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ABSTRACT
Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers 
to promote changes in dietary behavior, optimizing health status and preventing diet related 
diseases. Generalized implementation of PN faces different obstacles, one of the most relevant 
being metabolic characterization of the individual. Although omics technologies allow for assessment 
the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple 
PN protocols is still difficult due to the complexity of metabolic regulation and to different technical 
and economical constrains. In this work, we propose a conceptual framework that considers the 
dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, 
inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of 
several non-communicable diseases. These processes can be assessed and characterized by specific 
sets of proteomic, metabolomic and genetic markers that minimize operational constrains and 
maximize the information obtained at the individual level. Current machine learning and data 
analysis methodologies allow the development of algorithms to integrate omics and genetic 
markers. Reduction of dimensionality of variables facilitates the implementation of omics and 
genetic information in digital tools. This framework is exemplified by presenting the EU-Funded 
project PREVENTOMICS as a use case.

Introduction

Personalized nutrition (PN) has gained great attention in 
the last decade and is currently one of the top trends in 
nutritional sciences (Callahan 2022). PN offers the possi-
bility of adapting eating behavior to personal needs and 
preferences, but mainly to harness optimal benefits. From 

the consumer’s point of view, PN represents a natural path 
to empowerment, facilitating decision-taking processes 
impacting on very different domains of their lives, such as 
physical activity performance, mental and physical wellbe-
ing, or overall health improvement. Moreover, PN is also 
gaining relevance from the perspective of healthcare 
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systems, since a wide array of highly prevalent 
non-communicable diseases (NCDs) that put a high 
socio-economic burden on society, are directly linked with 
dietary patterns and eating behavior (Afshin et  al. 2019; 
Cena and Calder 2020; Forouhi and Unwin 2019; Moszak, 
Szulińska, and Bogdański 2020). A well-known example is 
obesity and obesity-related diseases, which are tightly linked 
to unbalanced behaviors in terms of physical activity, mental 
distress, and eating patterns.

Despite the acceptance in the last decades of the benefits 
of healthy dietary habits for promoting health and wellbe-
ing by the scientific community as a whole, it has been 
repeatedly demonstrated that general nutrition recommen-
dations, even those adopted in national and international 
polices, are not sufficient to promote the required changes 
in the eating behavior of individuals. This is highlighted by 
large cohort studies such as the Global Burden of Disease 
(GBD) study, reporting steady increases in diet-associated 
metabolic risks such as a high body mass index (BMI) 
and a high fasting glucose concentration accompanied by 
no substantial changes in diet quality (Chew et  al. 2023; 
Murray et  al. 2020). Whilst regulatory policies and taxations 
have had remarkable results for tobacco and lead exposure, 
the application of similar initiatives in domains related to 
diet and nutrition is underutilized (Gakidou et  al. 2017; 
Martini et  al. 2021; Sacks, Kwon, and Backholer 2021). 
Thus, according to GBD, since 1990 the health loss has 
shifted toward a growing burden from NCDs and away from 
communicable, maternal, neonatal, and nutrient deficiency 
diseases, the latter linked to specific nutrient deficiencies, 
but not to metabolic alterations associated with unbalanced 
dietary habits. In this scenario, PN arises as an opportunity 
to develop new tools for promoting long lasting changes 
in dietary behaviors, paving the way to new strategies for 
improving metabolic alterations with a relevant impact on 
health, understood by the World Health Organization as “a 
state of complete physical, mental and social well-being and 
not merely the absence of disease or infirmity” (Huber et  al. 
2011). Complementary to this definition of health, in 1943, 
French physician Georges Canguilhem proposed to under-
stand health as the ability to adapt to one’s environment: it 
varies for every individual, depending on their circumstances 
(The Lancet 2009). This latter definition aligns with the 
concept of personalization.

Recent advances in technology, from information and 
communication technologies (ICT) to cutting edge analytical 
technologies, are key allies to PN. Advances in wearables 
and biosensors for personal monitoring provide a better 
understanding of the individual, enabling adaptation of 
recommendations to the immediate needs of the user and 
an optimal communication pathway for delivering these 
recommendations together with strategies for promoting 
behavioral change (Kim and Seo 2021; Mandracchia et  al. 
2019; Sempionatto et  al. 2021). In parallel, analytical tech-
niques in the field of omics sciences provide the necessary 
tools to understand the physiological state of the individ-
ual in relation to genetic background, enabling the elab-
oration of recommendations for the mid- and long-term. 
Likely PN will be most successful if it specifically addresses 

metabolic deviations that can be nutritionally targeted by 
specific dietary choices, with the outcomes measured and 
made visible to the consumer. In this process, specific 
genetically determined susceptibilities and risks may be 
taken into account, together with the phenotypic charac-
terization of the individual. Despite these advances might 
facilitate and boost deployment of PN in society, it must 
be taken into account that a reliable PN system should 
target key elements of the food environment of the con-
sumer, which is the context that influences and drives the 
decision making process for food choices (Nutrition and 
Food Systems Division 2016). This involves development 
of simple, flexible PN systems able to interoperate with 
different components of the consumers’ food environment, 
such as nutrition professionals, retailers, food producers, 
and even policy makers.

An strategy to simplify PN is based in metabotyping, 
which allows classification of individuals according to their 
metabolic signature, which in turn can be associated to 
health status (Cirulli et  al. 2019), dietary patterns and 
response to interventions (Garcia-Perez et  al. 2020; Posma 
et  al. 2020). In this approach to PN, individuals are grouped 
in an unbiased manner to smaller, relatively homogenous 
groups according to their metabotype, as functional groups 
for personalized nutritional recommendations. This concept 
can be further extended to the concept of precision nutri-
tion, in which the individual characteristics are the main 
driver of the recommendations (Ordovas et  al. 2018; Picó 
et  al. 2019; Tebani and Bekri 2019). Nevertheless, although 
metabolic markers can be currently applied to obtain a 
precise overview of the state of metabolic health of the 
person at the metabolite level, nutritional recommendations 
are still far away from the precision that is needed to fulfill 
the specific requirements of everyone. This apparent gap is 
a consequence of the lack of knowledge on the effects of 
individual eating behaviors on specific elements of metabolic 
health, also because the complexity of food itself is further 
confounded by the complex processes of digestion, absorp-
tion, and metabolism, and interactions and signaling prop-
erties of food components, which in turn are dependent on 
individual’s intrinsic and environmental exposure factors 
(Barabási, Menichetti, and Loscalzo 2019). Although the 
generation of knowledge to establish causal links between 
specific foods and health can be seen as a long-time journey, 
the state of the art already allows to propose some novel 
strategies to tailor nutritional recommendations to func-
tional, metabo-phenotypically relative homogenous groups, 
placed between generic concepts of nutrition based on pop-
ulation groups and individuality, the latter requiring preci-
sion nutrition.

In this context, although omics technologies allow for 
assessment the dynamics of metabolism and characterization 
of the individual with unprecedented detail, the use as an 
effective, affordable and simple PN tool is still difficult due 
to the complexity of metabolic regulation and to the various 
technical and economical constrains. Therefore, we here 
provide a conceptual framework on how omics biomarkers 
could be implemented for a practical effective PN advice. 
In section “Personalization based on overarching processes,” 
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this framework is developed taking constraints, such as 
reliability of biomarkers according to the state of the art 
and feasibility of analysis in terms of benefit-cost ratio, into 
account. Section “Biomarkers for assessing the status of core 
health processes” then reviews various metabolic and pro-
teomics biomarkers, detectable in accessible biofluids such 
as blood and urine, compliant with the above premises and 
this section proposes a methodology for their integration 
in accord with current state of the art. Since individual 
genetic variation impacts susceptibility to health derailment 
as well as effectiveness of dietary recommendations for 
health improvement, section “Genetic markers to accommo-
date the susceptibility of the individual” reviews genetic 
markers that might be considered to complement the infor-
mation provided by proteomics and metabolomic biomarkers 
described previously. In section “Practical implementation 
of the personalized nutrition framework: the PREVENTOMICS 
project as a use case,” a concrete implementation example 
is provided. It describes, as one possible translation option, 
how this approach is used in the EU-funded project 
PREVENTOMICS, which was conceived as a proof of con-
cept from selecting biomarkers, as described above, to tan-
gible tools for integration and for empowerment of the 
consumer. The latter is envisioned as an app that provides 
dietary, shopping or cooking advise, guided by the individ-
ual’s aggregated biomarker profile and genetic susceptibility. 
The last section (section “Other omics with potential appli-
cations”) considers consumption biomarkers and gut micro-
biome dynamics as other aspects to be considered in this 
PN strategy and sketches future directions.

Personalization based on overarching processes

Current PN based on metabolic profiling relies on the asso-
ciation of metabolic footprints with specific phenotypes. 
This approach faces two main challenges. The first one is 
related to the concept of health itself. Associating a meta-
bolic profile with the presence or absence of a disease is 
feasible and different approaches and applications can be 
found in the literature (Cirulli et  al. 2019; Garcia-Perez 
et  al. 2020; Posma et  al. 2020). While this strategy has been 
proven successful in the case of clinically relevant metabolic 
alterations, it still lacks a wider applicability in the general 
population for prevention of disease and maintaining phys-
iological homeostasis, that is, the correct performance of 
the different processes that can buffer the deleterious con-
sequences of daily stressors on metabolism. These stressors 
can be understood as environmental factors such as psy-
chological stress, pathogens, pollution, allergens, smoking 
or diet, among others, as well as internal factors such as 
inborn alterations or genetically-driven up/down-regulation 
of some metabolic processes. A decade ago, Van Ommen 
et  al. proposed that many diseases arise from the imbalanced 
homeostasis of overarching processes due mainly to four 
stressors; metabolic stress, inflammatory stress, oxidative 
stress and psychological stress (van Ommen et  al. 2009). 
Accordingly, a good health is not the absence of disease 
alone but requires the maintenance and support of these 

overarching processes controlling health status. This concept 
provides a basis for quantifying health.

The second challenge of PN is the current lack of avail-
able biomarkers that describe deviations from homeostatic 
balance, especially biomarkers that would be able to cap-
ture early deviations from a completely optimal health state 
(Elliott et  al. 2007). This is due to the fact that a func-
tional, even suboptimal, homeostasis tends to maintain the 
levels of circulating molecules (i.e. hormones, cytokines, 
metabolites) within a certain range of values (Picó et  al. 
2019; van Ommen et  al. 2008; van Ommen et  al. 2014). 
During the basal (fasting) state, these circulating molecules 
fall outside boundaries of normality only when the homeo-
static capacity of the individual has been exceeded due to 
a physiological insult or, worse, a disease. Therefore, in a 
non-diseased individual quantification of biomarkers that are 
indicative of their health status likely associate with disease 
onset and progression or are, at most, risk indexes. Under 
this scenario, measuring the health status of the individual 
becomes a challenge, because, without extensively stress-
ing the individual, it is not possible to measure how far a 
process is from the point of disruption of homeostasis. In 
other words, capturing alterations in the overarching pro-
cesses is currently a challenge, but it would open up a wide 
array of possibilities for personalization strategies toward an 
improved health status.

It has been proposed that challenging homeostasis 
through different experimental approaches based on punc-
tual application of stressors might be useful to measure the 
buffering capacity of the individual counteracting the effects 
of the given stressor (namely phenotypic flexibility) (Broek 
et  al. 2017; Hoevenaars et  al. 2020; van Ommen et  al. 2008; 
van Ommen et  al. 2014). Deviations of this capacity are 
interpreted as altered homeostatic robustness that can result 
in metabolic derailments in the future, leading to the onset 
of disease (van Ommen et  al. 2009). Nevertheless, translating 
such an approach into a tool for individual characterization 
would involve (a battery of) functional tests that are difficult 
to scale and deploy in current healthcare systems or to apply 
in the context of PN. In particular, it is not realistic for 
participants to perform “stress-tests” at home, because stan-
dardization is required and often specialized, large or expen-
sive equipment or ethical or safety constraints apply for 
sampling. An applicable approach should be relatively simple 
in terms of what the individual has to do and should involve 
limited sampling or even be noninvasive. Such an alternative 
approach may be feasible when based on the idea that the 
overarching processes indicated above are associated to core 
metabolic pathways and physiological processes (core health 
processes). We propose that five core health processes, that 
is, carbohydrate metabolism, lipid metabolism, oxidative 
stress, systemic inflammation, and microbiota status, reca-
pitulate, at least in significant part, the overarching processes 
governing health. A functional characteristic of these core 
health processes is that they can be assessed and quantified 
by means of biomarkers measured by omics technologies, 
mainly metabolomics and proteomics. Therefore, we propose 
that a practical approach could consist of determining mea-
surable alterations of the core health processes under a fixed 
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condition, such as after an overnight fast, assuming that 
this, at least in part, captures the state of the overarching 
processes. In doing this it should be realized that large 
interindividual variation in biomarkers exists (Hageman 
et  al. 2019; Janssen et  al. 2023). Moreover, several studies 
have shown a marked within person variability in the gly-
cemic response (Matthan et  al. 2016; Vega-López et  al. 
2007). To standardize analysis conditions and to reduce the 
person variability, overnight fasting is well-accepted to 
reduce the differences observed in the post-absorptive state, 
acknowledging that the impact of fasting may impact car-
bohydrate metabolism significantly (Meng et  al. 2017). 
Further standardization may be achieved by also applying 
a standardized meal on the evening before sampling and by 
refraining from heavy physical activity at least 24 h before 
sampling (Janssen et  al. 2023). This type of additional stan-
dardization has to be weighed against ease of implementa-
tion and level of adherence.

The main characteristic of the core health processes 
(lipid metabolism, carbohydrate metabolism, systemic 
inflammation, oxidative stress, and microbiome status 
(Hou et  al. 2022) is that each one recapitulates different 
and complementary aspects of metabolism and that they 
can be conceived as relatively independent clusters of 

different metabolites and proteins biomarkers. Some of 
these biomarkers are currently recognized as established 
clinical biomarkers or are in advanced research stages (i.e. 
meta-analyses of clinical studies) as indicators and pre-
dictors of specific conditions or metabolic alterations. 
These emerging and consolidated biomarkers, combined 
by algorithms assisted by data analysis and machine learn-
ing techniques, can provide a measurement of the state 
of each core health process. The main advantage of this 
approach is that each core health process can be captured 
(functionally represented) by a combination of different 
biomarkers, with each of the markers associated with a 
slightly different aspect of metabolism. For example, in 
case of inflammation, blood C-reactive protein (CRP) con-
centration is indicative of systemic inflammatory state, 
whilst levels of monocyte chemoattractant protein-1 
(MCP1) can be understood as an inflammatory response 
of the adipose tissue, at least in an obesogenic background 
(Choe et  al. 2016). Moreover, N-acetylglycosylated pro-
teins, a new type of composite biomarker discussed below, 
offer information related with low grade chronic inflam-
mation (Chiesa et  al. 2022). Thus, in terms of physiology 
and health-to-disease progression, the information pro-
vided by these biomarkers is complementary. Combining 

Figure 1. A lterations of overarching processes that sustain health can be considered as a key feature of the onset of non-communicable, multifactorial dis-
eases (Van Ommen 2009). Core health processes, that is, carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota status, 
are proposed as measurable elements of these overarching processes. The status of core health processes can be assessed by omics profiling, and further 
characterized by integrating genetic markers that are informative of complementary aspects. Information provided by assessment of core health processes 
status can be further used to deliver nutritional recommendations based in dietary patterns with sufficient scientific basis in order to modulate behavior and 
dietary habits affecting overarching processes.
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biomarkers by taking into consideration both the relevance 
for health-to-disease progression and blood concentrations 
might sensitively capture changes in homeostasis of 
inflammation. Therefore, we propose that subtle changes 
in a metabolic process, undetectable when biomarkers are 
considered separately, might become detectable if different 
biomarkers are considered as a single composite biomarker. 
The combination of markers thus provides a health sig-
nature, corresponding to the core health processes. In this, 
different weights should be applied to the markers, to 
allow that important changes in a single, but relevant 
biomarker of the signature is taken into account, even in 
the unlikely situation that other biomarkers of the same 
signature remain unaltered.

Another fundamental characteristic of this design is 
that core health processes can be associated, at least to 
some extent, with dietary advice according to the cur-
rent knowledge on dietary patterns, food bioactive com-
pounds and dietary supplements (Guasch-Ferré and Willett 
2021; Jayedi et  al. 2018; Jiang, Liu, and Li 2021; Milajerdi 
et  al. 2020; Ni et  al. 2022; Papakonstantinou et  al. 2022; 
Shivappa et  al. 2017; Xu et  al. 2021). For example, when 
the core health process lipid metabolism, but not the other 
four health processes carbohydrate metabolism, systemic 
inflammation, oxidative stress or microbiome status, is 
affected, it can be targeted specifically. Moreover, nutri-
tional recommendations might be aligned with current 
regulations on the use of nutrition and health claims. 
Thus, according to European regulation (EC) 1924/2006, 
health claims made on food should not be used unless 
scientific evidence has been approved by expert panels 
(EUR-Lex 2014). Health claims have been grouped in 
six different domains, namely: appetite ratings, weight 
management, and blood glucose concentrations (EFSA 
Panel on Dietetic Products. Nutrition and Allergies (NDA) 
2012a); antioxidants, oxidative damage and cardiovas-
cular health (Turck, Bresson, et  al. 2018); bone, joints, 
skin, and oral health (EFSA Panel on Dietetic Products. 
Nutrition and Allergies (NDA) 2012b); nervous system, 
including psychological functions (EFSA Panel on Dietetic 
Products. Nutrition and Allergies (NDA) 2012c); muscle 
function and physical performance (Turck, Castenmiller, 
et  al. 2018); immune system, the gastrointestinal tract 
and defence against pathogenic microorganisms (EFSA 
Panel on Dietetic Products. Nutrition and Allergies (NDA) 
2016). Therefore, although not fully aligned, the modu-
larity of the PN system proposed herein allows to adapt 
dietary recommendations at different levels to the physi-
ological characteristics of the person.

The last critical point is to define a set of biomarkers 
that could be easily implemented in an affordable PN strat-
egy. Determinants are reproducibility and repeatability, but 
also affordability. In this sense, despite a wide array of ana-
lytical technologies being currently available, only a few 
display the dual principle of technical reliability and afford-
ability. One methodology that is exemplary is proton nuclear 
magnetic resonance (1H-NMR). 1H-NMR is a rapid method 
of analysis, which allows for measurement of many metab-
olites in one (small volume) sample (Hernandez-Baixauli 

et  al. 2020), with easy sample handling and being highly 
reproducible. It is therefore easily scalable. Despite the fact 
that setting up the methodology for a specific metabolite 
can be time consuming and sometimes is expensive due to 
the need for specific standards, once developed, the costs 
for measuring one analyte or hundreds of analytes is similar. 
1H-NMR is currently established in biomedical research for 
large clinical studies and is steadily being adopted by indus-
try for different production purposes (Emwas et  al. 2019). 
In the PN strategy proposed here, selection of 
metabolite-based biomarkers has been restricted to those 
that can be quantified in human biofluids by 1H-NMR and, 
in turn, are of plausible metabolic significance. Blood is not 
only a rich source of metabolites and cells, but it is also a 
rich source of proteins. Omics analysis of proteins, pro-
teomics, is another technology that might benefit from the 
advances in different platforms that allow simultaneous 
quantification of different molecules in a single biological 
sample. Many biomarkers that were traditionally determined 
individually by ELISA can be now simultaneously analyzed 
by flow cytometry or multiplex technologies (Smith and 
Gerszten 2017; Vashist 2021), see also (Correa Rojo et  al. 
2021). Implementation of robust, omics-based analysis of 
circulating proteins will make an even wider array of bio-
markers available for PN strategies, but effective implemen-
tation of such markers will require standardization and 
appropriate quality assurance and control measures (Beger 
et  al. 2019).

Biomarkers for assessing the status of core health 
processes

Determination of the various signatures, informing on the 
status of the previously introduced core health processes (a 
selection of measurable elements telling about the state of 
overarching processes relevant for maintaining an optimal 
health status), requires informative biomarkers. In this sec-
tion, we propose a selection of such biomarkers, with suf-
ficient scientific underpinning, reliability, and affordability. 
Individual biomarkers or sets of biomarkers form the com-
ponents that together inform on a specific (metabolic) 
signature.

Components of the carbohydrate metabolism signature

Insulin resistance has become a worrying condition for a 
considerable part of the population (Freeman and Pennings 
2022). It is one of the features of the metabolic syndrome 
(MetS) and is mainly caused by an altered metabolism of 
carbohydrates. Insulin resistance can often lead to type 2 
Diabetes Mellitus (T2DM), and accounts for approximately 
90% of T2DM cases worldwide, which also increases the 
risk for cardiovascular disease (CVD). Analysis of early 
deviations is possible by considering metabolites involved 
in various aspects of carbohydrate metabolism by metabo-
lomics approaches (Goldberg et  al. 2019; Roberts, Koulman, 
and Griffin 2014; Zhao et  al. 2016). It is plausible to 
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hypothesize that the assessment of novel biomarkers with 
predictive capabilities together with clinically accepted gold 
standard markers, could enable a better characterization of 
metabolic disturbances at early stages of the onset of 
carbohydrate-related diseases.

Glucose, insulin, HOMA-IR, leptin, adiponectin
High circulating glucose levels could be the consequence of 
insulin resistance in peripheral tissues and of pancreatic 
β-cell alterations which, if untreated, will consequently prog-
ress to T2DM (Brereton et  al. 2016), making glucose a key 
marker for the diagnosis of this disease (Rawat et  al. 2019), 
together with glycated hemoglobin (HbA1c) (Use of Glycated 
Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus 
Abbreviated Report of a WHO Consultation 2011) and insu-
lin. In addition, the HOMA-IR index is the most frequently 
used index to calculate insulin resistance state based on 
fasting blood levels of glucose and insulin (van der Aa et  al. 
2017); according to the formula [HOMA-IR= (insulin × glu-
cose)/22.5] (Matthews et  al. 1985). The protein hormones 
leptin and adiponectin have opposing effects on insulin 
sensitivity, subclinical inflammation, endothelial function, 
and atherosclerosis. Elevated levels of leptin contribute to 
the development of insulin resistance and chronic inflam-
mation, whereas adiponectin exerts insulin sensitizing, 
anti-inflammatory and cardioprotective effects (Finucane 
et  al. 2009; López-Jaramillo et  al. 2014).

Hydroxybutyrate and lactate
Acetoacetate, 3-hydroxybutyrate and acetone are ketone bod-
ies, emerging as crucial regulators of metabolic health. 
Ketone bodies are produced in the liver from fatty acids 
and serve as a circulating substrate for cellular energy gen-
eration in situations of glucose deprivation (Philip C Calder 
2017). Ketone bodies have a characteristic smell, which can 
easily be detected in the breath of persons with ketosis and 
ketoacidosis (Newman and Verdin 2014). Levels of 
3-hydroxybutyrate (or β-hydroxybutyrate) increase over three 
orders of magnitude during prolonged fasting (Newman and 
Verdin 2014). Moreover, 3-hydroxybutyrate is described as 
a beneficial metabolite by conferring substantial protection 
against oxidative stress, via inhibition of deacetylases 
(Shimazu et  al. 2013), which may explain, at least partially, 
the therapeutic effects of very low-carbohydrate and keto-
genic diets. However, T2DM patients present increased 
3-hydroxybutyrate levels (Shearer et  al. 2008). Therefore, 
3-hydroxybutyrate is an important marker, especially for 
early metabolic derailment, but it should be interpreted with 
caution.

Pyruvate is the end-product of glycolysis, a cytoplasmic 
ATP-generating process. Pyruvate can enter mitochondria 
and, after being converted to acetyl-CoA, is either oxidized 
(via the citric acid cycle and oxidative phosphorylation) or 
used as a substrate for fatty acid biosynthesis. Alternatively, 
pyruvate can be converted to lactate in the cytoplasm and 
be excreted from the cell. Thus, lactate reflects the balance 
between glycolytic and mitochondrial oxidative energy 

metabolism. Alterations in carbohydrate metabolism are also 
reflected in circulating lactate levels (Würtz et  al. 2012). 
Indeed, altered metabolism in pancreatic β-cells results in 
abnormal accumulation of lactate in urine, blood and cere-
brospinal fluid (Abu Bakar et  al. 2015). Different clinical 
studies assessed lactate levels in patients with an altered 
metabolic profile, demonstrating it was increased in serum 
from patients with higher risk for MetS (Gogna et  al. 2015; 
Pasanta et  al. 2019; Würtz et  al. 2012). Lactic acid plays a 
role in several biochemical processes and is produced in 
the muscles during intense physical activity, being subse-
quently cleared by the liver. Lactate is also an end-product 
of bacterial fermentation. Elevations in lactate have been 
consistently associated with T2DM and obesity. Changes in 
blood lactate during glucose tolerance tests are inversely 
correlated with fasting insulin (Berhane et  al. 2015; Choi 
et  al. 2002; Crawford et  al. 2010; Gonzalez-Franquesa et  al. 
2016; Lovejoy et al. 1992; Rossi et al. 2018; Zhao et al. 2016).

Acylcarnitines
Acylcarnitines are esters of L-carnitine and fatty acids and 
facilitate transport of fatty acids into the mitochondrial 
matrix for β-oxidation, as a major source of energy for 
cellular activities. The function of acylcarnitines in inter-
mediary metabolism is essential to maintain cellular bioen-
ergetics (Reuter and Evans 2012). Disruption in β-oxidation 
results in elevated acylcarnitine concentrations (Koves et  al. 
2005). Although acylcarnitines are measured by liquid chro-
matography/mass spectrometry (LC/MS), and not by 
1H-NMR, these metabolites inform well on lipid oxidation 
and overall substrate (lipid and carbohydrate) catabolism, 
as well as specific lipid and carbohydrate metabolism alter-
ations. The profile of large spectrum of acylcarnitines, usu-
ally together with amino acids, can be accurately determined 
by LC/MS, which is a major attraction of using acylcarni-
tines as biomarker (Saito et  al. 2017). Concentrations of 
some acylcarnitines were associated with MetS, obesity and 
pre-diabetes (Ha et  al. 2012; Huffman et  al. 2009; Mihalik 
et  al. 2010; Zhang et  al. 2014). Although the mechanistic 
link with mitochondrial dysfunction has yet to be fully 
elucidated (Beger et  al. 2018), acylcarnitines have been asso-
ciated to a pre-disease state. Among the different types of 
acylcarnitines, propionylcarnitine is the most promising 
short chain acylcarnitine as a pre-disease biomarker. In 
general, the levels of blood acylcarnitines reflect inadequate 
tissue acylcarnitine metabolism (Schooneman et  al. 2014; 
van der Hoek et  al. 2020), but propionylcarnitine seems to 
be an exception (Lagerwaard et  al. 2021). In some studies 
of short-chain carnitine esters, propionylcarnitine has been 
positively associated with T2DM risk and insulin resistance 
(Bene et  al. 2020). On the other hand, the combination of 
propionylcarnitine with other metabolites of interest, such 
as branched chain amino acids (BCAAs), glutamate/gluta-
mine and methionine, was most robust in differentiating 
metabolically lean from obese patients (Dorcely et  al. 2017; 
Gonzalez-Franquesa et  al. 2016). In another clinical study, 
twenty-four acylcarnitines were measured in more than 1,000 
subjects who were grouped by normal glucose tolerance, 
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isolated impaired fasting glycemia, impaired glucose toler-
ance, or T2DM (Mai et  al. 2013). Serum levels of propi-
onylcarnitine differed significantly among the groups, 
highlighting its relevance as a robust biomarker of early 
stages of carbohydrate metabolism disorders (Mai et  al. 
2013). Thus, determination of propionyl carnitine seems to 
allow a precise view into the early development of metabolic 
diseases.

Glutamine and glutamate
Glutamine plays a crucial role in various cellular processes, 
such as energy balance, apoptosis, and cell proliferation. Its 
deprivation can activate fatty acid β-oxidation (Carlessi et  al. 
2019; Long et  al. 2016) with a strong inverse association 
with the risk to develop T2DM (Abdul Ghani et  al. 2019; 
Marta Guasch-Ferré et  al. 2016). Moreover, meta-analysis 
of nutritional interventions conclude that glutamine supple-
mentation significantly ameliorates elevated fasting plasma 
glucose and CRP levels (Hasani et  al. 2021). Glutamine is 
part of the glutamate-glutamine cycle, and glutamate was 
reported to be directly related to disruption of glucose 
metabolism (Tulipani, Palau-Rodriguez, Miñarro Alonso, 
et  al. 2016). Glutamate is produced in the first step of BCAA 
catabolism (Bhagavan and Ha 2011). Different authors have 
proposed glutamate as a stimulus for glucagon release, 
increasing transamination of pyruvate to alanine, which 
strongly promotes gluconeogenesis in obesity (Sookoian and 
Pirola 2012). Glutamate levels varied depending on weight, 
being higher in young patients with obesity than those with-
out (Htun et  al. 2021). Furthermore, circulating glutamate 
was positively related to visceral obesity and development 
of MetS (Araujo et  al. 2019; Maltais-Payette et  al. 2018). It 
has been proposed that glutamate is elevated in patients 
with obesity due to an increased need for α-ketoglutarate 
in the citric acid cycle to compensate for decreased glucose 
uptake due to insulin resistance (Tulipani, Palau-Rodriguez, 
Minarro Alonso, et  al. 2016).

Branched chain amino acids and aromatic amino acids
Leucine, isoleucine, and valine are branched chain amino 
acids (BCAAs). High levels of circulating BCAA have been 
associated with increased T2DM risk and insulin resistance, 
and plasma levels are a predictor of T2DM risk (Bloomgarden 
2018; Dorcely et  al. 2017; Gannon, Schnuck, and Vaughan 
2018; C. Jang et  al. 2016; Siomkajło and Daroszewski 2019). 
Circulating levels of BCAAs are considered in metabolic 
assessment, as amino acids participate in the regulation of 
glucose, lipid, and protein synthesis, among other functions. 
Particularly, altered levels of BCAAs are associated with 
disruption of carbohydrate metabolism, informing about 
poor glycaemic control in healthy adults and in patients 
with pre-diabetes, T2DM, and gestational diabetes mellitus 
(‘t Hart et  al. 2018; Chen et  al. 2016; Gogna et  al. 2015; 
Jiang et  al. 2020; Würtz et  al. 2012). In addition, phenylal-
anine and tyrosine are aromatic amino acids (AAAs). High 
levels of these amino acids have been significantly associated 
with insulin resistance and increased T2DM. Fasting con-
centrations of AAAs are already elevated very early in the 

natural history of T2DM (Dorcely et  al. 2017; 
Gonzalez-Franquesa et  al. 2016; Marta Guasch-Ferré et  al. 
2016; Newgard 2017)

Uric acid
Uric acid has a key role in glucose metabolism. Not sur-
prisingly, circulating uric acid levels are positively associated 
with incidence of T2DM (Jia et  al. 2013; Kodama et  al. 
2009). High levels of this biomarker are independent of 
other established risk factors, especially MetS components 
(Barragan et  al. 2019; Cox et  al. 2012; Lv et  al. 2013). 
Furthermore, uric acid levels are also increased by fructose 
ingestion, which could be useful as a predictor of further 
metabolic disorders, since Western diets can be fructose-rich 
(Johnson et  al. 2018).

Components of the lipid metabolism signature

Dyslipidemia is one of the metabolic disruptions with high 
prevalence and is a feature of MetS and a CVD risk factor. 
Dyslipidemia is currently assessed by plasma lipid profile: 
total cholesterol (TC), low-density lipoprotein (LDL)-
cholesterol, non-HDL-cholesterol, high-density lipoprotein 
(HDL)-cholesterol, and triglycerides (TGs). Elevated fasting 
plasma TGs, high LDL-cholesterol and low HDL-cholesterol 
are risk factors for CVD (Weverling-Rijnsburger et  al. 2003). 
In addition, some lipoproteins, such as HDL, have important 
roles in the acute phase response, due their anti-inflammatory 
properties reducing cell membrane free cholesterol and lipid 
raft content, thus attenuating pro-inflammatory signaling 
pathways (Jahangiri 2010). Similarly Lipoprotein A, which 
can carry oxidized lipids, has been associated with cardio-
vascular disease and well as inflammation (Blalock et  al. 
2023). In obesity, enhanced lipolysis in adipose tissue, ele-
vated plasma free fatty acid (FFA) levels and high levels of 
lipid metabolites in non-adipose tissues act as metabolic 
mediators of insulin resistance and inflammation, which, in 
turn induce altered lipoprotein metabolism in the liver 
(Longo et  al. 2019); the production of very low-density 
lipoproteins (VLDLs) is increased and their catabolism 
diminished, while the catabolism of HDL is increased lead-
ing to low HDL-cholesterol levels. Increased accumulation 
of fat (TGs but also other lipid metabolites) in the liver is 
associated with increased lipotoxicity and represents the 
primary liver insult in the pathogenesis of nonalcoholic fatty 
liver disease (NAFLD) and steatosis (Klop, Elte, and Cabezas 
2013; Perla et  al. 2017; Suárez et  al. 2017).

Fatty acids
Fatty acids (FAs) are a family of molecules with a wide 
variety of functions and associations with health and disease. 
Although extensive research is still needed to fully charac-
terize functions and health effects of different FAs, current 
knowledge allows to design dietary recommendations based 
on the FA signature, targeting different aspects of health to 
disease progression. In this sense, polyunsaturated fatty acids 
(PUFAs) stand out. PUFAs are more beneficial than 
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saturated fatty acids (SFAs), given that their consumption 
generally promotes antioxidant and anti-inflammatory 
responses (Djuricic and Calder 2021). N-3 PUFAs include 
alpha linolenic acid, eicosapentaenoic acid (EPA), docosa-
hexaenoic acid (DHA) and their derivatives, while n-6 
PUFAs include linoleic acid (LA), arachidonic acid (AA), 
and their derivatives. Dietary PUFAs have beneficial effects 
on human health. For example, n-3 PUFAs consumption 
have been shown to be inversely correlated with coronary 
heart disease incidence (Philip C Calder 2017; Hammad, 
Pu, and Jones 2016; Zock et  al. 2016). DHA is a n-3 PUFA 
found in oily fish and fish oil supplements. It is capable of 
partly inhibiting many aspects of inflammation, including 
leucocyte chemotaxis, adhesion molecule expression and 
leucocyte–endothelial adhesive interactions, production of 
eicosanoids like prostaglandins and leukotrienes from the 
n-6 fatty acid AA, as well as production of pro-inflammatory 
cytokines (Philip C Calder 2017). In contrast to the overall 
beneficial effects of PUFAs, increased SFAs are detected in 
the circulation of patients with diabetes, compared to 
non-diabetic controls, underpinning the close relationship 
between lipid and carbohydrate metabolism (Gogna et  al. 
2015; Pasanta et  al. 2019). In agreement with a large body 
of evidence, the American Heart Association claimed in 
2017 that current evidence supports that replacement of 
saturated fats by polyunsaturated vegetable oils reduces CVD 
incidence by a 30% and that replacement by polyunsaturated 
and monounsaturated fats decreases all-cause mortality while 
replacement by carbohydrates, mostly refined, does not have 
an impact (Sacks et  al. 2017).

As for all fatty acids, monounsaturated fatty acids 
(MUFAs) are used as substrates for the synthesis of TGs, 
cholesteryl esters and membrane phospholipids. The satu-
rated to monounsaturated fatty acid ratio affects membrane 
phospholipid composition and thereby its fluidity, and alter-
ations in this ratio have been implicated in a variety of 
disease states including CVD, obesity, and T2DM (Miyazaki 
and Ntambi 2003). Numerous beneficial physiological effects 
have been attributed to MUFAs, including protection from 
obesity, T2DM, cancer, and atherosclerosis (Hammad, Pu, 
and Jones 2016; Zock et  al. 2016). Oleic acid is the pre-
dominant dietary MUFA, accounting for up to 92% of all 
dietary MUFAs. Dietary MUFA consumption has been sug-
gested to result in a 20% reduction in the risk of cardio-
vascular events, as evidenced by a large body of prospective 
cohort studies (Hammad, Pu, and Jones 2016).

In addition to unsaturation level, FA chain length is also 
an important functional characteristic of FAs. Oleic acid 
with an aliphatic tail of 18 carbons belongs to the long 
chain fatty acids (LCFAs; C13-C21) as does EPA (C20), 
while DHA (C22) is categorized as a very long chain fatty 
acid (VLCFA; C22 or more). VLCFAs have important struc-
tural and functional roles, especially as components of 
membrane lipids (Kihara 2012). High levels of saturated 
VLCFAs in enterocytes have been associated with athero-
genic lipid profiles in MetS (Matsumori et  al. 2013). On 
the other hand, high circulating VLCFA levels are especially 
markers for peroxisomal disorders (Stradomska et  al. 2020), 
since VLCFAs require peroxisomal degradation to LCFAs 

before they can be oxidized in mitochondria. Medium chain 
fatty acids (MCFAs; C6-C12) modulate mitochondrial func-
tion and are thought to improve insulin resistance (Augustin 
et  al. 2018). Of note, high levels of circulating MCFAs, 
especially C9, also have been associated with normoalbu-
minuria in T1DM (Moon et  al. 2021), making circulating 
MCFAs relevant targets for further exploration as biomark-
ers. Dietary short chain fatty acids (SCFAs; C2-C5) are 
mostly released in the stomach and, via the portal vein, 
directly reach the liver, with preclinical indications for ben-
eficial effects against fatty liver (Gart et  al. 2021). SCFAs 
are also major products of microbial fermentation of fibers 
in the colon. Indeed, butyrate (C4) is the unique SCFA 
used as an important energy source for colonocytes sup-
porting intestinal barrier integrity. Butyrate may also induce 
oxidation of pyruvate (Bekebrede et  al. 2021), serve signal-
ing functions and modulate metabolic tissue function, 
potentially improving cardiometabolic health (Canfora, 
Jocken, and Blaak 2015). Butyrate supplementation was 
shown to improve nonalcoholic steato-hepathosis in a trans-
lational model (Gart et  al. 2021; Mayorga-Ramos et  al. 
2022). However, the use of SCFAs as biomakers is compli-
cated by their high volatility.

Interestingly, when assessed by 1H-NMR, FA signals are 
influenced by their carbon structure and by the nature of 
bonds, allowing to differentiate between saturated, mono- and 
the various polyunsaturated fatty acids. In addition, the 
1H-NMR has the potential to detect circulating fatty acids 
integrated into different structures such as triacylglycerides 
and lipoproteins (Khakimov et  al. 2022). Within PUFAs, 
1H-NMR allows to differentiate DHA and EPA from other 
PUFAs. Together with clinical markers of lipid metabolism, 
blood FA composition stands out as a key element when 
delivering dietary advice. The interplay between different FA 
families and variety of effects on health, both positive and 
negative, opens the door to a wide array of possibilities in PN.

Lysophospholipids and choline
Lysophospholipid metabolism is impaired in obesity, which 
has been associated with significantly lower concentrations of 
most species of lysophosphatidylcholine (LPC) (Del Bas et  al. 
2016). LPCs are signaling molecules produced from phospho-
lipid hydrolysis. Circulating LPCs have also been linked to 
inflammation, although whether they exert pro- or 
anti-inflammatory actions is still under debate. The signaling 
action of lysophospholipids is related to inflammation, insulin 
production and insulin sensitivity through interaction with G 
protein-coupled receptors. Thereby, lysophospholipids may be 
key molecules in the onset and progression of obesity related 
disorders such as nonalcoholic fatty liver disease (NAFLD), 
steatohepatitis, T2DM and MetS (Morze et al. 2022; Surendran 
et  al. 2021; Willis et  al. 2021). Individuals with elevated con-
centrations of circulating choline have a higher risk for CVD 
compared to those with low concentrations (Heianza et  al. 
2017). Additionally, an alteration of choline metabolism has 
been associated with obesity (Palau-Rodriguez et  al. 2015). 
Choline is involved in the mobilization of fat from liver, being 
negatively associated with hepatic fat accumulation. Choline 
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levels were diminished in serum or urine of patients with 
obesity (Du et  al. 2017; Htun et  al. 2021).

Components of oxidative stress signature

Oxidative stress results from an imbalance between oxidant 
production and antioxidant defenses, which is translated 
into accumulation of reactive oxygen species (ROS) and 
related damage, which is thought to play a key role in the 
development of a range of metabolic disorders such as 
obesity, insulin resistance, T2DM, hepatic steatosis and 
CVD (Le Lay et  al. 2014).

8-iso-PGF2α, 8-OHdG and LDLox
F2-isoprostane 8-iso-prostaglandin F2α (8-iso-PGF2α) is a 
product of free radical-mediated oxidation of the n-6 PUFA 
arachidonic acid, and is altered in TD2M, hypercholester-
olemia, hypertension and MetS (Il’yasova, Scarbrough, and 
Spasojevic 2012; Milne, Musiek, and Morrow 2005). Urinary 
8-iso-PGF2α is considered as a gold standard marker of 
oxidative stress by regulatory authorities such as EFSA, 
although quantification is suggested under very specific con-
ditions, such as in 24 hour urine and analysis by chromato-
graphic techniques coupled to mass spectrometry (Djuricic 
and Calder 2021). Together with isoprostanes, 
8-hydroxy-2′-deoxyguanosine (8-OHdG) is a widely-used 
biomarker of oxidative stress, providing information about 
DNA damage. It is altered in TD2M, hypertension and in 
patients with CVD (Di Minno et  al. 2016; Il’yasova, 
Scarbrough, and Spasojevic 2012).

Regarding the diagnostic value of oxidative stress bio-
markers, 8-iso-PGF2α and 8-OHdG, together with oxidized 
LDL (LDLox), might be considered as the more robust bio-
markers based on the large amount of evidence collected 
in meta-analyses and clinical studies (Di Minno et  al. 2016; 
Kim et  al. 2012; Kroese and Scheffer 2014; van’t Erve 2018). 
To note, whilst 8-iso-PGF2α captures oxidative events on 
lipidic molecules, 8-OHdG is a marker for nucleic acid 
damage and LDLox is related with the oxidation of apoli-
poproteins embedded in lipoprotein particles. Therefore, 
these three biomarkers are indicators of complementary 
processes leading to physiological alterations. This is espe-
cially relevant for capturing different aspects of the same 
core health process as a single composite biomarker, since 
current knowledge on nutrition does not allow yet to deliver 
dietary recommendations based on specific oxidation prod-
ucts. Oxidized lipids of red blood cell membranes are 
regarded as diet amendable markers of oxidative stress 
(Jauregibeitia et  al. 2020; Jauregibeitia et  al. 2021) and indi-
vidualized dietary targeting strategies have been proposed 
(Jauregibeitia et  al. 2020). However, their analysis requires 
dedicated analysis approaches (Ferreri et  al. 2016).

Components of gut microbiota metabolic signature

The human gut microbiota is a large and complex commu-
nity with more than a thousand species that contribute to 

human metabolism by supplementing enzymes that are not 
encoded by the human genome (Rowland et  al. 2018). These 
enzymatic capacities are critical for metabolism of several 
dietary components, taking part in the anabolism of essential 
molecules (i.e. vitamins) and in the catabolism of poorly 
digestible diet components (i.e. polysaccharides and poly-
phenols) (Rowland et  al. 2018). Human gut dysbiosis can 
alter the metabolite balance that is in part provided by 
microbial fermentation of dietary components, which may 
have an important role in the etiology of various metabolic 
diseases. To date, knowledge on the link between microbiota 
and metabolic diseases is still scarce, and using gut microbial 
populations as a marker of cardiometabolic diseases is not 
yet accepted. In part this may be because the attention has 
been focused on the health effects of the presence, absence 
and balance between individual bacterial species. The newest 
sequencing capabilities allow the characterization of the 
microbial community as a whole (metagenomics), without 
culturing, and are thought to provide more solid 
microbiota-health relationships (MacCaferri, Biagi, and 
Brigidi 2011). Nevertheless, already now some circulating 
and urinary metabolites associated to key metabolic actions 
are known to be modulated by both microbiota activity and 
host endogenous processes. Imbalances in these metabolites 
can be interpreted as the result of a dual action driven by 
microbiota and host metabolism. Therefore, interventions 
addressed to improve microbiota status (i.e. prebiotic and 
probiotic-based interventions) might have a positive impact 
in the initial step of the imbalance (Simó and García-Cañas 
2020). In this scenario, assessment of different metabolites 
representative of this microbiota-host interaction might pro-
vide a surrogate indicator of general microbiota status.

TMAO, TMA, DMA, choline, and betaine
Dif ferent  meta-analyses  conclude that  blood 
trimethylamine-N-oxide (TMAO) is associated with devel-
opment of different NCDs (Dehghan et  al. 2020; Ge et  al. 
2020; Guasti et  al. 2021; D. Li et  al. 2022; Yao et  al. 2020; 
Zeng et  al. 2021). This evidence is supported by mechanistic 
studies showing that TMAO has a dual origin in microbiota 
and host metabolism (Loo et  al. 2022). The precursor of 
TMAO, trimethylamine (TMA), is produced from dietary 
choline, carnitine, betaine, ergothionase and γ-butyrobetaine 
by enteric bacteria and further oxidized by hepatic flavin 
containing monooxigenases (FMMO) and commensal bac-
teria to TMAO (Djuricic and Calder 2021). In turn, gut 
bacteria can utilize TMAO to produce, among other metab-
olites, TMA and dimethylamine (DMA) (Loo et  al. 2022) 
which can be detected by 1H-NMR in human urine (Laíns 
et  al. 2019). Despite the metabolic link between these bio-
markers, a recent meta-analysis did not support an associ-
ation of the precursors choline and betaine with CVD 
(Meyer and Shea 2017). Nevertheless, simultaneous assess-
ment of these metabolites by 1H-NMR allows to capture 
changes in different elements of this complex network of 
interactions to inform decisions about dietary changes 
intended to modulate either the microbiota or intake of 
TMAO precursors, as has been proposed elsewhere (Simó 
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and García-Cañas 2020). In any case, it is important to not 
only measure metabolites, but also determine the dietary 
habits of the subjects, because some fish and seafood contain 
high levels of TMAO, and may induce a transient elevation 
in TMAO levels in some individuals (Wang et  al. 2022) 
which might not link to CVD.

Other microbiota-related biomarkers
Evidence supports the role of bacterial lipopolysaccharide 
(LPS) as a signaling molecule that triggers different systemic 
inflammatory responses after translocation from gut lumen 
to the circulation through the intestinal epithelium (Mohammad 
and Thiemermann 2020). Increased LPS translocation has 
been described in gut diseases, but also as a response of 
microbiota to certain components of diet, such as saturated 
fat, in both normal-weight and overweight individuals 
(Erlanson-Albertsson and Stenkula 2021). Since the mecha-
nisms underlying increased microbiota-derived LPS in blood 
are well known, quantification of LPS or its surrogate 
LPS-binding protein (LBP) has been extensively used as a 
marker of microbiota-derived endotoxemia (Marti et al. 2021). 
Nevertheless, the role of endotoxemia as a trigger of metabolic 
diseases is still under debate, as well as the cause-effect rela-
tionship between circulating LPS and disease progression 
(Mohammad and Thiemermann 2021). In this scenario, using 
these molecules as biomarkers of health to metabolic disease 
progression must be taken with caution. Nevertheless, inter-
ventions targeting gut health in general, and microbiota sta-
bilization in particular, have been shown to decrease LPS 
translocation into blood stream (Beam, Clinger, and Hao 2021; 
Mohammad and Thiemermann 2021). Therefore, quantifica-
tion of circulating LPS or LBP stands out as key biomarker 
of microbiota performance when designing dietary interven-
tions targeting gut and microbiome health optimization.

SCFAs are major microbiota-derived fermentation metab-
olites, as indicated above. During the last years, different 
association and preclinical mechanistic studies have high-
lighted potential roles of SCFAs in different human metabolic 
processes ranging from inflammation to modulation of the 
gut-brain axis. Nevertheless, although associations between 
SFCAs and obesity have been found in different human 
studies, conclusive proof of health effects is still lacking. 
Moreover, the microbiota-dependent origin of these metab-
olites restricts most current studies to measurements of 
SCFAs in fecal samples. In fact, acetate, propionate and butyr-
ate absorption has been estimated in 36%, 9%, and 2%, 
respectively, and they are mainly excreted via the lungs after 
oxidation whilst urinary concentration represents less than 
the 0.05% of total absorbed SCFAs (Beam, Clinger, and Hao 
2021). Thus, although quantification of these metabolites 
might represent a source of invaluable information about gut 
microbiota status, blood or urine are not adequate samples.

Low grade inflammation and its signature components

Inflammation presents the two sides of a coin; it is critical 
in the response against infection and tissue damage, but a 
chronic high or low-grade inflammatory state is a pathologic 

characteristic of a wide range of chronic conditions 
(Minihane et  al. 2015). The chronic low-grade inflammatory 
state has been proposed as a risk factor, characteristic of 
the early stages of development for a number of chronic 
diseases, such as MetS, NAFLD, T2DM, and CVD (Minihane 
et  al. 2015). Although causal links between inflammation 
and metabolic alterations are supported by a large body of 
evidence from both preclinical and human studies, the com-
plexity of the immune/inflammatory system together with 
a wide diversity of environmental and endogenous inflam-
matory triggers (i.e. diet, gut microbiota, tissue microenvi-
ronment among others) represent an obstacle to fully 
understand the mechanisms underlying the different strong 
associations found so far (Wu and Ballantyne 2020). 
Nevertheless, different meta-analyses of observational and 
intervention studies support a key role of diet in modulating 
inflammatory markers (Aleksandrova, Koelman, and 
Rodrigues 2021; Custodero et  al. 2018; Motamedi et  al. 
2022; Mukherjee et  al. 2022), supporting the idea that assess-
ment of inflammation might be useful for designing more 
personalized dietary interventions.

CCL2 and ICAM1 as biomarkers of tissue-mediated 
inflammation
Metabolic inflammation can be understood as the overall 
result of different insults of different origins. Adipose tissue 
has been proposed as a relevant source of inflammatory 
molecules. Thus, in obesity, adipose tissue expansion is 
accompanied by increased release of C-C motif chemokine 
ligand 2 (CCL2, also known as MCP1). CCL2 is a potent 
chemoattractant triggering the recruitment of monocytes/
macrophages from the blood stream into the tissue 
(Gschwandtner, Derler, and Midwood 2019). Adipose tissue 
from obese animals or humans is characterized by an 
increased number of activated macrophages (in a 
pro-inflammatory state). Once activated, these macrophages 
secrete cytokines such as tumor necrosis factor alpha (TNF) 
and interleukin 6 (IL6), which act as signaling molecules 
inducing different inflammatory and metabolic responses at 
different levels and in different tissues. Assessment of these 
mediators, especially CCL2, in blood might provide infor-
mation about inflammatory status related with adipose tissue 
function (Gschwandtner, Derler, and Midwood 2019).

Intercellular adhesion molecule 1 (ICAM1) is a molecule 
continuously present in low concentrations in the membranes 
of leukocytes and endothelial cells. Upon cytokine (i.e. IL1 and 
TNF) stimulation, the concentrations greatly increase. It is 
mainly expressed in vascular endothelium, macrophages and 
lymphocytes, and promotes vascular adhesion and activation of 
inflammatory cells (Sprague and Khalil 2009). Thus, ICAM1 is 
currently an accepted biomarker of endothelial function. 
Different studies have shown dose-dependent association of 
ICAM1 with T2DM (Qiu et  al. 2019), and different nutritional 
interventions have demonstrated beneficial effects on circulating 
ICAM1 levels concomitant with other inflammatory markers 
(Schwingshackl and Hoffmann 2014).

In the view of this evidence, both CCL2 and ICAM1 could 
be proposed as biomarkers of inflammation. Nevertheless, 
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both are recapitulating inflammatory events impacting dif-
ferent specific tissues and combining both might allow to 
capture different but complementary deviations.

Biomarkers of systemic inflammation; CRP, interleukins 
and GlycA and GlycB
Among the different biomarkers of inflammation, CRP (hsCRP 
if assessed using highly sensitive technologies) stands out as 
a gold standard with a demonstrated high association with 
CVD (Ridker et al. 2003). Nevertheless, other biomarkers have 
been proposed for capturing systemic inflammation, such as 
IL6 and TNF as previously discussed, and interleukin 10 
(IL10). IL10 is especially interesting due to its key role in 
inhibiting proinflammatory responses that might harm tissues 
during response to pathogens (Ouyang and O’Garra 2019). 
From the metabolic inflammation perspective, IL10 is signifi-
cantly decreased in obesity, insulin resistance and inflamma-
tory bowel disease (Charles et  al. 2011; Leon-Cabrera et  al. 
2015; Meng, Liang, and Guo 2019), being a relevant candidate 
to be included as an indicator of inflammatory status in dif-
ferent metabolic conditions due to its master regulatory role. 
However, it is important to remember that infectious processes 
or acute injury can increase the levels of inflammation bio-
markers many times more than the increases observed due 
to metabolic derangements, with the CRP response as prime 
example (Araújo et  al. 2022; P C Calder et  al. 2013).

GlycA and Glyc B, referring to glycosylated serum pro-
teins, are novel biomarkers related to systemic inflammation. 
Contrary to other biomarkers, GlycA and GlycB are not 
molecules, but signals that can be assessed only by 1H-NMR 
and correspond to N-acetyl methyl group protons within 
N-acetyl glucosamine residues (for GlycA) or sialic acid (for 
GlycB) on the glycan portions of acute-phase proteins such 
as α1-acid glycoprotein, haptoglobin, α1-antitrypsin and 
α1-antichymotrypsin (Connelly et  al. 2017). Therefore, both 
GlycA and GlycB can be proposed as a composite biomarker. 
Although blood levels of GlycA are associated to concentra-
tions of inflammatory biomarkers such as IL6, TNF and CRP, 
among others, it has been proposed as a more sensitive bio-
marker than CRP when assessing inflammation in the context 
of metabolic diseases such as CVD or T2DM (Connelly et  al. 
2016; Connelly et  al. 2017; McGarrah et  al. 2017).

For optimal performance, combinations of different bio-
markers related to systemic inflammation as a composite 
biomarker have been proposed (Hopkins, Flanders, and 
Bostick 2012; Morrison et  al. 2016; Nagrani et  al. 2022). 
This allows to better capture overall deviations caused by 
slight alterations in complementary processes. Using this 
approach with the above proposed biomarkers might provide 
an accurate overview of the inflammatory state of the indi-
vidual to better adapt dietary recommendations.

Integrating metabolomics and proteomics biomarkers 
as signatures of core health processes

The approach to PN presented herein is based on the inte-
gration of metabolic biomarkers to obtain information on 
the state of core health processes to describe the metabolic 

state of the individual. The results can then be used as inputs 
for dietary advice. Several approaches can be undertaken for 
integrating metabolomics, and proteomic markers by means 
of data analysis technologies and artificial intelligence.

A plausible approach is integrating classical clinical bio-
markers with new metabolic biomarkers. In order to incor-
porate the latest scientific insights and developments, 
incorporation of biomarkers that have not yet been widely 
accepted and/or lack established thresholds is a key feature 
if they may contribute to differentiate between health and 
disease or altered metabolic states. This implies that an indi-
vidual is not (and cannot) be classified in absolute or binary 
terms of presence or absence of a phenotype. Therefore, a 
characterization of individuals with a continuous scoring 
system needs to be applied. This might be done by defining 
the overall distribution of a biomarker in the general pop-
ulation in order to, subsequently, determine whether an 
individual falls in higher, middle or lower ranges. Since 
associations between a given biomarker and altered health 
states are known, such an approach provides initial infor-
mation of whether that biomarker points to a higher risk of 
developing a given phenotype. This approach is inherently 
imprecise and involves the need for defining the values for 
the biomarker in a wide population representative of as many 
different health states as possible, which is a significant effort 
and an expensive undertaking. Nevertheless, nowadays the 
number of large cohorts in observational studies is steadily 
growing and currently it is possible to access sufficient data 
or samples in a limited number of health conditions.

The combination of different biomarkers involves an 
approach based on algorithms able to calculate quantitative 
values for the five core health processes. This approach 
has been proposed before, for assessing systemic inflam-
mation or to develop a continuous scoring system for 
MetS (Hopkins, Flanders, and Bostick 2012; Jang et  al. 
2021; Klisic et  al. 2021; Morrison et  al. 2016; Nagrani 
et  al. 2022; Soldatovic et  al. 2016). In our case, core health 
processes are represented by five clusters of biomarkers 
that might be combined by five different algorithms. To 
develop these algorithms, two relevant points should be 
considered. First, objective variables of biomarkers such 
as concentration in biofluids can be combined in the algo-
rithm as a sum of z-scores. Second, the importance of 
each biomarker relative to others in the same cluster 
should be taken into consideration when designing the 
algorithm. For example, when considering the carbohy-
drates core health process, glucose should have a higher 
weight than BCAAs, since glucose is considered the main 
biomarker for dysfunctional carbohydrate metabolism. For 
other biomarkers though, the differences in importance 
may not be readily evident. The contribution, or weight, 
of each biomarker to the overall outcome of each core 
health process signature can be quantified by a data-driven 
approach. In this approach, different data analysis tools, 
including artificial intelligence-based tools, can be used 
to calculate the weight of each biomarker. Thus, different 
gold standards can be defined for each core health process 
signature. For example, to analyze the importance of bio-
markers when defining the signature of the carbohydrates 
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core health process, the presence of T2DM might be used 
as the independent variable to be described by all bio-
markers in this signature, except glucose. Subsequently, 
different machine learning methods, including regression 
(Partial Least-Squares Regression (PLSR) or weighted 
quantile sum (WQS) and classification algorithms (Support 
Vector Machine (SVM), Random Forest (RF) or condi-
tional independence maps), can be applied to define the 
contribution of each biomarker to the classification, pro-
viding a quantitative measure of the importance in pre-
diction, which can be further implemented in the final 
algorithms as the weight. This approach can be used either 
with different gold-standards or different target pheno-
types, such as obesity or MetS, among others. As a result, 
a value can be defined for the weight of each biomarker 
depending on the intended target.

Ultimately, every individual can be represented by a 
metabolic score for each of the five core health processes 
as illustrated in Equation (1). Again, the scores for each 
signature does not provide a measure of disease and should 
not be used for diagnostic or diagnosis purposes. Instead, 
the scores represent the deviation from the average, or 
from a healthy state if sufficient data are available. Higher 
scores indicate a higher deviation from the average. The 
deviation from the average in the unhealthy direction can 
then be used to provide dietary advice for health improve-
ment. Nutritional recommendations can be provided 
accordingly on an individual basis, with each core health 
process (or the one that deviates most, taking the other 
processes into account) targeted toward a healthier or 
healthy state.
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where Nc is the total number of biomarkers included in 
cluster c.

An advantage of such a scoring system is that its modu-
larity allows for adaptation of clusters and their interpretation 
to specific needs. A limitation of the scoring system is that 
reference values or thresholds to differentiate between health 
and disease cannot be set. This would require a well char-
acterized representative population of sufficient size, including 
a sufficient number of healthy individuals and individuals 
deviating toward disease in the different directions of the 
core health processes.

Genetic markers to accommodate the susceptibility 
of the individual

Susceptibility to disease, but as well to nutritional interven-
tions for health improvement, is also dependent on the 

genetics of the individual. In the previous section, the use 
of metabolomics and proteomics biomarkers to assess the 
individual’s core health processes is described. In this sec-
tion, we add a genetic layer to enhance effectiveness, both 
to improve the typing of the individual and to improve the 
potential effectiveness of the resulting dietary advice. PN 
based on genetic background to modulate the impact of 
diet is not new and has been employed for decades 
(Peña-Romero et  al. 2018). Based on genetic variation, spe-
cific recommendations can be defined, which is efficiently 
used for people suffering from celiac disease, lactose intol-
erance or phenylketonuria, among a number of well char-
acterized metabolic diseases that have a clear genetic 
component (Chaudhary et  al. 2021). Completion of the 1000 
Genomes Project has provided a comprehensive catalogue 
of human genetic variations, as diverse individuals from 
multiple populations have been analyzed (https://www.
internationalgenome.org). Since then, several follow up stud-
ies have contributed to further delineation of the role of 
genetic variations in human metabolism as well as their 
interaction with nutrients and other external factors that 
modulate human health. Considering that metabolic diseases 
have a multifactorial origin and are the result of complex 
interactions among many genes and external cues, including 
diet and lifestyle (Chen, Michalak, and Agellon 2018), only 
a holistic approach is able to bring the management of these 
diseases forward. Genotype constitutes one category of infor-
mation that can be introduced into personalized dietary 
advice and it should be integrated with other relevant infor-
mation such as sex, age, phenotypic variables, health status, 
and metabolic biomarkers. The integration of genetic infor-
mation with metabolic biomarkers provides an additional 
layer of personalization. This section reviews genetic markers 
that can be incorporated in the individual’s health profile 
as a susceptibility layer. Methods for integration of genetic 
information with metabolic biomarkers is discussed in sec-
tion “Practical implementation of the personalized nutrition 
framework: the PREVENTOMICS project as a use case.”

Genetic animal models provide the basis to mechanisti-
cally explain the role of specific genes in the etiology of 
chronic diseases (Suleiman, Mohamed, and Bakar 2020). 
Such models help to dissect specific aspects of multifaceted 
conditions, such as obesity, especially in combination with 
human nutrigenetic studies. Effectiveness of dietary treat-
ment and metabolic disease prevention strategies focusing 
on counteracting specific metabolic disturbances, like those 
associated with low-grade inflammation, oxidative stress and 
imbalance or disturbances of lipid or carbohydrate metab-
olism and even the microbiome are likely dependent on 
interindividual differences in genetic makeup. The degree 
of response to treatment may be different in individuals as 
may be their response to diet, food and nutrients. 
Nutrigenetics is therefore and indispensable element in the 
implementation of PN as a strategy for disease prevention 
and to enhance long-lasting and sustainable health (Mullins 
et  al. 2020). As mentioned above, evidence-based guidelines 
are likely most effective when the genetic makeup is included 
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in stratification of individuals, allowing improved prediction 
of the best diets for each individual. It should be mentioned 
that scientific advances in the field of nutrition have revealed 
that epigenetic markers associated with nutrients can mod-
ulate gene expression and are involved with health as well 
as disease (Li et  al. 2019; Lorenzo et  al. 2022). However, 
epigenetic regulation has not been included in this review, 
because changes may reflect the current metabolic situation, 
but epigenetic marks can also be generated long before the 
time of analysis, even in previous generations (Portha 
et  al. 2014).

Genetic markers for overarching process-based dietary 
recommendations

Progress in DNA sequencing and related techniques allowing 
the simultaneous analyses of large numbers of genetic vari-
ants, has permitted the characterization of genetic biomark-
ers as a tool to assess predisposition to health/metabolic 
disease (Loos and Yeo 2022; Robinette et  al. 2012). 
Specifically, genome-wide association studies (GWAS) in 
large populations have documented the association of phe-
notypic traits with common genetic variations – generally, 
single nucleotide polymorphisms (SNPs) (Robinette et  al. 
2012). This, coupled with the increasing level of scientific 
understanding of gene-nutrient associations and their influ-
ence on metabolism, supports the scope of genetic assess-
ment of metabolic health with greater precision and increases 
the potential for its application in individuals (Floris et  al. 
2020). Currently, specific genetic information can be used 
to cover three potential domains of application. That is, to 
assess the influence of the genetic makeup of the individual 
on its health status; to characterize the impact of individual’s 
genetics on metabolic biomarkers; and to provide guidelines 
for a more PN in view of genetically determined dietary 
requirement and response differences.

Assessment of metabolic health through genetic 
predisposition scores
GWAS and large association studies have made it possible 
to identify several loci related to the predisposition to 
develop metabolic disease associated alterations. This is of 
particular relevance in complex diseases that may be defined 
by up to hundreds of polymorphisms, each of them having 
a small effect. This has led the development of polygenic 
risk scores, an approach aiming to aggregate the main loci 
involved in predicting the individual’s phenotype. This is a 
tool that contributes to stratify the population by aggregating 
the effects conferred by the relevant variants that may pre-
dispose to higher susceptibility of the disease under study, 
as can be the case for obesity (Loos and Yeo 2022). In this 
context, the analysis of specific genotypes related to obesity 
allows estimation of an index of predisposition to obesity 
and to stratify tendency to adiposity in subclasses that could 
receive more focused and personalized advice (Goodarzi 
2018; Khera et  al. 2019; Loos 2012).

In this context, the involvement of common variants in 
FTO (fat mass and obesity-associated gene) is well 

documented for the influence on obesity risk and related 
alterations, such as TD2M (Frayling et  al. 2007; Loos et  al. 
2008; Speliotes et  al. 2010; Thorleifsson et  al. 2009; Willer 
et  al. 2009). The presence of FTO risk variants has been 
correlated with increases of 2.5 kg in body fat mass 
(Pausova et  al. 2009) and 0.39 kg·m−2 in BMI in Europeans 
(Speliotes et  al. 2010). Beyond FTO variants, obesity pre-
disposition also depends on variants located on other 
genes, but with less impact on BMI. For example, variants 
in Melanocortin 4 receptor (MC4R) or Brain-derived neu-
rotrophic factor (BDNF) coding genes, have been associated 
with 0.33 and 0.19 kg·m−2 of BMI increases per risk allele, 
respectively (Speliotes et  al. 2010). Consequently, the inclu-
sion in the genetic assessment of these and other main 
variants associated with a specific trait, obesity in this case, 
contributes to estimate the genetic component of the indi-
vidual’s phenotype. Here the application of polygenic risk 
scores comes into play. Polygenic risk scores integrate com-
binations of genetic variants that influence specific biolog-
ical functions or are associated with the same phenotypic 
trait (Hüls et  al. 2017). Estimation of the Performance of 
Polygenic Scores (PPS) has more predictive potential than 
the interpretation of isolated variants (Abadi et  al. 2017; 
Khera et  al. 2019; Shabana, Shahid, and Hasnain 2018; 
Udler et  al. 2019), can be very sensitive, and can contribute 
to define the impact of genetics on metabolic health, even 
from birth (Khera et  al. 2019). It should be noted, that 
only a small number of cases of obesity (5%) result from 
mutations in specific genes (González Jiménez 2011), which 
should be taken into account to assess the impact of 
genetic mutations in the development of obesity. The same 
is likely true of other nutrition and lifestyle associated 
metabolic diseases.

The genetic variants identified can nevertheless be used 
for the calculation of PPS to provide information on ten-
dency to cope with metabolic disorders like obesity, visceral 
obesity, T2DM, dyslipidemia, metabolic inflammation, and 
hypertension. Accordingly, the estimation of the PPS asso-
ciated with different metabolic traits allows to identify and 
inform about the predisposition to metabolic alterations that 
are most likely to develop in an individual. This type of 
knowledge opens the road to prevention and will facilitate 
personalized strategies to improve health (de Toro-Martín 
et  al. 2017; Laddu and Hauser 2019; Udler et  al. 2019). PPS 
are not only relevant in relation to disease risk, but may 
also contribute to better characterize (and understand) other 
functions, such as eating behavior. As an example, a genetic 
variant in the ANKK1 gene may influence the satiating 
effect of meals, since subjects having the variant are prone 
to experience hunger less frequently (Lek, Ong, and Say 
2018). In turn this may affect adherence to a nutritional 
intervention. Similarly, the presence of a variant in BDNF 
gene could alter adherence to a diet, as it has been associ-
ated with higher tendency to experience pleasure in response 
to binge-eating (Bumb et  al. 2021). Understanding the 
impact of the genetic makeup on the eating behavior of 
individuals facilitates anticipating to altered eating behaviors 
and may help to find solutions to deal with it 
satisfactorily.
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Genetic markers for overarching process-based health 
signature interpretation
GWAS also provides a scientific rationale for the impact of 
the individual’s genetic makeup on inter-individual differ-
ences in levels of metabolic biomarkers in biological fluids 
(Hysi et  al. 2022; Shin et  al. 2014; Yin et  al. 2022). This 
has been well documented for plasma lipids, which in addi-
tion to being influenced by dietary intake, also show a 
relevant heritable component (Tabassum et  al. 2019). 
Therefore, the incorporation and analysis of targeted genetic 
information related to specific metabolic biomarkers may 
provide greater sensitivity to the metabolite-based clustering 
of participants. To some extent, evidence allows an estimate 
of the variability in levels of biomarkers that would be 
explained by the presence of genetic variants. This approach 
allows less focus on metabolites whose (altered) levels may 
be dependent, to some extent, on genetics and, consequently 
may be more difficult to improve by dietary strategies. A 
brief cluster-by-cluster explanation about how genetics can 
contribute to the individualized characterization of core 
health signatures is outlined below.

Lipid metabolism core health signature.  As mentioned 
above (see section “Components of the lipid metabolism 
signature”), biomarkers related to lipid metabolism 
provide a signature of health status. Current scientific 
evidence supports that at least 14 of these parameters 
can be modulated by genetics and part of the variability 
in their concentration can be explained by genetics 
(Supplementary Table 2). Therefore, 18 genetic variants, 
generally located in lipoprotein coding and/or key lipid 
metabolism genes, are genetic influences to be taken into 
account in dietary health improvement strategies.

In this context, polymorphism rs174547, located on the 
FADS1 gene, encoding the Fatty Acid Desaturase 1 enzyme, 
which catalyzes the final step of EPA and AA production, 
may play a major role in blood lipid modulation (Wang 
et  al. 2021), influencing the concentration of, at least, five 
traits: TGs (Kathiresan et  al. 2009), TC (Kulminski et  al. 
2018), PUFA (Kettunen et  al. 2016), LPCs (Draisma et  al. 
2015) and LA (Dorajoo et  al. 2015). In addition, rs7412 (a 
Arg176Cys exchange variant of Apolipoprotein E (APOE) 
impacting on HDL, TC, and LDL levels (Hoffmann et  al. 
2018) and rs12272004 (on the Apolipoprotein A-V gene 
(APOA5) influencing TG, TC and LDL levels (Aulchenko 
et  al. 2009) have a role in determining the blood lipid profile 
with a potential modulation of at least three phenotypic 
traits per variant. Moreover, rs326 (on Lipoprotein lipase 
(LPL), influencing HDL and TG levels (Hoffmann et  al. 
2018)), rs12678919 (on Tissue inhibitor of metalloproteinase 
3 (TIMP3), influencing HDL and TG levels (Hoffmann et  al. 
2018), rs780093 (on Glucokinase regulatory protein (GCKR), 
associated with leptin (Kilpeläinen et  al. 2016) and SFA (Wu 
et  al. 2013) plasma levels), rs1800562 (on homeostatic iron 
regulator (HFE), influencing TC and LDL (Hoffmann et  al. 
2018) and rs409224 (on Cut-like homeobox 1 (CUX1), asso-
ciated with plasma PUFA, specifically DHA levels (Dorajoo 

et  al. 2015) are examples of genetic variants associated with 
different levels of parameters linked with lipid metabolism. 
Besides, other additional SNPs have been linked to specific 
lipid biomarkers: rs3811444 (Tripartite motif-containing 58; 
TRIM58), rs182052 (Adiponectin, C1Q and collagen domain 
containing; ADIPOQ), rs8396 (peptidylprolyl isomerase D 
(cyclophilin D); PPID), rs1171614 (solute carrier family 16 
(monocarboxylic acid transporters), member 9; SLC16A9) 
affect levels of oleic acid (Tintle et  al. 2015), adiponectin 
(Dastani et  al. 2012) and MUFAs (Illig et  al. 2010) and the 
acylcarnitine profile (Draisma et  al. 2015), respectively. 
Therefore, consideration of the role of these variants may 
contribute to provide deeper assessment on the impact of 
genetics on lipid metabolism.

Carbohydrate metabolism core health signature.  Following 
the same procedure, a set of SNPs previously associated 
with plasma/serum biomarkers of carbohydrate metabolism 
have been selected. Two genetic polymorphisms (rs1260326 
and rs7903146) are especially relevant because of the 
remarkable number of metabolites that each influence 
(Supplementary Table 2). The first polymorphism encodes 
a missense variant in the Glucokinase regulatory protein 
(GCKR) and this is associated with circulating levels of 
glucose (Shin et  al. 2014), lactate (Tin et  al. 2016) and 
BCAAs (valine, leucine and isoleucine) (Lotta et  al. 2016). 
The second is a common variant in the Transcription 
factor 7 like 2 (TCF7L2) gene that has been associated 
with risk for alterations in carbohydrate metabolism, and 
also affects glucose and insulin levels (Manning et  al. 
2012).

Other genetic markers are added to refine the impact of 
genetics on the carbohydrate cluster. SNPs in the Fatty acid 
desaturase 1 (FADS1) gene (Wessel et  al. 2015) and in the 
SLC2A2 gene, encoding for the glucose transporter GLUT2 
(Nagy et  al. 2017), may contribute to explain part of the 
variability found in glucose levels. Furthermore, plasma 
leptin is potentially modulated by rs780093 (GCKR) and 
rs10487505 (leptin; LEP) (Kilpeläinen et  al. 2016); insulin 
by rs1801282 (Peroxisome proliferator activated receptor 
gamma; PPARG) (Mahajan et  al. 2015); while glutamine, 
phenylalanine and tyrosine are influenced by rs2657879 
(near the Glutaminase 2 (GLS2) and the SPRY domain con-
taining 4 (SPRYD4) genes) (Shin et  al. 2014), rs17450122 
(Achaete-scute family bHLH transcription factor 1; ASCL1) 
(Imaizumi et  al. 2019) and rs14399 (SLC16A10) (Kettunen 
et  al. 2016) variants, respectively. The consideration of a 
PPS taking the potential action of these genetic variants 
into account constitutes the core of the assessment of the 
influence of genetics on the levels of biomarkers analyzed 
in relation to the carbohydrate health signature.

Oxidative stress core health signature.  Concerning genetic 
factors modulating oxidative stress, up-to-date evidence 
has associated specific genetic variants with the buffering 
capacity of oxidative species. Analysis of rs4680 (Catechol 
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O-methyltransferase; COMT), rs1695 (Glutathione 
S - Tr a n s f e r a s e  P i  1 ;  G ST P 1 ) ,  r s 1 8 0 1 1 3 3 
(methylenetetrahydrofolate reductase; MTHFR), rs838133 
(fibroblast growth factor 21; FGF21), rs4880 (Superoxide 
dismutase 2; SOD2) and rs715 (carbamoyl-phosphate 
synthetase 1; CPS1) can been used to estimate the impact 
of genetics on the oxidative stress cluster.

The minor rs4680 allele, a variant located on the COMT 
gene, has been related with lower enzyme activity (Shin 
et  al. 2014), lower production of endogenous antioxidants 
(Hysi et  al. 2019) and, probably as a consequence, increased 
susceptibility to coronary artery disease (Mir et  al. 2018). 
GSTP1 plays a fundamental role in xenobiotic metabolism 
detoxification by catalyzing the conjugation of several com-
pounds with glutathione, although its increased expression 
has been associated with increased oxidative stress (Li et  al. 
2013). In this context, rs1695 (on GSTP1) is associated with 
higher expression of this gene, which could contribute to a 
more oxidative status (Sun et  al. 2018). Similarly, the minor 
variant of rs838133 of the FGF21 gene is associated with 
increased plasma homocysteine and coronary artery disease 
risk (van Meurs et  al. 2013), consequently, it may also be 
considered as a marker of oxidative status. The rs1801133 
variant, which comprises an Ala222Val substitution in the 
MTHFR gene, involved in folate metabolism, is associated 
with lower efficiency in folic acid processing, contributing 
to increased homocysteine and, lower vitamin B12 and folate 
plasma concentrations (Boccia et  al. 2009; van Meurs et  al. 
2013). Consequently, that associated-phenotype could lead 
to greater susceptibility to oxidative profile-based diseases 
(da Silva et  al. 2017). Furthermore, the rs4880 variant in 
the SOD2 gene has been mechanistically associated with 
lower capacity to buffer superoxide radicals generated by 
mitochondrial activity (Sutton et  al. 2005). This SNP and 
T allele presence is associated with a reduced cellular free 
radical scavenging efficiency (Sutton et  al. 2005), in addition 
to higher levels of protein and lipid oxidative by-products 
(Jerotic et  al. 2019). Finally, GWAS evidence shows the 
influence of rs715 on the CPS1 gene on blood betaine con-
centrations (Hartiala et  al. 2016). Bearing in mind that 
elevated betaine levels are considered a biomarker of oxi-
dative signatures (see section “Components of oxidative 
stress signature”), the rs715 genotype could also be consid-
ered a relevant genetic marker for predisposition to a 
pro-oxidative state. The aforementioned genetic markers may 
support the assessment of genetics impact on the 
inter-individual capacity to buffer oxidative stress and a PPS 
can be defined to evaluate the individual’s plasma oxidative 
profile.

Inflammatory core health signature.  Current scientific 
evidence supports the genetic influence of at least nine 
biomarkers related with the core inflammatory health 
signature. At least five parameters included in the lipid 
cluster are also commonly known for their relationship 
with an inflammatory profile (SFAs, PUFAs, DHA, LPCs, 
and LA). Particularly, the polymorphism rs174547 

(FADS1) which is included in the lipid metabolism 
cluster, would also have a considerable impact on the 
inflammatory status associated with its relevant influence 
on lipid profile.

Beyond these lipid cluster genes, the inflammatory sig-
nature is defined by biomarkers of systemic inflammation 
and the activity of components of the immune system. 
rs429358 (on APOE) and rs1260326 (GCKR) have been 
described to modulate CRP levels (Ligthart et  al. 2018). 
Similarly, rs1800795, a genetic variant in the interleukin 6 
(IL6) gene promoter, influences IL6 levels (Ljungman et  al. 
2009). Likewise, rs12075 (near the cell adhesion molecule 
3 (CADM3) and arylsulfatase B (ARSB) genes) influences 
CCL2 (MCP1) levels (Comuzzie et  al. 2012) and rs5498 
(ICAM1) has been associated with interindividual variability 
in the plasma concentrations of ICAM-1 (Sun et  al. 2018). 
Together these genetic variants can be considered to con-
stitute a PPS aiming to estimate the genetic predisposition 
to modify plasma inflammatory biomarkers.

Microbiome core health signature.  The microbiome is 
evidently influenced by diet, but long-term the genetic 
make-up of the host is also a key determinant in its 
microbiome composition (Dąbrowska and Witkiewicz 
2016) and relates to, for example, cardiovascular health 
(L. Chen et  al. 2021), Evidently, in the near future distinct 
genetic determinants will be elucidated that will allow 
incorporation of the individual’s genetic predisposition 
affecting its microbiome composition in relation to its 
influences on the core health processes and the response 
to diet.

Practical implementation of the personalized 
nutrition framework: The PREVENTOMICS project 
as a use case

In previous sections, a conceptual framework based on the 
analysis of metabolic signatures associated to core health 
processes has been discussed, with an extensive list of 
metabolomic and proteomic biomarkers with sufficient sci-
entific evidence for a disease relationship that can be 
robustly and affordably analyzed. Next an approach for 
integration of such biomarkers is proposed as a description 
of genetic biomarkers to be added as a layer of disease 
and intervention susceptibility. To make the hurdle toward 
practical implementation tangible, we now describe, as one 
exemplifying translation option, how this approach is imple-
mented in the EU-funded project ‘Empowering consumers 
to PREVENT diet-related diseases through OMICS sciences’ 
(PREVENTOMICS) (https://preventomics.eu). This project 
was conceived as a proof of concept from selecting bio-
markers, as described above, to tangible tools for integra-
tion, taking consumption biomarkers and gut microbiome 
dynamics into account, and for empowerment of the con-
sumer. The latter is envisioned as an app that provides 
dietary, shopping or cooking advise, guided by the 

https://preventomics.eu
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individual’s aggregated biomarker profile and genetic sus-
ceptibility. PREVENTOMICS thus aims to develop an 
omics-based PN system and tools that shapes the food 
environment of the person toward empowering consumers 
and nutrition professionals in decision-making processes 
related with dietary habits and nutrition. The project fol-
lows the approach described in the previous sections, and 
therefore is based in the functional categorization in core 
health processes of reliable metabolic and genetic biomark-
ers that can be further integrated to obtain information 
about the metabolic status of the individual. By analysis 
of metabolic and genetic markers representative of overar-
ching processes, individuals were characterized and the 
results were used as inputs for dietary advice. The samples 
were collected locally in different European countries and 
analyzed centrally using ‘omics technologies. The 
above-described biomarker levels were fed into a tangible 
tool to provide personalized dietary recommendations based 
on the signature of core health processes that are repre-
sented by the biomarkers.

Other layers of personalization were added, such as 
adherence to Mediterranean Diet, dietary preferences and 
restrictions and personality traits to adapt dietary recom-
mendations. A personalized behavior change program was 
incorporated to aid the user in the process of changing their 
dietary habits. The tool developed during the 
PREVENTOMICS project was deployed in different business 
models focused on end-users, such as recommendations 
during shopping in a supermarket e-commerce portal and 
suggestions when ordering foods for delivery or adaptation 
of delivered meals to the individual’s recommendations, and, 
last but not least, it will provide nutrition professionals with 
key information in their own language for delivering appro-
priate dietary recommendations to consumers.

Integration of omics and genetic markers in 
PREVENTOMICS

In PREVENTOMICS, the approach discussed in section 
“Integrating metabolomics and proteomics biomarkers as 
signatures of core health processes” has been translated into 
a tangible analytical platform. Three hundred twenty nine 
biobank samples from Spain and Denmark were used to 
initially set up the personalized nutrition tool. Then 275 
samples from healthy individuals from the Maastricht Study 
(Schram et  al. 2014), MCAGE (Lagerwaard et  al. 2020) (age) 
and BMCORE (Janssen et  al. 2021; Janssen et  al. 2023) (high 
and low physical active) were added to provide a wider 
range of healthy individuals. In addition, four intervention 
studies in four different European countries were performed, 
with a total number of 764 individuals.

Once the metabolomics and proteomics have been inte-
grated to obtain the score for each core health process, the 
next step is to integrate the information provided by the 
genetic background information with the metabolic infor-
mation. The need for this is particularly exemplified when 
one considers nutrient requirements. These have been estab-
lished to cover daily needs of a reference population, but 

these may not fit the requirements of specific individuals. 
Therefore, dietary recommendations adapted to individual 
backgrounds have been proposed in order to promote health 
in a more accurate way. For example, the modulating influ-
ence of the genetic load is taken into account in the char-
acterization of the anti-inflammatory potential of omega-3 
fatty acids, and how the bioavailability of vitamins, minerals 
and ergogenic aids is configured by the presence of genetic 
variants (De Caterina and El-Sohemy 2016; Galmés et  al. 
2019; Galmés, Palou, and Serra 2020; Galmés, Serra, and 
Palou 2018; Gkouskou et  al. 2021; Niforou, Konstantinidou, 
and Naska 2020; Schwartz 2014; Southward et  al. 2018). 
Following a similar approach, taking the modifying effects 
of genetic variation on metabolic disease susceptibility, bio-
marker behavior and response to the diet into account, the 
PREVENTOMICS project has incorporated current knowl-
edge on nutrigenetics, i.e. incorporated genetic variation 
that likely impacts the health cluster signatures, to give 
comprehensive nutrition and lifestyle advice to 
participants.

Based on genetics a scoring system was designed to 
define the individual’s specific nutritional needs. Then, life-
style messages were prepared to give indications on how to 
fulfill these needs. To avoid overwhelming the participants, 
the output to the individuals was implemented in the form 
of tips, short sentences focused on preventing food-related 
diseases in a personalized approach or even with a pictorial 
code to get the focus on what is theoretically the best prac-
tice. Examples of nutrigenetic information provided to 
PREVENTOMICS participants, so that they could benefit 
more from specific guidelines, are as follows: type of diet 
that would be more effective in minimizing the predispo-
sition to metabolic alterations (Galmés et  al. 2019) or to 
promote more weight reduction in case of obesity 
(Ramos-Lopez, Milton-Laskibar, and Martínez 2021); sus-
ceptibility to poor satiety control (Panduro et  al. 2017); 
genotype-recommend bioactive nutrients with greater 
expected potential of enhancing health; genetic predisposi-
tion to gluten problems (van Heel et  al. 2007) or lactose 
intolerance (Lukito et  al. 2015), low sensitivity to oral fat 
perception or food preferences (Keller 2012); genetic influ-
ences on metabolism, transport or handling of micronutri-
ents that could support immune health (Galmés, Serra, and 
Palou 2020).

The genetics were also incorporated in the overall dietary 
advice resulting from the PREVENTOMICS tool. The indi-
vidual’s score obtained by the equation depicted in Equation 
(1) provides a continuous read of the information from 
metabolic biomarkers, both metabolomic and proteomics. 
As has been explained above, at the individual level, met-
abolic performance is highly influenced by genetics. In the 
PREVENTOMICS project, the influence of genetics on each 
cluster of biomarkers has been considered as a factor that 
might modify the metabolic score depending on the specific 
genetic background of the user. Thus, a genetic score has 
been developed and integrated as depicted in Equation (2).

	 Score c genetic risk c metabolic score c( ) = + ( )( ) ( )1 _ * _ 	
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Equation (2). Cluster scoring function where the meta-
bolic score defined in Equation (1) is adjusted by the 
genetic risk function, obtaining the final score for each 
cluster c.

Finally, in PREVENTOMICS, it was chosen to target the 
most deviating overarching process, that is, the cluster 
obtaining the higher cluster score (Equation (3)). Hence, in 
the intervention studies individuals were allocated to dif-
ferent dietary plans accordingly.

	 Altered cluster Score c
c C

_ arg max= ( )
∈

	

Equation (3). Altered cluster function. c refers to one 
single cluster, while C comprises all 5 clusters.

Application of personalization based in overarching 
processes into tangible tools

In the PREVENTOMICS project, the approach presented in 
this critical review was implemented as a personalized nutri-
tion tool, interoperable with different frontends representa-
tive of important elements of the food environment of 
consumers, such a lifestyle, shopping, dietary and meal 
advice as well as recipes. To this end, the information pro-
vided by omics and genetic biomarkers, together with behav-
ioral, dietary and phenotypic information, was used to feed 
a recommender system (Figure 2A and B). The resulting 
personalized recommendations were stored in a decision 
support system that can be accessed by different digital 
applications (Figure 2C), such as a software for nutrition 

Figure 2. T he approach proposed in this review was implemented in a tangible personalized nutrition system in the project PREVENTOMICS. (A) The system 
combined metabolomic, proteomic and genetic data together with results of data analysis for scoring the five core health processes. (B) The information on 
core health processes scores was further combined with behavioral information within a decision support system. (C) The decision support system was accessed 
by different softwares that could retrieve specific information about the user to elaborate personalized recommendations.
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professionals, an application simulating an e-commerce por-
tal and, implemented in the workflow of a catering company 
(Aldubayan et  al. 2022). All these implementations have 
been successfully developed and were further tested by 
means of nutritional interventions during the project. 
Although most data are still being analyzed, proof of concept 
is evidenced by the publication of the results of one study 
(Aldubayan et  al. 2022). The precedent of PREVENTOMICS 
as a proof of concept project indicates that implementing 
personalization at a population-wide level is in principle 
feasible. Nutrition interventions are required to assess the 
effectiveness of such systems.

Other omics with potential applications

The present work reviews metabolomics, proteomics and 
genetic markers with application in feasible PN systems that 
are compliant with the current constrains. This is, well char-
acterized, science substantiated omics and genetic markers 
that can be robustly analyzed at a feasible cost in terms of 
benefit-cost ratio. Other fields of research in biomedical and 
nutrition research to be incorporated in PN applications in 
the near future include food intake biomarkers and gut 
microbiome markers. Although the knowledge in these fields 
is rapidly expanding, its application in affordable PN systems 
still needs further development. Below we provide the cur-
rent perspective on these fields in the context of PN, with 
an eye on the core health processes.

Food intake biomarkers to improve personalization

Dietary habits are among the most relevant factors deter-
mining alterations in individuals’ metabolic status (Murray 
et  al. 2020). In addition to metabolic and genetic markers, 
food consumption data can provide information on indi-
viduals’ dietary patterns allowing to investigate the associ-
at ion between nutr it ion and hea lth  s tatus 
(González-Domínguez, Jáuregui, et  al. 2020). The current 
assessment of dietary intake, that relies on food frequency 
questionnaires, dietary recalls, or food diaries, is almost 
invariably affected by misreporting and bias, due to the 
subjective nature of these methods. Moreover, these instru-
ments are intrinsically based on food composition tables 
that can lead to errors in nutrient estimation (Garcia-Aloy 
et  al. 2017). Recently, research has moved toward establish-
ing more objective measures of dietary intake, by identifi-
cation and validation of biomarkers of food intake in 
biological samples (Dragsted et  al. 2018; Maruvada et  al. 
2020; Ulaszewska et  al. 2018) aiming to overcome the lim-
itations associated with traditional dietary assessment 
approaches (Garcia-Aloy et  al. 2017).

Food intake biomarkers are compounds derived from 
the metabolism of constituents of specific foods or food 
groups that can be found in especially biological fluids, 
like plasma or urine, and are reflective of the intake of 
their precursors present in the food matrix (Garcia-Aloy 
et  al. 2017). A good biomarker of food intake must be 
specific for a certain foodstuff/food group, and its level in 

plasma or urine must increase as a consequence of the 
increased consumption of the foodstuff/food group 
(D’Angelo et  al. 2019). Already, several comprehensive “pan-
els” of biomarkers able to reflect a person’s diet more glob-
ally have been proposed, potentially allowing the assessment 
of dietary patterns (Acar et  al. 2019; Playdon et  al. 2017). 
As there are hundreds of metabolites from the diet, metab-
olomics represents the best modern approach to measure 
the majority of them (González-Domínguez, Urpi-Sarda, 
et  al. 2020; González-Domínguez, Jáuregui, et  al. 2020). 
Nevertheless, the number of fully validated biomarkers is 
so far quite low and still inadequate to properly characterize 
dietary patterns. However, already in the near future they 
could be taken into consideration together with metabolic 
and genetic markers to more fully characterize individuals 
and their metabolic status. Within the PREVENTOMICS 
project, food intake biomarkers determined by means of 
targeted LC/MS-MS, a technique more qualitative than 
quantitative, because it identifies specific fragments of a 
molecule rather than measuring their abundance (Bantscheff 
et  al. 2012; Olsen and Mann 2004), will be evaluated, 
together with traditional methods, to assess whether effec-
tive shifts have occurred in the dietary habits of the study 
participants. This will also help to improve biomarker valid-
ity and to establish accurate associations between food 
intake and the main cardiometabolic outcomes considered 
in PREVENTOMICS.

Gut microbiota and personalization

The human gut microbiota is responsive to many different 
environmental factors. Although the gut microbiome com-
position is subject to the individual’s genetic makeup, diet 
is considered the main driver able to modify the composi-
tion and function of the gut microbiome (Donovan 2017; 
Fernández-Calleja et  al. 2018; Gentile and Weir 2018). For 
this reason, personalized diets have the potential to modify 
the composition of the host microbiota on an individual 
basis. However, the role of personalized diets and the impact 
on the microbiome, and the subsequent relation to health 
promotion, has not been studied in depth.

The main challenge to exploiting the potential of 
microbiome-based PN is to identify how the host, microbiota 
and dietary exposures interact in shaping dietary responses. 
Recently, the role of the gut microbiota in the response to 
personalized interventions has been highlighted in different 
studies. For example, the glycemic response based on the 
intake of different types of bread has been predicted based 
on the microbiota composition (Korem et  al. 2017). Also, 
interindividual microbiome responses to obesity-related 
dietary interventions have been found to be associated with 
specific bacterial species based on the initial composition of 
the microbiome in both men and women (Korpela et  al. 
2014). Similarly, another study has successfully predicted host 
response to a diet for obese patients based on the initial 
composition of their microbiota, with especially Bacteroidaceae 
bacteroides as a good predictor (Zhang et  al. 2021). These 
and other data are part of a growing body of evidence 
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suggesting that dietary response patterns may be driven, to 
some extent, by individualized microbial compositions. 
However, microbial metabolic activity is a complex process 
that involves a network of metabolic pathways and interac-
tions between different microbial species in a community 
(Lam and Ye 2022). This is likely not well reflected by quan-
tifying individual species and it is increasingly realized that 
functional role of the microbiota-as-a-whole may have to be 
considered. Meta-transcriptomic approaches can examine the 
transcripts expressed by the entire microbiota community 
(Qin et  al. 2012), and may thus provide a more comprehen-
sive view of the metabolic activities and alterations therein 
of the microbiota. During the PREVENTOMICS project, the 
microbiota from the participants in the personalized dietary 
interventions have been sampled and are being characterized. 
The gut microbiota characterization will allow to better 
understand the association between microbiota, metabolites, 
genetics, food markers and, importantly, the personalized 
interventions.

Concluding remarks

The combined application of metabolomics, proteomics and 
genetics, together with anthropometry and clinical biomark-
ers, will provide signatures for core health processes; the 
harmonized integration of metabolic signatures together with 
genetic susceptibility thus results in a score for each of these 
processes. Together with food intake data and other infor-
mation such as habits, mainly dietary habits and physical 
activity, personality traits, preferences, food allergies or intol-
erances, among other variables, will provide an aggregated 
nutritional phenotype. Likely, gadgets to monitor the indi-
vidual’s behavior and health related parameters will provide 
relevant additional information to be incorporated in the 
individual’s nutritional phenotype in the near future. 
Furthermore, ethnicity-related differences in metabolomic 
and genetic risk markers may be included. These and other 
developments, imply a modular approach for any PN system 
to be successful on the longer term. A PN system should 
also contemplate psychology, since behavioral change is crit-
ical for adherence to recommendations (Broers et  al. 2020). 
Therefore, a successful PN system needs to consider the 
different dimensions of the individual relation with food.

In the critical review, we have proposed a framework 
that builds on sets of science-based metabolic and proteom-
ics biomarkers, that with different weights, together provide 
a signature for each of the core health processes. Genetic 
information is integrated reflecting the individual’s suscep-
tibility to health impairment and diet. The combined sig-
natures of integrated metabolic and genetic information are 
open to adaption and thus flexible, and the use of infor-
mation technology tools, such as AI, facilitate optimization. 
Also new sets of biomarkers may be added, reflecting, for 
example, microbiota profiling or food consumption. The 
combined signatures reflect overarching processes and 
together with phenotypic, lifestyle, dietary and behavioral 
information provide a nutritional phenotype and facilitate 
individual personal advice. End users can be provided with 
personal advice, in which behavior traits and psychological 

factors are integrated. The PREVENTOMICS project as a 
use case shows that the implementation of the framework 
is feasible in practice. Our hope is that, after future opti-
mization, this framework, in the form used in 
PREVENTOMICS or in another, will empower actors in the 
food system, but especially consumers to make their own 
science based PN choices to improve their health.
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