution of the proteins relating to the 

features. Next to this, features were compared through all ten classes using boxplots. For each feature, 

an ANOVA test was performed followed by a Tukey post-hoc test to check for significant differences. 

Temperature prediction 
For estimating the thermostability of the proteins, two approaches were used. First, the stability was 

determined based on empirical data of the host bacterium optimal growth temperature, Topt. 

Alternatively, as the Topt of the majority of the host bacteria is not known, the Topt was predicted using 

the 16S rRNA stem GC content of the host bacterium.  

The TEMPURA [27] database provides a concise overview of amongst others the Topt of 8639 

prokaryotic strains. The host organism of the phage belonging to each protein was determined with a 

custom python script using the package bioservices 1.10.4 [28] which uses the protein entry in UniProt. 

Then, the host organism was mapped incrementally to the bacteria in TEMPURA based on its 

taxonomic rank. First, the species level was checked for an entry in TEMPURA. If this was not present, 

the average value of organisms with the same genus was taken. Due to some hosts being annotated 

at the strain level, these had to be mapped to the species level. Navigating through the different ranks 

of the organisms was done using the package ete3 3.1.2 [29] which is based on the NCBI taxonomy 

database. Because some genera show big differences in Topt for their different species, the growth 

temperatures were divided in two blocks. These blocks are mesophilic (<40°C) and thermophilic 

(>40°C)[7]. If more than 80% of the species in a genus are in a single block, all species in the genus, 

which did not have a strain or species value yet, are assigned to have that Topt. This way, species which 

are not included in TEMPURA but have related species from the same genus can still be mapped. If a 

genus has less than 80% of its species in a single block, the genus level is regarded as none existing.  

Because there is a lot of uncertainty in this approach, Topt was also estimated using the 16S rRNA stem 

GC content of the host bacterium. Previous research showed a high correlation between GC content 

and the optimal growth temperature [30], [31]. 16S rRNA sequences were retrieved for the UniProt 

host species using NCBI Bioproject 33175 if present in this database. Using the ViennaRNA package 

2.5.0a5 [32], the secondary structure of the rRNA sequence was predicted. The GC content of the stem 

parts of the sequence was calculated using biopython 1.79 [33]. A least squares linear regression of 

https://git.wur.nl/joran.schoorlemmer/js_bif_thesis
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the Topt and stem GC content of the TEMPURA entries, shown in Supplementary figure A, was 

performed. Using this relation as the equation shown below, Topt values for new entries without a 

TEMPURA entry can be estimated.  

𝑇𝑜𝑝𝑡𝑖𝑚𝑎𝑙(°𝐶) = 1.53 ∗ 𝐺𝐶𝑟𝑅𝑁𝐴(%) − 65.07 

The Topt output was classified using the same temperature blocks as in the genus mapping approach to 

decrease noise and simplify comparing the two.  The number of proteins which could be characterized 

as mesophilic or thermophilic are shown in Table 1. Some host organisms did not have an entry in the 

used 16S rRNA database, while others did not have a related entry in the TEMPURA database 

accounting for a loss in proteins to be interpreted. The overlapping entries which could be mapped by 

both approaches are also shown in Table 1. Point of notice is the low number of thermophilic proteins 

which could be mapped using both approaches. 

Table 1: Number of proteins which could be predicted by mapping to the optimal growth temperature of their host, either 
using empirical data from TEMPURA or calculating using its 16S rRNA stem GC content. The overlap between the two 
methods is also shown. 

Predicted by Total Mesophilic Thermophilic 

Taxonomy: species 7,655 7,028 625 

Taxonomy: genus 29,892 29,511 383 

Stem 16S rRNA GC% 39,623 39,008 615 

Both taxonomy & 16S rRNA 28,932 27,653 134 

Total proteins in dataset 52,640   
 

Predicting thermostability using random forest classifiers 
For all ten protein classes, a random forest model was created using the randomForest package 4.7 in 

R. Thermophilic proteins were labeled as positive, mesophilic proteins were labeled as negative. The 

dataset was divided using an 80/20 split with 80% of the data being used as training data and 20% as 

testing data. Due to the low proportion of thermophilic proteins in the data, stratified sampling was 

used to ensure the presence of thermophilic proteins in the test set. The model was created using 4000 

trees, the drawn samples were sampled with the same size as the number of thermophilic proteins in 

the training set to prevent a large overrepresentation of the mesophilic proteins. To counteract this 

possible bias further, the thermophilic protein type was weighted 10x as heavily as opposed to the 

mesophilic proteins when the majority vote is taken in a tree. Although this had little effect on model 

performance after stratified sampling, it was kept in the model to ensure the smallest bias possible. 

The importance of all structural features was retrieved from the models to explain underlying patterns. 

This was expressed in MeanDecreaseGini, which is a measure of the decrease in impurity upon adding 

an individual feature to the model. 

Identity in classes 
To investigate the influence of protein similarity on the predictive performance, pairwise sequence 

identity scores were calculated by aligning high similarity regions as in previous research [34]. The 

averages of these scores per class, and the highest identity score per class, were used as an indication 

of the similarity in a class. Due to the large number of sequences, a fast alignment tool was necessary. 

MMseqs2 [35] is a very fast local alignment tool enabling analysis of massive data sets. Because it is 

mainly used for searching for high identity homologs in large databases, some alterations had to be 

made to bypass the core prefiltering module of the tool. This module filters out low identity pairs to 

speed up computation, while these are just as important for this project. A shell function from the 

GitHub page of MMseqs2 was used to convert the input FASTA file into a “filtered” output file which 
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could be used for the alignment step. No e-value cut-off was used to make sure all sequence pairs were 

used.  

The shaft and major capsid were analyzed in depth using the pfam_scan 1.6 tool from Pfam [36]. The 

composition and protein families making up the class were retrieved and checked for correlation with 

prediction results. 

Results 
Phage proteins were retrieved and separated by one of the ten structural classes according to PhANNs. 

Diversity in these classes was assessed and further analyses of the proteins were done separately for 

each class. Only proteins from the most stringent dataset were used unless stated otherwise. Two 

classes are not shown in the results section due to the low presence of thermophilic proteins, being 

the collar proteins and the minortail proteins. These contained less than 10 thermophilic proteins in 

both temperature prediction approaches, using the species or genus value from TEMPURA or by 

calculating Topt using the stem GC content of the 16S rRNA sequence. All figures and tables with these 

two missing classes are fully shown in the Appendix. 

Exploring features 
To investigate the difference in the calculated structural features, a PCA was performed for each 

protein class. The Head-Tail Junction protein is shown in Figure 5. The other classes show similar 

patterns and can be found in Supplementary figure B in the Appendix. 

 

Figure 5: Biplot of the two first principal components of a PCA of the head-tail junction proteins. Mesophilic proteins are 
shown in blue, thermophilic proteins in red. 

Some relations between the different features can be observed in Figure 5. The three charge related 

features (charged, surface charge and polar) group together. These show a negative correlation with 

compactness. The number of surface residues in a helix is negatively related to the residues in strands 

and turns. Proteins are widely spread out over the principal components, although some grouping is 

visible between the proteins correlating with the helix loading and the strand + turn loadings. No 
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general pattern for the thermophilic proteins can be found from this plot, although it seems that some 

are grouping at the left of the figure.  

Having obtained an overall view of diversity between the structural features, differences between the 

protein classes can be investigated. The diversity in the ratio of charged residues on the surface is 

shown in Figure 6. The seven other features are shown in Supplementary figure C in the Appendix.  

 

Figure 6: Distribution of the ratio of charged residues on the surface of proteins. Separated by protein class and 
thermostability. All differences between the classes are significant (𝛼 = 0.05) according to a Tukey-test after an ANOVA 
except for the pair Majortail - Majorcapsid. The only significant differences between the thermophilic & mesophilic blocks 
are found in the baseplate, shaft and tailfiber class. 

As can be seen in Figure 6, there are significant structural differences between the protein classes. This 

could also be a result of the high number of proteins in each class. The differences between the 

mesophilic and thermophilic proteins are less clear, which is reflected in the low number of significant 

differences between these groups. 

Model performance in predicting thermostability 
The different structural features are used to train random forest models to predict the thermostability 

of proteins. These are trained using both methods of Topt estimations. Models were also trained using 

the sequence features from UniRep. Results are given in Table 2. Due to the low presence of 

thermophilic proteins for some protein classes, proteins from all confidence levels are used, except for 

proteins with a LCR content of more than 25% as these were filtered out immediately. 

Table 2: F1 scores of random forest models, with the number of thermophilic proteins in the whole (training + test) dataset. A 
NaN score is given if the model returned zero True Positive predictions. Classes: BP (baseplate), HTJ (Head-Tail Junction), MJC 
(Major Capsid), MJT (Major Tail), MNC (Minor Capsid), P (Portal), S (Shaft), T (Tail fiber), All (All classes combined), All stringent 
(All classes combined but only the most strictly filtered structures). 

Topt estimation Model BP HTJ MJC MJT MNC P S T All All stringent 

Taxonomy Thermo proteins 11 243 156 62 15 400 85 28 1,008 517 

 F1 feature  0.02 0.37 0.17 0.13 0.14 0.25 0.09 0.25 0.21 0.19 

  F1 sequence  NaN 0.35 0.21 0.09 0.13 0.18 0.12 0.35 0.20 0.13 

16S rRNA Thermo proteins 14 35 106 13 15 215 209 3 615 205 

 F1 feature  0.05 0.05 0.12 0.10 0.30 0.14 0.52 NaN 0.15 0.14 

 F1 sequence  0.08 0.03 0.15 0.04 0.33 0.12 0.52 NaN 0.17 0.13 
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Many models show a low F1 score, with some having no score at all. This is often the result of the size 

of the dataset, as there is often only one or a few thermophilic proteins in the test set. In case this 

single thermophilic protein is predicted incorrectly, no true positives are present resulting in the 

inability to calculate a F1 score. The structure-based models and the sequence-based models show 

very similar F1 scores for all protein classes. Multiple protein classes with a high amount of 

thermophilic protein entries show relatively high F1 scores, like the Head-Tail Junction class when using 

taxonomy based Topt estimations and the Shaft class using 16S rRNA based Topt estimations. However, 

some models with large amounts of data still show low scores. The biggest example of this is the 

combined classes model with 1,008 thermophilic proteins and a F1 score of 0.21 for the structural 

feature based, taxonomy model. The portal & major capsid protein models are also low performing in 

regard to their number of thermophilic proteins. The confusion matrix of the best performing 

structural feature-based model is shown in Table 3. 

Table 3: Confusion matrix of Shaft protein predictions from a feature-based model using 16S rRNA Topt data. True mesophilic 
proteins are shown in blue, while true thermophilic proteins are shown in red. 

 

 

 

The model predicts little false negative proteins, but many false positive proteins. When comparing 

model performance to a baseline model which predicts everything as thermophilic, the F1 score drops 

drastically from 0.52 to 0.08. The importance of the different features for this model is shown in Table 

4. 

Table 4: Feature importance of the random forest model predicting shaft proteins using 16S rRNA Topt estimations. 

Feature MeanDecreaseGini 

turn 5.89 

charged 5.48 

polar 4.49 

aromatic 3.86 

helix 3.53 

strand 3.07 

compactness 2.64 

surface_charge 2.55 

 

All features show some impact with the highest for the ratio of charged surface residues and surface 

residues found in a turn. These features have the biggest impact on predicting the thermostability of 

a shaft protein correctly. The surface charge and compactness of the protein have a lower effect on 

the ability of the model to make correct predictions. Due to the high correlation in the features 

charged, polar and surface charge, feature importance and model performance were calculated 

without the first two features, charged & polar. However, both model performance and feature 

importance were very similar. When comparing feature importance to other high performing models 

in Supplementary table B, many differences can be found. Now, polar & aromatic residues and the 

surface charge become more important for the model. This could indicate different strategies being 

used per class for thermostability. 

Ground truth\predictions Mesophilic Thermophilic 

Mesophilic 936 52 

Thermophilic 9 33 
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Sequence identity 
To investigate the influence of protein similarity on model performance, local alignments were 

performed and pairwise identity scores were calculated. A summary per protein class is shown in Table 

5.  

Table 5: Summary of pairwise identities per protein class. 

 Baseplate HTJ Major capsid Major tail Minor capsid Portal Shaft Tailfiber 

Min 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

1st Q 0.14 0.14 0.16 0.13 0.15 0.13 0.15 0.13 

Median 0.15 0.17 0.18 0.14 0.16 0.15 0.16 0.14 

Mean 0.20 0.24 0.21 0.19 0.24 0.18 0.24 0.16 

3rd Q 0.20 0.33 0.23 0.17 0.22 0.18 0.29 0.15 

Max 1 1 1 1 1 1 1 1 

 

Similar values can be found across all classes, with low average identities for every class. However, 

when looking at the 3rd quantile, the shaft and head-tail junction protein classes show higher values. 

This indicates that the shaft and head-tail junction classes have relatively more proteins with a high 

similarity. 

The distribution of pairwise identities between shaft proteins and between major capsid proteins are 

shown in Figure 7. These classes are chosen as they have a similar size and thermophilic protein 

composition but show very different F1 scores in Table 2. Other classes can be found in Supplementary 

figure D in the Appendix. 

 

Figure 7: Distribution of pairwise identities for shaft proteins (left) and major capsid proteins (right). 

No big difference in pairwise identities can be concluded from Figure 7. Many proteins show an identity 

score below 25%, which points to low similarity in the total dataset. To check for near duplicates in the 

dataset, the closest entries for each protein are also shown, in Figure 8. 
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Figure 8: Distribution of pairwise identity of the most similar proteins for shaft proteins (left) and major capsid proteins 
(right). 

Figure 8 once again highlights a similar pattern in both classes. Both have high identity scores for most 

proteins with fewer counts for low identity scores, indicating proteins with low similarity to every other 

protein in their respective class. However, upon a very close look, the shaft protein peak is a bit 

steeper, indicating slightly more proteins with high similarity. This is in line with the results shown in 

Table 5, in which it is shown that the 3rd quantile of the shaft class was greater relative to the major 

capsid class. The other protein classes can be seen in Supplementary figure E in the Appendix.  

When comparing the composition of the classes using Pfam, a similar conclusion can be drawn. The 

shaft class consists of proteins containing domains originating from 15 protein families, of which only 

8 have more than one individual entry in the class. The major capsid class contains 22 unique protein 

family domains, of which 17 have more than one individual entry amongst the class. This is an 

indication of a greater phylogenetic diversity in major capsid phage proteins. 

Discussion 

Interpretation and biologic context 
Phages are diverse biological entities and can be found in almost every environment on earth. To be 

able to use them in phage therapy or for their anti-inflammatory effects, more in depth knowledge of 

their structure is necessary [6]. Their stability in different thermal conditions is of great importance for 

preparation and preservation of effective phage application. To assess this stability, a model was 

created to predict whether a phage can be classified as mesophilic (Topt < 40°C) or thermophilic (Topt ≥ 

40°C). This way, specific phages can be analyzed and selected for previously mentioned applications. 

Additionally, this study provides in depth knowledge on phage protein structures and diversity in phage 

proteins. 

The proteins were separated in ten classes, based on structural functions using the PhANNs [16] 

dataset. The diversity between these classes is high as is shown in Figure 6. The differences between 

the classes are often greater than the difference between the thermostability blocks within an 

individual class. This high diversity can be expected due to the different functions of these proteins 

[16], [17]. Different parts of the virion have different needs and interactions with their surroundings. 

Diversity is also reflected in the PCA, depicted in Figure 5. This is also reflected in the wide spread of 

these features in Supplementary figure B. Properties of proteins are found correlating with all features, 

although some grouping can be seen. This grouping behavior is especially clear between the helix and 

strand features.  
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Upon combining the information contained in all 10 features, random forest models were created to 

predict the thermostability of the phage proteins. The F1 scores shown in Table 2 differ a lot between 

all classes, but some interesting results can be retrieved. All high performing models contain relatively 

many thermophilic proteins. Differences between the two temperature estimation approaches are 

also showing this relation. This makes sense as the model needs a sufficient training set to accurately 

predict thermostability. Additionally, when few thermophilic proteins are present in the test set, the 

F1 score is easily skewed to low values due to false positives (mesophilic proteins predicted as 

thermophilic). When looking at the confusion matrix of shaft proteins in Table 3, it is clear that 

predicting the thermophilic proteins itself is done with a high accuracy but the F1 score is lowered by 

the large number of false positive mesophilic proteins. Compared to a baseline model predicting all 

proteins as thermophilic, model performance is greatly increased from 0.08 to 0.52 upon addition of 

the structural features. This indicates that these features contain and provide information on the 

thermostability of these proteins. 

Some classes show low F1 scores, whilst having a large thermophilic presence in the dataset. This is 

especially true for the portal class and for the models containing all protein classes together. These 

contain the most thermophilic proteins but have remarkably low F1 scores. This could be due to the 

high diversity of these datasets. They show a low number of closely related proteins, indicated by their 

3rd quantile in Table 5. This shows that the distribution of pairwise identities for shaft and head-tail 

junction proteins is skewed to higher values for relatively more proteins than the portal and major 

capsid class. The difference in diversity is also reflected in the composition of protein families in the 

dataset. The major capsid class contains much more domains from different families as opposed to the 

shaft class. This could also drive diversity and lower model performance. The models containing all 

classes perform also much worse, possibly due to the nature of the dataset being inherently diverse. 

Little differences are found between the structural feature based and sequential based models. Both 

perform similarly across all protein classes and Topt estimations. As only Alphafold structures have been 

used, which are predicted from an amino acid sequence, this could have been expected. It could even 

be argued that these two approaches contain the same information as it is known that a single 

polypeptide contains all information needed to fold into a 3D structure [37]. The difference in this 

project was however that when looking at specific residues, only surface residues were used. This is 

where the added benefit of the 3D structure is present and is why the novel AlphaFold data can be 

extremely impactful. As it is impossible to select for this in amino acid sequences, some differences in 

predictive performance were expected but are apparently not very significant if present at all. 

Another interesting result is the similarity in performance of the strictly filtered dataset containing only 

highly confident Alphafold structures. The F1 score of the confident dataset is even slightly lower than 

the full dataset containing all classes, possibly due to the lower number of thermophilic proteins. 

Important to note is that for both datasets, the structures with low confidence residues over 25% of 

the total number of residues are filtered out. This ranges between 20-40% of structures being removed 

for each protein class. The following filtering steps have shown to be not very important for model 

performance in predicting thermostability. This could be due to the small difference in surface features 

and sequential features like mentioned before. Structures are filtered out because their predicted 

surface might not be representative of their actual structure. It could be that the presence of specific 

residues or secondary structural elements on the surface opposed to the whole protein is less 

impactful than initially thought. In this case, filtering becomes less important as it is less relevant if a 

specific residue is located on the surface or embedded in the structure. 

These filtering steps could be more relevant in different projects, in which the surface of the protein is 

more important. These can for example be in protein-protein interaction research [38], production of 
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biopolymers[39] or in research on moving parts of proteins [40]. Especially for this last application, 

these filtering steps could be useful as it is known that Alphafold currently struggles with predicting 

flexible parts of proteins [41]. The filtering step which sets the most relevant restriction was related to 

this shortcoming of Alphafold. Circa 60% of the remaining structures at that point were filtered out 

due to the presence of a continuous stretch of over 15 LCRs in the middle of the structure. This could 

be due to a loose part of the protein, which is connecting two domains, resulting in a flexible shape-

changing protein. The filtering step looking for proteins found in secondary structures had a very 

different impact, 92% of checked proteins were filtered out at this point. Almost all proteins apparently 

consisted of over 20% of LCRs in secondary structures. By raising this threshold, a more insightful 

filtering condition could be created as it could be too strict at 20%, allowing little flexibility. 

Practical and computational limitations 
Limitations of this project can be found in estimating the thermostability of a protein in the training 

dataset. This was done in two ways, first by retrieving optimal growing temperatures of host organisms 

genera from TEMPURA. Second, the Topt was calculated using the 16S rRNA GC content and an 

empirical formula. As can be seen in Table 1, both methods already miss out on ±25% of protein 

entries. The two methods also show very different results on classifying a protein as thermophilic as 

only 134 were mapped as thermophilic by both methods. This also varies between classes, for example 

in the Head-Tail Junction class in Table 2. 243 proteins are classified as thermophilic using the genera 

mapping approach, while only 35 proteins are classified as thermophilic using the 16S rRNA approach. 

This discrepancy in the two approaches indicates that at least one method is not very thorough. 

However, this discrepancy can be seen in the shaft class as well, now with 85 thermophilic proteins 

using the taxonomic genera mapping approach and 209 using the 16S rRNA approach. Because this 

discrepancy differs per class, it can be assumed that both methods are not fully accurate. Although 

some correlation between the Topt and species of the same genus can be expected [42], a big spread is 

present in many genera according to the TEMPURA database. For calculating Topt using the 16S rRNA 

stem GC content, other complications arise. Due to computational difficulties of the ARB software 

needed to retrieve the actual stem regions of 16S rRNA strands, these were estimated using 

ViennaRNA. This could lead to inaccuracies in these stem regions and as such lead to inaccuracies in 

predicting Topt. Although the 16S rRNA stem GC content is known to correlate with Topt [27], [30], it is 

not precise enough for this type of analysis. To predict these more accurately, more novel tools can be 

used which use a combination of many genome derived features like the GC content, tRNA sequences, 

nucleotide or amino acid fractions and sequence length [43]. This way, using more accurate 

temperature values for host organisms, more accurate predictions can be made on the potential 

thermostability of phage proteins. A higher accuracy also allows for quantitative Topt values instead of 

the current categorical approach. This could lead to new conclusions on phage adaptation strategies 

for more temperature ranges as it is known that these can differ a lot [11]. 

Another limitation of the project is the dataset size of certain protein classes. The baseplate, collar, 

minor capsid, minor tail proteins and tail fiber protein classes all contain little thermophilic proteins. 

This creates a problem as only a few proteins can be predicted in the test set, making verifying the 

quality of the model difficult. Next to this, model performance will suffer anyway due to the low 

number of proteins to train the model on. This size limitation could possibly be resolved by combining 

all classes together using a joint or ensemble learning model, ensuring the conservation of information 

on diversity but using the greater abundance of thermophilic proteins. This could also help resolve the 

large bias towards mesophilic proteins allowing for easier validation and optimization of the model. 

Previous research has used such an approach to predict DNA- and RNA-binding proteins, as these are 

relatively similar whilst being different proteins with different functions [44].  
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A last small limitation of this project is the use of a local alignment tool MMSeqs2 for calculating the 

pairwise identities. As comparing all 52,724 proteins using multiple sequence alignments or global 

sequence alignments was too computationally expensive, a local alignment was performed. This 

creates larger inaccuracies, as the alignment of small motifs is prioritized over the global alignment 

and as such gives lower overall identity values. While the resulting values will not differ drastically, it 

could result in a slightly different outcome.  

Future outlook 
For further research, more in depth analyses can be done on the relation of the wide diversity in 

protein classes to their thermostability. These classes differ widely in protein family domain 

compositions, which has a lot of influence on different strategies for thermostability [15]. Phages are 

also isolated from many different natural environments. They are retrieved from samples ranging from 

soil to marine and from human intestines to plant tissues. As many environmental factors next to 

temperature affect the efficacy and stability of phages [45], it could be interesting to include metadata 

of phage proteins in future work. Next to this, a similar pipeline as used in this project could be used 

to predict stability for different environmental factors like pH, organic matter content or salinity. When 

using more accurate temperature predictions, better performing models can be created. These models 

can be improved even further using more structural features like distributions of hydrogen bonds [15] 

or specific angles of aromatic features [8]. Next to this, structure embedding applications like 

Geometricus [46] or other sequence embedding tools like the architecture behind ProtREP [47] can 

add broader, more full representations of the protein. Extending this research to more broader 

applications than just prokaryotic phage therapy and phage design, it could be interesting to advance 

into the realm of eukaryotic viruses. Some research is already being done on these viruses and how 

they enhance thermostability [48]. Host interactions are a key part of eukaryotic virus strategies to 

boost virion stability, which could yield interesting different applications opposed to prokaryotic 

phages. Lastly, more research has to be done on the precise influence of thermostability or the lack 

thereof on phage infectivity to model and use phages to their fullest extent in phage therapy or their 

other applications. 

Conclusion 
This study characterized surfaces of phage protein structures by features such as the surface charge 

and secondary structure composition and used these protein structures to assess their diversity and 

predict thermostability of said proteins. This was done using the novel Alphafold protein structures, 

which were checked for inaccuracies using a custom filtering pipeline. For ten structural protein 

classes, random forest models were created to predict their thermostability. This was defined as the 

optimal growth temperature of their respective host organism, which was estimated for training in 

two ways. First by a taxonomic approach in mapping the genus wide average Topt to the whole genus. 

Second, by calculating Topt using the GC content of the 16S rRNA stem. Model performance differs 

greatly between the structural classes and combining all classes together in one single model hinders 

performance considerably. This is likely due to the increase in diversity of the dataset. As some of these 

classes are more diverse than others, assessing one individual strategy for thermostability is difficult. 

The most promising class is the shaft protein class with a highest F1 score of 0.52. The most important 

properties for this class were the number of residues found in turn elements and the number of 

charged residues on the surface. This knowledge helps in the ability to isolate or design stable phages 

for phage therapy. Information on their stability is crucial to ensure proper conservation and 

production. However, more research is required to cover all phage survival strategies to endure high 

temperature environments.  
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Appendix 
Supplementary table A: Amino acid residue types [49] 

TYPE RESIDUE 

POLAR ARG, HIS, LYS, ASP, GLU, SER, THR, ASN, GLN 
CHARGED ARG, HIS, LYS, ASP, GLU 
AROMATIC PHE, TYR, TRP, HIS 

 

Supplementary table B: Feature importance  of the random forest model predicting Head-Tail Junction proteins using 
taxonomic mapped  Topt estimations (left) and Minor capsid proteins using 16S rRNA Topt estimations (right). These models 
are the second and third best performing models. 

Feature MeanDecreaseGini 

polar       5,98 

aromatic    5,52 

compactness 5,38 

turn        4,44 

charged     4,40 

helix       4,12 

elec_energy 3,88 

strand      3,09 

 

 

 

Supplementary figure A: Optimal growth temperature over stem GC content of 16S rRNA sequences of TEMPURA entries. 

Feature MeanDecreaseGini 

surface_charge 0,43 

polar       0,42 

strand      0,35 

compactness 0,24 

aromatic    0,22 

helix       0,21 

turn        0,20 

charged     0,19 
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Supplementary figure B: PCA biplots of all ten protein classes. 
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Supplementary figure C: Boxplots of all eight structural features per protein class. 
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Supplementary figure D: Distribution of pairwise identities for all protein classes. 
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Supplementary figure E: Distribution of pairwise identity of most similar proteins for all ten protein classes. 

  


