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Chapter 1

Introduction

1.1 Abstract

Advancements in research and technology have transformed cancer treatment, driv-
ing progress towardmore effective therapies. In the continuing battle against cancer,
this chapter provides a comprehensive exploration of breast and colorectal cancer,
shedding light on their statistics, common causes, and the transformative advance-
ments that drove progress in cancer treatment. The significance of moving beyond
clinical subtypes was recognized, emphasizing the importance of molecular char-
acterization in precision oncology and personalized treatment. By delving into the
diagnosis workflow of breast cancer and unraveling the complexities of its molecu-
lar subtypes, a deeper understanding of tumor biology was gained, paving the way
for improved therapeutic guidance. Additionally, the classification of colon cancer
uncovered its clinical and molecular subtypes, revealing valuable insights into this
complex disease. The benefits of precision oncology were highlighted, underscoring
the need for precise diagnostics and the potential to maximize outcomes. The overar-
ching aims of the thesis were discussed in detail. Chapter 2 focused on the BluePrint
test’s ability to identify dual-activated pathways in breast cancer patients. Chapter
3 expanded the BluePrint HER2 gene signature, while Chapter 4 investigated the
concordance of molecular characteristics in primary and metastatic colon tumors.
Chapter 5 explored subgroups within triple-negative breast cancer using proteoge-
nomic datasets. Finally, Chapter 6 summarized the key findings, discussed their
correspondence with existing subtyping techniques, and highlighted the research’s
limitations and prospects. My thesis aimed to increase knowledge to contribute to
the understanding of breast and colorectal cancer subtypes, their molecular charac-
teristics, and their implications for personalized treatment. Through these efforts,
this thesis chapter aimed to transform cancer diagnostics, ultimately improving lives
and strengthening communities.
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1.2 TheContinuing Battle Against Cancer: AnOverview
of Statistics and Common Causes

Cancer is a group of diseases characterized by the uncontrolled growth and spread
of abnormal cells in the body [1]. Cancer cells can invade nearby tissues and organs,
and in some cases, they can spread to other parts of the body through the blood-
stream or lymphatic system, a process known as metastasis [2]. Certain cancers like
breast and prostate cancer are slow growing with little to no symptoms whereas can-
cers like pancreatic cancer are aggressive and quick to spread to other parts of the
body.

According to estimates from theWorld Health Organization (WHO) in 2019, can-
cer is the first or second leading cause of death before the age of 70 years in 112 of
183 countries and ranks third or fourth in a further 23 countries [3]. It is also esti-
mated to be responsible for about 10 million deaths annually. Additional statistics
about the worldwide impact of cancer are shown in Figure 1.1. Among the most
common types of cancer, breast, and colorectal rank among the top five prevalent
types [4]. Both breast and colon cancer have a significant impact on patient qual-
ity of life, and healthcare costs, making them important research areas for cancer
prevention, early detection, and treatment.

The causes of cancer are complex and can include genetic mutations, exposure
to environmental toxins, and lifestyle factors such as tobacco use or diet [5]. Smok-
ing and alcohol consumption are the leading risk factors worldwide associated with
death from cancer [6]. In addition, some viruses, such as human papilloma (HPV)
[7], hepatitis B and C, and human immunodeficiency (HIV) viruses, can increase the
risk of developing certain types of cancer [8].

Cancer screening and detection methods are crucial in identifying cancer early
when treatment is more effective [9]. Some commonmethods include biopsies, imag-
ing and blood tests, physical exams, and genetic testing. All clinical screening tests
contain information on key performance indicators like sensitivity, specificity, safety,
cost, simplicity, and patient and clinician acceptability [10, 11] and evaluating these
tests depends on several methodological, clinical, and ethical factors [12].

If the screening and detection methods confirm the presence of cancer, a health-
care team determines the specific type, stage, and extent of cancer, and a compre-
hensive treatment plan is developed. This plan is tailored to the individual’s specific
cancer type, stage, overall health, and personal preferences.

1.2.1 Breast Cancer

Breast cancer is a heterogeneous and multifaceted disease with a range of clinical,
pathological, and molecular features. Breast cancer remains among the most preva-
lent types of tumor among women, where 1 in 8 women are diagnosed with breast
cancer in their lifetime [13, 14]. However, breast cancer also has low mortality and
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Figure 1.1: A summary of cancer statistics and facts.
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recurrence rates [15]. These low rates can be attributed to the early diagnosis and
a plethora of treatment options post-diagnosis. Inherited genetic mutations such
as BRCA1 and BRCA2 gene mutations can increase the risk of developing breast
cancer [16]. Hormonal imbalances such as increased levels of estrogen and proges-
terone can also increase the risk. Several methods have been developed to classify
breast cancer into multiple subtypes [17, 18], namely the clinical classification and
molecular subtyping of breast tumors.

Clinical subtype classification of breast cancer is based on factors such as hor-
mone receptor (HR) status, Human epidermal growth factor receptor (HER2) status,
and tumor grade. The main clinical subtypes include hormone receptor-positive
(HR+), HER2-positive, and triple-negative breast cancer (TNBC). Clinical subtyp-
ing in breast cancer relies on Immunohistochemistry (IHC) and Fluorescence In Situ
Hybridization (FISH) tests to determine the status of receptors like Estrogen (ER),
Progesterone (PR), and Human Epidermal Growth Factor Receptor (HER2) [19, 20].
IHC detects extra and intra-cellular proteins in the tissue samples using antibodies,
which are labeled with a dye or radioactive material, to detect and visualize the lo-
cation of the protein. FISH is a cytogenic method used to determine the presence of
specific genetic alterations, such as amplifications or deletions, in genes associated
with aggressive or treatment-resistant forms of the disease.

In addition, tumors are classified based on their molecular characteristics such as
gene expression, mutations, and other biomarkers [21]. These subtypes have differ-
ent prognoses and may require tailored treatment approaches. Molecular subtypes
of breast cancer include luminal subtypes which are hormone receptor-positive and
have a better prognosis, while HER2-enriched tumors show high HER2 expression
and require targeted therapies. Triple-negative breast cancer lacks hormone recep-
tors and HER2 expression, making it more aggressive. A detailed explanation of the
molecular subtypes of breast cancer is discussed below in Section 1.3.1.

The diagnosis and treatment of breast cancer involve a well-defined workflow,
shown in Figure 1.2. The process typically begins with screening methods such as
mammography, which can detect early signs of cancerous growth. In cases where
an abnormality is detected, further diagnostic tests, such as Computed Tomogra-
phy (CT) scans and biopsies, are conducted to confirm the presence of cancer and
determine its specific characteristics. Upon diagnosis, a multidisciplinary approach
is employed to determine the most appropriate treatment strategy for each patient.
Treatment options may include surgery to remove the tumor, followed by additional
therapies such as radiation therapy to target any remaining cancer cells. Systemic
treatments, including chemotherapy, hormonal therapy, and targeted therapy, may
also be administered based on the individual’s tumor subtype and specific molecular
characteristics.

Hormone therapy is commonly used for hormone receptor-positive subtypes,
while HER2-targeted therapies are effective for HER2-positive subtypes. Addition-
ally, chemotherapy may be recommended for certain subtypes to target rapidly di-
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viding cancer cells. The hormonal therapy includes selective estrogen receptor mod-
ulators (e.g., tamoxifen) [22], aromatase inhibitors (e.g., anastrozole, letrozole), and
ovarian function suppression [23, 24]. These therapies aim to block the estrogen sig-
naling pathway and reduce the growth of hormone-sensitive tumors. Targeted thera-
pies such as trastuzumab [25], pertuzumab [26], and ado-trastuzumab emtansine (T-
DM1) [27] specifically inhibit HER2 signaling and have significantly improved out-
comes for HER2-positive breast cancer patients. These targeted therapies are often
combined with chemotherapy to enhance their effectiveness. Treatment options for
TNBC primarily involve chemotherapy, which may be given before surgery (neoad-
juvant) or after surgery (adjuvant) [28]. Emerging therapies, such as immune check-
point inhibitors (e.g., pembrolizumab), are showing promise in subsets of TNBC
patients with high levels of immune cell infiltration [29].

1.2.2 Colorectal Cancer

Colorectal cancer (CRC) is the third most common cancer worldwide and the second
leading cause of cancer death in the United States. It is estimated that about 1 in 20
people will develop colon cancer in their lifetime [30, 31]. The 5-year relative sur-
vival rate for people with localized colon cancer is approximately 90%. In women,
colorectal cancers account for 13% of all new cancers and are the second most fre-
quent tumors after those of the breast. Similar to breast cancer, the mortality rates of
colon cancer have also declined rapidly which is thought to be a result of CRC pre-
vention and earlier diagnosis through screening as well as the reduced prevalence
of risk factors, and/or availability of improved treatment regimens [32, 33]. These
risk factors that have reduced the prevalence of colon cancer include the decreased
consumption of red and processed meats, increased awareness of the importance of
physical activity and maintaining a healthy weight, smoking cessation efforts, and
improved screening practices such as regular colonoscopies and stool-based tests
[34].

Some of the regular screening tests such as colonoscopy, fecal occult blood test
(FOBT), stool DNA test, flexible sigmoidoscopy, or virtual colonoscopy can detect
colon cancer or precancerous polyps early before symptoms develop [35].

Once diagnosed, the next step is to determine the stage of the cancer, which helps
guide treatment decisions. Staging involves assessing the size and extent of the tu-
mor [36, 37], as well as the presence of any spread to nearby lymph nodes or distant
organs [38, 39]. Treatment options for colon cancer depend on the stage and individ-
ual factors. The primary treatment modalities include surgery, chemotherapy, and
radiation therapy. Surgery is often the first-line treatment, aiming to remove the
tumor and nearby lymph nodes [40]. Chemotherapy may be given before or after
surgery to shrink the tumor or to eliminate any remaining cancer cells. Radiation
therapy may be used in certain cases to target specific areas [41]. Additionally, tar-
geted therapies and immunotherapy may be utilized in specific situations [42, 43].
Often, a combination of treatments may be used to achieve the best results [44, 45].
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Figure 1.2: Workflow for Diagnosis and Treatment of Breast Cancer Based on Molecular Sub-
types, CT - Computed Tomography, PET - Positron emission tomography, PARP - Poly (ADP-
ribose) polymerases
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Regular follow-up visits, imaging tests, and blood work are important for monitor-
ing the response to treatment and detecting any signs of recurrence.

1.2.3 TransformingCancer Treatment: Innovations inResearch and
Technology Driven Progress

In the last fifty years of clinical and medical research and trials, cancer treatment
has come a long way, with significant advancements leading to new and improved
treatments. Some of the improvements include:

• Early detection: Advances in technology and screening methods have made it
possible to detect many types of cancer at an earlier stage when they are more
treatable. Many studies have shown that a delay of more than three months
between the discovery of symptoms and the start of cancer treatment is asso-
ciated with an advanced clinical stage of the disease [46–48]. Earlier diagnosis
and optimal treatment can lead to many thousands of patients being spared
their life being cut short by cancer [49].

• Immunotherapy: This treatment harnesses the body’s immune system to fight
cancer, and has shown promising results in some types of cancer, including
melanoma, leukemia, and lymphoma. Immunotherapy is emerging as an ad-
dition to conventional therapies [50]. Immune checkpoint blockade therapy, in
particular, is one of the most impressive advancements in cancer therapeutics
in recent years [51].

• Minimally invasive surgical techniques: Surgery techniques like laparoscopic
or robotic surgery, result in a quicker recovery and less pain for patients. Min-
imally invasive surgery shows benefits when compared to open surgery, like
better recurrence-free survival [52]. Alongside, techniques aiding minimally
invasive surgery techniques such as three-dimensional vision, instruments’ ar-
ticulation, and greater ergonomics for the surgeon, offer a better therapeutic
approach to the minimally invasive treatment [53].

• Personalized medicine: This is an innovative approach to tailoring disease pre-
vention and treatment that takes into account differences in people’s genes,
environments, and lifestyles. The goal of precision medicine is to target the
right treatments to the right patients at the right time. Rather than relying on
a one-size-fits-all approach, precision medicine takes into account an individ-
ual’s unique genetic profile, lifestyle factors, and disease characteristics to de-
termine the most effective treatment options. This approach minimizes unnec-
essary treatments and reduces the risk of adverse side effects, maximizing the
benefits for patients while minimizing the burden of ineffective interventions.
Moreover, it has also shifted the focus of medicine from reactive to preventa-
tive measures [54, 55]. By identifying genetic predispositions or biomarkers
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associated with certain diseases, individuals at high risk can be identified and
proactive measures can be taken to prevent or mitigate the development of the
disease. Furthermore, precision medicine has a profound impact on research
and drug development. By dissecting diseases at a molecular level and under-
standing the underlying mechanisms, researchers can discover novel targets
for drug development and design therapies that are more precise and effective.
This personalized approach to drug development holds immense promise for
addressing complex diseases and unlocking innovative treatment options. In
summary, precision medicine represents a paradigm shift in healthcare, offer-
ing personalized, targeted, and effective interventions. It holds the potential to
transform patient care, optimize treatment outcomes, and pave the way for a
future where healthcare is tailored to each individual’s unique characteristics
and needs.

Amidst the remarkable progress in cancer research, precision medicine emerges as
a standout approach with immense potential for the future. This personalized ap-
proach holds the key to unlocking breakthroughs in cancer treatment, paving the
way for more effective therapies and improved patient outcomes.

1.3 Precision matters: The Importance of Moving be-
yond Clinical subtypes to Molecular Characteriza-
tion

The purpose of performing tumor subtype classification is to determine the optimal
treatment plan based on tumor biology. While clinical subtypes can provide infor-
mation about the underlying biology of a tumor, they have limited value in predict-
ing patient outcomes and response to treatment. Another important question in the
clinical management of tumors is how to avoid overtreatment or undertreatment of
patients.

In addition, clinical subtyping relies on subjective interpretations of pathology
and clinical features, leading to variability in classification among different clini-
cians and institutions. To overcome the limitations of clinical subtyping, a concerted
effort has been to develop new classification models based on gene expression pro-
filing reflecting the functionality of molecular pathways [56, 57].

Over the past few years, progress in cancer genomics research has established
how genetic altercations can serve as effective biomarkers for early detection, mon-
itoring, and prognosis of cancer. Through years of advancements in the field of
bioinformatics and biotechnology, cancer gene profiling has expanded from a single
gene to the whole genome through genome-wide association studies (GWAS). This
has helped in defining the landscape of early-stage breast cancer, which is shown to
be highly heterogeneous in breast tumors, driven by distinct molecular alterations
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[58–60].

1.3.1 Precise Diagnostics for Personalised Treatment

The IHC and FISH tests that estimate the clinical subtypes of breast cancer may
not always provide a complete picture of cancer’s molecular subtype and genetic
alterations, which can impact the choice of treatment. This is because they are lim-
ited by their ability to analyze only a few genes or proteins at a time. Hence, newer
tools for determining breast cancer biology can help in individualizing the treatment
for patients, where low-risk cancer patients can be approached with less-aggressive
treatments, preventing unnecessary toxicity and high-risk cancers treated in the ap-
propriate way.

The molecular subtypes of breast cancer are identified using gene expression
profiling or molecular assays which analyze the activity of a set of genes in a tumor
sample to determine which subtype the cancer belongs to. Table 1.1 presents an
overview of the molecular subtypes of breast cancer, including their etiology, preva-
lence, and associated genetic alterations.

Table 1.1: Overview of the molecular subtypes of breast cancer, their causes, prevalence, ge-
netic mutations, specific biomarkers, prognosis, and possible treatments. HER2 - Human
epidermal growth factor receptor

Molecular subtype Causes Prevalence Specific Biomarkers Prognosis Possible Treatments

Luminal
Hormonal
imbalance,
age, obesity

40%
Ki-67 Low,
HER2 negative Favourable

Hormonal Therapy,
Chemotherapy,
Targeted therapy

HER2
HER2 Gene
Amplification 10-20% HER2 Positive Less Favourable

Chemotherapy,
Targeted therapy

Triple-negative/Basal-
like

Gene mutations
(e.g. BRCA1) 10-20%

CK5/6 and/or
EGFR Positive Poor

Chemotherapy,
Immunotherapy,
PARP inhibitors

Luminal subtypes of tumors are associated with the luminal epithelial cells of
the breast and are hormone receptor-positive, meaning they express estrogen recep-
tor (ER) and/or progesterone receptor (PR) [61]. They are called "luminal" because
they arise from the cells lining the milk ducts (lumina) of the breast. These tumors
tend to grow slowly and are usually less aggressive than other types of breast cancer
[62]. These tumors have the best prognosis [63]. These tumors can be treated with
hormone therapies, which block the effects of estrogen and progesterone in the body.
This includes selective ERmodulators (SERMs), aromatase inhibitors, and ER down-
regulators. Among luminal subtypes, there are two subgroups, namely Luminal A
tumors which are a subtype of Luminal tumors that have a lower proliferation rate
and a better prognosis. Luminal B tumors, on the other hand, have a higher prolifer-
ation rate and are more aggressive. They may be less responsive to hormone therapy
and more likely to recur [64].

HER2-positive breast cancer, also known as HER2-amplified, tests positive for

11



HER2 [65]. HER2 overexpression plays an important role in sustaining several path-
ways for tumor growth and they occur in about 10-20% of patients and is gener-
ally associated with a poor prognosis [66] HER2-positive tumors are typically more
aggressive and fast-growing than other types of breast cancer. However, they can
be effectively treated with targeted therapies such as trastuzumab (Herceptin), per-
tuzumab (Perjeta), and ado-trastuzumab emtansine (Kadcyla). HER2-positive breast
cancer may also be treated with surgery, chemotherapy, and radiation therapy.

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks the
expression of ER, PR, and HER2 [67]. It is also named "basal-like" because the tumor
cells resemble the basal cells that line the mammary ducts. It is an aggressive form
of breast cancer that tends to grow and spread more quickly than other subtypes
[68]. It is also more likely to recur after treatment and has a poorer prognosis. Treat-
ment options include chemotherapy, surgery, and radiation therapy [69]. Because
TNBC does not express the three common receptors targeted by hormonal therapy
or targeted therapy, such as HER2-targeted therapy, treatment options are limited
[17].

1.3.2 Classification of ColonCancer: UnravelingClinical andMolec-
ular Subtypes

Very similar to breast cancer, colon cancer is also a lethal disease with heterogeneous
outcomes and drug responses. Based on gene expression patterns, colorectal cancers
are classified into subtypes based on the activation of different biological processes
[70]. Colon cancer classification was primarily based on the histopathological ap-
pearance of the tumor tissue, which involves the examination of tissue samples un-
der a microscope to identify the features of cancer cells, such as size, shape, growth
pattern, glandular architecture, or degree of differentiation [71]. This method of
classification is still used today and is an essential part of the diagnosis of colon
cancer.

Colon cancer is classified into five clinical subtypes. Adenocarcinoma is the
most common subtype, accounting for approximately 70-80% of colon cancer cases.
Mucinous adenocarcinoma is characterized by the presence of extracellular mucin,
secreted by the cancer cells [72]. Signet-ring cell carcinoma is a rare subtype charac-
terized by the presence of cancer cells with a large, central mucin-filled vacuole that
pushes the nucleus to the periphery [73]. Squamous cell carcinoma is a rare subtype
that arises from the squamous cells that line the colon. Undifferentiated carcinoma
is a subtype characterized by a lack of differentiation, making it difficult to iden-
tify the tissue of origin [74]. Each subtype has different clinical and pathological
characteristics, which can impact treatment decisions and patient outcomes.

Colon cancers are classified into four types based on a classification system de-
veloped based on molecular features. This is known as the Consensus Molecular
Subtype Classification (CMS) developed by the Consensus Molecular Subtype Con-
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sortium [75]. In addition, colorectal cancer also has an integrated molecular subtype
classification system developed by The Cancer Genome Atlas, which classifies them
into three major types, namely hypermutated, ultra-mutated, and Chromosomal In-
stability (CIN) [76]. An overview of the CMS molecular subtypes is shown in Table
1.2.

Table 1.2: Overview of Consensus Molecular Subtype Classification of Colon cancer, their
causes, prevalence, specific biomarkers, prognosis, and possible treatments. CMS - Consensus
Molecular Subtype, MSI - Microsatellite instability, CIN - Chromosomal instability

Molecular Subtye
Classification Causes Prevalence Specfic Biomarkers Prognosis Possible Treatments

CMS1 (Immunogenic)
Microsatellite instability
(MSI), BRAF mutations,
DNA hypermethylation

14-20%
High MSI, BRAF
mutations, Cytotoxic
T-cell infiltration

Favourable prognosis,
higher immune response

Immune checkpoint
inhibitors, chemotherapy

CMS2 (Canoncial)
WNT and MYC
pathway activation 37-42%

APC mutations,
Chromosomal
instability, CIN

Intermediate prognosis
Surgery,
Chemotherapy

CMS3 (Metabolic)
Metabolic dysregualtion,
KRAS mutations 13-17%

Fatty acid metabolism
dysregualtion, KRAS
mutations, CPT1A
overexpression

poor prognosis,
liver metastasis

Targeted therapies,
surgery, chemotherapy

CMS4 (Mesenchymal)
Epithelial-mesenchymal
transition (EMT) and
TGF-B activation

21-33%
EMT gene expression,
TGFB pathway activation

Poor prognosis, higher
likelihood of liver metastasis

Surgery,
Chemotherapy

CMS1 tumors are characterized by high levels of immune activation and are as-
sociated with a good prognosis [77]. They are often referred to as "immune" tumors
and are found in about 14-20% of colorectal tumors [78, 79]. It has a high frequency
of BRAF mutations and microsatellite instability (MSI) [80]. Patients with CMS1
tumors may benefit from immunotherapy [81]. CMS2-type tumors have high copy
number gains in oncogenes and copy number losses in tumor suppressor genes [76].
CMS2 tumors display epithelial differentiation and strong upregulation ofWNT and
MYC downstream targets, both of which have classically been implicated in CRC car-
cinogenesis [82, 83]. Approximately 39% of tumors of CMS2 tumors are stage III at
the time of diagnosis, and standard adjuvant chemotherapy is recommended [75].
CMS3, also known as the metabolic subtype, has genomic features consistent with
CIN but has relatively low somatic copy-number alterations (SCNAs) compared with
CMS2 or 4. CMS3 also had more MSI than CMS2 and 4 (CIMP-low, intermediate hy-
permethylation). Approximately 30% CMS3 tumors are considered hypermutated
(less common than CMS1 tumors, but more than CMS2 or 4 type tumors). Although
KRAS mutants were present in every molecular subtype, they were more prevalent
among CMS3 CRC (68%). [84]. CMS4 tumors exhibit low levels of hypermutation,
MSS status, and very high SCNA counts. They display a mesenchymal phenotype
as well [85]. CMS4 tumors are diagnosed at very advanced stages, with a very poor
prognosis. These cancers have also been shown not to show any benefit from sys-
temic adjuvant treatments [75].
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1.4 TheBenefits of PrecisionOncology in FightingCan-
cer

Traditional approaches to cancer treatment are not effective in all cases, as new infor-
mation on tumor biology and treatment response becomes available it can be utilized
to develop new strategies. In addition, some of these tumors are also increasingly
becoming resistant to traditional treatments, which means new and more effective
approaches are needed. Precision medicine considers the complexity of biological
systems and the interactions between different factors. Precision medicine can help
to develop more personalized and effective treatments that take into account the
unique characteristics of each patient [86, 87].

Progress in sequencing technologies, which have evolved from single-gene se-
quencing to whole-exome, whole-genome, andwhole-transcriptome sequencing, has
produced a substantial amount of valuable information to boost cancer precision
medicine [88]. Currently, several multigene assays have been developed to stratify
patients according to their risk of relapse or to perform molecular subtype classifi-
cation. This approach has led to the discovery and creation of targeted therapeutic
agents in clinical trials.

Precision medicine continually evolves as new technologies and scientific dis-
coveries emerge. This requires improving methods for analyzing genetic and other
patient data to provide more accurate diagnoses and effective treatments. The de-
velopment of targeted treatment drugs and therapies based on a patient’s unique ge-
netic and medical profiles is also constantly evolving. Therefore, precision medicine
must identify and stratify patients well-suited to newly developed targeted treat-
ment therapies and drugs. Continual refinement and advancement of precision
medicine can lead to better patient health outcomes.

The most seminal work on breast cancer molecular subtype classification was
performed by Perou et al. [89], who used DNA microarray-based gene expression
profiling to classify five subtypes of breast cancer that are reproducible across pa-
tient populations and laboratories [89]. Sorlie et.al. built on this work and developed
a 50-gene molecular classifier called the PAM50 [90]. The PAM50 test is used to clas-
sify breast cancer into the four subtypes shown in Table 1.1: Luminal A, Luminal B,
HER2-enriched, and Basal-like. The PAM50 test is typically performed on a small
amount of breast tumor tissue collected during a biopsy or surgery [91]. RNA is
isolated from the tumor tissue and hybridized into a custom-designed microarray
containing probes for the 50 genes. The Prediction Analysis of Microarrays (PAM)
algorithm is a centroid-based classification method [92]. For each molecular sub-
type, the mean expression values for each gene across all samples are calculated in
that subtype. These mean expression values are referred to as the centroids. The dis-
tance between each new sample and the centroid of each class is then determined.
The sample is then assigned to the molecular subtype with the smallest distance.
The PAM50 test has been shown to be a more accurate predictor of breast cancer
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prognosis than traditional clinical factors, such as tumor size, grade, and lymph
node status [93]. In addition, the PAM50 test has been shown to predict the likeli-
hood of response to specific types of chemotherapy and to guide treatment decisions
in breast cancer patients [94].

OncotypeDX is a genomic test that analyzes the activity of certain genes within
tumor tissue to help determine the risk of recurrence in early-stage breast cancer
patients. The test measures the expression of 21 genes within the tumor tissue, in-
cluding genes associated with cell proliferation, hormone receptors, and HER2 ex-
pression. [95]. The OncotypeDx assay was developed by selecting 250 candidate
genes from the literature and quantifying their expression by reverse transcriptase
polymerase chain reaction (RT-PCR) using mRNA extracted from formalin-fixed
paraffin-embedded tumors of 447 patients from the NSABP B-20 study [96]. 16
genes were selected based on their statistical association with breast cancer recur-
rence. These 16 genes were combined with five reference "housekeeping" genes to
produce the recurrence score (RS) which ranges from 0-100. The cutoff points for
RS were prespecified into low-risk (<18), intermediate-risk (18-30), and high-risk
(geq31) based on the NSABP B-20 study. Patients with a low recurrence score have
a low risk of recurrence and may not benefit from chemotherapy, while patients
with a high recurrence score have a higher risk of recurrence and may benefit from
chemotherapy [95].

Another important test for breast cancer molecular subtyping is the BuePrint 80-
gene assay [97]. The BluePrint test was developed using IHC-based clinical subtyp-
ing as a guide. The BluePrint 80-gene signature was developed using a cohort of 200
samples with concordant ER, PR, and HER2 status [97]. The study used a threefold
cross-validation (CV) procedure to identify the genes that best discriminate between
the three molecular subtypes. Within each CV iteration, they performed two-sample
Welch t-tests on a randomly selected set of 133 of the 200 training samples to score
all genes for their differential expression among the three classes. Genes were ranked
according to their absolute t-statistics, and the threefold CV procedure was repeated
a hundred times. Next, the 100 gene ranking scores were combined into a single
ranking per gene, and the minimal number of genes with optimal performance was
determined using a leave-one-out CV on all 200 training samples [98]. The optimal
performance was achieved with a total of 80 unique genes. A centroid classification
model was then built using the 80-gene profile [99]. The BluePrint test classifies
breast cancer patients by measuring the similarity of the tumor to a Luminal-type
(58 genes), Basal-type (28 genes), and HER2-type (4 genes) representative profile
[100].

Precision medicine has revolutionized the treatment approaches to colon cancer
as well, offering personalized strategies based on the molecular profile of the tumor.
An example of one of the most notable molecular subtyping tests in colon cancer is
the Oncotype DX Colon Cancer assay which is a genomic test used to assess the risk
of recurrence in patients with stage II colon cancer [101]. This test is very similar
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to the Oncotype Dx breast cancer assay. This assay examines the expression levels
of 12 specific genes involved in cancer progression, tumor invasion, and immune re-
sponse. Based on the gene expression data, the Oncotype DX Colon Cancer assay cal-
culates a Recurrence Score, which is a number between 0 and 100. The Recurrence
Score is derived using a validated algorithm that combines the gene expression data
with clinicopathological factors such as tumor stage and grade. The algorithm takes
into account the relative contribution of each gene to the overall risk of recurrence.
Patients with a low Recurrence Score may have a lower risk of recurrence and may
not benefit significantly from adjuvant chemotherapy, allowing for potentially more
personalized treatment plans. On the other hand, patients with a high Recurrence
Score may have a higher risk of recurrence and may benefit from more aggressive
treatment approaches, such as adjuvant chemotherapy [101].

Similarly, FoundationOne CDx is a comprehensive genomic profiling test that
uses next-generation sequencing technology to analyze the DNA from a patient’s
tumor sample [102]. The test examines a broad panel of genes, including both well-
known cancer-related genes and emerging targets. The test provides a detailed re-
port that includes information on specific genetic alterations identified in the tumor
sample. The report categorizes these alterations based on their clinical significance
and relevance to available targeted therapies or clinical trials. The results may in-
clude information about potential treatment options, such as targeted therapies, im-
munotherapies, or clinical trials, which may be tailored to the molecular character-
istics of the patient’s tumor [103].

These commercial precisionmedicine tools and tests have significantly contributed
to the individualized treatment approach in colon cancer, allowing oncologists to
makemore informed decisions based on the uniquemolecular characteristics of each
patient’s tumor.

In the upcoming sections, I will delve into the various objectives of our thesis,
shedding light on the underlying motivations that propelled this research topic into
focus.

1.4.1 Capturing the Complexities of Breast CancerMolecular Sub-
typing and Dual Subtypes

Molecular subtyping in breast cancer is a critical aspect of cancer diagnosis and
treatment, as it can help identify specific subtypes of cancer that have unique molec-
ular characteristics and clinical behaviors. However, when a tumor possesses char-
acteristics of more than one molecular subtype, it may open up the opportunity
of providing a combination of treatment strategies to target both subtypes. Since
2010, there have been several studies published on the identification and features
of dual molecular subtypes. In a study published in the Journal of the National
Cancer Institute, researchers analyzed the molecular subtypes of 1492 breast cancer
samples. They identified 26% of the samples as having multiple molecular subtypes.
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They found thatmixedmolecular subtypes were associated with higher tumor grade,
larger tumor size, and worse overall survival [17].

In another recent study published in the Journal of Clinical Oncology, researchers
analyzed the genomic profiles of breast tumors to identify patients with mixed ER-
positive and ER-negative subtypes [104]. They found that these patients had a worse
prognosis compared to those with a single ER-positive or ER-negative subtype, sug-
gesting that identifying mixed subtypes within ER-positive or ER-negative tumors
is important for predicting patient outcomes and developing treatment strategies.
While the existing subtypes of breast cancer (Luminal A/B, HER2-enriched, and
Basal-like) have been useful in guiding treatment decisions, there has been a recogni-
tion that these subtypes are not always sufficient to capture the complexity of breast
cancer. As a result, there have been efforts to refine these subtypes into single and
dual subtypes.

In my thesis, I assessed the differences between molecular subtyping scores to
help identify patients that belong to more than one molecular subtype which were
previously not detected by standard molecular subtyping tests. I aimed to gain a
deeper understanding of which pathways are activated in the single and the dual
subtypes of breast tumors which may help to understand the specific biology of
dual subtypes that distinguish them from the single subtypes. This study was per-
formed on breast cancer microarray data as well as Proteomics data since microar-
ray and proteomics data play crucial roles in precision medicine by providing com-
prehensive molecular profiles, identifying biomarkers, guiding treatment selection,
predicting treatment response, and enhancing our understanding of disease hetero-
geneity.

1.4.2 HER2-Positive Breast Cancer: Unraveling the Complexity of
Tumor Heterogeneity

One of the methods of improving precision medicine is the identification of new
biomarkers and signature genes. HER2-positive breast cancer is known for its het-
erogeneity, which means that the tumor may have different genetic, molecular, and
cellular features within the same patient. This heterogeneity can occur due to the
acquisition of different genetic mutations and alterations during tumor growth and
progression, leading to diverse subpopulations of tumor cells with different pheno-
types, genotypes, and responses to treatment [105]. In HER2-positive breast cancer,
this heterogeneity can have important clinical implications, as some tumoral cell
subpopulations may be more resistant to certain treatments, while others may re-
spond better. For example, some HER2-positive tumors may have high levels of a
protein called PTEN, which is associated with better response to certain treatments,
while others may have low levels of PTEN [106]. Heterogeneity can also affect the
accuracy of HER2 testing, as different regions of the tumor may have different lev-
els of HER2 protein expression or HER2 gene amplification, leading to discordant
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results between different tests or between the primary tumor and metastatic sites.
Therefore, understanding and addressing the heterogeneity in HER2-positive

breast cancer is crucial for improving the precision and effectiveness of treatment
and avoiding potential overtreatment or undertreatment. Hence, in my thesis, I fo-
cused on the identification of novel (potential) signature genes for HER2-positive
patients which captures the latest tumor biology of the HER2 breast cancer.

1.4.3 Concordance between Primary and Metastatic Tumors

Primary and metastatic tumors may have different molecular and genetic features
due to the evolutionary process of cancer. This heterogeneity can affect the treat-
ment response and prognosis of the patient. Therefore, it is important to analyze
both the primary and metastatic tumors to determine the most effective treatment
approach for the patient. Concordance between primary and metastatic tumors is
an important factor to consider in precision medicine. For example, if the primary
tumor is HER2-negative but the metastatic tumor is HER2-positive, treatment with
HER2-targeted therapy may be appropriate. This phenomenon has been observed in
breast cancer. However, until now, no systematic studies have investigated the con-
cordance of primary and metastatic tumors in colon cancer. Very few studies have
reported some similarities between the two, however, the small sample size led to
inconclusive results [107, 108].

In my thesis, samples were collected with the support of the IntraColor consor-
tium and systematically analyzed the concordance between the primary andmetastatic
tumors in the case of colon cancer patients.

1.5 TransformingCancerDiagnostics: Improving Lives,
Strengthening Communities

When diagnosed early, patients have a better chance of full recovery and reduced
risk of metastasis. In many cases in both breast and colon cancers, an early diagnosis
can also result in a cure. This is very commonly seen in patients who are Luminal-
type (ER+) in breast cancer and in CMS1-type in colon cancer patients [109, 110].

Another large societal impact of improving cancer diagnostics is the possibility
of reducing the need for more expensive and invasive treatments. This can result
in lower healthcare costs for patients and the healthcare system as a whole. In ad-
dition, such accurate diagnoses and effective treatments greatly improve the quality
of life for patients with cancer. Constant improvement in cancer diagnostics leaves
very little chance for misdiagnosis. With the appropriate treatment, these cancer
diagnostics can help patients maintain their quality of life and reduce the physical,
emotional, and financial burden of the disease.

Improving cancer diagnostics in turn improves the lives of cancer patients, which
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can help communities come together in support of those affected by the disease and
raise awareness about the importance of early detection and effective treatment.

1.6 Aim and Outline of the Thesis

The overarching goal of this thesis is to Refine Molecular Subtyping Diagnostics
in Breast and Colon Cancers using Gene Expression and Proteomics Data. The
specific objectives are:

1. To identify and examine dual subtyping in breast cancer tumors, overall and
within a particular subgroup to understand their tumor biology and possible
implications to therapeutic guidance.

2. To identify an expanded HER2 gene signature to capture the full biological
diversity of HER2+ tumors

3. To assess if molecular subtyping signatures are concordant in primary and
metastatic tumors in colon cancer.

This work was performed using bioinformatics and systems biology approaches
to analyze "omics" datasets in both breast and colon cancers. In this thesis, I hope to
contribute to the advancement of oncology and improve patient outcomes through
the application of precision medicine in cancer diagnosis.

In Chapter 2, I demonstrate how the BluePrint test identifies a proportion of
breast cancer patients that have dual-activated pathways showing characteristics of
more than one BluePrint subtype. A classification threshold was developed using
bootstrapping and multi-modality detection and was evaluated on the Neoadjuvant
Breast Registry Symphony Trial (NBRST) dataset.

In Chapter 3, I expanded the BluePrint HER2 gene signature by evaluating ad-
ditional genes that may capture more heterogeneity within HER2+ tumors. I ex-
panded the signature with genes that are upregulated in pathologically confirmed
HER2+ tumors, thereby capturing the modern definition of HER2+ tumors while
having excellent concordance with the current HER2 gene signature.

In Chapter 4, I investigated the concordance of molecular characteristics in pri-
mary colon tumors and their matched liver metastasis in metastatic colon cancer
patients. I explored the gene expression profiles of the matched tissue pairs con-
cerning several molecular subtyping signatures. In addition, I also explored the
tumor microenvironment in these tumor tissues to identify whether they influenced
the molecular subtype classification of the tumor.

In Chapter 5, I explored the subgroups within the triple-negative breast cancer
subtype of breast cancer using public proteogenomic datasets. This was enabled
using the similarity network fusion analysis. I also validate the findings of the study
using additional validation proteogenomic datasets.
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In Chapter 6, I discuss the key findings of the thesis and the correspondences
and conflicts with the existing molecular subtyping techniques in cancer diagnos-
tics. The limitations of the thesis are also elaborated in this chapter along with the
implications of this research.
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Chapter 2
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Abstract

Purpose
BluePrint (BP) is an 80-genemolecular subtyping test that classifies early-stage breast
cancer (EBC) into Basal, Luminal, and HER2 subtypes. In most cases, breast tumors
have one dominant subtype, representative of a single activated pathway. However,
some tumors show a statistically equal representation of more than one subtype, re-
ferred to as dual subtype. This study aims to identify and examine dual subtype
tumors by BP to understand their biology and possible implications for treatment
guidance.

Methods
The BP scores of over 15,000 tumor samples from EBC patients were analyzed, and
the differences between the highest and the lowest scoring subtypes were calculated.
Based upon the distribution of the differences between BP scores, a threshold was
determined for each subtype to identify dual versus single subtypes.

Results
Approximately 97% of samples had one single activated BluePrint molecular sub-
type, whereas approximately ∼ 3% of samples were classified as BP dual subtype.
Themost frequently occurring dual subtypes were the Luminal-Basal-type and Luminal-
HER2-type. Luminal-Basal-type displays a distinct biology from the Luminal single
type and Basal single type. Burstein’s classification of the single and dual Basal sam-
ples showed that the Luminal-Basal-type is mostly classified as ‘luminal androgen
receptor’ and ‘mesenchymal’ subtypes, supporting molecular evidence of AR acti-
vation in the Luminal-Basal-type tumors. Tumors classified as Luminal-HER2-type
resemble features of both Luminal-single-type and HER2-single-type. However, pa-
tients with dual Luminal-HER2-type have a lower pathological complete response
after receiving HER2-targeted therapies in addition to chemotherapy in comparison
with patients with a HER2-single-type.

Conclusion
This study demonstrates that BP identifies tumors with two active functional path-
ways (dual subtype) with specific transcriptional characteristics and highlights the
added value of distinguishing BP dual from single subtypes as evidenced by distinct
treatment response rates.
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2.1 Introduction

Breast cancer (BC) is a heterogeneous disease with respect to clinical, histopatholog-
ical, and molecular features. Based on clinical behavior and genomic characteristics,
multiple methods have been utilized to categorize BC into distinct subgroups, be it
with clinical subtyping for hormone receptor (HR) protein status or more recently
with molecular subtyping based on RNA assays [89, 90, 97, 111].

Clinical subtyping relies on well-established immunohistochemistry (IHC) and
fluorescence in situ hybridization (FISH) staining that determines estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2
(HER2) status [19, 20]. The BluePrint (BP) 80-gene subtyping assay was developed
to bridge clinical pathology and molecular subtyping, by using IHC-based receptor
status and mRNA expression, resulting in a molecular diagnostic array with pre-
dictive value [97, 100]. Each of the three subtypes determined by BP (Basal-type,
Luminal-type, and HER2-type) is scored according to their respective gene signa-
tures (consisting of 28, 58, and 4 genes, respectively) reflecting specific functional
pathways, with the highest score determining the subtype [97, 100]. In most cases,
the highest score is significantly higher than the score of the other two subtypes, in-
dicating a strong dominance of a single pathway activation in the tumor (so-called
single subtype). However, in rare instances, the difference between the highest score
and the second-highest score is statistically indiscernible, indicating that these tu-
mors might be characterized by multiple activated pathways (dual subtype). Having
a deeper understanding of which pathways are activated may help understanding
the specific biology of BP dual subtypes that distinguish them from the single sub-
types.

In addition to the standard BP subtypes (Basal-type, Luminal-type, and HER2-
type), other studies have identified expression-based subtypes, which include normal-
like, claudin-low, triple positive, and triple-negative [89, 112–115] types. Among
others, Burstein and colleagues further classified the clinical triple-negative breast
cancer (TNBC) subtype into basal-like immuno-activated (BLIA), basal-like immuno
suppressed (BLIS), luminal androgen receptor (LAR), and mesenchymal-like (MES)
[116]. Therefore, assessing further the differences between the BP scores may help
identifying additional subtypes previously not detected by standard BP. Also, un-
derstanding the biological characteristics of BP dual subtypes may help in guiding
more effective treatment plans.

2.2 Materials and Methods

2.2.1 Data

For this study, only data and no samples were collected, and all patient data were
fully anonymized according to the ‘General Data Protection Regulation’ (GDPR) and
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Table 2.1: (a) The BluePrint single and dual classification of the samples with full-genome
data, which were used in differential expression analysis and their standard BluePrint classi-
fication (n=7985) and (b) the BluePrint single and dual classification of the samples for which
both the clinical information and the standard BluePrint classification are available

Full genome Standard BluePrint Total
Basal Luminal HER2

(a) Single-dual subtype classification
Basal-single 712 712 0 0 712
Luminal-single 6732 0 6732 0 6732
HER2-single 277 0 0 277 277
Luminal-Basal 122 51 71 0 122
Luminal-HER2 99 0 50 49 99
HER2-Basal 23 7 0 16 23
Luminal-HER2-Basal 20 5 11 4 20
Total 7985 775 6864 346 7985

Full genome Targeted array Standard BluePrint Total
Basal Luminal HER2

(b) Single-dual subtype classification
Basal-single 150 440 590 0 0 590
Luminal-single 1727 6781 0 8508 0 8508
HER2-single 47 145 0 0 192 192
Luminal-Basal 32 124 58 98 0 156
Luminal-HER2 11 65 0 45 31 76
HER2-Basal 5 16 6 0 15 21
Luminal-HER2-Basal 6 24 10 13 7 30
Total 1978 7595 664 8664 245 9573

the ‘Health Insurance Portability and Accountability Act’ (HIPAA) and are in com-
pliance with the ‘Data Protection Act’. This study was a retrospective analysis of
(internal) studies between 2015 and 2020. These studies included those previously
described in Beumer et al. [117], the FLEX registry trial (NCT03053193), the Neoad-
juvant Breast Registry Symphony Trial (NBRST) (NCT01479101), and the Multi-
Institutional Neo-adjuvant TherapyMammaPrint Project (MINT) trial (NCT01501487).
Most samples comply with MammaPrint (MP) eligibility criteria [118, 119], stage
I,II, or operable stage III breast cancer, tumor diameter less than 5cm, positive lymph
nodes, with any ER/PR/HER2 status. Microarray processing was performed follow-
ing standard procedure at Agendia [100] (Supplementary Methods 2.12.1). Agen-
dia’s customized diagnostic arrays were either a targeted array or a full genome array,
as previously described [100, 117, 120].

Of the 15,580 samples analyzed with BP, 7985 had full-genome expression data
available of which 1978 with clinicopathological information (Table 2.1). All sam-
ples analyzed with the targeted array had clinicopathological information available
(Table 2.1b).

The Neoadjuvant Breast Registry Symphony Trial (NBRST) [121–123] classified
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BC patients according to MP and BP and compared it with conventional IHC/ FISH
subtyping to predict treatment sensitivity. From the entire NBRST trial dataset (n =
1060), a subset that received HER2 targeted therapy (n = 289) was used to evaluate
the association between the dual subtypes and response to HER2 targeted therapy.

The NBRST trial protocol was approved by Institutional Review Boards at all
participating sites (ClinicalTrials.gov NCT01479101). All patients consented to par-
ticipation in the study and clinical data collection. Part of the anonymized data (BP
results and IHC) used in this study was generated from early-stage BC patients col-
lected from standard diagnostic testing and was only used to identify potential dual
subtypes and not for any gene expression analysis. The data from studies can be
shared by the authors upon reasonable request.

2.2.2 BluePrint Single and Dual-subtype Classification

Standard BP scores of 15,580 samples were calculated followed by dual-subtype
classification, which was based on bootstrap technique [124], and multi-modality
detection. Details on the procedure can be found in the Supplementary methods
2.12.1 and Figure S2.6.

2.2.3 Conventional Subtype Classification

Clinicopathological information was available for 9573 of 15,580 samples, including
IHC HR status for ER and PR, Ki-67, and IHC/FISH HER2 status (Supplementary
Table2.2). Tumors with at least 1% positivity for either ER or PR were classified HR-
positive (HR+), otherwise HR negative (HR-). Tumors with HER2 IHC 0, 1+ or 2+
(FISH non-amplified) score were considered HER2-negative (HER2-) while tumors
with HER2 IHC 2+ (FISH amplified) and 3+ score were considered HER2 positive.

2.2.4 Burstein Classification

An algorithm published by Burstein et al., stratifies TNBCs into different subtypes
by gene expression analyses of 80 signature genes. This algorithm was used to clas-
sify the Basal-single-type and Luminal-Basal-type samples into BLIA, BLIS, LAR,
and MES [116].

2.2.5 Software and Statistics

Gene expression analysis was performed on full genome microarray data (n = 7985)
using limma (v3.2) [125]. Hallmark and Oncogenic gene sets from the Molecular
Signatures Database v7.3 were used for gene set enrichment analysis (GSEA) [126].
Genes were ranked based on the effect size ratio using the Cohen’s D effect size [127].
Differentially expressed genes (DEG) were considered significant with a p-value ≤
0.05 and a log2 fold change ≥ 1.
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Computational analysis and visualization were performed using R (v3.6.1) [128].
Principal component analysis (PCA) was performed using the “prcomp” package
(v3.6.2) [129] and visualized using “ggplot” (v3.3.2) [130]. Unpaired, two-sample
t-tests were used to measure if the means of ER, PR, and Ki-67 positivity were signif-
icantly different between single and dual subtypes. Chi-square test of Independence
was used to test for differences of categorical variables within the Burstein classifica-
tion (BLIA, BLIS, LAR, and MES) and a multivariate logistic regression analysis for
response to therapy (pathological complete response, pCR) between single and dual
subtypes. Molecular subtype classification algorithms were used from the “Genefu”
package [131].

2.3 Results

2.3.1 BluePrint Single and Dual Subtype Classification

Molecular subtyping of patient tumors (n = 15580) was performed at Agendia using
the BP 80-gene assay as previously described [97, 100]. We applied the dual subtype
classification method (see “Methods” for details) to assess the presence of multiple
activated pathways.Most tumors were classified as single subtype (n = 15087, 96.8%)
followed by 449 (2.9%) tumors classified as dual subtype, and 44 (0.3%) tumors as
triple subtype (Table 2.1). The most common dual subtypes in this dataset were the
Luminal-Basal-type and the Luminal-HER2-type. These had sufficient numbers for
downstream analyses while HER2-Basal-type and Luminal-HER2-Basal-type were
not sufficient in size [132] and not further analyzed (Table 2.1a).

To note, only 1.9% of Luminal-type tumors were identified as dual subtype,
whereas this was the case for 9.6% of the Basal-type and 23.8% of the HER2- type
tumors. Since our dataset was largely HR+HER2- (Table S1), in order to estimate the
dual subtype prevalence in the overall BC clinical population, we iteratively created
subsets representing expected distributions of clinical subtypes (https://seer.cancer.
gov/statfacts/html/breast-subtypes.html) [133] (70%HR+HER2-, 13%HR+HER2+,
5% HR-/HER2+ and 12% HR-HER2-) and we detected 4.92% dual subtypes (95% CI
4.91-4.93) (Figure S2.7).

2.3.2 Principal ComponentAnalyses using BluePrint Reveals Sim-
ilarities between Subtypes

To understand the similarities between single and dual subtypes, we performed PCA
based on the BP gene expression signatures (Figure 2.1(a-e)). We observed a clear
distinction of single subtypes shown in the first two principal components (Figure
2.1a-c). Luminal-Basal-type cluster separately from both Basal-single-type (Figure
2.1d) and Luminal-single-type (Figure 2.1e), conversely, Luminal-HER2-type (Fig-
ure 2.1e, f) are more closely related with both Luminal-single-type (Figure 2.1b) and
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HER2-single type (Figure 2.1c).

Figure 2.1: Principle component analysis using the three BluePrint signature gene sets (Basal-
type, N=28, panels a and d; Luminal-type, N=58, panels b and e; HER2-type, N=4, panels
c and f). The x-axis shows variance explained for the first principle component (PC) and the
y-axis show the variance explained for the second PC of the correspondent BluePrint signa-
ture gene set. a–c Clustering of Basal-single-type, Luminal-single-type, and HER2-single-
type samples based on BluePrint signature genes. d–f Clustering of Luminal-Basal-type and
Luminal-HER2-type based on BluePrint signature genes. a–c shows coloring of single subtype
samples (blue, Luminal-single-type; green, HER2-single-type; red, Basal-single-type) whereas
the dual subtype samples are colored grey. d–f shows this in reverse where the dual subtypes
are colored (yellow, Luminal-HER2-type; pink, Luminal-Basal-type) and the single subtypes
are shown in grey. The ellipses reported in each subfigure illustrate the 80% confidence inter-
vals of the single and dual subtypes

2.3.3 Differential Gene ExpressionAnalysis highlightsDifferences
between BluePrint Dual and Single Subtypes

Differential expression analysis using full-genome data (n = 7985) was performed
to evaluate global transcriptional differences between single and dual subtypes. As
expected from the PCA, when compared with their corresponding single subtypes,
more DEGs were found for the Luminal-Basal-type (446 DEGs) (Figure 2.2a, b) than
for the Luminal-HER2-type (151 DEGs) (Figure 2.2e, f).
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Among the up-regulated genes in Luminal-Basal-type (vs. both Basal-single-type
and Luminal-single-type) were present MUCL1, a known tumor suppressor gene
[134], and CLCA2, a negative regulator of cancer cell migration and invasion [135].

Among the most up-regulated genes in Luminal-HER2-type compared with
Luminal-single-type tumors, we found GRB7, TCAP, and ERBB2 which belong to
the HER2 amplicon and are known to be overexpressed in pathologically confirmed
HER2 tumors [136]. Indeed, these genes were also up-regulated in HER2-single-
type tumors (Figure 2.2e). When comparing Luminal-HER2-type with HER2-single-
type, ESR1was found to be upregulated, similarly as in Luminal-single-type tumors.
Additionally, Luminal-HER2-type tumors were mainly classified as either Luminal
B (n = 34/99, 34%) or HER2 enriched (n = 44/99, 44%) using the intrinsic subtype
classified of the "Genefu" [91, 131]. Together, these data suggest that both ER and
HER2 are activated in Luminal-HER2-type tumors.

2.3.4 Differences betweenBluePrint Single andDual subtypesmay
Impact Therapy Response Pathways

A better understanding of the underlying biological characteristics of the dual sub-
types may come from analyzing gene pathway regulation.

Comparison of Luminal-Basal-type with Basal-single-type revealed upregulation
of two estrogen response (ESR) and one androgen response (AR)-related gene sets
(Figure 2.2c). Same ESR gene sets were downregulated in Luminal-Basal-type versus
Luminal-single-type, indicating that Luminal-Basal-type has intermediate ER lev-
els. Conversely, AR was upregulated in Luminal-Basal-type, versus both the Basal-
single-type and Luminal-single-type. G2M and E2F pathways [137, 138] were either
downregulated or upregulated in Luminal-Basal-type compared with Basal-single-
type and Luminal-single-type, respectively, indicating that Luminal-Basal-type are
less proliferative than Basal-single-type, butmore proliferative than Luminal-single-
type tumors. Taken together, Luminal-Basal-type tumors show a distinct biology
from their single counterparts with decreased proliferation than Basal-single-type
and AR activation.

Compared with single HER2-single-type tumors, a Luminal-HER2 type shows
downregulation of MAPK (MEK and RAF) signaling pathways and ER activation
(Figure 2.2g). Clinical characteristics of the single and dual BP subtypes and their
response to therapy may confirm these hypotheses and provide additional insights.

2.3.5 BluePrint Dual subtypes present clear Clinicopathological
Differences from Single Subtypes

Standard BP Luminal-, HER2-, and Basal- type tumors were further stratified us-
ing the single-dual subtyping classification (Figure 2.3a). Additionally, conventional
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Figure 2.2: Differential gene expression analysis between BluePrint single and dual sub-
types. The x-axis and y-axis report the Log2 fold change and the FDR-adjusted p-values (-
Log10(FDR)), respectively. Number of tumor samples used for the analysis are shown in be-
tween brackets in titles. Significance thresholds of ≤ 0.05 FDR and a log2 fold change of
≥ 1 were used. Red and blue dots illustrate significant differentially expressed genes. The
strongest differentially expressed genes are labeled (abs(logFC) ≥ 2 or -Log10 adj p-value ≥
50). Differentially expressed genes are identified in the following comparisons: a Luminal-
Basal-type versus Basal-single-type. b Luminal-Basal-type versus Luminal-single-type, e
Luminal-HER2-type versus HER2-single-type, and f Luminal-HER2-type versus Luminal-
single-type. Similarly, differentially expressed pathways are shown between c Luminal-Basal-
type versus Basal-single-type. d Luminal-Basal-type versus Luminal-single-type, g Luminal-
HER2-type versus HER2-single-type, and h Luminal-HER2-type versus Luminal-single-type.
FDR= false discovery rate, UP=upregulated, DN=downregulated 31



clinical subtypes (based on IHC HR staining (ER, PR) and HER2 status) were further
classified into BP single subtypes or dual subtypes (Figure 2.3b, c). Majority of HR-
HER2- tumors were classified as Basal single-type (n = 150/176) (Figure 2.3b). while
only 26 were dual subtypes of which 22 were Luminal- Basal type.

Most of the HR+HER2- tumors were classified as Luminal-single-type (n=4285/4548),
but interestingly, 3% (n=152/4548) was classified as Basal-single-type, which cor-
responds to more than half of all Basal-single-types identified by BP (n=152/265)
(Fig. 3b). Of the HR+HER2- with a dual subtype, majority was Luminal-Basal-type
(n= 57 / 86) (Figure 2.3c).

Most HR+HER2+ tumors were classified as either Luminal-single-type (n=165/272)
or as HER2-single-type (n=61/272) (Figure 2.3b) with the most frequent dual sub-
type being the Luminal-HER2-type (n= 30/34) (Figure 2.3c).

Luminal-single-type tumors had the highest IHC ER expression levels with the
lowest levels observed in Basal-single-type tumors (Figure 2.3d). Dual subtypes
showed intermediate ER expression, compared to their single counterparts (Fig-
ure 2.3d). ER low positive tumors (1 – 10% IHC) were mostly found in the Basal
single-type (n = 62/147, 42%) and in the Luminal single-type (n = 58/147, 39%)
(Figure 2.3d). However, considering the differences in sample size of the subtypes,
a larger fraction of Basal-single-type (24%) was found to be ER low positive, com-
pared with other subtypes. Proliferation measured by % Ki-67 positivity was sig-
nificantly higher in Luminal-Basal-type and Luminal-HER2-type compared with
Luminal-single-type, but significantly lower than Basal-single-type andHER2-single-
type (Figure 2.3e). Indeed, there were significantly more Luminal-Basal-type (n =
34/47, 72.3%, p-value < 0.001) than Basal-single-type tumors (59/173, 34.1%) with
Ki67 < 30%, threshold recently proposed for the so-called TNBC low proliferation
(TNLP) tumors [139] (Figure 2.3e).

2.3.6 Burstein LAR andMESSubtypes are Identified using BluePrint
Dual Subtype Classification

Since Luminal-Basal-type displays different transcriptional characteristics than Luminal-
single-type and Basal-single-type, we classified them using the Burstein classifier
to better understand their biology. Indeed, we found a significant association be-
tween BP single/dual subtypes and the Burstein BLIA, BLIS, LAR, and MES sub-
types [116] (p-value < 0.001) with the Basal-single-type classified mostly as BLIA or
BLIS, whereas the Luminal-Basal-type as LAR or MES (Figure 2.4a), irrespective of
their standard BP subtype (Figure 2.4b).
When using the PAM50 [89, 91] intrinsic subtype classifier of the”Genefu” [131]
package, the Luminal-Basal-type tumors were mostly classified as HER2 enriched
(HER2-e) (Table S2.4a). When comparing "Luminal-Basal/HER2-e” against “Luminal-
Basal/ non-HER2-e”, common biomarkers for HER2 molecular classification were
not differentially expressed (Table S2.4b). Indeed, approximately 98% of Luminal-
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Figure 2.3: a Sankey plot showing the further stratification of the standard BluePrint (BP)
Basal, Luminal, and HER2 subtypes with full-genome microarray data available, into the BP
single and dual subtypes. b Sankey plot illustrating the re-classification of clinical-based
subtypes (based on hormone receptors (HR) and human epidermal growth factor receptor
2 (HER2) status) to BP-based single-type molecular subtypes (Basal-single-type, Luminal-
single-type, HER2-single-type). c Further stratification of the same clinical-based subtypes
as in (b) to the BP-based dual subtypes (Luminal-HER2-type, Luminal-Basal-type, HER2-
Basal-type, and Luminal-HER2-Basal-type). d, e Boxplots reporting for each single and dual
subtype category (x-axis), the level and spread of estrogen receptor and Ki67 positivity based
on Immunohistochemistry assessment (y-axis). Significant differential positivity between ER
and Ki67 was assumed at a p-value<0.05 determined with a t-test between subtype cate-
gories. To note, for 4511 of the 9573 tumor samples with clinical annotation, HR and HER2
status were not available (Table S2.1)
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Figure 2.4: BluePrint (BP) dual subtype classification compared with Burstein’s classification
of triple-negative breast cancer tumors [116]. a)The inner circle contains percentages of the
BP Basal-single-type and BP Luminal-Basal-type. The outer circle illustrates the correspon-
dent Burstein classification into Basal-like immuno-activated (BLIA), Basal-like immuno-
suppressed (BLIS), Luminal androgen receptor (LAR), or Mesenchymal (MES). b) Samples
with the Luminal-Basal-type were split based on standard BluePrint classification to illustrate
their distribution over BLIA, BLIS, LAR, and MES subtypes. Significant differential classifica-
tion of Burstein subtypes was assumed at a p-value ≤ 0.05 determined with a Chi-square test
of Independence between subtypes
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Basal type tumors were clinically HER2- (Figure 2.3c).

2.3.7 BluePrint Dual Subtype Classification of the NBRST dataset
shows Refined Prediction to Therapy

Our findings indicate that the Luminal-HER2-type shares clinical and genomic fea-
tures with Luminal-single-type and HER2-single-type and previous studies suggest
that HR and HER2 co-expression is associated with endocrine and HER2-targeted
therapy resistance [140, 141]. Therefore, to better understand how Luminal-HER2-
type relates to HER2-targeted therapy response, we analyzed the NBRST dataset
(see Methods for details) [122] and selected only pathologically confirmed HER2+
tumors (n = 289) with gene expression and HER2- targeted therapy response data
available [either Trastuzumab (T) only or with Pertuzumab (P)]. Patient tumors were
stratified using the BluePrint dual subtype classification (Figure 2.5).

Figure 2.5: Distribution of pathologically confirmed HER2+ patients of the NBRST trial [121–
123] based on the BluePrint single and dual subtype classification and their treatment re-
sponse (N=253). Patients are grouped based on their therapy regimen [chemotherapy (C)
plus Trastuzumab (T) (panel a) or C+T and Pertuzumab (P) (panel b)], and their HR and
HER2 status (HR+ HER2+or HR- HER2+. The colored bars represents if a tumor did (pCR,
blue) or did not [Residual Disease (RD), bisque] achieve pathological complete response
(pCR). p-value determined with a chi-square test of independence between subtypes. Of the
entire NBRST set (n=289), 253 samples are showed due to low numerosity of HER2-Basal-
type (n=19) and Luminal-HER2-Basal (n= 17)
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BPHER2-single-type showed higher pCR rate to chemotherapy (C) + T compared
to Luminal-HER2-type (61.3% vs 23.8%, p = 0.032) (Figure 2.5a). Although not sig-
nificant (also due to lower numerosity of Luminal-HER2-type), this trend remained
for patients that received additional P (Figure 2.5b). Response rates of Luminal-
HER2-type tumors was higher, but not significantly different than for Luminal-
single-type. Instead, a significant higher response rate was observed for the HER2-
single-type compared to the Luminal-HER2-type, after correcting for HR status, tu-
mor stage, tumor grade, and therapy in a multivariate logistic regression analysis (p
value = 0.006, Table S2.3).

2.4 Discussion

Molecular subtyping using the standard BP 80-gene assay enables to discern the
tumor subtype by the underlying functional pathways and not merely by HR and
HER2 status [97, 100]. In most cases, the assay identifies a single, dominant acti-
vated pathway distinctive of a Luminal-, Basal-, or HER2-type tumor. This infor-
mation often confirms the pathologically defined subtype but in many cases further
classifies tumors from their initial clinical subtype into a different molecular sub-
type. This phenomenon has clinical implications for the treatment of patients, per-
haps most notably in the ER+/Basal and HER2+/Luminal subtypes which have been
previously described [121, 122, 142, 143].

The vast majority of the breast cancer tumors analyzed in this study using the BP
test show a single activated pathway (i.e., single BP subtype) (97%); however, less
frequently, they exhibit multiple activated pathways (i.e., dual or triple subtype)
(3%), as we showed in a preliminary analysis [144]. Notably, this dataset mostly
reflects a HR+ population but upon sampling the data based on observed frequen-
cies of clinical subtypes, such a percentage raises to approximately 5%. Importantly,
the single and dual assessment performed on the NBRST dataset and also reported
for the TRAIN2 [145] and APHINITY [146] patient cohorts show a higher number
of dual subtypes, ranging from 11 to 30%, indicating that the dual subtype classi-
fication might have a greater clinical impact on a HER2+ population and that the
potential clinical utility should be found in specific subgroups rather than in the
entire EBC population. The analysis on the NBRST dataset was performed on lim-
ited numbers of dual subtypes (n = 32); however, the size was sufficient to generate
statistically powerful results.

Overall, in this manuscript, we aimed to provide a better understanding of the
biological diversity of EBC and these results should be taken with caution with re-
spect to any immediate change in clinical management.

Next, by analyzing whole-transcriptomic data, we set out to understand if and
how dual subtypes were distinct from single subtypes. For the analysis, we focused
on the Luminal-Basal-type and Luminal-HER2-type tumors as the other dual sub-
types were limited in size.
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Neither the Basal nor the Luminal BP template genes were able to fully capture
the biology of the Luminal-Basal-type tumors. The majority of tumors expressing
typical Basal gene patterns are TNBC by pathology [147], and it is known that there
is a large overlap between BP Basal subtypes and TNBCs. Therefore, we applied the
TNBC Burstein classifier on the Basal-single-type and Luminal-Basal-type. Basal-
single-type tumors were mostly classified as BLIA and BLIS while Luminal-Basal-
type tumors were more likely to be either LAR or MES. Genes described by Burstein
et al. to be up-regulated in the LAR subtype, such as DHRS2, AGR2, FOXA1, AR,
and MUCL1, were indeed higher expressed in Luminal-Basal-type compared with
the Basal-single-type samples. Since the majority of Luminal-Basal-type tumors
were classified as LAR, and according to Burstein et al., those patients derive bene-
fit from traditional anti-estrogen or anti-androgen therapy, we could speculate that
Luminal-Basal-type cancers would benefit from such treatment as well. Further-
more, ADH1B and FABP4 genes were up-regulated in Luminal-Basal-type samples
compared with Basal-single-type samples. The upregulation of these genes is typ-
ical of the MES subtype, which is characterized by the dysregulation of cell cycle
and DNA damage repair pathways. On the contrary, BLIS subtype-specific genes,
HORMAD1, SOX10, SERPINB5, and FOXC1, were up-regulated in Basal-single-type
samples compared with Luminal-Basal-type samples. Therefore, we could hypothe-
size that among the Basal-single-type samples, two subgroups are present which are
indiscernible with the current dual subtype classification, but might have a different
prognosis according to Burstein et al. and require additional analyses. Notably, ma-
jority of the Luminal-Basal-type showed a Ki67 positivity below 30% which might
indicate that they share features with the TNLP tumors recently described by Bhar-
gava and colleagues [139]. Additionally, no large agreement was found between any
of the dual subtypes and the normal-like [89, 90] (Table S2.4). or claudin-low clas-
sifications [113, 131] (data not shown). Conversely, BluePrint Basal-, Luminal-, and
HER2-single type classifications were largely concordant with the intrinsic subtypes
(> 90%) (see Table S2.4). Interestingly, and perhaps unexpectedly, the Luminal-
Basal-type tumors were mostly classified as HER2-e intrinsic subtype, possibly due
to the absence of Luminal- and Basal-type biology in the BP Luminal-Basal-type.

Luminal-HER2-type samples consistently showed patterns of both ER and HER2
activation (by expression and IHC/FISH), which may suggest similarities to the clin-
ically triple-positive tumors [114]. Expression of both ER and HER2 may lead to
receptor crosstalk which has often been associated with resistance to both endocrine
and HER2-targeted therapies [148]. However, down-regulation of the MAPK-related
gene sets MEK and RAF may indicate no downstream activation of the HER2 path-
way. Therefore, Luminal-HER2-type tumors are unlikely fueled through the HER2
pathway alone andHER2-targeted therapiesmight not be as effective as in the HER2-
single-type tumors. This suggestion is strengthened by the observation in the NBRST
data that Luminal-HER2-type tumors have a significantly lower pCR rate to neoad-
juvant chemotherapy including HER2-targeted agents compared with HER2-single-
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type tumors (p-value < 0.032). This is supported by preliminary subanalysis of
the TRAIN2 [145, 149] and APHINITY [146, 150, 151] trial datasets, suggesting
that BluePrint HER2-single-type tumors derive the most benefit from HER2 dual-
targeted treatment [146].

It has been suggested that clinically triple-positive tumors develop endocrine
resistance as downstream-activated MAPK inhibits ER transcription and phospho-
rylates ER [141]; however, in this study, Luminal-HER2-type tumors may be only
driven by the ER pathway, as MAPK is downregulated compared with HER2-single-
type tumors and not significantly different from that of Luminal-single-type tumors.
Further analysis on Luminal-HER2-type samples treated with endocrine therapy is
required to investigate and confirm this hypothesis.

2.5 Conclusion

Our study showed that by further dissecting the BP scores, it is possible to iden-
tify a small proportion of EBCs that have dual-activated BP pathways. These dual
subtypes display specific transcriptional and clinicopathological features supporting
the idea that they represent a different biological subgroup than their single counter-
parts. Most dual BP subtypes are either Luminal-Basal-type or Luminal-HER2-type.

The Luminal-Basal-type shows lower proliferation levels comparedwith the Basal-
single-type andAR activation. Interestingly, using the Burstein classification, Luminal-
Basal tumors are mostly classified as LAR and MES subtypes.

The Luminal-HER2-type resembles features of both the Luminal-single-type and
HER2-single-type. However, patients with Luminal-HER2-type tumors have a lower
pCR rate after receiving HER2-targeted therapies in addition to chemotherapy com-
pared with patients with a HER2-single-type.

Taken together, BP dual classification shows potential clinical utility in helping
treatment decision for a limited, but still relevant, fraction of EBC patients with
dual subtypes that may benefit from additional or alternative targeted therapies.
Even though molecular subtyping is not yet standardly used in routine clinical di-
agnostics, increasing number of evidences are emerging indicating that molecular
subtypes should become part of breast cancer management [152]. In this light, re-
sults presented here further support the need toward such transition and implemen-
tation.

Future work will be focused on further confirming and prospectively validating
the findings described here in additional independent datasets.
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2.12 Supplementary Information

2.12.1 Supplementary Methods

Microarray processing

Microarray processing was performed following standard procedure at Agendia [100].
Briefly, Total RNA was isolated from Formalin-Fixed-Paraffin-Embedded (FFPE) tis-
sue with the RNeasy FFPE kit (Qiagen), DNase treated and amplified using a Trans-
PLEX C-WTA kit (Rubicon Genomics, Ann Arbor, MI). Amplified cDNA was la-
beled using the Genomic DNA Enzymatic Labeling Kit (Agilent Technologies, Santa
Clara, CA) and hybridized onto Agendia’s diagnostic arrays (custom-designed, Agi-
lent Technologies), according to the manufacturer’s instructions.

BluePrint single and dual-subtype classification

The dual-subtype classification was performed as follows and it is visually summa-
rized in Figure S1. First the standard BluePrint (BP) score was calculated from 15580
samples as previously described (Figure S1a-b) [100]. Briefly, for each tumor, three
scores were generated, and the subtype with the highest score was the categorical
subtype reported. Next, BP scores were scaled with a SoftMax function (Goodfellow
IJ, et al (2016) 6.2.2.3 SoftMax Units for Multiple Output Distributions. Deep Learn-
ing. MIT Press. pp 180-184) (Fig S1c) to reduce variance and outlier impact, which
allows for optimal threshold determination between single and dual subtypes. Us-
ing a bootstrap algorithm [124], samples were divided into 70% and 30% groups per
BP subtype for 1000 iterations (FigS1d). For each iteration, the two highest scores
were selected (Fig S1e) and the distance between them was calculated (Fig S1f). The
distribution of the differences between BP scores was constructed (Fig S1g). If a bi-
modal distribution emerged (implying the presence of single and dual subtypes), the
separation point (i.e., local minimum) between the two distributions was selected as
a threshold candidate (Fig S1h). After 1000 bootstrap iterations, multiple thresh-
old candidates were captured for each subtype. The maximum likelihood values of
threshold distributions were taken as thresholds for the identification of dual sub-
types (Fig S1i), which are reported in FigS1j. If the difference between the two high-
est BP SoftMax scores was lower or equal to the corresponding single-dual threshold,
then the tumor was classified as a dual subtype comprised of the two highest molec-
ular subtype scores. If tumors had similar scores for all three subtypes, they would
be defined as triple subtypes.
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Table 2.2: Clinical-pathological characteristics of the patients analyzed in this study.

Standard BluePrint classification
Luminal (n=8664) HER2 (n=245) Basal (n=664) All (n=9573)

Age at diagnosis (years, median, range) 62 (23-93) 61 (23-95) 58.5 (23-87) 62 (23-95)
Nodal Status
0 1516 21 121 1658
1 1320 24 47 1391
2 335 2 6 343
3+ 163 4 7 174
Missing 5330 194 483 6007
Grade
1 1409 6 8 1423
2 2966 58 74 3098
3 869 66 309 1244
Missing 3420 155 273 3848
Clinical subtype based on receptor status
HR+ HER2- 4343 33 172 4548
HR+ HER2+ 180 83 9 272
HR- HER2+ 20 37 9 66
HR- HER2- 64 2 110 176
missing 4057 90 364 4511
Ki67 Percentage
Median positivity (1st - 3rd quantiles) 16 (10-30) 40 (21-60) 50 (20-80) 18 (10-32)

Figure 2.6: Dual-subtype threshold determination steps
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Table 2.3: Multivariate logistic expression to examine the subtype, HR status, tumor grade,
tumor stage, and treatment variables to determine those that best predict response to HER2-
targeted therapy. Only cases with complete clinical information were used.

95% C.I. for EXP (B)
Exp (B) Significance

Lower Upper N
Variables Intercept 5.698 1.454 26.466 0.018

Subtype Single HER2* - - - - 101
Luminal-HER2 0.204 0.062 0.619 0.006 25

HR status (IHC) ER-negative* - - - - 56
ER Positive 0.571 0.215 1.466 0.249 70

Tumor grade Grade II* - - - - 51
Grade III 0.982 0.422 2.251 0.967 75

Tumor stage Stage I* - - - - 21
Stage II 0.629 0.173 2.020 0.453 70
Stage III 0.154 0.033 0.634 0.013 24
Stage IV 0.295 0.052 1.658 0.160 11

Treatment C + T* - - - - 83
C + T + P 1.844 0.768 4.632 0.179 43

Figure 2.7: Distribution of the representation of single and dual subtypes in a sampled
pool of tumor samples. The x-axis reports the proportion in percentage for each sub-
type (y-axis). Curly brackets on the right indicate the subtype prevalence obtained using
the sampled pool. Sampled pool represents actual occurrences of clinical subtypes (70%
HR+HER2-, 13% HR+HER2+, 5% HR-/HER2+ and 12% HR-HER2-) according to literature
(https://seer.cancer.gov/statfacts/html/breast-subtypes.html) [29].
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Table 2.4: Distribution of dual subtypes over molecular subtypes of Genefu.

Genefu molecular subtyping classification
Luminal A Luminal B HER2-e Basal Normal-like

Single-dual
subtype
classification

Basal-single-type 0 2 42 660 8

Luminal-single-type 3722 2303 163 109 435
HER2-single-type 6 21 243 6 1
Luminal-Basal-type 11 14 63 12 22
Luminal-HER2-type 16 34 44 3 2
HER2-Basal-type 0 0 14 8 1
Luminal-HER2-Basal-type 0 13 13 3 1

Table 2.5: Log fold change and adjusted P value of 4 HER2 related genes by comparing Genefu
HER2-e BP Luminal-Basal against Genefu non- HER2-e BP Luminal-Basal tumors.

Gene Log fold change Adjusted P value
ERBB2 0.346 0.138
GRB7 0.230 0.199
TCAP -0.049 0.640

STARD3 0.199 0.159
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Abstract

Purpose
An 80-gene molecular subtyping test BluePrint (BP) classifies early-stage breast can-
cer (EBC) into Basal, Luminal, and HER2 subtypes by measuring the similarity to a
58-Luminal, 28-Basal and 4-HER2 gene signatures, respectively. In this study, we
aimed to further explore HER2 biology to improve the precision of the HER2 signa-
ture.

Methods
Full genome microarray data of 1252 Formalin-Fixed Paraffin-Embedded (FFPE)
EBC samples were used to develop an expanded HER2 gene signature. Differen-
tial expression analysis (DEA) was conducted to identify additional HER2-biology-
relevant genes by comparing BluePrint HER2-type tumors with Basal- and Luminal-
type tumors. Statistically significant differentially expressed genes were identified
and a further filter based on the coefficient of variation (CV) was applied to select
genes for inclusion in the expanded HER2 signature. Additionally, we compared
the new signature with previously reported molecular subtyping signatures, using
Principal Component Analysis (PCA).

Results
DEA followed by filtering based on CV resulted in the selection of 29 HER2-biology-
associated genes. Among the 29 genes, 14 are part of the HER2 amplicon which is
known to be upregulated in clinically confirmed HER2-positive (HER2+) tumors.
These genes play a role in HER2, PI3K, and, AKT signaling pathways, important for
cancer growth and proliferation. We observed that the expanded HER2 signature
genes could discriminate the three molecular subtypes with a higher percentage of
variance explained in the PCA analysis than the previously reported molecular sub-
type signatures.

Conclusion
The expanded 29-gene HER2-type signature includes known HER2 amplicon genes
and others involved in several HER2-related oncogenic signaling pathways. By in-
corporating a broader range of genes and pathways relevant to the HER2-type sig-
naling, the expanded HER2 gene signature has the potential to better predict re-
sponse to HER2-targeted therapies and identify new therapeutic targets for patients
with HER2-positive breast cancer.
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3.1 Introduction

Breast cancer (BC) is a highly heterogeneous disease that encompasses biologically
distinct entities with specific clinical and biological features [153]. There are several
methods used to classify the heterogeneity into receptor subtypes either based on
immunohistochemistry (IHC), Fluorescence In Situ Hybridization (FISH), or RNA-
based assays [90, 112]. The subgroups of the former two are defined by the receptor
protein status, whereas the subgroups of the latter are defined by the molecular, also
called intrinsic subtypes. IHC is used to measure the presence of estrogen receptor
(ER), progesterone receptor (PR), and IHC and/or FISH to measure the human epi-
dermal growth factor receptor 2 (HER2) proteins. BC IHC subgroups are classified
based on the presence or absence of these receptors and tumors lacking all these
receptors are classified as triple-negative breast cancers (TNBC) [154].

IHC subtypes correlate to the molecular subtypes which were originally iden-
tified based on clustering patterns of gene expression by microarray [89, 90, 155].
There is a consensus over three distinct intrinsic molecular subtypes identified in
literature namely: Luminal-type (which is predominantly Hormone receptor (HR)
positive by IHC), HER2-type (which is predominantly HER2-positive by IHC and
fluorescence in situ hybridization (FISH)) and Basal-type tumors, which are mostly
the TNBC by IHC/FISH [100].

The BluePrint (BP) 80-gene subtyping assay is a test that classifies early-stage BC
into threemolecular subtypes, Luminal-type, Basal-type and, HER2-type bymeasur-
ing the similarity to 58-Luminal, 28-Basal and, 4-HER2 gene signatures [97, 100]. BP
was developed to bridge clinical pathology and molecular subtyping, by using IHC-
based receptor status as the basis and provides a molecular diagnostic array with a
high predictive value. The analytical validity of the BP test was confirmed and dis-
cussed previously, and it shows that BP is a precise and reproducible test, both using
replicates and over time measurements of multiple control samples [100].

The general binary HER2 scoring system classifies breast cancers into 1) HER2-
positive, when HER2 expression is scored either 3+ by immunohistochemistry (IHC)
or 1+/2+ by IHC with gene amplification found by fluorescence in-situ hybridiza-
tion (FISH); and 2) HER2-negative, when HER2 expression is scored either 0+ by
IHC or scored 1+/2+ by IHC without FISH gene amplification [156]. Research stud-
ies have concluded HER2 low breast cancers to have low levels of HER2 expression,
defined as +1 or 2+ by IHC and FISH-negative, and are not be considered positive
according to current diagnostic guidelines [157]. However, some recent studies have
shown that some HER2-low tumors may still respond to HER2-targeted therapies,
particularly if they also have other features associated with HER2 positivity, such as
high levels of HER2 heterogeneity [158]. The development of new HER2-targeted
therapies and biomarkers that can better capture the heterogeneity of HER2 expres-
sion and amplification in breast cancer may also have implications for the treatment
of HER2-low tumors in the future [159]. In this paper, we set out to identify an ex-
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Table 3.1: Development and validation of the expanded HER2 gene signature: Distribution of
the standard BP outcomes of the 1252 samples into training (n = 626) and test (n = 626) data
sets

Luminal-type Basal-type HER2-type Total
Training set 208 209 209 626
Test set 208 209 209 626

panded HER2 signature that would capture the full biological diversity of HER2+
tumors.

3.2 Materials and Methods

3.2.1 Data

For this study, only data and no samples were collected, and all data were fully
anonymized according to the ‘General Data Protection Regulation’ (GDPR), and the
‘Health Insurance Portability and Accountability Act’ (HIPAA) and are in compli-
ance with the ‘Data Protection Act’.

Full genomemicroarray data of 1552 invasive breast cancers were utilized for the
identification and validation of the expanded HER2 signature. The samples were
from patients meeting MammaPrint (MP) eligibility criteria [118, 119], stage I, II,
or operable stage III breast cancer, tumor diameter ≤ 5 cm, and up to three positive
lymph nodes, with any ER/PR/HER2 status.

Microarray sample data encompassing all three BP molecular subtypes (n = 1252
samples) were used to develop and validate the expanded HER2 signature. Compar-
ison of the extended HER2 signature with previously reported molecular subtyping
signatures was performed using microarray data of an additional 300 samples (100
Basal-type, 100 Luminal-type, and 100 HER2-type).

Microarray processing was performed previously following standard procedures
at Agendia. Briefly, total RNA was isolated from Formalin Fixed Paraffin Embed-
ded (FFPE) tissue with the RNeasy FFPE kit (Qiagen) following the manufacturer’s
instructions. Total RNA was DNase treated and amplified using a TransPLEX C-
WTA whole transcriptome amplification kit (Rubicon Genomics, Ann Arbor, MI).
Amplified cDNA was labeled using the Genomic DNA Enzymatic Labeling Kit (Agi-
lent Technologies, Santa Clara, CA) and hybridized onto Agendia’s custom-designed
arrays, according to manufacturer’s instructions [100, 117, 120].
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3.2.2 Methods

BluePrint Test

Standard BP scores were calculated for the training and test set samples by compar-
ing the expression of 80 BP genes with the three subtype gene signatures (Basal-type,
Luminal-type, and HER2-type) [97, 100]. For each tumor, three scores were gener-
ated, and the subtype with the highest score was the categorical subtype reported.
The samples and their BP molecular subtype classification are shown in Table 3.1.

3.2.3 Identification of Expanded HER2 Biology Genes

Differential expression analysis (DEA) of full genome microarray data was applied
to compare the HER2-type against Basal-type, and HER2-type against Luminal-type
samples from the sample set (n = 626 samples). A Benjamini-Hochberg adjusted
p-value [160] of 0.05 and a log2 fold change (FC) of 1 and -1 were used as thresholds
for selecting statistically significant up- and down-regulated probes, respectively.
To be selected, the probes had to meet these requirements in both comparisons (i.e.,
HER2-type versus Basal-type and HER2-type versus Luminal-type).

Selected statistically significant up- and down-regulated probes matching the
same gene were assessed using the Mann Whitney U test and were filtered using
the effect size (ES) [127], i.e. only the probes with the largest ES were selected as
candidate signature genes.

The final filtration step aimed to ensure the selection of a list of highly stable
genes based on the coefficient of variation (CV).

3.2.4 Expanded HER2 Signature Genes Characterization

Enrichment analysis was performed on the highly stable genes using Reactome [161]
and the significant biological processes were estimated using Gene Ontology [162].

The percentage of variance explained by the expanded HER2 signature was mea-
sured along with other publicly available molecular subtyping gene expression sig-
natures using PCA on existing microarray data derived from 300 FFPE samples.

Previously reported signatures such as 28 signature genes developed by Desmedt
et.al. [163], 19 signature genes from Lin & Hsu [164], 50 signature genes developed
by Perou et.al. [89] based on the intrinsic subtypes [90] and 30 signature genes de-
veloped by Milioli [165] were used for the PCA analysis.

3.2.5 Software and Statistics

The gene expression analysis, statistical analysis, and the BP prediction using the
expanded HER2 signature were built in Python 3.7.6 from Anaconda 3 distribu-
tion. The expanded HER2 signature was selected based on the effect size ratio us-
ing Cohen’s D effect size [127]. Computational analysis and visualization were per-
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formed using R (v3.6.1) [128]. Principal component analysis (PCA) was performed
using the “prcomp” package [129] (v3.6.2) and visualized using “ggplot” (v3.3.2)
[130]. Gene ontology and pathway analysis were performed and visualized using
the “pathfinder” package in R [166].

3.3 Results

3.3.1 Identification of the Expanded Set of HER2 Biology Genes

We set out to identify additional HER2 biology-related genes to improve the preci-
sion of our HER2 molecular signature. We used 626 samples as training data set
to perform the differential expression analysis (DEA). The DEA of HER2-type sam-
ples versus Luminal-type and Basal-type revealed 44 unique candidate genes spe-
cific for the HER2-type which fulfilled the fold change and p-value selection criteria
(see Material and Methods for details). It has been previously reported that clinical
HER2-positive breast cancers are characterized by overexpression and amplification
of the genes located on chromosome 17q12 [167, 168]. Therefore, the threshold for
the maximum allowed CV was chosen on the HER2 amplicon genes’ largest CV in
order to include all HER2 amplicon genes that passed our DEA significance criteria
as well as additional genes that are not on the HER2 amplicon. This CV of a maxi-
mum of 25% identifies the most stable genes. The 44 candidate genes were filtered
using this threshold resulting in a final set of 29 genes. Details of the 29 genes are
reported in Table 3.2.

3.3.2 Functional Annotation of the Expanded 29 HER2 Signature
Genes

Among the newly identified 29 genes representing HER2 biology, 14 out of the 29
genes belong to the HER2 amplicon region of chromosome 17q12 and exhibit am-
plification in approximately 90% of HER2-positive tumors (GSDMB, MED24, OR-
MDL3, FBXL20, MIEN1, STARD3, CDK12, GRB7, TCAP, ERBB2, PGAP3, RPL19,
MED1 and PSMD3) [99, 168–173]. All of these genes have been implicated in the
context of HER2-positive tumors. Several of these genes have been associated with
metastasis and tumor progression. For instance,MIEN1 has been linked to increased
invasiveness and metastatic potential in breast cancer cells [174]. ERBB2, MED24
and GRB7 genes are present within a 280kb segment as the core of the amplicon
[175] and are concurrently amplified in many HER2+ breast cancers [136, 176].
ERBB2, GRB7 andMED1 genes are involved in signal transduction pathways, which
play a crucial role in transmitting signals from the extracellular environment to
the nucleus, regulating cell growth, survival, and proliferation. MED1, CDK12 and
FBXL20 genes are involved in transcriptional regulation and influence gene expres-
sion patterns [177]. CDK12 is involved in cell cycle regulation, while TCAP plays
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Table 3.2: Table showing the new expanded 29 signature genes for HER2-type, with their gene
name, molecular function, ENSEMBL ID, and chromosome location.

Gene Symbol Gene name Ensembl ID Chromosome location

PPIP5K1 Diphosphoinositol Pentakisphosphate Kinase 1 ENSG00000168781
chr15
43,533,462-43,590,272

STARD3 StAR Related Lipid Transfer Domain Containing 3 ENSG00000131748
chr17
39,637,090-39,664,201

FBXL20 F-Box And Leucine-Rich Repeat Protein 20 ENSG00000108306
chr17
39,252,663-39,402,556

FGFR2 Fibroblast Growth Factor Receptor 2 ENSG00000066468
chr10
121,478,330-121,598,458

GRB7 Growth Factor Receptor Bound Protein 7 ENSG00000141738
chr17
39,737,927-39,747,291

SIX1 SIX Homeobox 1 ENSG00000126778
chr14
60,643,421-60,658,259

TCAP Titin-Cap ENSG00000173991
chr17
39,665,349-39,666,554

ABCA12 ATP Binding Cassette Subfamily A Member 12 ENSG00000144452
chr2
214,931,542-215,138,626

GSDMB Gasdermin B ENSG00000073605
chr17
39,904,595-39,919,854

MED24 Mediator Complex Subunit 24 ENSG00000008838
chr17
40,019,097-40,061,215

PI15 Peptidase Inhibitor 15 ENSG00000137558
chr8
74,824,534-74,855,029

MIEN1 Migration And Invasion Enhancer 1 ENSG00000141741
chr17
39,728,496-39,730,532

ERBB2 Erb-B2 Receptor Tyrosine Kinase 2 ENSG00000141736
chr17
39,687,914-39,730,426

PGAP3 Post-GPI Attachment To Proteins Phospholipase 3 ENSG00000161395
chr17
39,671,122-39,696,797

MED1 Mediator Complex Subunit 1 ENSG00000125686
chr17
39,404,285-39,451,281

PRODH Proline Dehydrogenase 1 ENSG00000100033
chr22
18,912,777-18,936,553

CDK12 Cyclin Dependent Kinase 12 ENSG00000167258
chr17
39,461,486-39,567,560

C2ORF72 Chromosome 2 Open Reading Frame 72 ENSG00000204128
chr2
231,037,523-231,049,719

SSFA2 ITPR Interacting Domain Containing 2 ENSG00000138434
chr2
181,891,730-181,930,738

PMAIP1 Phorbol-12-Myristate-13-Acetate-Induced Protein 1 ENSG00000141682
chr18
59,899,996-59,904,305

MFSD2A Major Facilitator Superfamily Domain Containing 2A ENSG00000168389
chr1
39,955,112-39,969,968

NANOS1 Nanos C2HC-Type Zinc Finger 1 ENSG00000188613
chr10
119,029,714-119,033,730

MNX1 Motor Neuron And Pancreas Homeobox 1 ENSG00000130675
chr7
156,994,051-157,010,663

CATSPERB Cation Channel Sperm Associated Auxiliary Subunit Beta ENSG00000133962
chr14
91,580,696-91,780,707

DST Dystonin ENSG00000151914
chr6
56,457,987-56,954,830

RPL19 Ribosomal Protein L19 ENSG00000108298
chr17
39,200,283-39,204,840

ORMDL3 ORMDL Sphingolipid Biosynthesis Regulator 3 ENSG00000172057
chr17
39,921,041-39,927,601

PSMD3 Proteasome 26S Subunit, Non-ATPase 3 ENSG0000010834
chr17
39,980,807-39,997,959

ITGB6 Integrin Subunit Beta 6 ENSG00000115221
chr2
160,099,667-160,200,313
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a role in muscle cell development and growth [178]. PSMD3 is involved in protea-
somal degradation pathways [161], while STARD3 is involved in intracellular lipid
transport and membrane dynamics [179]. While these genes have individual func-
tions and mechanisms, their collective involvement in HER2-positive breast cancer
highlights the complex interplay of molecular pathways and networks underlying
the disease.

3.3.3 DecodingHER2 SignatureGenes byReactomePathwayAnal-
ysis and Gene Ontology

Reactome pathway and Gene Ontology analyses were performed to identify the gene
pathways captured by the 29 genes. Figure 3.1, shows 20 Reactome pathways iden-
tified, including expected enriched pathways like “Signaling by ERBB2” and other
pathways that are associated with ERBB2 overexpression such as PI3K/AKT signal-
ing pathway. Dysregulation of the PI3K/Akt signaling pathway in HER2 breast tu-
mors results in uncontrolled cell proliferation and endocrine resistance [180, 181].
The RND1 GTPase cycle pathway was also significantly enriched. Common features
among these pathways include their involvement in cell signaling, regulation of cell
growth and survival, and interconnections with other signaling networks. Many of
these pathways intersect and cross-talk with each other, forming a complex signal-
ing network that controls various aspects of cellular behavior. Activation of these
pathways promotes cancer cell proliferation, survival, and metastasis.

Figure 3.2 shows that the 23most enriched GO pathways are “regulation of ERK1
and ERK2 cascade” and “positive regulation of transcription initiation from RNA
polymerase II promoter” was found. Among the other significant biological pro-
cesses are a cellular response to steroid hormone stimulus, epidermal growth factor
signaling pathway, and peptidyl tyrosine phosphorylation. Some other more com-
monly found biological processes include cellular response to growth factor stimu-
lus, translation, and positive regulation of cell growth.

3.3.4 Precision of the Expanded HER2 Signature Genes to Identify
Molecular Subtypes

PCA analysis was performed to understand if the expanded HER2 signature genes
increase the precision of identifying the three molecular subtypes by capturing an
increased percentage of variance. The PCA plots of the expanded BP gene set, as
well as PCA plots of previously reported molecular subtyping signatures on Agen-
dia microarray gene expression data are shown in Figure 3.3. When the PCA of
the expanded BP signature genes was applied on FFPE samples of all three BP sub-
types, PC1 could capture 44.8% of the variance observed, while also showing three
distinct clusters of the HER2-, Luminal- and Basal- molecular subtypes. Compara-
tively, previously reported molecular subtyping signature genes from Desmedt et.al.
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Figure 3.1: Overview of the Reactome Pathway Enrichment Analysis of the extended 29-gene
HER2 signature. The x-axis represents the fold enrichment value (obtained by comparing the
background frequency of total genes annotated to the GO-BP term to the sample frequency
representing the number of genes inputted that fall under the same term) and the y-axis rep-
resents the significantly enriched pathways of the 29 genes. The size of the dots indicates the
number of genes in the Reactome pathway and the color intensity indicates the -log10p-value.
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Figure 3.2: Overview of the Gene Ontology Biological Processes (GO-BP) identified in the
extended 29-gene HER2 signature, clustered based on biologically relevant groups. The x-
axis shows the Fold Enrichment value (obtained by comparing the background frequency of
total genes annotated to the GO-BP term to the sample frequency representing the number of
genes inputted that fall under the same term) and the y-axis shows the GO-BP enriched terms.
The size of the dots indicates the number of the genes in the GO-BP and the color intensity
indicates the -log10p-value.
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[163] and Perou et.al. [89] showed less distinct clusters between the subtypes, and
a lower percentage of variance captured to distinguish the three types. The signa-
ture genes reported by Milioli et.al. [165] were able to show distinct clusters, how-
ever, many of the Luminal- and HER2-type samples were very closely clustered with
each other, indicating that not much variance was captured among these subtypes.
The Basal-like samples clustered separately from the other two molecular subtypes,
without much clustering with the Luminal or HER2-type samples. The PCA with
the signature genes of Lin & Hsu [164] indicated a strong separation for the basal-
like samples, showing a lot more variance captured across the y-axis of the plots as
compared to the x-axis. The Luminal and the HER2 samples were spread across the
x-axis showing a lesser amount of variance captured. Overall, Figure 3.3 shows that
the expanded Blueprint signature genes captured the maximum amount of variance
compared to the other reported gene signatures.

3.4 Discussion

Around 16-18% of breast cancer cases are classified as HER2-positive based on the
immunohistochemistry protein expression profile [182]. Heterogeneity in HER2-
positive tumors can be attributed to genetic and epigenetic alterations and tumor
microenvironment factors, but it is not always reflected in the clinical classifica-
tion of breast cancer [183]. In this paper we set out to identify a HER2 signature
that could discriminate with higher precision HER2-type tumors from Basal- and
Luminal-type tumors not only based on the HER2 amplicon genes but on a larger set
of genes, aiming to better capture the biology of HER2-type driven tumors. Analyses
described in this study led to the discovery of an “expanded HER2 gene signature”
that can be used in combination with the Basal- and Luminal-type BP signatures, to
identify HER2-type tumors.

29 HER2-biology-associated genes passed our thresholds of fold change, p-value,
and coefficient of variation. Many of these genes are located on chromosome 17q12
and are known to be co-amplified with ERBB2 in human breast cancers [169, 170].
Pathway analysis of the 29 signature genes shows many major pathways like
MAPK1/MAP3K signaling, ERBB2 signaling, GRB7 events in ERBB2 signaling, and
constitute signaling by aberrant PI3K in Cancer.

The PI3K (phosphoinositide 3-kinase) signaling pathway is one of the most fre-
quently altered pathways in cancer, includingHER2-positive breast cancer. In HER2-
positive breast cancer, aberrant PI3K signaling is frequently observed due to the
activation of the HER2 receptor, which can directly activate PI3K [184]. Several
studies have demonstrated that constitutive PI3K signaling is associated with a poor
prognosis in HER2-positive breast cancer patients [185]. Furthermore, preclinical
studies have shown that inhibition of the PI3K pathway can enhance the response to
HER2 targeted therapies, suggesting that targeting this pathway may be a promising
therapeutic strategy for HER2-positive breast cancer [186].
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Figure 3.3: Principal Component Analysis (PCA) plots depicting the expression profiles of
the expanded BluePrint signature genes (n = 105) and genes of four previously reported
signatures in a comprehensive set of 300 FFPE breast cancer samples (100 HER2-type, 100
Luminal-type, and 100 Basal-type samples). HER2-type samples are represented by the color
green, Luminal samples by purple, and Basal samples by orange. (a) PCA of the 105 expanded
BluePrint signature genes with a PC1 value of 44.8% and a PC2 value of 19.92% (b) PCA of
the 28 signature genes by Desmedt et.al. with a PC1 value of 34.08% and a PC2 value of
18.42% (c) PCA of the 42 signature genes by Milioli et.al. with a PC1 value of 39.18% and
a PC2 value of 15.72% (d) PCA of the 19 signature genes by Lin & Hsu with a PC1 value of
34.58% and a PC2 value of 19.98% (e) PCA of the 50 signature genes by Perou et.al. with a
PC1 value of 38.14% and a PC2 value of 17.7% (f) A table with the PC1 and PC2 values of all
the molecular subtype signatures genes
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RND1 is a tumor suppressor that is frequently downregulated in cancer their
expression correlates with the expression of the 70-gene poor prognosis signature,
as previously mentioned in literature [99, 187]. Many biological processes related
to receptor tyrosine kinases (RTK) are also found like the epidermal growth factor
receptor (EGFR) pathway and peptidyl tyrosine phosphorylation. RTKs are known
to regulate many signaling pathways like the MAPK and AKT signaling pathways
which regulate cell proliferation, differentiation, inflammatory response, and apop-
tosis [188].

Fibroblast growth factor receptor 2 (FGFR2) and human epidermal growth fac-
tor receptor 2 (HER2) are both tyrosine kinase receptors that are frequently dys-
regulated in breast cancer. Studies have also shown that activating point mutations
in FGFR2 are associated with HER2-positive breast cancer, and may contribute to
resistance to HER2-targeted therapies [189]. A study published in Clinical Cancer
Research demonstrated that activating FGFR2 mutations were associated with de-
creased response to trastuzumab and lapatinib, two HER2-targeted therapies com-
monly used in the treatment of HER2-positive breast cancer [190].

Finally, in HER2-positive breast cancer, SLIT/ROBO pathway is often dysregu-
lated, leading to increased cell migration, invasion, and metastasis. One study pub-
lished in Breast Cancer Research and Treatment found that the expression of SLIT2
and ROBO1 was significantly downregulated in HER2-positive breast cancer tissues
compared to normal breast tissues. The study suggested that the loss of SLIT2 and
ROBO1 expression may contribute to the aggressive phenotype of HER2-positive
breast cancer [191].

Among the significant biological processes of gene ontology, ERK1 and ERK2
are kinase effectors of the MAPK cascades, whose pathways play a primary role in
mediating cancer cell proliferation [192, 193]. More specifically, in BC both ERK1
and ERK2 show distinct patterns where higher expression of ERK1 is associated
with a good prognosis outcome and ERK2 is associated with poor overall survival
in patients [194]. Overexpression of GRB7 is correlated with greater ER negativity,
higher p53 immunopositivity, and other adverse parameters in breast cancers [195].
Similarly MED1 is also overexpressed in breast cancer and promotes breast cancer
cell proliferation and migration and may also serve as a novel target for therapy
[196]. The STARD3 gene is an important biomarker present in the HER2 amplicon
[197, 198]. Indeed, several studies showed how the reduction of STARD3 expres-
sion in HER2+ BC reduces their growth [199–201]. Recent studies also highlighted
the prognostic and predictive value of STARD3 protein expression in pathological
complete response in HER2+ BC [202]. Notably, also other genes included in the
29 HER2 signature such as MED24, FBXL20, MNX1 and SIX1 have been shown to
promote cancer cell proliferation and cell growth [203–205]. Interestingly, higher
expression of FGFR2 and GSDMB genes have been correlated to partial or no patho-
logical complete response in early-stage HER2+BC patients [206, 207].

Peptidyl tyrosine phosphorylation is a key event in the activation of cellular sig-
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naling pathways that promote cell proliferation, differentiation, and survival. Pro-
tein autophosphorylation is often associated with tyrosine kinase receptors, includ-
ing HER2, which are frequently overexpressed or amplified in breast cancer. Ad-
ditionally, positive regulation of MAPK kinase activity has also been found to be
increased in HER2-positive breast cancer [208]. Finally, positive regulation of tran-
scription initiation from RNA polymerase II promoter has been found to be enriched
in HER2-positive breast cancer, as HER2 signaling can activate transcription factors
like NF-kB and AP-1, which regulate the expression of genes involved in cell growth
and survival [209].

Cellular response to epidermal growth factor stimulus involves the binding of
epidermal growth factor (EGF) ligands to the extracellular domain of the EGFR,
which results in receptor dimerization and autophosphorylation of intracellular ty-
rosine residues [210]. Many studies have shown how inhibiting the EGFR signal-
ing pathways through therapeutics like lapatinib and erlotinib increases tumor re-
sistance in relapsing HER2-positive breast cancer [211]. Therefore, targeting this
pathway could be a potential therapeutic strategy for HER2-positive breast cancer
patients.

Additionally, when we explored the amount of variance captured in previously
reported signature genes, we found that the expanded BP signature could capture
the most amount of variance, which indicated that they could classify between the
molecular subtypes, more specifically between the HER2 and non-HER2 molecular
subtypes. The previously reported signature from Milioli et.al. was developed from
the intrinsic subtype classifier developed by Perou et.al. [89]. This method used
the concept of a Single Sample Predictor in order to classify the molecular subtypes
into five types namely, Basal, Luminal A, Luminal B, HER2, and Normal-like sub-
types. Additionally, we should also keep in mind that the variance was observed
on Agendia’s microarray gene expression samples, hence future studies can include
calculating the variance observed on these samples on possibly more public datasets
which includes all molecular subtypes.

Overall, the dysregulation or altered expression levels of these genes can influ-
ence key pathways and processes associated with tumor growth, metastasis, and
response to therapy in HER2-positive breast cancer. These biological processes and
pathways are closely related and interact with each other to drive HER2-positive
breast cancer progression. Understanding the intricate interplay between these pro-
cesses and pathways may provide new insights into the underlying mechanisms of
HER2-positive breast cancer and offer novel targets for therapeutic intervention. For
instance, targeting the ERK1/2 cascade or PI3K/AKT pathway may offer new strate-
gies for HER2-positive breast cancer treatment. Additionally inhibiting EGFR, PI3K,
or Rho GTPases may be effective in reducing tumor growth and metastasis.

Studies have shown that combining different therapies can be more effective than
using them alone. For example, combining PPARA agonists with HER2-targeted
therapies has been shown to enhance the efficacy of treatment in HER2-positive
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breast cancer. Future research could investigate other potential combinations of
therapies that may improve outcomes for patients with HER2-positive breast can-
cer. Despite the success of HER2-targeted therapies, resistance remains a challenge
in the treatment of HER2-positive breast cancer. Further research is needed to un-
derstand the mechanisms of resistance and to develop strategies to overcome it. For
example, understanding the role of the PI3K/AKT pathway in mediating resistance
to HER2-targeted therapies could help identify new targets for therapy.

In recent years, the definition of HER2-positivity has evolved as the clinical im-
portance of heterogeneity of HER2-positive BC is increasingly emerging. HER2-
positive breast cancer can vary in the extent and intensity of HER2 expression within
the tumor, as well as in the degree of amplification. HER2 heterogeneity in breast
cancer refers to the presence of different levels of HER2 expression or amplifica-
tion within a single tumor. More recently, attention has been drawn to HER2-low
tumors, which are those that have a low-level expression of the HER2 protein but
above the threshold of HER2 negativity, and have no HER2 gene amplification [157,
158]. These tumors are HER2-negative by current diagnostic criteria, but recent
studies have shown that they may have distinct clinical and biological characteris-
tics that differentiate them from other fully HER2-negative tumors [159].

The presence of HER2 heterogeneity in tumors may result in diminished re-
sponses to conventional anti-HER2 therapies. Hence, validation of techniques that
enable prospective identification of HER2 heterogeneity in tumors in order to tailor
therapy appropriately is deemed necessary [212]. One of the studies previously by
Schettini et.al. showed that HER2-low breast cancer tumors had a higher expression
level than HER2-negative tumors [213].

With the evolving knowledge of the biology of the HER2-low tumors and their
biomarkers, the clinical relevance of the HER2 classification system is also shifting
to include HER2-low tumors as well, since they can also benefit from these HER2-
targeted treatment therapies like trastuzumab deruxtecan [214, 215]. Some research
is already underway through clinical trials, which showed that HER2-lowmetastatic
patients had a partial response to trastuzumab-deruxtecan [216].

3.5 Conclusion

Our newly identified expanded 29-geneHER2 signature can further refine themolec-
ular subtyping of HER2-positive tumors and eventually aid in improving treatment
selection. This could involve exploring the role of specific genes or genetic alter-
ations that are part of the expanded HER2 signature. Future studies can involve
exploring potential therapeutic interventions targeting the identified pathways and
genes. Additional studies can investigate on the efficacy of specific inhibitors or
combination therapies in HER2-positive tumors, taking into account the molecular
subtypes and genomic alterations associated with HER2-positive breast cancer.
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3.6 Abbreviations

BP BluePrint
EBC Early stage breast cancer
DEA Differential expression analysis
CV Coefficient of variation
BC Breast cancer
IHC Immunohistochemistry
ER Estrogen receptor
PR Progesterone receptor
HER2 Human epidermal growth factor receptor 2
TNBC Triple-negative breast cancer
FF Fresh Frozen
FFPE Formalin-fixed paraffin-embedded
SD Standard deviation
QC Quality Control
WT-NGS Whole Transcriptome Next-generation Sequencing
GEA Gene expression analysis
FC Fold change
ES Effect size
GSEA Gene set enrichment analysis
GO Gene Ontology
IQR Interquartile Range
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Abstract

To date, no systematic analyses are available assessing concordance of molecular
classifications between primary tumors (PT) and matched liver metastases (LM) of
metastatic colorectal cancer (mCRC). We investigated concordance between PT and
LM for four clinically relevant CRC gene signatures. Twenty-seven fresh and 55
formalin-fixed paraffin-embedded pairs of PT and synchronous LM of untreated
mCRC patients were retrospectively collected and classified according to the MSI-
like, BRAF-like, TGFB activated-like and the Consensus Molecular Subtypes (CMS)
classification. We investigated classification concordance between PT and LM and
association of TGFBa-like and CMS classification with overall survival. Fifty one
successfully profiled
matched pairs were used for analyses. PT and matched LM were highly concordant
in terms of BRAF-like and MSI-like signatures, (90.2% and 98% concordance, re-
spectively). In contrast, 40% to 70% of PT that were classified as mesenchymal-like,
based on the CMS and the TGFBa-like signature, respectively, lost this phenotype
in their matched LM (60.8% and 76.5% concordance, respectively). This molecular
switch was independent of the microenvironment composition. In addition, the sig-
nificant change in subtypes was observed also by using methods developed to detect
cancer cell-intrinsic subtypes. More importantly, the molecular switch did not influ-
ence the survival. PT classified as mesenchymal had worse survival as compared to
nonmesenchymal PT (CMS4 vs CMS2, hazard ratio [HR] = 5.2, 95% CI = 1.5-18.5,
P = .0048; TGFBa-like vs TGFBi-like, HR = 2.5, 95% CI = 1.1-5.6, P = .028). The
same was not true for LM. Our study highlights that the origin of the tissue may
have major consequences for precision medicine in mCRC.

What’s New?
No systematic analyses have assessed concordance of molecular classifications be-
tween primary tumors and matched liver metastases in metastatic colorectal cancer
(mCRC). Here, the authors show that 40% to 70% of primary colon tumors cease to
exhibit an epithelial-to- mesenchymal transition phenotype (EMT) at the transcrip-
tion level in their matched liver metastasis (LM). While EMT-positive PT showworse
outcome compared to EMT-negative PT, this is not true for LM. The data argue in
favor of using the primary tumor for molecular analysis rather than distant metas-
tases. Overall, this study highlights that tissue origin may have major consequences
for precision medicine in mCRC.
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4.1 Introduction

Colorectal cancer (CRC) is one of the most common cancers worldwide, with an esti-
mated 1.2 million cases and over 600,000 deaths per year [217]. Due to its relatively
asymptomatic progression, patients are frequently diagnosed with metastatic dis-
ease, which is associated with a five-year survival rate of around 10% [218]. Since
biopsies and surgical tissue of metastatic lesions are difficult to obtain, treatment
choice is mainly driven by the analysis of the archived primary tumor.

Coding mutations have been reported to be highly concordant between primary
tumors (PT) and matched liver metastasis (LM) [219]. This is also the case for epi-
genetic and microbiome profiles [220–222]. In contrast, copy number profiles are
discordant [223, 224] possibly pointing at larger genomic differences between PT
and LM.

CRC can also be classified into different molecular subtypes based on gene ex-
pression patterns [75, 225–230]. The different molecular subtypes are character-
ized by the activation of different biological processes, such as microsatellite insta-
bility (MSI) and immune infiltration signaling, canonical epithelial signaling acti-
vation, metabolic dysregulation and mesenchymal characteristics. Although these
subgroups have different prognosis, their predictive value, especially regarding the
efficacy of targeted agents, remains under investigation. In this context, the MoTri-
Color consortium is currently exploring the efficacy of specific treatment strategies
in molecularly defined CRC subgroups. Published and validated transcriptomic sig-
natures were mainly developed in stage II and stage III disease, while metastatic
CRC (mCRC) was not systematically investigated. Moreover, most of the data were
generated from archival primary tumors.

Importantly, no systematic studies have investigated the concordance of classifi-
cation of PT and LM according to different gene expression signatures. Few studies
have reported about similarity in transcriptomic profiles between PT and matched
LM, but they were inconclusive because of their small size and inclusion of syn-
chronous and metachronous tumors [107, 108]. Here, we aimed to systematically
study PT and their matched LM and to assess if gene expression signatures cur-
rently investigated in the MoTriColor consortium as well as the Consensus Molecu-
lar Subtype (CMS) classification [75] are concordant between matched pairs. Re-
cently, Trumpi et. al.[231] reported that chemotherapy can affect the molecular
classification of CRC. In addition, Isella et. al. [232] showed that the features of
the mesenchymal subtype can be ascribed to its stromal component. Therefore, to
avoid any bias that could be related to systemic treatment and different metastatic
locations, we only included untreated primary CRC and their matched synchronous
LM. Moreover, we investigated if the classification of some tumors, especially the
ones classified as belonging to mesenchymal subgroups, could be influenced by the
tumor microenvironment. Such data could help to understand if the transcriptomic
molecular profiling of PT is sufficient to inform treatment choice or if molecular
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profiling of matching metastases is required to guide clinicians for individualized
treatment recommendations in mCRC.

4.2 Materials and Methods

4.2.1 Patient Samples

We collected retrospectively samples of PT and matching synchronous LM from
three different academic institutions: Catalan Institute of Oncology (ICO)-Bellvitge
Biomedical Research Institute (IDIBELL - Barcelona), Istituto Nazionale dei Tumori
(INT-Milan) and Istituto Oncologico Veneto (IOV-Padua). Samples were collected
from treatment-naive cases with synchronous liver metastases at time of diagnosis
and available clinical-pathological annotations. We restricted our study to these in-
clusion criteria to exclude potential effects of earlier treatments or differentmetastatic
locations [231]. Clinico-pathological annotations included are reported in Table 4.1.

Based on these eligibility criteria, 82 matched mCRC pairs were collected. Of
these, 24 fresh and 38 formalin-fixed paraffin-embedded (FFPE) tissue pairs were
successfully processed and passed quality control. For 11 patients, we received both
fresh and FFPE tissues of matched pairs from ICO-IDIBELL, which were used to
investigate the influence of tissue preservation technique on gene expression (Figure
4.1).

Researchwas performed according to the principles of the Declaration of Helsinki.
All patients were under clinical follow-up surveillance according to the Spanish or
Italian National Guidelines. All patient samples and data were anonymized in ac-
cordance with national ethical guidelines [233] and study samples had Institutional
Review Board approvals for the anonymized use of archival tissues. In particular, the
Institutional Review Board of the INT approved the study (study number 117/15)
and all alive patients signed a written informed consent. The Ethical Board (EB)
of the IOV approved the study (study 2017/70) and the local EB of ICO-IDIBELL
approved the study (PR030/17; study 2017/70). For ICO-IDIBELL, none of the pa-
tients signed a written informed consent form (ICF) because patients were dead or
lost during the follow-up. The Spanish law allows using tumor samples collected
before 2006 without an ICF if it is not possible to have it.

4.2.2 Microarray Processing and Quality Control

Total RNA was isolated from fresh-frozen and FFPE tissues with at least 30% of tu-
mor cells. If possible, tissue enrichment was performed for samples that did not
meet these criteria. RNA isolation and microarray processing were performed as de-
scribed previously [225, 226, 228, 229]. For fresh tissue, RNA was isolated using the
RNeasy micro kit (Qiagen, Hilden, Germany). Quality was assessed using an RNA
6000 Nano total RNA-Chip (Agilent Technologies, Santa Clara, California). Only
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Table 4.1: Patients’ characteristics for the successfully profiled matched pairs

ICO INT IOV p-value
n % n % n %

Age at Diagnosis median - range 59.3 53.4-73.3 64.4 39.5-78.5 70.0 35.6-76.8 0.015
Age at Surgery median - range 62.6 52.6-75.1 64.4 39.5-78.5 73.7 35.6-76.8 0.022

Gender

Female

Male

7

18

28.0

72.0

2

11

15.4

84.6

4

9

30.8

69.2

0.615

Tumor Location

Right

Left

Rectum

7

7

11

28.0

28.0

44.0

3

5

5

23.1

38.5

38.5

4

9

0

30.8

69.2

0.0

0.055

Grade

G1

G2

G3

20

0

3

87.0

0.0

13.0

0

6

7

0.0

46.2

53.8

0

10

3

0.0

76.9

23.1

<0.001

Diameter median - range 47.5 20-60 40 16-75 35 12-80 0.605

MSI status

MSS

MSI

Missing

2

0

23

8.0

0.0

92.0

12

1

0

92.3

7.7

0.0

9

1

3

69.2

7.7

23.1

<0.001

BRAF

Wild

Mutant

Missing

0

0

25

0.0

0.0

100.0

10

1

2

76.9

7.7

15.4

12

1

0

92.3

7.7

0.0

<0.001

KRAS

Wild

Mutant

Missing

2

0

23

8.0

0.0

92.0

6

6

1

46.2

46.2

7.7

6

7

0

46.2

53.8

0.0

<0.001

Note: Twenty-five matched pairs were provided by ICO (Catalan Institute of Oncology,
Barcelona, Spain) while 13 matched pairs were provided both by INT (Istituto Nazionale dei
Tumori di Milano, Italy) and IOV (Istituto Oncologico Veneto, Padua, Italy), respectively. The
following clinical variables were considered: age at diagnosis, age at surgery, gender, tumor
location (right side colon, left side colon, rectum), tumor grade (G1, G2, G3), tumor diameter,
MSI-status, BRAF status, KRAS status. P values are referring to differences in distribution of
clinical variables across the three different centers. Abbreviation: NA, not applicable.
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Figure 4.1: Workflow design of the study. A total of 55 fresh samples and 110 FFPE samples
were collected, ending in 82 matched pairs. For 11 matched pairs, both fresh and FFPE tissue
were collected. Upon RNA quality control and tumor content evaluation, samples that fulfill
the criteria were processed on the array. Only successfully profiled PT with their correspond-
ing matched LM were further analyzed for the different signatures. Further, clustering of
these 11 pairs based on the genes belonging to the MSI-like and TGFBa-like signature as well
as the CMS classification was performed. Because differences observed among those 11 pairs
were mainly due to intratumor heterogeneity, the 11 FFPE matched pairs were retained for
further analyses and combined with 13 fresh and 27 FFPE pairs. Therefore 51 matched pairs
were finally molecularly classified based on the MSI-like signature, the BRAF-like signature,
the ABC/TGFBa-like signature and the CMS classification
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samples with RIN ≥ 6 were included in further analyses. Two hundred nanograms of
total RNA were reverse transcribed, amplified and labeled with either Cy3 (sample)
or Cy5 (reference sample) using the QuickAmp Labeling kit (Agilent Technologies),
and subsequently purified using the Qiagen RNeasy mini kit. Cy3-labeled cDNA
and Cy5-labeled cDNA were pooled (equimolar) and hybridized to the microarray.

For FFPE tissues, RNA was isolated using the RNeasy FFPE kit (Qiagen). Fifty
nanograms of total RNAwere reversed transcribed and amplified using the TransPLEX
C-WTA whole-transcriptome amplification kit (RubicoFn, Ann Arbor, Michigan)
and labeled with Cy3 using the Genomic DNA Enzymatic Labeling Kit (Agilent
Technologies). For the microarray processing, cDNA was hybridized to custom full
genome arrays (array design based on Agilent Catalog #G2514F) and washed ac-
cording to the Agilent standard hybridization protocol (Agilent Oligo Microarray
Kit, Agilent Technologies). Arrays were scanned with a dual laser scanner (Agilent
Technologies).

Probes that showed nonuniformity of the signal as identified by the feature ex-
traction software were omitted from further analyses. Image analysis of the scanned
arrays was performed to quantify fluorescent intensities using Feature Extraction
software version 9.5 and 11.5.1.1 (Agilent Technologies), for fresh and FFPE tissues,
respectively. The feature extraction process included within-array normalization,
which was performed using the default method for within-array normalization of
Agilent microarrays (Lowess correction method using a linear polynomial [locally
weighted linear least square regression]). Background correction was not applied.
The final data sets contained expression values for 32,164 unique probes for our
entire cohort. Expression values were calculated as sample/reference ratios using
within-array normalized signals (log10[Cy3/Cy5]) for fresh tissue and represented
the gMeanSignal intensities for FFPE tissue.

4.2.3 Data Analysis

Analyses and visualization of transcriptome data were performed in R [128] and
RStudio. To investigate the contribution of the tissue preservation on gene expres-
sion levels, 11 unique patients’ pairs for which both fresh and FFPE tissues were
provided, underwent further analyses. In particular, 22 fresh samples (primary and
metastasis) and 22 FFPE samples (primary and metastasis) were first median cen-
tered separately to remove probe specific bias and then combined together. Next,
samples were clustered using the 64 genes of the MSI-like signature, the 277 genes
of the TGFBa-like signature and the 266 unique genes of the CMS classification. For
these 11 patients, we finally included the data from the FFPE tissue pairs, thus giv-
ing a total of 51 matched pairs. Hierarchical unsupervised clustering of these 51
matched pairs was performed on genome-wide transcriptome level. All clusterings
(R version 3.1.3) were performed using the “ward.D2”method in the hclust function,
and visualized using ggplot2 (version 3.0.01), dendextend (version 1.12.0), dplyr
(version 0.8.3). Colors of the dendrogram bars were generated using ColorBrewer
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(version 2.0).

4.2.4 Signature and Classification Readout

Molecular subtyping was performed on the microarray transcriptome data of the 51
matched pairs, using five patented signatures for molecular subtype classification
in colon cancer (MSI64-gene signature for fresh tissues, MSI-like FFPE signature,
BRAF58-gene signature for fresh samples, BRAF mutant-like FFPE signature, ABC
classification for fresh samples), one under patenting (TGFB activating-like signa-
ture) and the consensus classification (CMS classification). Additionally, we applied
the CMScaller signatures, [234] which are based on cancer cell-intrinsic gene mark-
ers.

Proprietary Signatures

The MSI64-gene signature [229] was developed using fresh tissues to identify pa-
tients with a gene expression pattern similar to patients that were MSI-high by
clinical tests, and categorizes tumors as microsatellite stable (MSS)-like or insta-
ble (MSI)-like. The BRAF58-gene signature [226, 228] was developed using fresh
tissues to identify patients with a gene expression pattern similar to patients with
BRAF V600E mutations, and categorizes tumors into BRAF wild-type (BRAFwt)-
like and BRAF mutant (BRAFm)-like. Both signatures were also adapted for use in
FFPE tissues. The ABC classification [225] was specifically developed for fresh tis-
sues and identifies tumors as A-type (DNAmismatch repair-deficient epithelial sub-
type), B-type (proliferative epithelial subtype) or C-type (mesenchymal subtype).
The TGFB activated (TGFBa)-like signature was developed specifically for FFPE
tissue. The signature categorizes tumors into TGFB inactivated (TGFBi)-like and
activated (TGFBa)-like, with the TGFBa-like group resembling the C-type and the
TGFBi-like the AB-type of the ABC classification, respectively. The TGFBa-like sig-
nature, even if not yet published, is under investigation in the frame of the MoTri-
Color consortium. Classification results were generated using proprietary software
based on MATLAB (MathWorks Inc, Natick, Massachusetts).

Publicly Available Classification

Probe sequences were aligned to the human transcriptome using NCBI-Blast to ob-
tain the latest annotation information for generating the CMS calls. The CMS classi-
fication [75] was performed in R (version 3.1.1 [128]) and RStudio (version 0.98.994)
using the CMS calls specific for the Agilent-platform. Additionally, the CMScaller
signatures [234] were performed in R (version 0.99.1) which has as input a matrix
with gene expression data and a CMS template.
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4.2.5 Stroma Percentage and Microenvironment Assessment

The stroma percentage of the FFPE tissue slides were visually scored in a blinded
manner. The scoring percentages of the hematoxylin and eosin (H&E) stained 5 µM
thick sections were scanned on an Aperio ScanScope XT (Leica Biosystems, Wet-
zler, Germany) and uploaded to the Aperio eSlide Manager (Leica Biosystems). Pre-
existing healthy tissue, necrotic and mucinous areas were excluded from the scor-
ing. 1X amplification was used to determine the relative percentages corresponding
to the desmoplastic stroma. The tumor epithelium areas were determined within
the tumor field. Stromal percentage (surrogate) was defined as 100 minus the tumor
percentage. Moreover, to estimate the composition of the tumor microenvironment,
we utilized the Microenvironment Cell Populations-counter (MCP-counter) method
[235] which allows a robust quantification from transcriptomic data of both immune
and stromal cell populations in heterogeneous tissue.

4.2.6 Statistical Analysis

Data were analyzed using SPSS 22.0 for Windows (SPSS Inc. Chicago, Illinois). For
all statistical analyses, a two-sided P-value of .05 or less was considered statistically
significant.

Sample population homogeneity and normality of distribution were tested using,
respectively, a Pearson chi-square statistic for categorical variables and an Indepen-
dent Samples Kruskal-Wallis (KW) test for the continuous variables.

The overall concordance of molecular profile between PT and matched LM was
estimated using categorical classifications for all gene expression signatures. For
BRAF-like, MSI-like and ABC/TGFBa-like signatures, the switch between tumor
types was calculated using generalized estimating equations to fit a repeated mea-
sures logistic regression.

Sankey plots were generated using R (version 3.6.1) and the package networkD3
(version 0.4).

The relationship between stroma percentage (S%) and tissue type (PT/LM) or
molecular subtypes was investigated using a paired t test for paired PT and LM. For
the molecular subtypes either a Mann-Whitney (MW)-test (TGFBa-like signature) or
Kruskal Wallis (KW)-test (CMS classifier) was used. Spearman’s rank-order correla-
tion (SpCorr) served to measure the correlation between the S% in PT and the S%
in LM. ΔS% was defined as the difference in S% between matched tissue pairs and
calculated as ΔS% = S% of LM - S% of PT. An independent t-test was used to inves-
tigate the relationship between ΔS% and a Boolean variable indicating a switch or
not in molecular subtype of the TGFBa-like signature or the CMS classifier.

Survival analyses were performed using R (version 3.6.1) and the packages sur-
vival (version 2.44) and survminer (version 0.4). The Cox proportional hazards
model was used to analyze the association of molecular subtypes with overall sur-
vival (OS), which was defined as the time from surgery until death from any cause.
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Kaplan-Meier curves were used to compare the survival distributions of the molec-
ular subtypes with OS.

4.3 Results

4.3.1 Study Population

To gain insights into the concordance of the transcriptomic profiles of PT and their
matched LM, we collected 82 matched mCRC samples. As summarized in Figure
4.1, 48 (= 24 pairs) fresh tissue samples were processed and all passed quality control
(QC). The FFPE tissue cohort contained 76 samples (= 38 pairs) that were available
for molecular subtyping. When we compared the success rate of sample processing
on the gene expression array, we did not observe statistically significant differences
between the fresh (94.4%) and the FFPE (87.8%) cohorts (P = .259).

We next sought to investigate if tissue preservation could have an influence on
the gene expression read-out. To this end, we looked at the expression of genes be-
longing to the MSI-signature, the TGFBa-like signature and the CMS classification
in the 11 patients’ pairs for which we received both fresh and FFPE tissues. Unsuper-
vised clustering of these pairs showed that samples derived from the same patients
were clustering together irrespective of tissue type (Figures 4.2A and S4.5A,B). This
effect was most apparent when considering the MSI-like and TGFBa-like signatures
(Figures 4.2A and S4.5A). Therefore, we concluded that gene expression differences
between samples from the same patient were mainly due to intratumor heterogene-
ity rather than tissue preservation method, as previously reported for other solid
malignancies [117].

4.3.2 Primary CRC and Matched Liver Metastasis differ at Gene
Expression Level

We next aimed to investigate if transcriptomic profiles of the PT differed from those
of their matched LM. Considering that the tissue preservation method did not influ-
ence the transcriptomic profiles, we combined the fresh and FFPE pairs. As reported
in Figure 4.1, the final cohort of 51 successfully profiled matched pairs derived from
13 fresh pairs and 38 FFPE pairs, combined together. For patient characteristics, see
Table 4.1. Overall, the distribution of the major clinical-pathological characteris-
tics was similar between the three centers, except for tumor grading (P< .001), with
samples from ICO being mainly characterized by well-differentiated tumors.

Furthermore, unsupervised clustering of the transcriptome profiles of these 51
matched pairs showed twomajor clusters without any obvious correlationwithmolec-
ular subtyping calls or categorical clinical-pathological variables. As reported in Fig-
ure 4.2B, we neither observed a clear separation of PT from LM, since each cluster
was characterized by both tissue types, nor a homogeneous clustering of the PT and
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Figure 4.2: Clustering based on genes belonging to the MSI-like signature and transcriptome-
wide gene expression. A, Clustering of the 11 matched pairs for which we received both fresh
and FFPE tissue based on the genes belonging to the MSI-like signature (number genes =
64). Red rectangles highlight matched pairs that cluster together. T: primary tumor, FFPE
tissue; M: matched liver metastasis, FFPE tissue; B: primary tumor, fresh tissue; C: matched
liver metastasis, fresh tissue; Dendrogram bars: Tissue type: fresh tissue (dark gray), FFPE
tissue (light gray); sample info: each color indicates samples belonging to the same patient.
B, Unsupervised clustering based on genome wide transcriptomic profile of 51 matched pairs
(13 fresh pairs and 38 FFPE pairs). Red rectangles highlight matched pairs that cluster to-
gether P: primary tumor; M: matched liver metastasis. Dendrogram bars: tissue type (fresh,
FFPE); Tumor type (primary, metastasis); Primary tumor location (right colon, left colon, rec-
tum); Primary tumor grading (G1, G2, G3); Gender (male, female); MSI-like signature (MSS-
like, MSI-like); BRAFm-like signature (BRAFwt-like, BRAFm-like); ABC/TGFBa-like signa-
ture (AB/TGFBi-like, C/TGFBa-like); CMS classification (CMS1, CMS2, CMS3, CMS4)
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their matching LM. Only 13% of the matched pairs (7 out of 51) clustered together
indicating differences in the overall gene expression profiles. This exploratory analy-
sis suggested that primarymCRC differ from their matched LM at the transcriptome-
wide level.

4.3.3 The Mesenchymal Profile of Primary Tumors is not Always
Retained in their Matched Liver Metastasis

Next, we aimed at comparing four established molecular gene signatures with po-
tential clinical utility in PT and their matched LM. In particular, both PT and their
matched LM were classified as MSI-like or MSS-like [229] and as BRAF m-like or
BRAF wt-like [226–228]. Tumors were also classified as being TGFBa-like or TGFBi-
like. For this purpose, we used the ABC classification [225] for the fresh tissue
samples and the TGFBa-like signature for the FFPE tissue samples. It is important
to note that the genes belonging to the C-group of the ABC classification and the
TGFBa-like group are highly overlapping and they both identify tumors showing
an epithelial-mesenchymal transition (EMT) phenotype. Therefore, we classified tu-
mors as AB/TGFBi-like or C/TGBa-like to give a uniform nomenclature for fresh
and FFPE samples. Finally, the CMS classification [75] was applied both to PT and
their matched LM. A schematic overview of the concordance and changes of the dif-
ferent molecular subtypes between PT and their matched LM is reported in Figure
4.3 as well as in Table S4.5.

Overall, we observed high concordance for the BRAF-like and theMSI-like signa-
tures between PT and LM, while lower concordance was observed for the TGFBa-like
signature and the CMS classification. Four PT were classified as BRAF wt-like while
their matched LM were classified as BRAF m-like. One PT was classified as BRAF
m-like while its matched LM was classified as BRAF wt-like (Figure 4.3A). The over-
all concordance in terms of BRAF-like signature between PT and LM was 90.2%; the
number of switches was not statistically significant (P = .177) (Table S4.1). Only one
matched pair was not concordant in terms of MSI signature, with the PT classified as
MSI-like and its matched LM as MSS-like (Figure 4.3A). The overall concordance of
MSI-like signature between PT and LM was 98%; the number of switches was again
not statistically significant (P = .313; Table S4.11).

Two pairs switched from AB/TGFBi-like in the PT to C/TGFBa-like in the LM
(Figure 4.3A). More importantly, 10 out of 14 pairs (71%), whose PT were classified
as C/TGFBa-like, were classified as AB/TGFBi-like in their matched LM showing an
overall concordance of 76.5% (Table S4.1). This significant switch (P = .020) was also
observed for the CMS4 classification (Figure 4.3B). Thirteen out of 32 pairs (40.6%),
whose PT were classified as CMS4, were classified as CMS2 in their correspond-
ing LM. One pair, whose PT was classified as CMS4, was classified as CMS3 in its
matched LM. Furthermore, one pair switched from CMS1 in the PT to CMS4 in the
LM and one pair switched from CMS3 in the PT to CMS2 in the LM. Within 16 PT
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Figure 4.3: Molecular subtypes switch between PT and matched LM. A, Sankey plots show-
ing the switch between PT and LM, in terms of MSI-like signature, BRAF-like signature,
ABC/TGFBa-like signature. The molecular classification of the PT, with the corresponding
number of pairs classified as such, is reported on the left of the Sankey plot. The molecular
classification of the matched LM, with the corresponding number of pairs classified as such,
is reported on the right of the Sankey plot. B, Sankey plots showing the switch between PT
and LM in terms of CMS classification. The molecular classification of the PT, with the cor-
responding number of pairs classified as such, is reported on the left of the Sankey plot. The
molecular classification of the matched LM, with the corresponding number of pairs classi-
fied as such, is reported on the right of the Sankey plot
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that were classified as CMS2, four pairs switched to CMS4. These results indicated
a 60.8% overall concordance for the CMS classification between PT and matched
LM, with major significant switches (P = .050) regarding the mesenchymal subtype.
Overall, the switches observed, both for the C/TGFBa-like signature and the CMS
classification, indicate that the mesenchymal profile of 41% or 71%, depending on
the classification used, is not retained in their matched LM.

4.3.4 The Loss of Mesenchymal Profile between Primary Tumors
and their Matched Liver Metastases is Independent of the
Tumor Microenvironment

Tumor microenvironment and in particular tumor stroma might play a role in deter-
mining the mesenchymal transcriptional profile of CRC [232]. We therefore inves-
tigated the composition of the microenvironment in order to better understand the
switches of the mesenchymal profile observed between PT and their matched LM.
To this end, we first quantified the stromal percentage in our samples. Because of
a lack of further available tissue from the fresh pairs, we only considered the FFPE
matched pairs for this analysis.

Overall, we observed similar population means of stroma percentages in PT and
LM (P = .097). Also, no correlation was observed between stroma percentages in the
matched pairs (rho = -.196, P = .252). We did not observe an association between
stroma percentage (S%) and CMS classification (P = .127). However, we observed
a significantly higher S% with the TGFBa-like subtype (P = .04). To understand
if a difference in S% could be associated with a switch from PT to LM in CMS or
TGFB classification, we analyzed if the difference in stroma percentage between PT
and LM calculated as the S%LM - S%PT (ΔS%) was different between switchers and
nonswitchers. We did not observe a significant difference in ΔS% between non-
switchers and switchers neither for the TGFBa-like signature (P = .607) nor for the
CMS classification (P = .076), indicating that the difference in S% is not associated
with a switch in molecular subtype classification. To confirm this observation, we
further used MCP-counter in order to robustly quantify the absolute abundance of
both immune and stromal cells using the transcriptomic data of our 51 matched
samples. As reported in Figure S4.6, we did not observe a systematic difference in
microenvironment composition between PT and LM. More importantly, no pattern
was observed among the samples based on the CMS classification.

In addition, because a dedicated translation of the CMS classification tometastatic
organs of CRC remains pending and by considering that gene expression signals
might be strongly influenced by the organ of origin, we used the CMScaller classi-
fication to compare tumor classification between PT and LM. Overall, as reported
in Figure S4.7, we observed a better distribution of the different subtypes both in
the PT and LM, with more tumors classified as CMS3 and CMS1 as compared to
the CMS classification. Nevertheless, the subtype assignments varied significantly
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(Fisher test, P = .0033) between primary and metastasis.
In summary, these results indicate that the switch observed between PT and LM

was not influenced by the stromal component, both evaluated as stromal percentage
and by transcriptomic prediction, and that the classification of PT and matched LM
are significantly different both by using the CMS classification and a classification
that is based on cancer cell-intrinsic gene markers as the CMScaller.

4.3.5 The Molecular Profile of the Primary Tumor Determines the
Outcome ofmCRCpatients Independent from theMolecular
Profile of their Matched Liver Metastases

Next, we investigated if differences observed in CMS classification and TGFBa-like
signature between PT and LM could affect patient overall survival (OS). Median OS
(mOS) for PT was 165.9 months vs 37.3 months in CMS2 and CMS4, respectively
(HR = 5.2, 95% CI = 1.5-18.5, P = .0048; Figure 4.4A) and 51.6 vs 24.0 months
for TGFBi-like vs TGFBa-like, respectively (HR = 2.5, 95% CI = 1.1-5.6, P = .028;
Figure S4.8A). These results confirmed that tumors classified as positive for a mes-
enchymal phenotype have a worse prognosis when compared to tumors classified as
nonmesenchymal [75, 230]. In contrast, no mOS differences were observed among
LM classified as CMS2 vs CMS4 (51.6 vs 42.1 months, respectively, HR = 1.5, 95% CI
= 0.7-3.5, P = .28; Figure 4.8B) and TGFBa-like vs TGFBi-like (59.7 vs 45.4 months,
respectively; Figure S4.8B). Finally, when we compared matched pairs that switched
phenotype with the ones that did not switch phenotype, we did not observe major
differences. Even if exploratory, these analyses confirmed previous observations [75,
230] that also report mesenchymal-like tumors to have a worse outcome compared
to nonmesenchymal tumors. Interestingly, this effect was independent of the tran-
scriptomic profile of their matched LM (Figures 4.4C and S4.8C).

4.4 Discussion

Currently, the treatment of mCRC is based on the molecular profile of the archived
primary tissue and this is sufficient in most cases to identify mutations in genes that
are predictive of response to conventional biological agents [219, 236]. Nevertheless,
it has been shown that primary colon tumors and their matched metastases might
differ in terms of copy number alterations [223, 224]. This raises the possibility that
LM could have different actionable targets as compared to their matched PT. In ad-
dition, this could imply that the transcriptomic profile of PT and their matched LM
might also differ. Different molecular classifications for CRC are currently under in-
vestigation for their predictive role in response to specific treatment strategies. It is
therefore important to understand if the transcriptomic profile of archived primary
tumor is sufficiently informative to predict the efficacy of certain treatment or the
gene expression profile of their matched LM is required.
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Figure 4.4: Estimate survival curves for the CMS classification. Kaplan-Meier plot of overall
survival in months. A, Subjects were divided based on their primary tumor sample’s CMS
classification. CMS1 and CMS3 were excluded due to the small number of samples classified
as such. The table below the survival plot contains the numbers of samples remaining in
each group (strata) at each time point. B, Subjects were divided based on their metastatic
sample’s CMS classification; C, subjects were classified based on the CMS classification change
from primary tumor samples to the matched metastatic sample. A two-sided P-value was not
applied to C due to the small sample size of the groups
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In this retrospective study, we analyzed the concordance of gene expression sig-
natures with potential treatment implications in 51 matched samples of primary
colon tumors and their matched synchronous LM. We observed that PT did not clus-
ter together with their matched LM on transcriptome-wide gene expression level,
indicating that the biology of PT might differ from the biology of their matched LM.
When we looked at the concordance of different molecular subtypes, we found that
both the BRAF-like and the MSI-like signatures were highly concordant between
PT and matched LM. In contrast, major discordances were observed for the CMS
classification and the TGFBa-like signature. Indeed, 41% of PT that were classified
as CMS4 and 70% of PT that were classified as TGFBa-like lost their mesenchymal
profile in the matched LM. These differences were statistically significant. Never-
theless, possibly due to the limited sample size, no major differences were observed
for the other CMS subgroups. Both the TGFBa-like signature and CMS4 are charac-
terized by high mesenchymal gene expression, which could be attributed to stromal
cells as well as to cancer cells [232, 237–239]. When we looked at the differences
in stroma percentage in our FFPE cohort, we did not observe a statistically signif-
icant difference in terms of stroma percentage in LM compared to their matched
PT. We found that stroma percentage was statistically significantly associated with
TGBa-like signature, but not with the CMS classification. Nevertheless, this was not
associated with a change in the mesenchymal expression phenotype meaning that
the switch observed between PT and LM was not influenced by the tumor stromal
component. In addition, as also reported by Sandberg et. al. [240] there was no lin-
ear association between stroma percentage and CMS classification. Because a quan-
tification of the stromal content represents a limited description of the tumor mi-
croenvironment, we additionally applied transcriptomic signatures to quantify the
stromal contribution. The MCP-counter results showed no systematic differences in
microenvironment composition between PT and LM, thus validating our findings
of the visual stromal quantification of the FFPE samples. Importantly, CMScaller,
which was designed to focus on expression of tumor cell-specific genes, also indi-
cated that subtype assignments of many matched PT and LM were different as we
have seen using the CMS classification. We are aware that a dedicated translation of
CMS classifiers to colorectal tumors from different metastatic organs remains pend-
ing and that the CMScaller, as highlighted by Eide et. al., [234] in its implementation
is not recommended for use with samples with a different human stromal compo-
nent than primary, like biopsies and metastatic tissue. Nevertheless, based on these
results we can conclude that independent of the classification used, most of the PT
classified as mesenchymal by gene expression lose this phenotype in their matched
LM and this is independent of the tissue in which the tumor arises and its intrinsic
microenvironment.

By looking at OS differences among molecular subgroups, we could confirm that
PT classified as CMS2 and TGFBi-like have significantly longer mOS as compared
to CMS4 and TGFBa-like PT tumors, respectively. Surprisingly, this effect was lost
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when the analyses were performed using LM as the basis for subgroup classifica-
tion. Finally, no substantial differences were observed in terms of mOS between
PT that switched their transcriptomic profile in the matched LM from epithelial to
mesenchymal and frommesenchymal to epithelial, compared to tumors that did not
change their expression profile. We are aware that the survival analyses need to be
considered with caution because of the small sample size. No conclusions could be
derived for other molecular subgroups due to low numbers of tumors classified as
MSI-like and/or CMS1 and BRAF m-like and/or CMS3. In addition, survival es-
timates were not adjusted for relevant clinical variables, such as kind of treatment,
radical resection of liver metastasis and the presence of other metastatic lesions. Due
to our inclusion criteria, patient selection did not follow predefined criteria with re-
spect to the treatment received. Moreover, 90% of patients received liver resection
while 10% of patients received liver biopsies, thus implying a potential selection
bias. Finally, with respect to the molecular classification, grouping our patients by
considering other clinical variables would have led to even smaller subgroups and
to inconclusive results. Despite these limitations, our cohort represents a unique se-
ries of synchronous mCRC where only LM were analyzed. By keeping in mind the
limitations above reported, our data suggest that the transcriptomic profile of the
PT is the driver of patient outcome rather than the profile of their matched LM. This
may indicate that the PT has intrinsic properties that are constant despite changes
induced by a different microenvironment. Our data argue in favor of using the PT
rather than the distant metastases, for molecular analyses of mCRC.
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4.8 Abbreviations

BRAFm-like BRAF mutant like
BRAF v-RAF murine sarcoma viral oncogene homolog B
BRAFwt-like BRAF wild type like
CMS consensus molecular subtype
CMS1 consensus molecular subtype 1
CMS2 consensus molecular subtype 2
CMS3 consensus molecular subtype 3
CMS4 consensus molecular subtype 4
CRC colorectal cancer
EB Ethical Board
EMT epithelial to mesenchymal transition
FFPE formalin-fixed paraffin-embedded
HR hazard ratio
ICF informed consent form
ICO-IDIBELL Catalan Institute of Oncology - Bellvitge Biomedica Research
Institute
INT Instituto Nazionale dei Tumori
IOV Instituto Oncologico Veneto
KRAS Kirsten Rat Sarcoma Viral Oncogene Homolog
KW-test Kruskal-Wallis test
LM liver metastasis
mCRC metastatic colorectal cancer
mOS median overall survival
MoTriColor Molecularly guided trials strategies in patients with advanced newly
molecular defined subtypes of colorectal cancer
MSI microsatellite instable
MW-test Mann-Whitney
OS overall survival
PT primary tumor
QC quality control
SpCorr Spearman’s rank-order correlation
TGFB transforming growth factor-beta 1
TGFBa-like transforming growth factor-beta 1 activating-like
TGFBi-like transforming growth factor-beta 1 inactivating-like
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4.9 Supplementary Information

(A)

Table 4.2: Concordance between PT and matched LM in terms of molecular profile
Binary response format describing the concordance of the BRAF-like signature (A), MSI-like
signature (B) and the TGFBa-like signature (C) between PT and matched LM. Categorical
response format describing the concordance of the CMS classification (D) between PT and
matched LM. P-value has been generated by using Generalized Estimating Equations to fit a
Repeated Measures Logistic Regression. p<0.05: differences between the tumor types.

Metastasis
BRAFm BRAFwt Total Overall Concordance

BRAFm 4 1 5
Primary BRAFwt 4 42 46 90.20% (p = 0.177)

Total 8 43 51

(B)

Metastasis
MSI MSS Total Overall Concordance

MSI 5 1 6
Primary MSS 0 45 45 98.00% (p = 0.313)

Total 5 4 51

(C)

Metastasis
C/TGFBa AB/TGFBi Total Overall Concordance

C/TGFBa 4 10 14
Primary AB/TGFBi 2 35 37 76.50% (p = 0.020)

Total 6 45 51
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(D)

Metastasis
CMS1 CMS2 CMS3 CMS4 Total Overall Concordance

CMS1 0 0 0 1 1
CMS2 0 12 0 4 16
CMS3 0 1 1 0 2

Primary CMS4 0 13 1 18 32 60.80% (p = 0.050)
Total 0 26 2 23 51
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Figure 4.5: Clustering based on genes belonging to the TGFBa-like andMSI-like signature
A. Clustering of the 11 matched pairs for which we received both fresh and FFPE tissue based
on the genes belonging to the TGFBa-like signature (number genes=277). Red rectangle high-
lights matched pairs that cluster together. T: primary tumor, FFPE tissue; M: matched liver
metastasis, FFPE tissue; B: primary tumor, fresh tissue; C: matched liver metastasis, fresh
tissue; Dendrogram bars: Tissue type: fresh tissue (dark gray), FFPE tissue (light gray); sam-
ple info: each color indicates samples belonging to the same patient. B. Clustering of the 11
matched pairs for which we received both fresh and FFPE tissue based on the genes belonging
to the CMS classification (number genes=266). Red rectangle highlights matched pairs that
cluster together. T: primary tumor, FFPE tissue; M: matched liver metastasis, FFPE tissue; B:
primary tumor, fresh tissue; C: matched liver metastasis, fresh tissue; Dendrogram bars: Tis-
sue type: fresh tissue (dark gray), FFPE tissue (light gray); sample info: each color indicates
samples belonging to the same patient. 87



Figure 4.6: MCP-counter scores for cell populations in colon samples and their association
with the CMS signatures.
Heatmap of MCP-counter scores for cell populations in colon samples (n = 102). Cell popu-
lation values are in rows and samples in columns. Shades of red indicate high MCP-counter
scores corresponding to a high abundance of the corresponding cell population; shades of
blue correspond to low abundance of the corresponding cell population. The colored bar in-
dicates the CMS signatures of the colon samples calculated using the CMS classifier package.
The cell populations have an overall low abundance in the colon samples, with red highlight-
ing high levels of microenvironment and blue low abundance levels.+ No pattern is observed
among the samples based on the CMS subtypes and the samples with the higher expression
in the microenvironment belong to CMS types CMS2, CMS3 and CMS4
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Figure 4.7: CMScaller subtype assignments for PT and matched LM
CMScaller subtype of PT and LM are indicated on the left and right side, respectively. Bars
indicate the change of subtype assignments for different samples with bar width correspond-
ing to the number of samples represented. As can be seen, the majority of PT samples were
classified as CMS2 and CMS4. Subtype assignment for LM differs for many samples.
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Figure 4.8: Estimate survival curves for the TGFB-signature
Kaplan-Meier plot of overall survival in months. A: Subjects were divided based on the TGFB-
signature classification of their primary tumor samples. The table below the survival plot
contains the numbers of samples remaining in each group (strata) at each time point. B:
subjects were divided based on the TGFBsignature classification of their metastatic samples;
C: subjects were classified based on the TGFB-signature classification change from primary
tumor samples to the matched metastatic sample. A two-side p-value was not applied to
Supplementary Figure 4B and 4C due to the small sample size of the groups.
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Chapter 5

Molecular Subtyping of
Triple-Negative Breast Cancer
using Proteomics Data

Architha Ellappalayam, Cristina Furlan, Vitor A.P. Martins dos Santos, Maria Suarez
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5.1 Abstract

Triple-negative breast cancer (TNBC) is a highly aggressive and heterogeneous sub-
type of breast cancer with diverse molecular and genetic characteristics. Under-
standing the heterogeneity within TNBC is crucial for developing targeted therapies
and improving patient outcomes. Proteogenomic approaches have gained impor-
tance in breast cancer research to understand how tumors develop and progress at
the molecular level. By analyzing proteomics datasets, which provide a comprehen-
sive view of protein expression, we aim to identify subgroups within TNBC and gain
insights into their underlying biology. In this study, we utilized Similarity Network
Fusion (SNF) analysis to identify subgroups within the triple-negative breast cancer
(TNBC) subtype. The proteomics data from Anurag et al. and Krug et al. were used
as the test and validation datasets, respectively. SNF combines multiple similar-
ity networks into a single integrated network, capturing the underlying biological
relationships. Our study identified two distinct subgroups within triple-negative
breast cancer (TNBC), with one subgroup characterized by enriched pathways and
processes specific to TNBC patients. Another subgroup exhibited pathways and
processes associated with both HER2-type cancers and TNBC. The heterogeneity
of TNBC and the importance of HER2 expression as a distinct subtype within this
category are emphasized in our study. Further investigation of the HER2 subgroup
within TNBC could provide valuable insights into its biology and potential thera-
peutic strategies.

94



5

5.2 Introduction

Breast cancer is a complex and heterogeneous disease with significant public health
implications worldwide [241–244]. The heterogeneity in breast cancer poses chal-
lenges in diagnosis, treatment decisions, and predicting patient outcomes. Mapping
and understanding the underlying mechanisms and causes of breast cancer hetero-
geneity is crucial for improved diagnosis, prognosis, and treatment strategies.

Table 5.1: Overview of the molecular subtypes of breast cancer and its prognosis, IHC status,
and Treatment options. IHC - Immunohistochemistry, ER - Estrogen Receptor, PR - Proges-
terone Receptor, HER2 - Human epidermal growth factor receptor, PARP - Poly (ADP-ribose)
polymerases

Molecular Subtype Prognosis IHC Status Treatment Options

Luminal Favorable ER+/PR+, HER2-
Hormone therapy,
targeted therapy

HER2-enriched Less favourable HER2+
HER2-targeted therapy,
chemotherapy

TNBC Poor ER-, PR-, HER2-
Chemotherapy,
targeted therapy,
PARP inhibitors

The clinical subtypes of breast cancer are defined using Immunohistochemistry
(IHC) which is a commonly used technique in breast cancer diagnostics, allowing
for the detection and analysis of specific proteins in breast tissue samples. The
molecular subtypes of breast cancer are identified using gene expression profiling
of cancer biomarkers. The main molecular subtypes include Luminal, human epi-
dermal growth factor receptor (HER2) enriched, and triple-negative breast cancer
(TNBC). These subtypes have distinct molecular characteristics and varying prog-
noses. Luminal tumors are hormone receptor-positive with a favorable progno-
sis. HER2-enriched tumors express the HER2 protein and are aggressive. Triple-
negative tumors lack hormone receptors and have poorer prognoses. An overview
of the molecular subtypes of breast cancer is shown in Table 5.1.

TNBC is typically more aggressive than other subtypes of breast cancer and is
also highly heterogeneous, with various TNBC subgroups identified based onmolec-
ular and genetic differences[90]. Some of these subgroups include mesenchymal-
like, and claudin-low TNBC [113–115]. Each of these subgroups has distinct char-
acteristics and clinical outcomes [112]. Previous studies have attempted to classify
TNBCs into subgroups, such as the work by Burstein et. al. [116] and the Non-
negative Matrix Factorization (NMF) classification of TNBC samples [245].

The heterogeneity of TNBC subtypes adds to the challenge of finding effective
and specific targeted treatments for each molecular subtype. Failure to address the
diverse subtypes within TNBC can impact the interpretation of clinical trial out-
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comes and limit the generalizability of results.
Proteogenomics is an emerging field that integrates genomic and proteomic data

to enhance our understanding of cancer biology, identify potential therapeutic tar-
gets, and improve patient outcomes [246]. In breast cancer, proteogenomic ap-
proaches have become increasingly important as researchers seek to identify the
molecular mechanisms driving tumor development and progression [247]. Pro-
teogenomics also provides a more comprehensive view of the complex molecular
landscape of breast cancer, which is characterized by significant heterogeneity [248,
249]. Exploring the heterogeneity at the proteomic level can enhance our under-
standing of TNBC’s complexity and pave the way for personalized treatment strate-
gies tailored to specific molecular subtypes

The challenge addressed here lies in the implementation of precision medicine
strategies in breast cancer that consider the heterogeneity of TNBC subtypes and
their associated treatment responses using proteomics data. Exploring the hetero-
geneity of TNBC across proteomics data is critical for gaining insights into its under-
lying biology, identifying potential therapeutic targets, and advancing personalized
treatment strategies. Hence, in our study, we aimed to identify subgroups within
TNBCs with the potential to inform treatment decisions. To identify distinct sub-
groups within the TNBC patient population, proteomics datasets were utilized.

We built upon publicly available data from two studies conducted under the aus-
pices of the Clinical Proteomic Tumor Analysis Consortium (CPTAC). The CPTAC
was launched to use proteomics technologies to improve the understanding of can-
cer biology and identify new targets for cancer therapy [250]. Anurag et al. identi-
fied proteogenomic markers associated with chemotherapy resistance and response
in patients with TNBC. Krug et al. [251] is a comprehensive study that combined
genomic and proteomic data to better understand the molecular mechanisms un-
derlying breast cancer development and progression.

The results from this study can aid in improving the accuracy of breast cancer
molecular subtype classification and provide insights into the underlying biology
within TNBC subtypes, which can subsequently inform personalized treatment de-
cisions.

5.3 Materials and Methods

5.3.1 Data

For the 71 samples from Anurag et al., the peptides were labeled with 11-plex TMT
reagents according to the manufacturer’s instructions, and the acquired spectra were
searched against the human proteome database resulting in the identification of
11063 proteins for the 71 samples. IHC and PAM50 assay along with Non-negative
matrix factorization (NMF) were performed for molecular subtype classification. It
is important to note that, in the PAM50 subtype classification, the Luminal A and the

96



5

Luminal B subtypes correspond to the Luminal molecular subtype, and the normal-
like subtype corresponds to Luminal-type as well. Additional information is de-
scribed in the Supplementary Data and Methods “Proteomic sample preparation”
section of the Anurag et al. paper [252]. Since the study contained both pre- and
on-treatment TNBC samples, only pre-treatment samples (n = 55 samples) were
selected for this analysis to ensure consistency among all the study samples. The
proteomics data can be retrieved via NCI Proteomics Data Commons with the acces-
sion identifiers PDC000408 (TNBC biopsies proteome raw files), PDC000409 (TNBC
biopsies phosphoproteome raw files), and PDC000410 (TNBC PDX proteome raw
files). In this study, we will refer to the dataset by Anurag et al. as the Test dataset.

The study by Krug et al. included 122 newly diagnosed breast cancer patients,
out of which approximately 23% were classified as TNBC and therefore used in this
study. The peptides were labeled with 10-plex TMT reagents according to the man-
ufacturer’s instructions and the acquired spectra were searched against the human
proteome database resulting in the identification of 10107 proteins for the 122 sam-
ples. IHC and PAM50 classification was performed for molecular subtype classifica-
tion. Additional information is described in the Supplementary Data and Methods
“Proteomic sample preparation” section of the Krug et al. paper. Proteomics raw
and characterized datasets can be retrieved through the CPTAC data portal (CPAC
Data Portal) and at the Proteomic Data Commons. The accession number for the
proteomic data at the CPTAC data portal is S060. The accession number for the pro-
teomic data characterized by the Proteomic Data Commons is PDC: PDC000120. In
this study, we will refer to the samples from Krug as the Validation dataset. Details
of the patient data used in this study are detailed in Table 5.2. The test and valida-
tion datasets exhibit a significant overlap, with 9074 proteins overlapping between
them.

Table 5.2: Overview of the Proteomics Dataset used in the studies by Anurag et.al. and Krug
et.al. All samples analyzed in this table correspond to female individuals. IHC - Immuno-
histochemistry, TNBC - Triple-negative breast cancer, pCR - pathological complete response,
PAM - Prediction Analysis of Microarray

Study
Anurag et.al. Cancer Discovery

(2022) (Test Dataset)
Krug et.al. Cell

(2020)(Validation Dataset)
Proteomic Data Commons ID PDC000408 PDC000120
Total number of patients 59 122
Association to clinical trials NCT02547987, NCT02124902 None
PAM50 - Basal like patients 34 29
IHC - TNBC patients 55 28
pCR Reponse data Yes No
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5.3.2 Methods

Data Processing

The 55 proteome samples from the test dataset and the 29 samples from the val-
idation dataset were selected based on Quality Control (QC) criterion. For each
dataset, the samples were randomly divided into two equal subsets using R (version
3.6.1) [128]. Along with the proteome data, metadata information about the samples
was also utilized in this study. The metadata included information like pathological
complete response (pCR) to chemotherapy and residual cancer burden (RCB) which
refers to the residual tumor burden in breast cancer patients after chemotherapy.
The proteomics data were imported into the R programming environment for fur-
ther analysis using the "readxl" package.

Similarity Network Fusion Analysis for subgrouping within TNBC subtype

Similarity Network Fusion (SNF) was applied to the proteomics data. SNF uses a
machine learning algorithm to combine multiple similarity networks into a single
integrated network that captures the underlying biological relationships. In our
study, we applied SNF analysis to the Anurag (test dataset) and Krug et. al. (val-
idation dataset) to find subgroups within the TNBC subtype. Pair-wise distances
between samples are computed by considering the Euclidean distance between the
protein profiles. A pair-wise distance matrix for each TNBC sample was computed
which was then used to perform similarity network fusion. SNF was performed us-
ing SNFTool (version 2.3.1) [253] with the following parameter values: K (the num-
ber of neighbors) = 10, alpha (hyperparameter) = 0.5.

The results of the SNF analysis were hierarchically clustered using the "Com-
plete Linkage" method using the stats packages and visualized using "ggplot2" and
"gplots" packages [254]. Hierarchical clustering of the SNFTool results was per-
formed using the "stats" package [128] and visualized with colored bars using the
"dendextend" package [255]. The color scheme for the dendrograms was determined
using the "randomcoloR" package.

Differential Abundance Analysis and Enrichment Analysis

Differences in protein abundances and their statistical significance were evaluated
using the "limma" package [125]. Differences in protein abundance were considered
significant when the adjusted p-value ≤ 0.05 and had a fold change value ≥ 1.5. Gene
ontology enrichment analysis was performed and visualized using the "pathfindR"
package [166]. The Reactome database [161] was utilized for pathway analysis on the
differentially enriched proteins and visualized also using the "pathfindR" package.

The scripts used for the similarity network fusion analysis, the list of clustered
samples by SNF analysis, differential abundance analysis, and visualization of the
ontology and Reactome results are accessible in a GitHub repository .
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5.4 Results

5.4.1 Subtyping of TNBC samples on the Test Dataset

Samples from the test dataset as clustered using SNF are shown in Figure 5.1

Figure 5.1: TNBC samples from the test dataset. The patient clusters are classified into Clus-
ter 1, with clusters of basal samples, and Cluster 2, with clusters of mesenchymal samples.
The color bars below the dendrogram include information on (from top to bottom): i) patho-
logical Complete Response (pCR) ii) Residual cancer Burden (RCB) iii)PAM50 classification
iv)individual race and v)TNBC status. Abbreviation (TNBC - Triple-negative breast cancer,
BL - Basal-like, IM - Immunomodulatory, M- Mesenchymal, MSL - Mesenchymal stem-like,
LAR - Luminal Androgen Receptor, UNS - Unspecified.)

Two clusters have beenmarked in the dendrogram. The first one labeled as "Clus-
ter of basal samples by PAM50" contains nine samples in Cluster 1; the second one,
labeled as "Cluster of mesenchymal samples by TNBC" also contains nine samples
in Cluster 2.

To gain more insight into the clusters differential abundance analysis was per-
formed between the two patient clusters. Up and down-regulated proteins of Clus-
ter 1 are shown in Figure 5.2. the up-regulated proteins have higher in expression in
Cluster 1 and the down-regulated proteins have lower expression in Cluster 1. Dif-
ferential abundance analysis yielded 2082 proteins that were down-regulated and
2210 proteins that were up-regulated in Cluster 1. From the differentially abundant
proteins, we performed Gene Ontology (GO) and Reactome pathway enrichment
analysis. Among the GO terms we specifically considered the Biological Process
(BP) ontology.

The enriched biological processes for the up-regulated proteins in Cluster 1 of
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Figure 5.2: Biclustering Heatmap of the differentially enriched proteins between two clusters
of samples of the test dataset. Values indicate log2 foldchanges. Proteins with higher values in
Cluster 1 are considered to be up-regulated and are shown in red; Proteins with lower values
in Cluster 1 are considered to be down-regulated and shown in blue. Criteria for differential
abundance: adjusted p-value < 0.05 and fold change ≥ 1.5 or ≤ 1/1.5 (log2|FC | ≥ log21.5 ≈
0.58
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the test dataset are shown in Figure 5.3. The enriched biological processes include
protein K-48 linked ubiquitination, protein ubiquitination, transcription by RNA poly-
merase II, and ubiquitin-dependent protein catabolic process. Additional significant
biological processes include mRNA splicing via spliceosome which plays a crucial
role in gene abundance regulation, and its dysregulation has been associated with
breast cancer [256].

Figure 5.3: Biological Processes for the upregulated proteins of Cluster 1 in TNBC from the
test dataset

Reactome pathways enriched among the up-regulated proteins of Cluster 1 of
the test set are shown in Supplementary Figure 5.11. Some of the significant path-
ways are mitochondrial elongation, initiation, translation, IL-I2 signaling, mRNA Splic-
ing, complex biogenesis, and mitochondrial biogenesis. The above pathways represent
a diverse set of cellular functions that are involved in various stages of cell cycle
regulation, cellular stress response, and protein degradation pathways.

The biological processes for the down-regulated proteins of Cluster 1 of the
test set are shown in Supplementary Figure 5.9. Among the down-regulated pro-
teins the following biological processes are enriched: the ubiquitin-dependent protein
catabolic process and the regulation of small GTPases-mediated signal transductionwhich
is known to be associated with breast cancer, were found to be enriched. Dysregula-
tion of these pathways can contribute also to the metastatic potential of TNBC breast
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Figure 5.4: Reactome pathways for the downregulated proteins of Cluster 1 in TNBC from
the test dataset

cancer cells [257].
The Reactome pathways enriched in the down-regulated proteins of Cluster 1 of

the test set are shown in Figure 5.4. Some of the Reactome pathways include Cap-
dependent translation initiation, Eukaryotic translational initiation, Nonsense Mediated
Decay (NMD) of the Exon Junction Complex, SRP-dependent cotranslational protein tar-
geting to membrane, L-13 mediated translational silencing of Ceruloplasmin expression,
SUMO E3 ligase SUMOylate target proteins, Influenza infection, formation of a pool of
free 40S units, major pathway or rRNA processing in the nucleolus and cytosol and GTP
hydrolysis and joining of the 60S ribosomal subunits.

Based on the pathways listed, it appears that translation initiation, elongation,
and peptide chain elongation were common processes in all types of breast cancer.
Additionally, ribosomal biogenesis and RNA processing were also important path-
ways across all subtypes of breast cancer.
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Figure 5.5: TNBC samples from the validation dataset. The color bars below the dendrogram
include information on (from top to bottom): i) triple-negative breast cancer status ii) ERBB2
status iii) NMF classification iv) PR status v) ER status. Abbreviation (TNBC - Triple-negative
breast cancer, NMF - Non-negative matrix factorization, ER - Estrogen, PR - Progesterone)
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Figure 5.6: Biclustering Heatmap of the differentially enriched proteins between two TNBC
clusters of samples of the validation dataset. Values indicate log2 foldchanges. Proteins with
higher values in Cluster 1 are considered to be up-regulated and are shown in red; Proteins
with lower values in Cluster 1 are considered to be down-regulated and shown in blue. Cri-
teria for differential abundance: adjusted p-value < 0.05 and fold change ≥ 1.5 or ≤ 1/1.5
(log2|FC | ≥ log21.5 ≈ 0.58

5.4.2 Subtyping of the TNBC clusters on the Validation dataset

The Similarity Network Fusion classified the TNBC subset of the validation dataset
into two clusters of 12 and 17 samples each. The clusters were visualized using den-
drograms in Figure 5.5. From the colored bars, we could see that more ER and PR
receptor-positive samples are present in Cluster 1, which has been marked in red in
the figure. The NMF approach classified all the TNBC samples as Basal-like, except
for one sample which was classified as HER2-type, which is also present in Cluster 1.
Furthermore, the sample X05BR001 classified as HER2-type also had a TNBC nega-
tive and a PR positive status. For three of the samples in Cluster 2, which is marked
in blue in the figure, the ERBB2 status was unknown. However, the TNBC status was
positive for the three samples, indicating that these samples could belong to more
than one molecular subtype and not just the TNBC one. Some distinct patterns were
observed in the clustered dendrogram. To gain insights into these patterns, we con-
ducted a differential abundance analysis between the two TNBC clusters, which is
shown in Figure 5.6
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Figure 5.7: Biological Processes for the upregulated proteins of Cluster 1 in TNBC from the
validation dataset
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Figure 5.8: Reactome pathways for the down-regulated proteins of Cluster 1 in TNBC from
the validation dataset
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Differential abundance analysis yielded 181 proteins that were down-regulated
and 839 proteins that were up-regulated in Cluster 1. Gene Ontology and pathway
analysis were performed on both the up and down-regulated gene sets. The biolog-
ical processes enriched in the up-regulated proteins of Cluster 1 in the validation
dataset are shown in Figure 5.7.

The up-regulated proteins in both the test and validation datasets share many
enriched biological processes like protein ubiquitination, protein K-48 linked ubiqui-
tination stabilization, and ubiquitin-dependent protein catabolic process, which are all
involved in regulating protein turnover and degradation. Additionally, significant
biological processes like positive regulation of telomere maintenance via telomerase and
positive regulation of mRNA transcription by RNA polymerase II were present. Many
of the GO biological processes are associated with TNBC breast cancer and are also
implicated in HER2 breast cancer [258, 259].

The Reactome pathways enriched in the up-regulated proteins of Cluster 1 in
the validation dataset are shown in Supplementary Figure 5.12. The pathways listed
here are more frequently associated with TNBC and HER2-positive breast cancer
subtypes. The common Reactome pathways from the up-regulated proteins be-
tween these clusters are mitochondrial elongation, initiation, and termination path-
ways. Other enriched pathways enriched include the regulation of ornithine decar-
boxylase and the metabolism of polyamines, which are interrelated. MAPK6 andMAPK4
are members of the mitogen-activated protein kinase (MAPK) family, which regulate
cell growth, differentiation, and survival. The above pathways represent a diverse
set of cellular functions that are involved in various stages of cell cycle regulation,
cellular stress response, and protein degradation pathways.

The biological processes for the down-regulated proteins of Cluster 1 in the val-
idation dataset are shown in Supplementary Figure 5.10. Biological processes in-
volvedDysregulation of histone H2Amonoubiquitination, midbody abscission, ubiquitin-
dependent protein catabolic process and cellular response to DNA damage stimuluswhich
has been linked to the development and progression of breast cancer. The down-
regulated proteins are shown to be associated very generally with breast cancer
which can lead to genomic instability and the accumulation of mutations that con-
tribute to tumorigenesis [260, 261].

The Reactome pathways enriched in the down-regulated proteins of Cluster 1
in the validation dataset are shown in Figure 5.8. The pathways are all related to
different aspects of gene expression regulation, including transcription, mRNA pro-
cessing, translation, and protein degradation. the other significant pathways include
SRP-dependent co-translation protein, Eukaryotic translation, L-13 mediated transla-
tional silencing, and Nonsense-mediated decay. These pathways are associated more
generally with breast cancer and not with any one molecular subtype of breast can-
cer.
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5.5 Discussion

The enriched biological processes from the up-regulated proteins in both the test
and validation datasets contain similar biological processes like protein ubiquitina-
tion, protein K-48 linked stabilization, ubiquitin-dependent protein catabolic process, and
transcription by RNA polymerase II. The protein processes are all involved in protein
turnover and degradation. Other significant processes include positive regulation of
telomere maintenance and mRNA splicing via splicosome.

The biological processes from Gene Ontology have shown an association with
both HER2-positive and TNBC breast tumors alike. HER2-positive breast cancers
have been found to have higher telomerase activity, and targeting telomerase has
been suggested as a potential therapeutic strategy for HER2-positive breast cancer
[258, 259]. Dysregulation of protein polyubiquitination processes can contribute to
the development of TNBC breast cancer. Protein folding and stabilization have been
associated with both TNBC breast cancer and HER2-positive breast cancer. Aberrant
protein folding and stabilization can lead to HER2 degradation or mislocalization,
which can impair downstream signaling pathways. HER2-positive breast cancers
have been found to have higher levels of chaperone proteins that facilitate protein
folding and stabilization [262–264]. In HER2-positive breast cancer, HER2 overex-
pression can lead to upregulation of oncogenic proteins and cell proliferation. Bi-
ological processes for up-regulated proteins in both testing and validation TBNC
samples show clear similarities, implying that our analysis identifies a common pro-
file in this cluster.

The common features among the up-regulated Reactome pathways of the valida-
tion and test datasets include protein degradation, regulation of cellular processes,
DNA damage response, and modulation of signaling pathways. Many of these path-
ways involve the degradation of specific proteins through ubiquitin-mediated pro-
teolysis, which plays a crucial role in regulating protein levels and maintaining cel-
lular homeostasis. Mapping to Reactome pathways showed enrichment on mRNA
splicing, where one study identified a splice variant of HER2 called HER2∆16 that is
frequently overexpressed in HER2-positive breast cancer. In addition, dysregulation
of "complex I assembly" may play a role in the development of HER2-positive breast
cancer [265]. The Reactome pathways of the up-regulated proteins of the validation
dataset, also show an association with both TNBC and HER2-type breast tumors,
similar to the results that were observed from the test dataset. HER2-positive breast
cancer cells have been found to have increased mitochondrial biogenesis and altered
mitochondrial function, which may contribute to the aggressiveness of this type of
cancer. [266]. IL-12 signaling has been associated with better prognosis in TNBC and
HER2-positive breast cancers [267]. Studies have shown that inhibiting ODC sensi-
tized TNBC cells to cytotoxic chemotherapy, suggesting that targeting the polyamine
pathway could be a potential strategy to enhance the efficacy of chemotherapy for
TNBC [268]. Regarding MAPK4 and MAPK6 signaling, a study showed evidence
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that MAPK4 plays a crucial role in the growth and survival of TNBC cells, and tar-
geting MAPK4 may be a potential therapeutic strategy for TNBC [269]. From the
above Reactome pathways, it is seen that not all the pathways are associated only
with breast cancer, but with also HER-type cancer. The remaining significant path-
ways overlapped with the upregulated Reactome pathways from the test and valida-
tion datasets which show that there are similar patterns formed by the SNFTool in
both these datasets, validating the findings.

Among the down-regulated biological processes in TNBC from the test dataset,
many biological processes have an association with TNBC breast tumors. Dysregu-
lation of the Endoplasmic reticulum to the Golgi vesicle-mediated transport pathway can
contribute to the development of TNBC. Autophosphorylation of proteins, such as
EGFR, can contribute to the development of TNBC by promoting cell growth and
survival [270]. When observing the down-regulated biological processes of TNBC
in the validation dataset, the biological processes are mostly involved among TNBC
breast tumors, and not with the other molecular subtypes of breast tumors. TNBC
breast cancer cells may be more sensitive to DNA-damaging agents leading to ge-
nomic instability andmay have altered responses to DNA damage checkpoints [271].
Studies suggest that the dependency of triple-negative breast cancer cells on RNA
splicing provides a potential therapeutic target for the treatment of TNBC [272].

The downregulated Reactome pathways from TNBC of the test and the valida-
tion dataset show pathways associated again with mostly TNBC breast tumors. SRP-
dependent protein targeting could be a driver of breast cancer aggressiveness [273].
L13 ribosomal proteins bonded to UTRs that have been implicated in breast cancer,
including those of the estrogen receptor alpha (ERα), cyclin D1, and HER2 proteins.
Dysregulation of these UTRs has been linked to the development and progression
of breast cancer [274]. Dysregulation of the eukaryotic translation process has been
implicated in breast cancer where high expression of some eukaryotic translation
factors is associated with poor prognosis and may play important roles in breast can-
cer progression [275]. Nonsense-Mediated Decay (NMD) is dysregulated in breast
cancer and contributes to tumor progression [276]. Altered mRNA splicing, includ-
ing NMD, has been associated with breast cancer. The down-regulated pathways
include protein synthesis and translation, RNA processing, viral infection and repli-
cation, chromatin organization and modification, cellular signaling, and cell cycle
regulation. Many of these pathways involve the translation of mRNA into protein,
including the initiation, elongation, and termination stages of translation.

From our study, two subgroups of TNBC breast cancer were identified, where one
group encompassedmainly GO biological processes and significantly enriched path-
ways that belonged to TNBC breast cancer patients. Another subgroup of tumors
that were observed in both the test and validation datasets was a cluster of patients
that consisted of pathways and processes belonging to HER2-type cancers as well as
TNBC cancers. Studies previously have identified a subset of TNBC patients charac-
terized by low expression of HER2 (HER2-low), distinct from HER2-negative TNBC
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where they observed that HER2-low TNBC tumors had distinct molecular profiles
and clinical characteristics, suggesting a potential role for HER2-low expression as a
prognostic and predictive marker in TNBC [277, 278]. Overall, our study highlights
the heterogeneity of TNBC and the significance of HER2 expression as a distinct sub-
type within this category. Further investigation of the HER2 subgroup within TNBC
may provide valuable insights into the biology and potential therapeutic strategies
for this specific subset of patients.

A commonality among all the previous studies is that the TNBC subtypes that
had HER2 expression were HER2-low subgroups of patients. These HER2 2+ TNBC
seems to have worse relapse-free survival, advocating for a dedicated clinical, bio-
logical, and therapeutic evaluation of this subgroup [279]. Traditional HER2-targeted
therapies, such as trastuzumab (Herceptin), are not typically effective in HER2-low
TNBC patients since the HER2 expression levels are low. However, there is ongo-
ing research exploring alternative targeted therapies that may be effective in HER2-
low subgroups, such as antibody-drug conjugates (ADCs) or other HER2-targeting
agents.

5.6 Conclusions

Proteogenomics has the potential to transform precision medicine in breast cancer
by enabling more precise diagnosis and treatment selection. From our analysis, we
found that classifying subgroups within the TNBC molecular subtyping groups can
aid in understanding the biology of these tumors, which will in turn improve the
development of targeted therapies for these subgroups. It is imperative to empha-
size the importance of incorporating diverse datasets and exploring innovative ap-
proaches to analyze them effectively. In our study, diverse datasets of TNBC were
processed in different trials and used an SNF Analysis tool, which is a powerful
method to integrate diverse datasets.

By using SNF analysis to proteomics data, we could classify TNBC subtypes into
two groups based on their affiliation with TNBC and HER2 types. This could in-
dicate that these patients may benefit from a combination of HER2-targeted and
TNBC-targeted treatments. Future possibilities for this study include subgroup
classification among the Luminal and the HER2 subtypes as well, to gain a better
knowledge of subgroups within these molecular subtypes. This study also high-
lights the importance of having access to FAIR data to explore new data analysis
since FAIR methods promote interoperability, enabling the combination of diverse
datasets from different sources, which enhances the robustness and generalizability
of the analysis results and advance the knowledge of breast cancer subtyping.
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5.7 Supplementary Information

=

Figure 5.9: Biological processes for the downregulated proteins of Cluster 1 from the test
dataset
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Figure 5.10: Biological processes for the downregulated proteins of Cluster 1 from the valida-
tion dataset
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Figure 5.11: Reactome pathways for the upregulated proteins of Cluster 1 from the test
dataset
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Figure 5.12: Reactome pathways for the upregulated proteins of Cluster 1 from the validation
dataset
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Chapter 6

General Discussion

Cancer, a multifaceted and enigmatic disease, continues to challenge the boundaries
of medical understanding, driving the relentless pursuit of innovative solutions and
personalized approaches in the battle against this formidable foe. In the realm of
cancer research and treatment, molecular subtyping has witnessed remarkable ad-
vancements providing crucial insights into its underlying mechanisms and paving
the way for personalized treatment strategies.

In this thesis, I address different research aims to Refine Molecular Subtyping
Diagnostics in Breast and Colon Cancers using Gene Expression and Proteomics
Data. The specific aims of this thesis were:

1. To identify and examine dual subtyping in breast cancer tumors, overall and
within a particular subgroup to understand their tumor biology and possible
implications to therapeutic guidance.

2. To identify an expanded HER2 gene signature in order to capture the full bio-
logical diversity of HER2+ tumors.

3. To assess if molecular subtyping signatures are concordant in primary and
metastatic tumors in colon cancer.

The main findings associated with this thesis are shown in Table 6.1. First, I
identified patients that belonged to more than one molecular subtype of breast can-
cer (BC) in Chapters 2 and 5. In Chapter 2, these dual subtypes of samples were
shown to have different tumor biology than that of their respective single subtypes.
In Chapter 5, the subgroups within triple-negative breast cancer (TNBC) consisted
of a subtype with HER2+-associated pathways, suggesting treatment implications.
Second, I expanded the HER2 gene signature to capture the ever-growing tumor
biology behind HER2+ BC tumors in Chapter 3. The newly expanded gene signa-
ture captured the heterogeneity among the HER2+ tumors, which was incidentally
also observed in Chapter 5, where the dual subtype samples of TNBC and HER2+
showed characteristics pertaining to HER2-low tumors. Finally, in Chapter 4, I in-
vestigated the concordance between the primary and liver metastasis of colon cancer
tumors, which showed that the origin of the tumor tissue plays a major role in pre-
cision medicine in Colorectal Cancer.
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6

6.1 Unpacking theComplexities ofMolecular Subtypes
in Breast andColonCancers: Lessons from this the-
sis

6.1.1 Aim 1 - Exploring Dual Subtyping in Breast Cancer: Unveil-
ing Tumor Biology and Therapeutic Implications

Chapter 2 found a novel method to classify the molecular subtype of tumors into
single and dual subtypes. While previous research focused on the characteristics
that defined the dual subtypes, our research also showed the clinical relevance of
the dual subtypes samples. Rather than focusing on understanding the features of
one single molecular subtype and its respective mixed subtype, our study devised a
compelling methodology to classify the single and dual subtypes. In addition, some
promising results on the treatment of HER2-single-type tumors with HER2 dual-
targeted treatments were shown through the TRAIN2, Aphinity, and NBRST clinical
trial datasets [122, 149, 151].

Similarly, in Chapter 5 my research showed a robust way to find subgroups
within a molecular subtype using similarity network fusion analysis implemented
using the SNFTool package in R. Although this tool was intended to combine sam-
ples from two different datatypes, it is shown to be equally useful even when the
same dataset is split into two and used for analysis. Hence, I used it on datasets
from Krug and Anurag et.al, specifically on TNBC samples, from both the TNBC and
HER2 types, which is one of the dual subtypes that was not explored in Chapter 2
due to lack of samples. The results from our study showed the possible implications
that the study of dual TNBC-HER2 subtypes could have on targeted treatment ther-
apies since they could benefit from treatments like trastuzumab and pertuzumab.

6.1.2 Aim 2 - Unveiling the Full Spectrum: Expanding the HER2
Gene Signature to Capture Biological Diversity

Our study in Chapter 3 introduced a comprehensive 29-gene HER2-type signature
that incorporates known HER2 amplicon genes and others involved in important
HER2-related oncogenic signaling pathways. An important feature of our expanded
HER2 signature genes is that they accounted for a higher percentage of variance cap-
tured, highlighting their robust ability to differentiate between subtypes, compared
to previously reported signature genes. This also could possibly indicate hetero-
geneity within HER2+ tumors could be captured by the expanded HER2 signature
genes. By identifying the expandedHER2 signature genes encompassing newmolec-
ular characteristics and biological behaviors of different HER2-positive biomarkers,
we can develop targeted therapies that are more tailored to the individual patient’s
tumor [280, 281].
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6.1.3 Aim 3 - Evaluation of Molecular Subtyping Concordance Be-
tween Primary and Metastatic Colon Cancer Tumors

The study in Chapter 4 highlights the discordance in gene expression profiles be-
tween primary colon tumors (PT) and matched metastases (LM) and the importance
of considering the unique biology of each tumor site. Our findings challenge the
conventional practice of solely relying on molecular profiling of archived primary
tissue for treatment decisions in metastatic Colorectal Cancer (mCRC). Specifically,
our results show that PT losing their mesenchymal phenotype in matched LM indi-
cates that the tumor microenvironment and intrinsic properties of PT may influence
their molecular characteristics. Overall, our results contribute to advancing the un-
derstanding of the complex molecular landscape of mCRC and provide insights into
the potential clinical implications of PT and LM discordance.

6.2 Contributions to Methodological Improvements

The quest to improve molecular subtyping is a continuous effort, and my research
has contributed to this goal in several ways.

In Chapters 2, 3, and 4, FFPE microarray expression data were used for the stud-
ies associated with dual subtyping, signature gene expansion in breast cancer, and
concordance of Primary and metastatic tumors in colon cancer. In Chapter 5, pro-
teomic data was used for subgroup identification within TNBC subtypes in breast
cancer. I performed dual subtyping analysis in both the microarray data in Chapter
2 as well as subgrouping analysis in the proteomics data in Chapter 5, although only
the TNBC samples were analyzed in detail using the Proteomics dataset. From the
microarray data, I was able to analyze the biology of the dual subtypes and compare
it against their respective single subtypes. However, in the proteomics data, I could
gain a better idea of protein-activated and degraded pathways in the TNBC-HER2
subtype, where the proteomics data shed more light on the protein-activated and
degraded pathways. In my opinion, it could be beneficial to validate the results on
both the proteomic and a whole-transcriptome level of the same samples, in order
to better understand their underlying tumor biology.

In Chapter 3, I utilized an unsupervised clustering called Principal Component
Analysis (PCA), which is a dimensionality reduction technique to transform high-
dimensional data into a lower-dimensional space while preserving the most impor-
tant patterns or variations in the data. I used PCA for the expanded BluePrint signa-
ture with 29 new HER2 signature genes and compared it with previously reported
signature genes. However, in my opinion, these results should be evaluated with
additional circumspection since the variance captured from the previously reported
signature genes was estimated on FFPE microarray samples, which are developed
from the same data processing methods as the samples that were used to identify
the expanded gene signature. I believe that a more suitable approach would be to
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compare the variance captured amongst all these signatures in an unbiased microar-
ray dataset, which does not pertain to any one of the signature gene sets alone.

In Chapter 2, Chapter 3, and Chapter 4, we utilized Formalin-Fixed Paraffin-
Embedded (FFPE) samples as our primary tissue source. In chapter 4, in addition
to the FFPE data, fresh frozen (FF) tissue samples were also present in the sam-
ple set. FF data is generally considered to be the gold standard since they provide
higher-quality nucleic acids. FFPE however, stays stable for longer periods of time,
which makes it useful for retrospective analysis. However, in Chapter 4, I clus-
tered the FFPE and FF-matched pairs from 11 samples that showed that samples
derived from the same patients were clustering together irrespective of tissue type.
Although, generally the FF data is considered to hold more biological significance, I
found the samples from both these data types to hold patterns based on intratumoral
heterogeneity. Hence, I combined the FFPE and FF data and normalized them using
median normalization in order to perform further analysis on the combined dataset.
In the future, I believe we should approach the integration of datasets from different
tissue types with an open mind since combining data can lead to larger dataset sizes,
offering more robust analyses, and improving the generalizability of findings. De-
spite variations in tissue type, the inherent heterogeneity of tumors often transcends
these distinctions.

In Chapter 4 and Chapter 5, hierarchical clustering was employed to classify the
samples and impose them with the molecular subtype classifications. In chapter
4, clustering of the fresh and the FFPE samples of both the primary and metastatic
tumors based on the MSI signature was performed to show a non-homogeneous clas-
sification of primary and metastatic tumors. Chapter 5 clustered the samples based
on the results of the SNFTool. The additional colored bars added more information
to understand the clustering patterns better. In my opinion, hierarchical clustering
methods were better suited for interpreting patterns and variance among the dataset,
than the PCA analysis. With PCA analysis, the additional variables that can be su-
perimposed are far lesser than in hierarchical clustering analysis, where the colored
bars could help us interpret the clustering patterns based on many more variables.

In Chapter 2 and Chapter 3, we made use of the BluePrint 80-gene molecular
subtyping assay, in order to classify the breast tumor samples into Luminal-like,
HER2-like, and Basal-like samples. In Chapter 5, the PAM50 test was used to clas-
sify the breast proteomics dataset into one of four molecular subtypes: Luminal
A, Luminal B, HER2-enriched, and Basal-like. Although both the PAM50 and the
BluePrint tests perform molecular subtype classification, for the purpose of study-
ing any one subtype in detail, I found the BluePrint signature set to be better suited
for this purpose. The PAM50 signature set classifies more molecular subtypes like
Luminal-B and Normal-like. However, if I wanted to analyze the biomarkers of the
Normal-like subtype, it would not be possible with PAM50, since they do not have a
dedicated set of signature genes for this subtype. BluePrint, on the other hand, has
58 Luminal-type, 28 Basal-type, and 4 HER2-type signature genes, which enables a
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deeper understanding of any one molecular subtype.
In Chapter 2 and Chapter 5, we focused on identifying subgroups within the

molecular subtype classification in breast cancer. Chapter 2 focused on Luminal-
Basal and Luminal-HER2 samples and their tumor biology, whereas in Chapter 5, I
focused on identifying subgroups within TNBC patients which resulted in samples
that could resemble a HER2-Basal subtype within TNBC patients. I believe that the
results from Chapter 5 could have given us more insight into the TNBC-HER2 type
if there had been IHC and FISH information available. Previous studies have shown
that samples with TNBC-HER2 characteristics mostly belonged to the HER2-low
subtype, which shows low expressions of HER2 and is mostly misclassified as Basal
or Luminal types. HER2-low samples are defined as +1 or 2+ by IHC and FISH-
negative. Hence, if I had IHC and FISH information available for the Proteomics
dataset, conclusions regarding the HER2 expression on the TNBC-HER2 samples
could have been estimated.

In Chapter 2, we investigated the presence of dual subtypes in breast cancer
tumors, which is an area that has been understudied in the past. We used approxi-
mately 15,600 samples to classify the single and dual subtypes. Predominantly, the
samples that belonged to the Luminal and the HER2 types, were followed by the
Basal type. It is aggressive and less common, accounting for only about 10-20%
of all breast cancer cases. Therefore, the sample count for Basal subtypes is typi-
cally undercounted compared to other subtypes of breast cancer. In my opinion, an-
other reason for the low count of these samples could be that the Basal-like samples
are already detected as triple negative through laboratory tests like IHC and FISH.
Once these patients are detected as triple-negative, they may be immediately pro-
vided with treatment options like chemotherapy, in order to increase their chances
of recurrence-free survival. Hence, a very small proportion of patients may actually
be sent for molecular subtype diagnostic tests like BluePrint or Oncotype, and more
often directed immediately towards treatment options.

These factors can all contribute to the challenge of obtaining sufficient, high-
quality samples for precision medicine research. In our work, the, smaller sample
size associated with HER2-Basal and Luminal-HER2-Basal prevented us from draw-
ing conclusions about these subtypes. Similarly, in Chapter 4, more concrete results
could not be observed about the CMS1 and the CMS3 molecular subtypes of tumor
tissues due to low numbers of tumors classified as MSI-like and/or CMS1 and BRAF
m-like and/or CMS3.

6.3 PrecisionMedicine inOncology: Limitations in The-
sis

In the following sections, I identify areas of improvement and opportunities for fur-
ther development within molecular subtyping diagnostics in the context of cancer.
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This exploration aims to highlight the potential for enhancing the existing method-
ologies and approaches, paving the way for more thorough and precise diagnostic
strategies in the future.

Transcriptomics: In my thesis, the microarray technique has been the basis of
our gene expression analysis in chapters 2, 3, and 4 for both breast and colon can-
cer analysis. However, with the advent of next-generation sequencing (NGS) tech-
nologies, microarrays are rapidly becoming obsolete. But still, the shift from mi-
croarray technologies to NGS has not happened as quickly as anticipated due to
several reasons. NGS technologies were initially associated with complex workflows
and data analysis challenges, requiring specialized bioinformatics skills. This lim-
ited the accessibility and ease of use for many researchers and clinicians. More-
over, microarray technologies had already established a strong presence in research
and clinical settings, making it challenging to rapidly transition to a new technol-
ogy. Over time, as NGS technologies have become more affordable, streamlined, and
user-friendly, the adoption rate has increased. Today, NGS has gained prominence
for its ability to provide comprehensive and high-throughput sequencing data, en-
abling researchers and clinicians to unravel complex genomic information and ad-
vance precision medicine approaches. I believe our focus should be shifted towards
NGS technology which is likely to become a routine part of cancer diagnostics in the
future [282].

Data accessibility: Having larger datasets is crucial for precision medicine [283].
A larger sample set can help improve the accuracy and generalizability of machine
learning models used in precision medicine. However medical data has inherently
been decentralized, to protect patient privacy, to limit the type and amount of data
that can be shared, and who can access it, such as the European General Data Pro-
tection Regulation (GDPR) or the Health Insurance Portability and Accountability
Act (HIPAA) in the USA. One practical solution that can be implemented is data
centralization, which involves aggregating patient data from multiple healthcare
providers, research institutions, and other sources into a single database for analysis
and use in developing new treatments and diagnostics. However, while data cen-
tralization can provide benefits, such as enabling researchers to access larger and
more diverse datasets, it also poses substantial challenges. This limits the develop-
ment of precision medicine solutions [284, 285]. Centralizing data also raises ques-
tions about data ownership [286], especially when dealing with data from multiple
sources, each with its own policies and regulations. Hence, alternative approaches
should be developed to enable data analysis without the need for it to be central-
ized in a location.

Heterogeneous datasets: Precision medicine relies on a diverse range of patient
data to be effective. Many genomic tests and treatment drugs are developed and
tested on a homogeneous population, which does not guarantee the same treatment
response across people from different ancestral and cultural backgrounds. This lack
of diversity also limits the ability to identify new biomarkers and develop targeted
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therapies for underrepresented populations [287]. This highlights the need formore
racially diverse representation in breast and colon cancer research to better un-
derstand the disease in different populations and improve precision medicine ap-
proaches.

Overlooked cohorts: Numerous research studies and clinical trials have focused
on colon cancer in both males and females, actively recruiting and enrolling pa-
tients of both genders as there is a relatively similar incidence rate between males
and females. Additionally, screening programs for colon cancer are recommended
for both males and females starting at a certain age (usually around 50 years old),
whereas breast cancer screenings are more aimed at women. These efforts have en-
sured that females are adequately screened and diagnosed at an early stage, leading
to improved outcomes and survival rates for colon cancer. On the other hand, breast
cancer in males is relatively rare, accounting for less than 1% of all breast cancer
cases [288]. Due to its rarity, there has been a lack of research on breast cancer in
males, as most studies on breast cancer have focused on female patients. This has re-
sulted in a lack of knowledge and understanding about the disease in men, leading
to delayed diagnoses, inadequate treatment, and worse outcomes. In my opinion,
this lack of awareness about breast cancer in men, leads to the misconception that
only women can get breast cancer. Additionally, men diagnosed with breast cancer
may face social stigma and misconceptions, which can further complicate their ex-
perience. Hence, more research and awareness efforts are needed to address breast
cancer in men.

6.4 Precision Medicine in Oncology - Future Opportu-
nities

In this subsequent section, I will delve into potential solutions and avenues that hold
promise for addressing the limitations identified earlier. By exploring innovative
approaches, emerging technologies, and cutting-edge research, we aim to offer po-
tential solutions that could contribute to overcoming the challenges and limitations
faced in the field of molecular subtyping diagnostics.

Transcriptomics in PrecisionMedicine: With the slow decline of microarray tech-
nology, the rise ofNGS technology has revolutionized the field of precisionmedicine
by providing researchers and clinicians with a powerful tool to analyze genomic
data at an unprecedented depth and scale. NGS has also facilitated the development
of personalized cancer therapies and the identification of rare genetic diseases that
were previously difficult to diagnose [289]. One of the most impactful discoveries
with respect to NGS has been liquid biopsies, which is considered the future of can-
cer diagnostics. Liquid biopsies are a wonderful application of NGS technologies as
they offer a non-invasive and real-time way of detecting cancer-related alterations in
bodily fluids such as blood, urine, or saliva [290].
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Decentralized Machine Learning: A promising solution for decentralized data in
cancer research could be Swarm Learning [291], which is a decentralized machine
learning approach that focuses on collaborative model training among a network
of devices or institutions. Swarm learning has already been used to predict diseases
like COVID and tuberculosis [291]. In breast cancer research, I discussed limitations
in Chapter 2 regarding the limited sample size of HER2-Basal and Luminal-HER2-
Basal samples. Swarm Learning could potentially resolve this drawback, by using
all Basal and HER2 samples from different institutions. Similarly, in Chapter 5, the
presence of HER2-low samples in the TNBC-HER2 subgroup of samples could have
been easily estimated through samples from the combined Swarm Learning datasets
which could have enabled the presence of samples with IHC and FISH information.

Diversity in Precision Medicine: In Chapter 4, all the primary and metastatic
colon tumor tissue samples were taken from the HUB-ICO-IDIBELL cohort is a set
of breast cancer patients that has a higher representation of patients of European
descent. This lack of diversity may limit the generalizability of precision medicine
findings and may result in unequal access to precision medicine for certain pop-
ulations. Precision medicine must continue to develop and refine with a focus on
ensuring that the benefits are available to all patients regardless of race, ethnicity,
or socioeconomic status. It is crucial to address this issue and increase diversity in
cancer diagnostics by improving inclusivity in genomic research and clinical tri-
als, incorporating data from diverse populations in databases, and enhancing train-
ing for healthcare professionals to improve their cultural competence. In addition
to developing racially and ethnically diverse clinical trials and genomic research,
Swarm Learning could also play a role here, in increasing the opportunity of com-
bining research data conducted in two different populations to create a diverse
patient population and ensure the generalizability of the research findings and as-
sure equal access to precision medicine for all populations.

Breast Cancer in Males: Men with a family history of breast cancer in women
have a higher risk of developing breast cancer [292]. Male offspring of men with
breast cancer also have an increased risk of breast cancer, which is often attributed
to BRCA2 mutations or other inherited or intrinsic features affecting androgen me-
tabolism [293, 294]. To create an inclusive study population of both genders in
breast cancer, study protocols, and recruitment strategies should be designed to in-
clude both male and female participants. This may involve collaborating with multi-
ple research institutions, hospitals, and clinics to access a diverse patient population.
This step can be enabled once again using Swarm Learning. Another possible strat-
egy is to conduct long-term studies that track patients over time. This provides
an opportunity to capture samples from both genders as patients progress through
different stages of breast cancer, ensuring a more balanced representation. Finally,
we should raise awareness among healthcare providers, patients, and the general
public about the importance of including both genders in breast cancer research.

More data integration: In addition to the above future opportunities, with data
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integration, researchers can easily combine a wealth of research data from different
institutions, such as genomic, proteomic, and imaging data, and a more comprehen-
sive understanding of cancer biology can be achieved. This results in developing
more accurate and personalized cancer diagnoses and treatment plans. Integrating
imaging data can also help to identify patients with specific tumor characteristics,
such as high vascularization, that may benefit from certain treatments. A prime ex-
ample of Data integration is the Cancer Genome Atlas (TCGA) project [295]. This is a
collaboration between the National Cancer Institute (NCI) and the National Human
Genome Research Institute (NHGRI) that aims to comprehensively characterize the
genomic alterations in 33 different cancer types. By integrating data from multiple
molecular profiling technologies and clinical information from thousands of patient
samples, the TCGA project has helped identify new cancer driver genes and poten-
tial therapeutic targets. In my opinion, data integration is very beneficial since
it fosters collaboration and knowledge sharing among researchers and institu-
tions. By combining data from multiple sources, large-scale studies and research
initiatives can be conducted to identify novel therapeutic targets, develop predictive
models, and uncover new insights into cancer biology. This collaborative approach
accelerates scientific discoveries and contributes to the collective knowledge base in
precision oncology

Advanced computational approaches: Finally, advanced computational approaches,
including machine learning and artificial intelligence (AI), can play a significant
role in analyzing complex molecular datasets and identifying patterns that may be
missed by conventional methods. Machine learning and AI have the potential to ex-
pedite this process by analyzing large datasets and identifying potential drug can-
didates with higher precision and efficiency. AI algorithms can also assist in vir-
tual screening, target identification, lead optimization, and predicting drug toxic-
ity, thereby accelerating the development of new therapies and reducing costs. AI-
powered systems can assist in the early detection and accurate diagnosis of cancer,
by quickly identifying patterns and anomalies that may be missed by human ob-
servers. The future holds the potential for even more precise and automated diag-
nostic systems that can assist healthcare professionals in making accurate and timely
diagnoses.

Swarm learning: Swarm Learning allows for the distributed training of AI mod-
els based on standardized AI engines and allows for the merging of model parame-
ters with equal rights for all members while protecting the machine learning models
from attacks [291]. Swarm Learning can enable the development of more accurate
and reliable AI models for precision medicine, without compromising patient pri-
vacy and confidentiality. It addresses issues such as privacy and data security by
enabling collaborative analysis without sharing sensitive patient information. Addi-
tionally, swarm learning tackles data heterogeneity by integrating diverse datasets,
including genomics, proteomics, and clinical data. It overcomes limitations posed
by limited sample sizes through data pooling, enhances model generalizability by
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leveraging diverse datasets, and supports real-time learning for up-to-date knowl-
edge. Swarm learning also ensures regulatory compliance by keeping data locally
stored and processed. By tackling these challenges, swarm learning has the potential
to advance accurate predictive models, identify novel biomarkers, optimize treat-
ment strategies, and ultimately improve patient outcomes in precision medicine for
cancer.

In summary, machine learning and artificial intelligence hold immense potential
to transform healthcare by improving diagnostics, enabling personalized medicine,
accelerating drug discovery, enhancing clinical decision-making, and facilitating re-
mote patient monitoring.

6.5 Concluding Remarks

Our findings, together with previous studies shed light on the intricate landscape
of molecular subtyping in breast and colon cancers. The identification of dual sub-
typing within breast cancer tumors emphasizes the need for personalized treatment
approaches that consider the unique characteristics of each molecular subtype. The
expansion of the HER2 gene signature reveals the heterogeneity of HER2-positive
tumors, suggesting the potential for tailored treatment strategies based on the spe-
cific molecular features of individual tumors. Additionally, the observed concor-
dance between primary and metastatic tumors in colon cancer for certain molecular
subtypes highlights the relevance of tumor tissue origin in guiding targeted ther-
apies. These insights underscore the importance of precise molecular subtyping in
enhancing treatment decision-making and advancing the field of precision oncology.

Through molecular subtyping, we have gained valuable insights into the bio-
logical diversity of tumors, allowing for precise diagnosis and personalized treat-
ment strategies. Despite recent advances, current precision medicine approaches
are still limited by several factors, such as an incomplete understanding of disease
mechanisms, inadequate biomarker identification, and lack of access to necessary re-
sources, among others. Incorporating patient-specific factors, such as genetic back-
ground and environmental exposure, can improve cancer diagnosis and treatment
by tailoring therapies to individual patients.

It may also be advantageous to make precision medicine more accessible and
affordable to all patients. Efforts to reduce the cost of precision medicine could
include increasing efficiency and streamlining processes, improving reimbursement
models, and encouraging competition among providers. By leveraging the power
of precision medicine, we are poised to transform cancer treatment, paving the way
for more personalized and targeted therapies that can make a meaningful impact on
patient lives.
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Chapter 7

Summary

Cancer, a complex and multifaceted disease, represents a significant challenge in the
field of medical research and healthcare. It encompasses a broad range of conditions
characterized by the uncontrolled growth and division of abnormal cells within the
body. Among the various types of cancer, breast and colon cancer continue to be the
subject of intensive study and clinical focus. Molecular subtyping enables a deeper
understanding of the disease and guides tailored treatment strategies, leading to im-
proved outcomes. The molecular subtyping of breast and colon cancers is a vital av-
enue of research and clinical practice, aiding in the identification of patient-specific
biomarkers, targeted therapy selection, and the development of precision medicine
approaches. The goal of my thesis was to actively increase knowledge to contribute
to refining molecular subtyping diagnostics in breast and colon cancers using gene
expression and proteomics data.

In Chapter 2 for breast cancer, I focused on developing a methodology to iden-
tify patients that may belong to more than one molecular subtype, indicating that
they could benefit from more than one kind of targeted therapy. The study investi-
gated the presence of dual subtypes in breast cancer tumors, which is an area that
has been understudied in the past. The findings showed that the BluePrint assay was
able to accurately classify breast cancer tumors into their respective subtypes, and
identified a subset of tumors that showed characteristics of more than one molecu-
lar subtype. We developed a classification threshold using full genome microarray
samples which separates the single and dual subtypes. We also showed that the clas-
sification of the subtypes on the NBRST dataset shows refined prediction to therapy.
This dual subtype classification has important implications for therapeutic guid-
ance, as it suggests that a combination of treatments targeted at both subtypes may
be necessary for effective treatment. Overall, the study highlights the importance
of molecular subtyping in guiding breast cancer treatment decisions and identifies
a potential area for further research into the role of dual subtypes in breast cancer
prognosis and treatment.

In Chapter 3, I expanded the HER2-type molecular subtype signature to cap-
ture more biology and heterogeneity in the HER2-type tumors. where the expanded
HER2-type signature set can be combined into a molecular diagnostic test. I per-
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formed differential expression analysis and filtered genes based on additional se-
lecting criteria to select a set of 29 HER2 signature genes. I performed ontology and
pathway analysis to understand the biology and the function of the new signature
genes and also observed the amount of variance observed along with several other
previously reported molecular subtype signatures. By understanding the unique
molecular characteristics of a patient’s tumor, clinicians can develop targeted thera-
pies that are more effective and have fewer side effects than traditional treatments.
The findings from the above two papers can be synergistically combined to develop
a more comprehensive and accurate genomic testing approach.

Similarly, in Chapter 4, I investigated the concordance of primary and metastatic
tumors for consensus molecular subtype classification in colon cancer, to show that
the origin of the tissue hasmajor consequences for the targeted therapies inmetastatic
tumors as well. This study aimed to investigate the concordance between the molec-
ular subtypes of primary colorectal tumors and their corresponding synchronous
liver metastases. We analyzed the gene expression profiles of 36 matched pairs of
primary colorectal tumors and liver metastases using a molecular subtype classifi-
cation system. The results showed a high degree of concordance between the molec-
ular subtypes of the primary tumors and their matched liver metastases. The ma-
jority of the samples exhibited the same molecular subtype in both the primary and
metastatic sites. However, some samples showed a change in molecular subtype
from the primary tumor to the liver metastasis. This finding highlights the impor-
tance of monitoring the molecular subtypes of metastatic tumors, as they may differ
from the primary tumor and impact treatment decisions. Overall, the study asserts
that molecular subtype analysis can be a useful tool in guiding precision medicine
approaches for the treatment of colorectal cancer metastasis.

In Chapter 5 of the thesis, I revisited the topic of breast cancer and utilized a
breast cancer proteomics dataset. The previous chapters on breast cancer primarily
focused on identifying new subtypes and signatures using the BluePrint signature
assay, which identified three molecular subtypes. In this chapter, my objective was
to identify subgroups within the Triple negative molecular subtype of breast cancer
from a proteomics dataset, using the method Similar Network Fusion. By doing this,
I aimed to validate the proteomics dataset and evaluate its performance in identify-
ing molecular subtypes. This chapter provided a new perspective on breast cancer
subtyping and opened up possibilities for the development of novel subtyping as-
says.

In Chapter 6 of my thesis, I summarize how the different chapters have con-
tributed towards achieving the overall objective of my research, which was to de-
velop and improve breast and colon cancer diagnostics using computational preci-
sion medicine methods. While discussing the outcomes of our studies, I also high-
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light the limitations and challenges that we encountered during the research process.
Moreover, I also discuss the potential applications of our research in the future of
precision medicine, particularly in the development of targeted therapies for breast
and colon cancer patients. Overall, the insights gained from this thesis can pave the
way for future research and clinical applications in the field of precision medicine.
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