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Abstract
Root-associated fungi could play a role in determining both the positive relation-
ship between plant diversity and productivity in experimental grasslands, and its

strengthening over time. This hypothesis assumes that specialized pathogenic and
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mutualistic fungal communities gradually assemble over time, enhancing plant growth
more in species-rich than in species-poor plots. To test this hypothesis, we used high-
throughput amplicon sequencing to characterize root-associated fungal communities
in experimental grasslands of 1 and 15years of age with varying levels of plant spe-
cies richness. Specifically, we tested whether the relationship between fungal com-
munities and plant richness and productivity becomes stronger with the age of the
experimental plots. Our results showed that fungal diversity increased with plant di-
versity, but this relationship weakened rather than strengthened over the two time
points. Contrastingly, fungal community composition showed increasing associations
with plant diversity over time, suggesting a gradual build-up of specific fungal assem-
blages. Analyses of different fungal guilds showed that these changes were particu-
larly marked in pathogenic fungi, whose shifts in relative abundance are consistent
with the pathogen dilution hypothesis in diverse plant communities. Our results sug-
gest that root-associated fungal pathogens play more specific roles in determining the

diversity-productivity relationship than other root-associated plant symbionts.
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1 | INTRODUCTION

Biodiversity is consistently and positively associated with eco-
system functioning, affecting processes such as net primary pro-
ductivity or carbon sequestration (Cardinale et al., 2012; Weisser
et al., 2017). This relationship has been particularly well studied in
temperate grasslands (Adler et al., 2011), where numerous experi-
ments that manipulate plant diversity have repeatedly shown that
species-rich plant communities are more productive than species-
poor ones (Isbell et al., 2015; Tilman et al., 2001; Van Ruijven
& Berendse, 2009). Despite the generality of the positive plant
diversity-productivity relationship across biodiversity experiments,
its underlying mechanisms remain debated (Barry et al., 2019;
Eisenhauer, Schielzeth, et al., 2019; van Ruijven et al., 2020). The
relationship was initially interpreted to arise from plant-centred
processes such as spatial resource partitioning (Barry et al., 2019;
Tilman et al., 2014), but mounting evidence has attributed soil mi-
crobiota a major role (Hendriks et al., 2013; Schnitzer et al., 2011;
van Ruijven et al., 2020). This is partly supported by observations
that the increase in productivity with plant diversity becomes stron-
ger with grassland age (Cardinale et al., 2007; Guerrero-Ramirez
et al.,, 2017; Meyer et al., 2016; Reich et al., 2012; Van Ruijven &
Berendse, 2009), suggesting that plant communities gradually build
up changes in soil microbial communities that increasingly feedback
on plant performance over time (Eisenhauer et al., 2012; Eisenhauer,
Bonkowski, et al., 2019).

Eisenhauer et al. (2012) proposed that the strengthening of plant
diversity-productivity relationships with time results from the lapse
it takes plant communities to accumulate specific soil biota, with
increased feedback effects on plants over time. It is hypothesized
that species-poor plant communities provide high host densities for
specialized plant pathogens, thus promoting a build-up of pathogen
populations over time that progressively impairs biomass production
(Burdon et al., 2006). Conversely, high diversity in plant communi-
ties can decrease pathogen pressure via pathogen dilution (Keesing
et al., 2006; Rottstock et al., 2014), and/or provides a greater vari-
ety of niches for other microorganisms performing functions that
sustain overall productivity (Wagg et al., 2014), such as mutualists
and decomposers (Eisenhauer et al., 2011; Latz et al., 2012). Under
these assumptions, microbial diversity increases with plant diver-
sity and leads to effects on plant performance ranging from detri-
mental in plant communities with low richness, to positive in rich
plant communities. However, reaching the full influence of plant
richness on soil microbial communities and functions may take years
following the establishment of grassland communities (Eisenhauer
et al., 2010, 2011), and thus potential feedback effects on plant
growth may be equally delayed. As a result, the long-term build-up
of plant community-specific microbial communities is expected to

strengthen the relationship between plant diversity and productiv-
ity with ecosystem age (Eisenhauer, Bonkowski, et al., 2019).

Fungi may play a particularly important role as determinants of
the plant diversity-productivity relationship because they encom-
pass major groups (guilds) of pathogens, mycorrhizal mutualists and
soil and litter saprotrophs that directly or indirectly affect plant
growth and competition (Bever et al., 2015; Francioli, van Ruijven,
et al., 2020; Maron et al., 2011; Schnitzer et al., 2011; Tedersoo,
Bahram, & Zobel, 2020). They also form communities with higher
specificity towards standing vegetation and habitat conditions
than those formed by bacteria (Coleman-Derr et al., 2016; Dassen
et al., 2017; Lauber et al., 2008; Millard & Singh, 2010; Thiergart
et al., 2020), which makes their contribution to the plant diversity-
productivity relationship theoretically stronger (Semchenko
et al., 2022). However, studies in natural and experimental systems
have yielded mixed support for a link between plant and fungal diver-
sity (Dassen et al., 2017; Francioli, van Rijssel, et al., 2020; Mommer
et al,, 2018; Shen et al., 2021; Tedersoo et al., 2014; Tedersoo,
Anslan, et al., 2020; Waldrop et al., 2006), probably stemming from
differences in methodology, scale and plausibly, also from con-
founding effects of ecosystem age (Vogel et al., 2019). To our knowl-
edge, no study has explicitly tested the hypothesis formulated by
Eisenhauer et al. (2012) about how temporal changes in microbiota
may strengthen feedback effects on plant productivity. In addition,
studies addressing the relationship between plant-associated micro-
organisms and plant diversity and/or productivity most often target
microbial communities in soil (Dassen et al., 2017; Leff et al., 2018;
Schmid et al., 2019, 2021), but neglect those tightly associated with
roots (but see Ampt et al., 2022; Francioli, van Ruijven, et al., 2020)
that show stronger variation of fungal communities across different
plant species, and likely have more direct effects on plant perfor-
mance (Coleman-Derr et al., 2016; Macia-Vicente et al., 2020, 2022).

We assessed the contribution of root-associated fungal commu-
nities to the plant diversity-productivity relationship by formally
testing the model proposed by Eisenhauer et al. (2012). Using a
long-term biodiversity experiment encompassing 1 and 15-year-old
grassland plots varying in plant richness and composition, we stud-
ied whether and how the relationship between fungal and plant
communities is affected by ecosystem age. Previous results from
this experiment confirmed a strengthening of the plant diversity-
productivity relationship over time which was associated with an
increase in total soil microbial biomass (Lange et al., 2015; Vogel
et al., 2019; Weisser et al., 2017), but how these effects relate to
changes in fungal diversity and fungal community composition in
roots remains unknown. Here, we hypothesized (1) a strengthening
of the fungal diversity relationships with plant richness and produc-
tivity with plant community age (i.e., increased slope over time), as a
result of an increased availability of niches sustaining fungal growth
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in older, species-rich plant communities. Moreover, we expected
that (2) grassland age would also strengthen the plant diversity ef-
fects on the fungal community composition, reflecting the long-term
build-up of plant community-specialized fungal communities and (3)
that this specialization would lead to a long-term accumulation of
fungal antagonists (e.g. soil-borne pathogens) in species-poor plant
communities, and of fungal guilds that sustain plant growth (e.g. ar-
buscular mycorrhizal fungi and soil saprotrophs) in species-rich plant

communities.

2 | MATERIALS AND METHODS
2.1 | Study site and experimental design

This study was done within the ABEF Experiment (DELTa-BEF; short
for DEterminants of Long-Term Biodiversity Effects on Ecosystem
Functioning Experiment; Vogel et al., 2019), which consists of
established plots from the Jena Biodiversity Experiment (Main
Experiment; Roscher et al., 2004; Weisser et al., 2017) and newly
created plots (Vogel et al., 2019). The ABEF Experiment is aimed
at testing how ecosystem age alters the relationship between bio-
diversity and ecosystem functioning. Both the ABEF and the Jena
Experiment have been described in detail elsewhere (Roscher
et al., 2004; Vogel et al., 2019), and hence we only summarize the
main experimental design here.

The Main Experiment was established in 2002 in Jena (Germany;
50.95N, 11.62 E, 130ma.s.l.) and comprises a pool of 60 plant spe-
cies typical of semi-natural mesophilic grasslands (Figure S1) planted
in experimental plant communities (20x20m plots) varying in spe-
cies richness (1, 2, 4, 8, 16 and 60) and functional group richness
(1-4 plant functional groups [PFGs], including legumes, grasses,
small forbs and tall forbs). The plots were randomly assembled in
four blocks across a gradient in edaphic conditions (Figure S1) and
sown at a density of 1000 viable seeds per m? with equal represen-
tation of all target species. The field site is managed according to a
typical hay meadow in this region, with two yearly mowing events
in June and September respectively. To maintain the plant diversity
gradient, plots are weeded three times per year to remove sponta-
neous species different from those planted. For more details, see
Roscher et al. (2004).

The ABEF Experiment was established in May 2016 and consists
of 80 plots from the Main Experiment with three treatments each.
Each treatment was performed on 1.5 x 3m-sized subplots randomly
distributed across five fixed locations at the margin of the main plots
(Figure S1), and differ in their soil and plant community history. This
study focuses on the two of the three treatments varying only in
plant history, referred to as ABEF2 and ABEF3. The ABEF3 subplots
represent the original treatments from the Main Experiment with
undisturbed soil and plant communities sharing soil and plant history
since 2002. Thus, hereafter we refer to these treatment subplots as
‘old’ plant communities. The ABEF2 subplots represent shared soil
history with the Main Experiment but no plant history, and hence

are referred to in the following as ‘young’ plant communities. In the
ABEF2 subplots, the plant sod and large roots were removed while
keeping the original soil, which was carefully homogenized up to
a depth of 30cm. Whereas such homogenization may disrupt soil
fungal communities forming web-like mycelium in topsoil layers (e.g.
arbuscular mycorrhizal fungi; Séle et al., 2015) more than other fun-
gal guilds, the treatment was necessary to minimize spatially uneven
legacies of previous vegetation within subplots. After homogeniza-
tion of the soil, new seed mixtures matching the original plant spe-
cies composition in the respective plot of the Main Experiment were
sown at the same density of 1000 viable seeds per m?, with the aim
to establish similar plant community compositions in the ABEF2 and
ABEF3 subplots. This experimental treatment allowed us to evalu-
ate the effects of plant community age on fungal root colonization
irrespective of changes in soil mycobiota. Differences in fungal col-
onization can be the result of different paces of establishment in
roots across fungal species in soil, as well as to physiological and/
or structural changes in roots that may affect fungal colonization.
The ABEF2 subplots were separated from adjacent treatments by

30-cm-deep plastic barriers to prevent soil mixture.

2.2 | Collection of root samples and measurements

We sampled roots from both experimental treatments in the ABEF
Experiment in June 2017, that is, 13 months and 15years after the
establishment of the young and old plant communities respectively.
We collected roots from each subplot by taking three soil cores (di-
ameter 4cm) to a depth of 5cm and pooling them. These composite
samples were stored at 4°C before washing them gently to remove
soil particles and debris. The root samples were well mixed before
taking a representative subsample of approximately 100mg fresh
weight, which was stored at -20°C until use for molecular analysis.
The remaining roots were dried at 70°C for 48 h and weighed. Seven
samples had very low amounts of roots, so in these cases, all roots
were used for molecular analyses and the dry biomass was scored
as zero.

We retrieved additional data from the JExIS database (https://
jexis.idiv.de/) on aboveground plant biomass, soil microbial bio-
mass carbon, soil mineral nitrogen and soil organic carbon in the
ABEF Experiment, measured around the same time as our collec-
tion of root samples (Vogel et al., 2019). Aboveground biomass
was harvested in May/June 2017 and in August 2017 by clip-
ping 3cm above soil surface in two randomly placed, 20 x 50 cm?
frames per subplot. Mass from individual target species and weeds
were separately dried and weighted, and dry biomass of target
species was summed to community level values for each subplot.
We used the summed biomass values of the two harvests, extrap-
olated on a m?, as an estimate of annual biomass production per
subplot. Soil microbial-biomass carbon was measured using an O,-
microcompensation apparatus from soils sampled in June 2017,
collected by pooling six soil cores (4cm diam. x5cm depth) per
subplot. The values are expressed as pg C g'1 soil dry weight and
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represent the biomass of all active bacteria and fungi in the soil.
Soil mineral nitrogen (sum of NH4+—N and NO,™-N) and organic
carbon were determined in the same soil samples, respectively,
using a colorimetric continuous flow analysis and combustion in

an elemental analyser (Vogel et al., 2019).

2.3 | Fungal amplicon sequencing and analysis

Total DNA extraction from the washed roots and the targeted amplifi-
cation and sequencing of the fungal rDNA internal transcribed spacer
1(ITS1) were done following the procedures described in Francioli, van
Ruijven, et al. (2020). In short, we extracted DNA using the DNeasy
Plant Mini kit (Qiagen, Hilden, Germany) and used it to amplify the
ITS1 region using primers ITS1F and ITS2 (Gardes & Bruns, 1993;
White et al., 1990). The ITS1 amplicons were paired-sequenced on
an Illlumina MiSeq platform at the Wageningen University & Research
Shared Research Facilities (Wageningen, the Netherlands).

Sequence reads were assembled, quality-filtered and clustered
into amplicon sequence variants (ASVs) using the DADA2 pipeline
(Callahan et al., 2017) running on r v4.1.3 (R Core Team, 2022). We
discarded non-fungal ASVs by comparing all sequences against a
local copy of NCBI GenBank using BLasTN v2.2.31+, and taxonomi-
cally annotated the ASVs retained by comparisons with the UNITE
database v8.3 (https://doi.org/10.15156/B10/1265786) of fun-
gal ITS sequences (Koljalg et al., 2005), using the Naive Bayesian
Classifier tool of moTHUR v1.39.5 (Schloss et al., 2009; Wang
et al., 2007). We assigned ASVs to putative functional guilds by col-
lating their taxonomic annotations against the FungalTraits database
(Pélme et al., 2020), that compiles expert-curated, lifestyle-related
traits on fungi at the genus level. We annotated each ASV with the
‘primary lifestyle’ field of FungalTraits.

Of the initial 160 samples (80 plotsx 2 treatments), we discarded
12 after quality-filtering of reads and removal of samples with low se-
quencing depth (<4000 reads). We did not rarefy the data set to a com-
mon number of reads per sample because rarefaction curves showed

adequate coverage of ASV richness across samples (Figure S2).

2.4 | Statistical analyses

All statistical analyses were done in r v4.1.3. We calculated fungal
ASV richness and Shannon diversity (H’) per sample using package
VEGAN v2.6-2 (Oksanen et al., 2019). We selected Shannon diversity
(expressed as effective number of ‘species’; ES=eH'; Jost, 2006) over
ASV richness as the main descriptor of fungal diversity in down-
stream analyses because of its lesser sensitivity to the presence of
rare ASVs (Chao et al., 2014), and because richness was positively
correlated with read abundances (Pearson's r=.59, p <.001) whereas
diversity was not. To analyse fungal community composition, we
first standardized ASV abundances using the Hellinger transfor-
mation (Legendre & Gallagher, 2001) and then calculated pairwise
Bray-Curtis dissimilarities among samples.

To estimate the effects of experimental treatments on fungal di-
versity and community composition, we used plant history (PH; with
young and old plant communities included as a dummy variable), the
number of plant functional groups (PFGs) and the number of plant
species (plant richness) of each subplot as explanatory variables.
Because plant richness and PFG were collinear (r=.5, p<.001),
downstream analyses using either variable yielded similar results,
and thus we only show results for models including plant richness.
Similarly, we did not include the variables soil mineral nitrogen and
organic carbon as additional variables, because they have previously
been shown to covary with the experimental manipulation of plant
history and plant richness (Vogel et al., 2019), thus their feedback
effects on plant growth cannot be disentangled (i.e. they can be re-
garded as plant history and richness effects). In addition, both vari-
ables were strongly correlated with one another (r=.98, p<.001)
and also with soil microbial-biomass carbon (r=.78-.79, p<.001),
which was included in some of these models as a descriptor of total
fungal abundance. To meet normality assumptions in downstream
analyses, we used the log(x) transformation of plant richness and soil
microbial-biomass carbon, the square-root of aboveground plant
biomass and the log(x + 0.1) of root biomass after visually inspecting
the data distributions.

We built two linear mixed-effects models using package Lme4
v1.1-29 (Bates et al., 2014) to investigate the relative contribution
of plant richness and plant history in predicting fungal diversity and
soil microbial-biomass carbon (hypothesis 1). We included the inter-
action of both predictors as fixed term to assess if plant diversity
effects on the two response variables varied between young and
old plant communities. To account for the spatial structure of the
experimental design, we included block, and plot nested in block,
as random intercept terms. We tested for significance in the fixed
term effects (a=.05) with Type lll ANOVAs using the Satterthwaite's
approximation for degrees of freedom (Luke, 2017), as implemented
by package LMerTEsST v3.1-3 (Kuznetsova et al., 2017). Since these are
based on partial sums of squares, they enabled us to evaluate the
relationship between the variables of interest after accounting for
the effects of all other variables in the model.

A second set of models was aimed at assessing the effects of
fungal diversity and total microbial biomass on plant productivity
across young and old treatments (hypothesis 1). We built two lin-
ear mixed-effects models using aboveground plant biomass and root
biomass as response variables, and plant history, fungal diversity,
soil microbial biomass and the interactions of plant history with fun-
gal diversity and microbial biomass as fixed terms. We included the
same structure for random effects described above.

We tested for the effects of plant richness, above- and belowground
plant productivity and plant history on fungal community composition
(hypothesis 2) using permutational multivariate analysis of variance
(PERMANOVA; McArdle & Anderson, 2001) as implemented in func-
tion adonis2() of vecaN. In this case, we included soil mineral nitrogen
and organic carbon as last terms in the sequential sums of squares test,
to assess their explanatory power on fungal community composition
after the effect of other factors had been accounted for. As in previous
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models, we assessed the interaction between all predictor variables
and plant history. The analyses were run with 999 permutations, but
restricting permutations across blocks and plots to account for spatial
structures in the experimental design. In addition, we used the function
betadisper() of veean to determine differences in multivariate dispersion
between samples from young and old treatments, by calculating the me-
dian distance of data points to the group centroid and subjecting them
to ANOVA. To visualize differences in fungal community composition
across samples, we used 3-dimensional non-metric multidimensional
scaling (NMDS) ordinations built with vecan's function metaMDS(). In
this case, we also explored how fungal community composition varied
across grassland plots hosting only one PFGs, since PFG has been shown
to be a significant driver (surpassing plant species identity) of community
composition in root-associated fungi (Francioli, van Ruijven, et al., 2020;
Mommer et al., 2018; Sweeney et al., 2020). We used this to detect po-
tential links between particular plant and fungal groups that could help
interpret the patterns observed in the full data set. We obtained taxo-
nomic summaries of fungal community composition at the order level
using relative proportions of abundance or richness, and used bar plots
to visualize them. Relative abundances of the main fungal orders across
treatments were compared with linear mixed-effects models, using PFG
and plant history as fixed effects terms, with adjustment of p-values
after multiple comparisons by the Benjamini-Hochberg method.

A last series of models were aimed at identifying patterns of vari-
ation in diversity and relative abundances of particular fungal guilds
across plant history and plant richness (hypothesis 3). We focused
on four guilds (‘primary lifestyle’ as defined by Pélme et al., 2020)
that we deemed relevant as likely determinants of plant commu-
nity productivity in grasslands: arbuscular mycorrhizal fungi, soil
saprotrophs and litter saprotrophs as potential facilitators of plant
growth; and plant pathogens as antagonists. For each of them, we
separately modelled Shannon diversity and total relative abundance
(i.e. the sum of all ASV abundances) as a function of plant richness
and plant history, using linear mixed-effects models with the same
structure for fixed and random effects used previously. In addition,
we investigated the individual patterns of occurrence of the 10 most
abundant fungal genera (in relative abundance) within each guild,
using again the same model structure as above but adjusting the re-
sulting p-values with Benjamini-Hochberg's method to account for
multiple testing. We used bar plots to visualize the overall patterns
of variation in relative abundance for each fungal genus.

3 | RESULTS
3.1 | Description of the fungal sequencing data set

The quality-filtered data set resulting from the ITS amplicon se-
quencing of root-associated fungi comprised 3,015,859 sequence
reads grouped into 3916 ASVs, with median values of 19,486 reads
(range 4542-46,223) and 154 ASVs (67-278) per sample (Figure S2).
The fungal ASVs were assigned to 558 species-level taxa and 313
genera distributed across 80 orders (including incertae sedis taxa).

At the phylum level, most sequence reads belonged to ASVs in
the Ascomycota (62.7% of total reads), distantly followed by the
Basidiomycota (22.7%), Mortierellomycota (7.3%), Glomeromycota
(4.2%) and Olpidiomycota (1.5%), with other phyla being repre-
sented by less than 1% of total reads. At the order level, the 10
most represented taxa were the Helotiales (19.7%), Pleosporales
(11.8%), Mortierellales (7.3%), Hypocreales (6.1%), Agaricales
(5.8%), Sordariales (5.4%), Pezizales (4.3%), Glomerales (3.6%),
Cantharellales (3.5%) and Sebacinales (3.4%). We classified ASVs
in 20 functional guilds by collating the taxonomic ASV annota-
tions with the FungalTraits database (Pélme et al., 2020), but we
only focused on four guilds that we considered relevant for grass-
land root-associated fungi: arbuscular mycorrhizal fungi (13.3% of
total number of ASVs), soil and litter saprotrophs (9.3% and 9.5%)
and plant pathogens (9.8%). Of all ASVs, 1659 (42.4%), representing
30.2% of all reads, could not be assigned a guild due to incomplete
identification or undefined guild status in FungalTraits.

3.2 | Effects of plant history on fungal diversity

Total soil microbial biomass (encompassing both fungi and other soil
microorganisms) exhibited a marked increase in old versus young
plant communities (1.3+1.04 [SE] pg microbial C g™! of dry soil,
Fi/75=46.9, p<.001), and a positive relationship with plant rich-
ness (1.14+1.03pg C g%, F,75=19.0, p<.001) that became more
pronounced with plant history (interaction term: 1.05+1.02pg C
gl Fi/76=5.0, p=.028; Figure 1a). In contrast, fungal diversity
was significantly associated with plant species richness (2.8 +1.22
ES) but not with plant history (Table 1; Figure 1b). Contrary to
what we expected, the slope of the relationship between fun-
gal diversity and plant richness decreased with grassland age, so
that a positive plant-fungal diversity relationship as identified in
young communities disappeared in older ones (interaction term:
-2.7+1.19 ES; Figure 1b).

We did not find any significant relationship of fungal diversity
with above- and belowground plant biomass after accounting for
the effects of plant richness and soil microbial biomass (Table 1;
Figure 1c,d). In contrast, both aboveground and root plant biomass
were positively associated with soil microbial biomass (aboveground:
4.9 +1.07gm?; belowground: 1.7+1.13g) and plant richness (abo-
veground: 8.1+0.19gm?; belowground: 1.2+1.04g; Table 1). The
effect of plant richness on both plant productivity measures be-
came stronger in older plant communities (interaction terms, abo-
veground: 110.12gm2; belowground: 1.1+ 1.04g), as evidenced by
significant interactions with plant history (Table 1).

3.3 | Relationships with fungal community
composition

We evaluated whether plant richness, plant history, plant produc-
tivity and soil properties were associated with changes in fungal
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community composition. All predictors tested had a significant re-
lationship with fungal community composition (p<.05; Table 1),
although they explained relatively small proportions of fungal com-
munity variance. Plant history explained the most variance (R?=.036)
followed by plant richness (R?=.022), whereas the other variables
explained less than 2% of the total variance each (R?<.015). Fungal
community composition was strongly affected by plant richness,
plot age and their interaction (Table 1).

Visualization of changes in fungal community composition using
NMDS ordinations showed a weak clustering of samples by experi-
mental factors (Figure 2a,b). We first explored community changes
in plant communities containing only one PFG (3D stress=0.17;
Figure 2a; Figure S3), which showed a significant separation of
fungal communities across PFGs (R>=.117, p<.001; Figure 2a) that
suggests that different PFGs associate with specific fungal assem-
blages. However, this pattern was no longer visible when assessing
all samples, including plots with mixtures of PFGs (3D stress=0.18;
Figure 2b; Figure S3), which brought together a core set of fungal
ASVs. Despite the variation in fungal communities across PFGs, all
PFGs hosted a similar suite of the 10 main fungal orders in their roots
(Figure 2c) and only affected significantly the relative abundance
of one order (Hypocreales, with highest abundance in legumes;
Fi/56=4.2, padj:.049). In both analyses, including plots with only
one PFGs or with all PFG mixtures, plant history was a main predic-
tor of fungal community composition (R*=.032, F1y62=2.2, p<.001
for unique PFGs; R?=.036, F1147=5.6, p<.001 for all plots; Table 1;

fungal diversity [ES]

Figure 2a,b), resulting in a greater dispersion in pairwise dissimilar-
ities between samples of old compared to young grasslands (multi-
variate dispersion; one PFGs, F1,61 =5.6,p=.02; all plots, F1,146 =26.9,
p<.001; i.e. breadth of grey areas in Figure 2a,b).

3.4 | Changes in fungal guild associations with
plant community age

We studied how diversity and relative abundance of the four selected
fungal guilds was associated with plant species richness and plant
history. In terms of fungal diversity (Figure 3a), arbuscular mycorrhi-
zal fungi showed greater diversity in old than in young plant commu-
nities (F1/77= 5.8, p=.018), litter saprotrophs had increased diversity
with increasing plant richness irrespective of plant community age
(Fy,75=5.0, p=.028) and diversity of plant pathogenic fungi had a
relationship with plant richness that shifted from positive to nega-
tive in young respect to old grasslands (i.e. a significant interaction
term; F, 5,=6.6, p=.012). In terms of relative abundance, arbuscu-
lar mycorrhizal fungi decreased with both plant richness (F1/81=5.6,
p=.02) and plant community age (F, 4, =5.6, p=.02; Figure 3b). The
abundance of plant pathogenic fungi followed the same pattern as
their diversity, increasing with plant richness in young communities
and decreasing in old communities (F, ,,,=4.5, p=.04; Figure 3b).
Analyses of individual genera within the focal fungal guilds
(Figure 3c) revealed significant positive effects (padj <.05) of grassland
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TABLE 1 Effects of experimental treatments on fungal community structure and plant productivity.

Ziuvr:egr::tya Aboveground biomass? Root biomass® Fungal community composition®

F p F p F p R? F p
Plant history (PH) 3.6 .060 2.2 137 0.0 923 .036 5.6 .001
Plant richness (S) 5.2 .026 421 <.001 17.9 <.001 .022 34 .001
PHxS 5.2 .026 7.8 .006 7.8 .007 .008 1.3 .043
Fungal diversity n.d. n.d. 0.05 .816 0.0 .949 n.d. n.d. n.d.
Soil microbial biomass n.d. n.d. 4.5 .034 17.6 <.001 n.d. n.d. n.d
PH x Fungal diversity n.d. n.d. 1.2 277 0.0 .863 n.d. n.d. n.d.
PH x Soil microbial biomass n.d. n.d. 34 .067 0.0 .889 n.d. n.d. n.d.
Aboveground biomass (ABM)  n.d. n.d. n.d. n.d. n.d. n.d. .010 1.5 .006
Root biomass (RBM) n.d. n.d. n.d. n.d. n.d. n.d. .013 2.1 .001
PHxABM n.d. n.d. n.d. n.d. n.d. n.d. .007 1.0 .369
PHxRBM n.d. n.d. n.d. n.d. n.d. n.d. .006 0.9 662
Soil mineral nitrogen (SMN) n.d. n.d. n.d. n.d. n.d. n.d. .011 1.8 .004
Soil organic carbon (SOC) n.d. n.d. n.d. n.d. n.d. n.d. .012 1.9 .001
PHxSMN n.d. n.d. n.d. n.d. n.d. n.d. .006 0.9 .816
PHxSOC n.d. n.d. n.d. n.d. n.d. n.d. .006 0.9 775

Note: Significant effects (p <.05) are indicated in bold-face.
Abbreviation: n.d., not determined.

*Test statistics from analysis of variance with Satterthwaite's method, based on linear mixed effects models with random intercepts accounting for

the spatial structure of the experimental design.

PTest statistics from a permutational multivariate analysis of variance using Bray-Curtis distances between Hellinger-transformed read abundances

of fungal ASVs.

age on the relative abundances of two genera of arbuscular mycor-
rhizal fungi (Rhizoglomus and Septoglomus) and two genera of soil and
litter saprotrophs (Cadophora and Agrocybe). Alternatively, grassland
age was negatively related to one genus of arbuscular mycorrhizae
(Funneliformis), two genera of litter saprotrophs (Chaetomium and
Cystofilobasidium) and one plant pathogen (Fusarium; Figure 3c). Only
some plant pathogenic genera had relative abundances significantly
affected by the interaction between plant richness and plant history,
including llyonectria, whose abundance increased with plant richness
only in old communities; and Boeremia, Paraphoma and Gibberella,
which showed associations with plant richness that decreased over

time (Figure 3c).

4 | DISCUSSION

Here, we show that plant community age affects the relationship
between plant species richness and the diversity and structure of
fungal communities in roots. However, in contrast to what we an-
ticipated, the relationship between fungal diversity and plant rich-
ness weakened rather than strengthened with time (Figure 1b).
Further, we did not find any significant response of primary pro-
ductivity to fungal diversity after accounting for other factors, such
as plant richness or soil microbial biomass, that may influence such
a link (Figure 1c,d). Importantly, the changes in fungal community

composition with plant history were consistent with a gradual re-
cruitment of plant community-specific fungal assemblages in roots
(Figure 2a,b; Table 1), as proposed by Eisenhauer et al. (2012). These
changes were particularly evident for fungal pathogens, whose di-
versity and relative abundance decreased with plant richness in
older grasslands (Figure 3a,b), potentially relieving plants from det-
rimental growth effects in richer plant communities. This would
suggest that fungal pathogens may play a more important role in
determining long-term effects of plant diversity on productivity than

mutualistic and saprotrophic fungi.

4.1 | The relationship between fungal and plant
diversity does not increase with time

Our results reject our first hypothesis that fungal diversity and plant
richness have a positive relationship that increases with plant his-
tory. Indeed, the results show a weakening of a plant-fungal diver-
sity relationship with time (Figure 1b). Several previous experiments
have tested the hypothesis that plant diversity begets belowground
fungal diversity owing to an increased availability of niches, but
reached conflicting conclusions. For example, Dassen et al. (2017)
found a significant association between plant richness and total
fungal diversity in bulk soil of the Jena Experiment. They did not
observe such a positive relationship for arbuscular mycorrhizal fungi
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FIGURE 2 Variation in community composition of root-associated fungi across experimental treatments. (a) Non-metric multidimensional
scaling (NMDS) of fungal communities in experimental plots hosting unique plant functional groups (PGFs; including legumes, grasses, small
forbs and tall forbs). (b) NMDS of fungal communities in all experimental plots, including mixtures of different PFGs. For clarity, samples from
young and old plant communities are shown in separate panels, with grey areas within each panel delimiting the distribution of data points

in the other panel. Data points are represented by pie charts, with coloured sectors indicating the proportion of PFGs per sample, and pie
sizes representing plant richness (logarithmic relationship, with the smallest indicating one plant species, and the largest 60 species). (c) Bar
plots showing the proportion of ASV abundances for the 10 most abundant fungal orders in samples from plots with one PFG. Samples from
young and old plant communities are shown as separate panels, with each bar representing an individual sample (data points in a). Numbers

above bars indicate the plant species richness in each sample.

though, so the authors attributed the effect on fungal diversity to
the accumulation of diverse litter materials in soil rather than to
plant host specificity. Similarly, in another grassland biodiversity ex-
periment, Francioli, van Rijssel, et al. (2020) found a positive asso-
ciation between plant diversity and richness of fungal decomposers
in roots, whereas Mommer et al. (2018) reported no such relation-
ship when examining the total root-associated fungal diversity in
the same experiment. The results from these studies agree with our
finding that, among all fungal guilds tested, only litter saprotrophs
increased in diversity along with plant species richness (Figure 3a).
Altogether, this supports the conclusion of Dassen et al. (2017) that
the effects of plant richness on fungal diversity may be more related
to the accumulation of diverse litter materials in soil than to an ac-
tual specificity of fungi towards colonizing roots of particular plant
species, which appears to be relatively low across root-associated
fungal communities (Coleman-Derr et al., 2016; Glynou et al., 2018;
Macia-Vicente et al.,, 2020; Macia-Vicente & Popa, 2022; Polme
et al., 2018; Rotoni et al., 2022; Semchenko et al., 2022; Thiergart
et al., 2020). Indeed, our observation of a weakening over time in
the relationship between overall fungal diversity and plant richness
discounts our hypothesis that old, species-rich grasslands select

for many fungal taxa, each specialized towards colonizing one or a
few plant species. Instead, our results are in line with the prediction
made by Buscot (2015), who hypothesized that older plant commu-
nities would favour only a few fungi from the local species pool with
generalist habits, that is, able to colonize roots from most plant spe-
cies in the community.

In line with the weak and decreasing association between
fungal and plant diversity over time, we did not find a relation-
ship between fungal diversity and plant productivity (Figure 1c,d;
Table 1). This result is consistent with previous results from the
Jena experiment showing that manipulation of soil microbial com-
munities had much lower effects on productivity than manipula-
tions of plant history and richness (van Moorsel et al., 2018, 2021).
In contrast to fungal diversity, total microbial biomass appeared
as a relevant predictor of plant diversity effects on productivity,
as previously highlighted by Vogel et al. (2019). However, here
we cannot pinpoint whether the increase in soil microbial bio-
mass with plant richness, and in old versus young grasslands, is
a consequence or a cause of the increased plant productivity.
Enhanced primary production directly caused by increases in plant
richness could result in a higher quantity of plant inputs into the
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Mortierella
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Vishniacozyma
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Paratricharina
Paramyrothecium
Conocybe
Coprinellus
Agrocybe S*
Parasola
others

Tetracladium
Cadophora S**
Articulospora
Cladosporium
Calyptella
Chaetomium PH***
Cystofilobasidium PH**
Calloria
Efibulobasidium
Phialophora
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Ceratobasidium
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Gibberella PH:S*
Didymella
Mf]/cosphaerella
others

FIGURE 3 Relationships of plant history and plant richness with fungal diversity (a), relative abundance (b) and genus composition (c)

of selected functional guilds: arbuscular mycorrhizal (AM) fungi, soil saprotrophs, litter saprotrophs and plant pathogens. In scatterplots

(a and b), shading in point colours indicates measures taken in young or old experimental plant communities (see key) and regression lines
summarize significant relationships (p <.05) between response and predictor variables. Bar plots in c show the relative abundances of the

10 most abundant genera within each guild across plant history and plant richness levels. Linear mixed-effects models were used to test
significance in the relationships of total fungal diversity and abundance per guild, and of individual genus abundances, with plant history
(PH), plant richness (S) and the interaction between them (PH:S). One, two and three asterisks identify significant effects in total or genus-
level fungal occurrences at p<.05, .01 and .001 respectively. Plant richness was log-transformed in the linear mixed-effects models analyses
to comply with the assumption of residual distribution.
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soil (De Deyn et al., 2011), which could lead to an accumulation
of microbial biomass over time (Eisenhauer et al., 2010; Strecker
et al., 2016) akin to the one we observed. Alternatively, plant spe-
cies richness could diversify the soil resource pools (Eisenhauer
et al., 2017; Hooper et al., 2000), thereby sustaining a more varied
and larger microbial biomass that could in turn feedback positively
on plant growth through the provision of stronger and more di-

verse ecosystem functions (Wagg et al., 2014, 2019).

4.2 | Plant communities build up specialized fungal
communities with time

We found a significant influence of plant history on the associa-
tion between plant diversity and fungal community composition
(Table 1). Although this was in line with our expectations (hypoth-
esis 2), the overall effects of plant history and plant diversity on
fungal community turnover were small (less than 4% total vari-
ation), and so was the interaction between these two variables.
Comparatively, PFG was a much stronger predictor of fungal
community composition, explaining above 11% of the total vari-
ance when experimental plots hosting unique PFGs were com-
pared, which is in line with previous reports (Dassen et al., 2017;
Francioli, van Rijssel, et al.,, 2020; Leff et al.,, 2018; Schmid
et al., 2021; Sweeney et al., 2020). Plant functional groups aggre-
gate sets of traits that have been associated with a differential re-
cruitment of microbial taxa or functions, such as root architecture
and chemistry affecting root colonization by arbuscular mycor-
rhizal fungi (Cortois et al., 2016; Sweeney et al., 2020) and sap-
rotrophic communities (Francioli, van Rijssel, et al., 2020), or leaf
nitrogen content affecting colonization by pathogens (Semchenko
et al., 2018). Our results show that the specificity of fungal com-
munities towards PFGs increases with plant history, as evidenced
by greater dispersion in fungal community dissimilarities among
samples from old versus young grasslands. This agrees with the
prediction made by Eisenhauer et al. (2012), as well as with previ-
ous observations made in bulk soil fungal communities at the Jena
experiment (Schmid et al., 2021), and altogether suggest a gradual
accumulation of fungal communities more adapted at exploiting
the resources and conditions created by certain plant species, and
that could be more efficient at carrying out functions likely to af-
fect plant productivity under local conditions.

4.3 | Fungal guilds relate differently with the long-
term effects of plant diversity on productivity

Our assessment of the richness and relative abundances of fungal guilds
potentially acting as facilitators or antagonists of plant growth provided
only partial support for our third hypothesis. We only observed a sig-
nificant shift in line with what we had anticipated in the case of fungal
pathogens, whose overall diversity and relative abundance decreased
with plant richness in older grasslands (Figure 3a,b). This pattern is

consistent with a dilution of specific pathogens in diverse plant com-
munities due to the presence of non-host species impairing pathogen
transmission (Ampt et al., 2018, 2022; Civitello et al., 2015; Keesing &
Ostfeld, 2021; Mommer et al., 2018; Rottstock et al., 2014). Ultimately,
this would result in a reduced risk of disease in individual plant species,
and a consequent increase in overall community productivity.

Conversely, arbuscular mycorrhizal fungi and saprotrophs that
are predicted to contribute positively to plant productivity did
not exhibit increasing associations with plant richness over time,
contrary to what we had expected (Figure 3a,b). The diversity and
abundance of arbuscular mycorrhizal fungi varied with plant com-
munity age or richness (with trends akin or unlike those found
elsewhere; e.g. Dassen et al., 2017; Hiiesalu et al., 2014; Konig
et al., 2010; Lekberg et al., 2013), but not in response to the in-
teraction between these two factors. In particular, mycorrhizal
diversity increased significantly in old grasslands, which could re-
sult in overall benefits for older plant communities irrespective of
their richness (Figure 3a), thus not contributing to strengthening
the plant diversity-productivity relationship. Alternatively, the re-
duced diversity of arbuscular mycorrhizal fungi in young versus old
grasslands could be due to the soil homogenization applied during
the preparation of the ABEF2 (‘old’) subplots, which is known to
break hyphal networks and disrupt mycorrhizal communities (Sile
et al., 2015). However, the results for arbuscular mycorrhizal fungi
may be affected by known biases in the amplification and sequenc-
ing of Glomeromycota taxa resulting from using general primers
targeting the fungal ITS region (Stockinger et al., 2010; Tedersoo
et al., 2015). Lekberg et al. (2018) showed that general ITS fungal
primers disclose similar responses to experimental factors in arbus-
cular mycorrhizal fungal communities compared to Glomeromycota-
specific primers based on the rDNA small subunit, although the
latter detect a broader taxonomic richness within the group, and
may thus provide a better description of its variation patterns.

Of the saprotroph guilds, none showed significant changes in
their relative abundances across treatments, although diversity
of litter saprotrophs increased with plant diversity, irrespective of
plant community age. This relationship, specific to litter saprotrophs,
could result from an actual input upon plant decay of new fungal
species that normally inhabit aboveground tissues as endophytes
but switch to saprotrophic lifestyles upon tissue senescence (Fanin
etal., 2021). These aboveground fungi are thought to exhibit greater
host-specificities than fungal groups dwelling belowground, and
thus their diversity would be more readily affected by plant richness
(Semchenko et al., 2022).

Our findings, therefore, suggest a stronger influence of fungal
pathogens in driving plant diversity effects on productivity than
other guilds of root-associated fungi. This is in agreement with
studies showing that plant biomass increases in species-poor plant
communities upon treating the soil with fungicides that decrease
pathogen pressure, whereas increasing the soil inoculum of arbuscu-
lar mycorrhizal fungi did not affect the plant diversity-productivity
relationship (Maron et al., 2011; Mommer et al., 2018; Schnitzer
et al., 2011). However, our results also draw a more complex picture
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of the roles played by fungi, since the overall patterns disclosed for
different fungal guilds are dependent upon finer-grained differences
in the occurrence of specific taxa, with individual fungal genera re-
sponding differently to the experimental treatments. For example,
whereas the relative abundances of several pathogenic genera were
related to the interaction between plant richness and plant history,
the direction in these changes differed across genera; some of which
mirrored the main pattern for the entire guild, while others followed
an opposing trend. Similar results were found for other ecological
guilds, such as mycorrhizal fungi, whose genera showed opposing
responses to plant history. This highlights the need for a better un-
derstanding of the trophic interactions, host specificity and plant
effects of plant-associated fungi, beyond classification into broad
ecological groups that provide little nuance about the lifestyles of
individual taxa (Kia et al., 2017; Semchenko et al., 2022).

4.4 | Methodological considerations

There are two potential limitations of our study that may have in-
fluenced our conclusions. First, we assessed root-associated fungal
communities using (mixed) roots pooled from each experimental
subplot rather than from individual plants. This possibly downplayed
our measurements of total fungal diversity in species-rich plant
communities due to a reduced sampling effort per plant species
(irrespective of the proper coverage of sequence reads per pooled
sample). In addition, it may have biased our characterization of fun-
gal community composition due to an unequal representation in root
biomass per plant species and sample (e.g. see Hiiesalu et al., 2014),
limiting our capacity to detect specific associations between plant
and fungal taxa. Second, the annotation of fungal ASVs into ecologi-
cal guilds may be too coarse, due to unreliable species identifications
based on single, short DNA barcodes, the incompleteness and low
taxonomic resolution of the reference database for guild assignment
(Polme et al., 2020), and the ecological versatility of fungi (Selosse
etal., 2018). Therefore, our data only provide a rough inference about
the ecological functions played by individual fungi. Despite these
caveats, our approach enabled us to assess overall fungal diversity
patterns across a wide range of plant communities with enough rep-
lication in a single experiment, and to provide a broad overview of
the role played by fungal communities in driving the positive plant
diversity-productivity relationship. Future work should pay increas-
ing attention to fungal community properties in individual plant
species (Ampt et al., 2022), and target fungal taxa with well-known
host preferences and plant growth effects (Mommer et al., 2018).
Moreover, it will be important to combine information on fungal di-
versity with fungal biomass data to gain additional insights into the
potential strength of fungal effects on plant growth.

5 | CONCLUSIONS

Here, we provide partial support for the model proposed by
Eisenhauer et al. (2012) to explain the strengthening relationship

between biodiversity and productivity over time as a function of
changes in soil biota. Our data suggest that changes in fungal com-
munity composition, more than in fungal diversity, may underlie the
purported role of root-associated fungi in determining the positive
plant diversity-productivity relationship in experimental grasslands.
Notably, our results are consistent with previous studies that at-
tribute a major role to fungal pathogens, over other groups of plant
symbiotic fungi, in driving the plant diversity-productivity relation-
ship. However, the roles played by specific fungi, and of the overall
contribution of fungi to plant diversity effects on productivity with
respect to other groups of soil microorganisms, remain questions to
be tackled in future work. Such understanding of the effects of bio-
diversity on ecosystem function will be crucial to predict the conse-
quences of undergoing species losses worldwide, especially under
the threats posed by environment change, as well as to manage eco-

systems under changing environmental conditions.
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