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Abstract
Hulsegge, I. (2023). Genomics applied to conservation of genetic diversity in Dutch 
livestock. PhD thesis, Wageningen University, the Netherlands 
 
Conserving genetic diversity is essential for the sustainability of populations. In 
livestock, the amount of genetic diversity should be large enough to enable the 
adaptation of populations to changing environments and market requirements, and 
for selection to genetically improve economically important traits. Unfortunately, 
the current trend in populations is often for reduced genetic diversity due to intense 
selection or random drift. Consequently, breeding methods and gene banks were 
developed to avoid the risk of losing genetic diversity. As genomic information 
becomes more accessible, we now have the option to better manage genetic 
diversity. In this thesis, I applied genomics to conservation practises. More 
specifically, I applied genomic tools and methods to prove their relevance for the 
conservation of Dutch livestock breeds. I demonstrated that the use of genomics led 
to a more detailed understanding of the genetic diversity conserved in gene banks 
or in living populations of numerically small breeds in The Netherlands. Moreover, I 
reported the implications for genetic diversity of (1) lines or supposed lines within a 
numerically small breed, (2) merging and terminating lines of the Dutch Landrace pig 
breed, and (3) the replacement over time of traditional local cattle breed (Dutch 
Friesian Cattle) with just productive breed (Holstein Friesian). Subsequently, I 
illustrated that only a small set of informative SNPs is needed to differentiate among 
Dutch local cattle breeds. Using such a small set of informative SNPs a genetic tool 
(DNA test) was developed for the determination of breed purity of cattle. Lastly, I 
addressed the recent developments in genomics and how they can be used 
effectively for genetic conservation, and in particular how gene banks can benefit 
from these developments, and I outline possible future directions for (a more 
effective) conservation of breeds using genomic methods. More specially, I propose 
a strategy for conservation and stated that gene banks should transform from 
“traditional gene banks” into “digital gene banks”. 
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1.1 Introduction 
Conserving genetic diversity is essential for the sustainability of populations. In 
livestock, the amount of genetic diversity should be large enough to enable the 
adaptation of populations to changing environments (such as production systems 
and climate) and market requirements, and for selection to genetically improve the 
economically important traits (FAO 2015; Woolliams and Oldenbroek 2017; Doekes 
2020). Genetic diversity is important in stable environments as well. When breeds 
are reduced to a small number of breeding individuals (i.e., a few hundred), negative 
consequences of inbreeding can occur, reducing amongst other traits the fitness of 
animals, which threatens breeds’ survival (Hoban et al. 2021). Unfortunately, the 
current trend is often a reduced genetic diversity due to intense selection or random 
drift. Consequently, breeding methods (e.g., optimal contributions) and gene banks 
have been developed to avoid the risk of losing genetic diversity. Genomic 
techniques are developed to improve the efficacy of breeding programs and create 
an opportunity to describe and conserve the genetic diversity more accurately. 
 
1.2 Genetic diversity under threat 
Genetic diversity is the set of differences between species, populations within 
species, and individuals within populations present in their DNA or observed in 
individuals as a result (Woolliams and Oldenbroek 2017). Genetic diversity within 
livestock species is generally defined by the number of breeds in the species of 
interest and their level of similarity and uniqueness from a genetic point of view. 
Within breeds genetic diversity is defined as the level of genetic similarity and 
uniqueness of individuals, i.e., differences in their DNA content. This variation is 
influenced by selection and random drift. Nowadays, genetic diversity is rapidly 
being lost. According to the Food and Agriculture Organization of the United Nations 
(FAO), numerous livestock breeds have gone extinct or are threatened (FAO 2015), 
because local breeds have been upgraded or replaced by a few very strong selected 
mainstream breeds (FAO 2006; Oldenbroek 2019). Genetic diversity is threatened by 
strong selection on a few traits, as it increases genetic relationships between animals 
and reduces effective population size. This will result in a higher rate of inbreeding 
and associated negative aspects, such as a reduction in the viability of populations 
(Frankham 1995; Oldenbroek and Windig 2022). To be able to handle future 
challenges in agriculture, it is important to conserve within and between breed 
genetic diversity and efforts will have to be made to achieve this. 
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1.3 Conservation of genetic diversity  
Awareness has increased that diversity within livestock species should be conserved. 
Therefore, local breeds should be protected from extinction, although commercial 
aspects still favour the advancement of a few mainstream breeds (Felius et al. 2011). 
The importance of conserving genetic diversity has been recognised by many 
countries by signing the Convention of Biodiversity in 1992 and adopting the Global 
Plan of Action for Animal Genetic Resources of the FAO in 2007 (FAO 2007a). These 
initiatives highlight the responsibility and commitment of each country to conserve 
their native livestock breeds, and to take action to prevent loss of genetic diversity 
(Meuwissen 2009; Hiemstra et al. 2010; Engelsma 2012). The conservation of genetic 
diversity requires actions. The first action should be a detailed description and 
monitoring of the breeds and their potential risks for losing genetic diversity. Next, 
in order to prevent the loss of genetic diversity, conservation actions can be initiated 
for the current population (in situ). These actions focus on the selection of breeding 
individuals, the management of mating designs as well as the control over the 
individuals’ contributions to the next generation (Meuwissen 1997; Caballero and 
Toro 2000). As a result, it primarily limits the rate of inbreeding and supports a viable 
population. In addition to in situ conservation, genetic material can be conserved ex 
situ in gene banks. Gene banks allow to conserve the overall population genetic 
diversity in the form of reproductive material, such as semen or embryos, for an 
indefinite period of time. The genetic diversity conserved in germplasm is not subject 
to evolution or drift (Eynard 2018). For the conservation of animal genetic resources, 
both in situ and ex situ approaches are used and they are generally considered 
complementary to each other (FAO 2019). The conservation of genetic diversity is a 
costly process and budgets are often limited. Therefore, conservation of genetic 
diversity should be carried out in the most effective and efficient manner possible. 
Determination and evaluation of genetic diversity within livestock breeds is of crucial 
importance for making the right conservation decisions and for an efficient use of 
resources available for conservation. 
 
1.4 Genetic diversity in the genomics era 
The development and use of genomics provide tools to obtain a more complete 
picture of the parameters of genetic diversity that can be used for breed 
prioritisation, conservation or management decisions. Traditionally, genetic diversity 
has been estimated and managed with the help of inbreeding and kinship 
coefficients based on pedigree data (Meuwissen and Luo 1992; Engelsma 2012). 
However, pedigree data present drawbacks that limit their use in genetic diversity 
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analyses. First, pedigrees may be incomplete, incorrect or not available for a 
reasonable number of generations. Secondly, it is assumed that founders are 
unrelated, while they are likely to be at least slightly related in practice. Thirdly, the 
assumption when measuring genetic relationships based on pedigree information is 
that full siblings share exactly 50% of their alleles, while in reality they are subject to 
mendelian sampling that creates variation in the amount of allele sharing between 
full siblings; the same holds for other relationships. Fourthly, pedigrees are generally 
recorded per breed, making analysis of between-breed diversity by pedigree analysis 
impossible (Eusebi et al. 2019; Doekes 2020; Galla et al. 2022). With the wide 
availability of genomic data, it has become possible to study and quantify genetic 
diversity directly rather than using pedigree information to make statistical 
inferences. This is true even in populations that do not have genealogical records 
(Frankham et al. 2012) and in populations with these records it corrects pedigree 
errors. Previous studies (de Cara et al. 2011; Engelsma et al. 2011; Eynard 2018) 
investigated the impact of using genomic information from SNP array data instead 
of pedigree information for evaluation of genetic diversity within breeds. They 
showed that genomic information assesses more accurately the genetic diversity, 
both for the whole genome and for specific regions of the genome, which improves 
the management of genetic diversity. Engelsma et al. (2012) showed that SNPs 
preserved the genetic diversity within breeds better than pedigrees. Previous studies 
have described methods and opportunities of genomics for conservation of genetic 
diversity (e.g. Eding et al. 2002; Engelsma 2012; Eynard 2018). Because of the 
availability of a wide range of genomics tools and methods, the expectation for the 
practical application for conservation of genetic diversity is high. However, 
customisation is required and depends on the questions related to conservation. In 
the meantime, genomics is still evolving and provides an increasing amount of 
information and detail. In this thesis, I used genomics for conservation practices. I 
applied genomic techniques and methods to prove their potency for the 
improvement of the present conservation activities for Dutch livestock breeds. 
 
1.5 Aim and outline of the thesis 
The overall aim of this thesis is to analyse the genomic data of Dutch livestock 
breeds. The aim of these analyses is to support the conservation of genetic diversity 
in these breeds. The results can make conservation decisions more accurate. Breeds 
involved varied from the numerically small and at one point almost extinct Dutch 
Red and White Friesian to the worldwide number one dairy cattle breed Holstein 
Friesian. 
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The first objective was to investigate how to deal with lines or supposed lines within 
a numerically small breed and the consequence for conservation. To this end, 
genomics was used to quantify genetic diversity within and between lines of the 
Dutch Red and White Friesian cattle, as well as their relationship with other Dutch 
cattle breeds (Chapter 2). 
 
Over the past decades, various commercial pig breeding lines were merged or 
discontinued due to consolidation in the pig breeding industry. Fortunately, their 
semen was conserved in the Dutch gene bank. The second objective was therefore 
to assess the implications for genetic diversity of merging lines of the Dutch Landrace 
pig and the discontinuation of lines in this breed using genomics. (Chapter 3). 
 
Over the last century, genetic diversity has been affected by the replacement of 
traditional local breeds with just a few highly productive breeds. The third objective 
was to evaluate the consequences for the whole genome and especially for its rare 
allelic variants of the replacement of the Dutch Friesian cattle (DF) by the Holstein 
Friesian breed (HF). To do so, we evaluated genome-wide genetic diversity between 
three groups of bulls, chosen from the historic (1961–1989) and recent (2003–2015) 
DF population and the recent HF (1998–2014) population using whole genome 
sequencing (WGS) (Chapter 4). 
 
Maintaining genetic diversity can be achieved not only by characterising genetic 
diversity, but also by actively increasing the population size of a breed. This can be 
done by identifying whether unregistered animals belong to a certain breed. The use 
of small sets of informative SNPs can be a cost-effective option for the estimation of 
breed composition. The fourth objective was to evaluate methods of SNP selection 
and determine the minimum number of SNPs needed to differentiate among Dutch 
cattle breeds (Chapter 5). The last objective was to develop a low cost genomic test, 
using a small set of informative SNPs, to identify breed of origin and breed purity of 
unregistered individuals to assign them to one of the Dutch local cattle breeds 
(Chapter 6). Including them actively may increase the (effective) population size and 
therefore enlarge the genetic diversity. 
 
All studies in this thesis benefitted from material stored in the Dutch gene bank, and 
in the general discussion (Chapter 7) I reflect on the role of the gene bank and how 
it may develop and benefit from developments in genomics and bioinformatics and 
outline possible directions for (better) conservation of breeds using genomic 
methods in the future. 
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Abstract 
From a genetic point of view, the selection of breeds and animals within breeds for 
conservation in a national gene pool can be based on a maximum diversity strategy. 
This implies that priority is given to conservation of breeds and animals that diverge 
most and overlap of conserved diversity is minimized. This study investigated the 
genetic diversity in the Dutch Red and White Friesian (DFR) cattle breed and its 
contribution to the total genetic diversity in the pool of the Dutch dairy breeds. All 
Dutch cattle breeds are clearly distinct, except for Dutch Friesian breed (DF) and DFR 
and have their own specific genetic identity. DFR has a small but unique contribution 
to the total genetic diversity of Dutch cattle breeds and is closely related to the Dutch 
Friesian breed. Seven different lines are distinguished within the DFR breed and all 
contribute to the diversity of the DFR breed. Two lines show the largest contributions 
to the genetic diversity in DFR. One of these lines comprises unique diversity both 
within the breed and across all cattle breeds. The other line comprises unique 
diversity for the DFR but overlaps with the Holstein Friesian breed. There seems to 
be no necessity to conserve the other five lines separately, because their level of 
differentiation is very low. This study illustrates that, when taking conservation 
decisions for a breed, it is worthwhile to take into account the population structure 
of the breed itself and the relationships with other breeds.  
 
Key words: Conservation, genetic diversity, population structure, relationships with 
other breeds.  
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2.1 Introduction 
Farm animal breeds are recognized for different values, with economic, social, 
historical and cultural aspects (Gandini and Oldenbroek 2007). Genetic diversity is 
the basis for the development and survival of animal breeds. However, many 
traditional, local, farm animal breeds have small (effective) population sizes, leading 
to a loss of their genetic diversity. It is, therefore, especially important to maintain 
genetic diversity in these small populations of farm animals (Fernandez et al. 2011). 
Small populations of local breeds often comprise genetic variation with cultural, 
historical, sociological and environmental values (Hiemstra et al. 2010) generally not 
present in the global highly productive breeds that dominate modern intensive 
livestock production systems. Genetic management of local breeds, is crucial for 
their own survival and for maintaining diversity in the entire species, because the 
genetic diversity between breeds is a substantial part of the genetic diversity within 
the species (Woolliams and Toro 2007). 
 
Maintaining high levels of within-breed genetic diversity is the second important aim 
in conservation genetic diversity within the species. Traditionally, animal breeders 
quantify genetic diversity by analysing pedigrees and estimating average kinships 
and inbreeding levels (Gutierrez et al. 2003; Woolliams and Toro 2007). Pedigree 
analysis may not be adequate, as pedigrees are often not available in depth, so that 
a reliable quantification of within-breed variation may not be possible. Moreover, 
pedigrees are generally only known as breed formation, making analysis of between-
breed diversity by pedigree analysis impossible. Methods based on pedigree analysis 
can now be complemented with molecular genetic information facilitating analysis 
of diversity both within and across breeds (Boettcher et al. 2010). 
 
Besides small effective population size, local breeds may be threatened by 
indiscriminate crossing with other breeds. Crossing may lead to increased genetic 
diversity in a population, however, at the expense of losing part or eventually all of 
the original genetic diversity in the population (FAO 2007b). Thus, both within- and 
across-breed variations need to be considered to preserve genetic diversity within 
species (Bennewitz et al. 2007; Woolliams and Toro 2007; Boettcher et al. 2010; 
Roberts and Lamberson 2015). 
 
Eding et al. (2002) provided a framework to quantify relative amounts of both within- 
and across-population genetic diversity using marker-estimated kinships. In this 
method, kinships are estimated with the help of markers and the genetic diversity 
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within a breed is estimated as one minus the average kinship in that breed. The 
average kinship is also estimated across breeds, so that the genetic diversity of a set 
of breeds can be determined. Moreover, for each breed, its contribution to the 
diversity of the total set can be quantified, thereby quantifying both its unique 
diversity and the overlap with other breeds. 
 
After the study of Eding et al. (2002), progress in genotyping techniques has 
increased the number of available markers. The availability of dense molecular 
marker maps can provide a more precise picture of the genetic background of breeds 
(e.g., distances, uniqueness), which increase the capabilities for making decisions 
aimed at maintaining genetic diversity. 
 
In this study, the maximum diversity strategy was used to quantify the genetic 
diversity (Bennewitz et al. 2007). This strategy selects breeds that contribute in a 
significant way to the overall genetic diversity considering both within- and across-
breeds diversity. 
 
For local breeds, next to setting conservation priorities at breed level, a more 
detailed division into lines can be helpful to determine conservation priorities within 
the breed. 
 
The objective of this study was to quantify the genetic diversity in a numerically small 
breed and its contribution to the total genetic diversity in other breeds of the same 
species in the same country. For these objectives, we used the Dutch Red and White 
Friesian cattle (DFR) and quantified the relationship with other Dutch dairy breeds. 
We assessed the following: 
 

i. The relationship of DFR with other Dutch dairy breeds and the contribution 
of the DFR to the total genetic diversity in Dutch dairy cattle breeds. 

ii. The genetic differences between lines within the DFR. 
iii. The contribution of the within-line genetic diversity to the total genetic 

diversity in the DFR and to the gene pool of the Dutch dairy cattle breeds. 
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2.2 Materials and methods 
 
2.2.1 Animals and genotypes 
A total of 68 Dutch Red and White Friesian cattle (DFR) animals (26 bulls and 42 cows) 
were sampled. The DFR is a local breed in the North of the Netherlands. Anecdotally 
and according to herdbook information, it is closely related to the Dutch Friesian (DF) 
breed, which is one of the founding breeds of the Holstein Friesian, which is now the 
dominant dairy cattle breed in the world (Felius et al. 2011). Of the 68 sampled DFR 
animals, 48 animals were assigned to different lines, based on their ancestry from 
(founding) sires, within the breed by the Dutch herdbook ‘Stichting Roodbont Fries 
Vee’ (Table 2.1). Two other groups consist of animals not (yet) registered in the 
herdbook: one group from two farms with some Holstein Friesian (HF) blood and 
another group of isolated animals originating from the Dutch island Terschelling, 
from here on referred to as line 6 and 7, respectively.  
 
Table 2.1. Number of samples per line of Dutch Red and White Friesian animals. 

Line Name #Bulls #Cows Total 
1 Jet 5 4 9 
2 Marco-Kei 3 5 8 
3 Koos 5 5 10 
4 Reitsma 4 7 11 
5 DF-line 8 2 10 
6 Elsinga line  11 11 
7 Terschelling 1 8 9 
Total  26 42 68 

 
To obtain DNA, we collected hair samples from the cows. From the bulls, semen 
straws were provided by the Centre for Genetic Resources, the Netherlands (CGN). 
Samples were chosen, based on pedigree information of the herdbook, so that they 
represent a wide variation in origin within a line. Samples were genotyped using the 
BovineSNP50 BeadChip (Illumina Inc., San Diego, CA, USA). All samples had a 
genotype call rate >85%. During the quality check, SNPs with a GenCall score ≤0.20 
and call rate ≤85% were deleted from the analyses (n = 2635). Missing genotypes 
were imputed using Beagle with 20 iterations (Browning and Browning 2009). The 
imputation was carried out for each chromosome independently. The mean r2 value 
for the accuracy of imputation provided by Beagle was 0.98. After these editing 
steps, 51,974 of the initial 54,609 SNPs remained.  
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Data from the DFR cattle were supplemented with data originating from studies with 
four other Dutch breeds (Maurice - Van Eijndhoven 2014; Pryce et al. 2014; Maurice-
Van Eijndhoven et al. 2015). These data included 1,287 purebred cows; 989 were 
Holstein Friesian (HF), 97 Groningen White headed (GWH), 137 Meuse-Rhine-Yssel 
(MRY) and 64 Dutch Friesian (DF). Previously performed editing steps to remove 
uninformative SNP are described by Hulsegge et al. (2013). In short, Holstein Friesian 
animals were genotyped with a BovineSNP50 BeadChip and imputed to the 
BovineHD BeadChip using Beagle (Browning and Browning 2009). The mean Beagle 
r2 was 0.96 across the imputed loci. Animals from the three other breeds (GWH, MRY 
and DF) were genotyped with the BovineHD BeadChip. The editing steps comprised 
deleting SNP with call rate <95%, GenCall score ≤0.20 and GenTrain score ≤0.55. No 
MAF (minor allele frequency) thresholds were applied in the editing procedure. To 
investigate whether differences in results could arise with edits based on MAF, as is 
commonly done in other studies or applications, the impact of MAF threshold 0.02 
was evaluated. The preliminary analyses indicated that our results and conclusions 
were hardly affected when not applying such editing step (results not shown). After 
the editing steps, 750,457 of the 777,962 SNPs remained. These 750,457 SNPs 
contained 36,625 SNP that were also included in the DFR data after editing. For all 
animals, genotypes on those 36,625 SNPs were used in further analyses.  
 
2.2.2 Breed identity of DFR 
To investigate whether DFR is a breed with its own genetic identity and to visualize 
the relationship between DFR and the four other Dutch cattle breeds, principal 
component analysis (PCA) was performed on the SNP genotypes (Patterson et al. 
2006; Price et al. 2006) using the R-package Hierfstat (Goudet 2005). Genetic 
divergence between each breed pair was quantified by calculating pairwise FST (Weir 
and Cockerham 1984) using the R-package Hierfstat (Goudet 2005). 
 
2.2.3 Contribution of DFR to total genetic diversity in Dutch dairy 
cattle 
To quantify the importance of DFR relative to the other breeds, the marker-
estimated kinships and the core set method of Eding et al. (2002) were used. In this 
method, kinships are estimated with the help of markers and the genetic diversity 
within a breed is estimated as one minus the average kinship in that breed. The 
average kinship is also estimated across breeds, so that the genetic diversity of the 
whole set can be determined. The total genetic diversity of a set depends on the 
contribution of each breed to the total set. If all breeds contribute equally, the total 
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genetic diversity is equal to one minus the average within- and across-breed kinships. 
Otherwise, breed kinships have to be weighted by their contribution, for example: 

 
𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝟏𝟏𝟏𝟏 − 𝒄𝒄𝒄𝒄′𝑴𝑴𝑴𝑴𝒄𝒄𝒄𝒄 

 
with 𝒄𝒄𝒄𝒄 being the vector with n (number of breeds) contributions of each breed 
(summing up to 1) and 𝑴𝑴𝑴𝑴 being the n × n matrix with within- and across-breed 
kinships. So, if a relatively uniform breed contributes more to the total set, the 
genetic diversity of the total set will be lower compared to when a relatively diverse 
breed contributes more. 
 
In the core set method of Eding et al. (2002), the contribution of each of the breeds 
that maximize the genetic diversity is estimated as follows: 
 

𝑪𝑪𝑪𝑪𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑴𝑴𝑴𝑴−𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝒏𝒏𝒏𝒏
𝟏𝟏𝟏𝟏𝒏𝒏𝒏𝒏′𝑴𝑴𝑴𝑴−𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝒏𝒏𝒏𝒏

 

 
where 𝑪𝑪𝑪𝑪𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is a vector with the contributions that maximizes the diversity in the 
total set, and 𝟏𝟏𝟏𝟏𝒏𝒏𝒏𝒏 is a vector of n ones. The total diversity in the set is then estimated 
as follows: 

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝟏𝟏𝟏𝟏 − 𝒄𝒄𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎′𝑴𝑴𝑴𝑴𝒄𝒄𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎  =  𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒏𝒏𝒏𝒏′𝑴𝑴𝑴𝑴−𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝒏𝒏𝒏𝒏

 

 
The contribution of each breed to this core set thus depends both on the between- 
and within-breed components of genetic diversity. However, not only the 
contribution determines the relative importance of a breed for the total genetic 
diversity. A breed may contribute a small amount to the core set (e.g., when their 
within-breed kinship is high) but nevertheless increase the total genetic diversity 
considerably (e.g., when it's across-breed kinships are low). Therefore, the average 
kinship of the core set when the breed is included is compared to the average kinship 
of the core set when the breed is excluded (Eding et al. 2002). 
 
The required kinships were obtained by first computing a genomic relationship 
matrix (G) according to Yang et al. (2010) using the software Calc_grm (Calus 2013). 
Using those genomic relationships, average within- and between-breed kinships 
were computed across all pairwise relationships within and between breeds, 
including self-kinships. 

 



2 Conservation priorities for different lines of DFR
 

22 
 

2.2.4 Contribution of lines to genetic diversity within DFR 
To visualize the separation of the different lines based on molecular genetic data, 
PCA was used. The core set method was used to determine the relative contribution 
of each line to the total genetic diversity in the DFR. The core set method was also 
performed with both the DFR lines and the other breeds simultaneously, to 
determine the overlap of the contribution of the individual DFR lines to the total 
genetic diversity with the contribution of other breeds. 
 
2.3 Results 
2.3.1 Relationship of DFR cattle breed with other Dutch dairy breeds 
The combination of the first and second principal components (PC1 and PC2) 
separated individual animals according to their breed (Figure 2.1). PC1 distinguished 
the four local breeds from the commercial breed HF. PC2 separated the local breeds 
MRY on the one hand and GWH on the other hand from the Friesian breeds (DF, DFR 
and HF). Based on the first two principal components, overlap existed between the 
DF and DFR.  
 

 
Figure 2.1. Principal component analysis (PCA) of five Dutch dairy cattle breeds based on 
36,625 single-nucleotide polymorphisms (SNP's) [circle grey = Holstein Friesian (HF); star = 
Groningen White headed (GWH); triangle grey = Dutch Friesian (DF); square grey = Meuse-
Rhine-Yssel (MRY); triangle black = Dutch Red and White Friesian (DFR)]. 
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Genetic differentiation (pairwise FST) among breeds, confirmed that DFR is 
genetically closest to DF (FST = 0.056) (Table 2.2). Pairwise FST values ranged from 
0.056 (between DFR and DF) to 0.156 (between GWH and DF). The kinship values 
also indicated that DFR and DF were more related to each other than to the other 
breeds. DFR and DF had the highest average between-breed kinship (0.033) (Table 
2.2). Average between-breed kinship ranged from −0.078 to 0.033. 
 
Table 2.2. Estimated pairwise FST as a measure of genetic differentiation (below diagonal) and 
average genomic kinship (above diagonal) between five Dutch dairy cattle breeds. 

 GWH DF MRY HF DFR 
GWH – −0.078 −0.057 −0.053 −0.068 
DF 0.156 – −0.067 −0.056 0.033 
MRY 0.155 0.135 – −0.031 −0.050 
HF 0.132 0.111 0.110 – −0.036 
DFR 0.136 0.056 0.111 0.088 – 

Abbreviations: GWH = Groningen White headed; DF = Dutch Friesian; MRY = Meuse-Rhine-
Yssel; HF = Holstein Friesian; DFR = Dutch Red and White Friesian. 
 
Dutch Red and White Friesian showed the lowest average within-breed kinship 
(0.106) and GWH the highest (0.248) (Table 2.3). The total diversity of the Dutch 
cattle breeds was 0.926. All five breeds contributed almost equal to the overall 
genetic diversity (varying from 19.55% to 20.64%). The highest unique genetic 
diversity was observed for GWH (0.015) and the lowest for DFR (0.006). 
Nevertheless, the DFR contains some unique genetic diversity not present in the 
other Dutch breeds, although it is less than the unique diversity of the other breeds 
(Table 2.3). 
 
Table 2.3. Average genomic kinship (f) within breeds and contribution of breeds to a core set 
in which the diversity is maximized (= average f minimized). Unique diversity is measured as 
the increase in f when the core set is formed without a contribution of that breed. 

 f Contribution Unique diversity 
DFR (all lines) 0.106 19.84% 0.006 
GWH 0.248 19.93% 0.015 
DF 0.155 19.55% 0.007 
MRY 0.199 20.04% 0.012 
HF 0.174 20.64% 0.010 
Core set 0.074  – 

Abbreviations: DFR = Dutch Red and White Friesian; GWH = Groningen White headed; DF = 
Dutch Friesian; MRY = Meuse-Rhine-Yssel; HF = Holstein Friesian. 
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2.3.2 Genetic differences between DFR lines 
Principal component analysis distinguished DFR line 7 from the other lines by the 
first principal component (Figure 2.2). There was some differentiation among the 
other lines along the second principal component, but with a large overlap between 
the different lines. Genetic differentiation between the different DFR lines was also 
confirmed by the pairwise FST, which varied between 0.012 and 0.190 (Table 2.4). 
Consistent with the PCA results, the FST values indicated that line 7 clearly diverged 
from the other lines. Pairwise FST between DFR line 7 and the other six lines ranged 
from 0.149 to 0.190, while the maximum pairwise FST between the lines 1 to 6 was 
0.078 (between DFR lines 3 and 4). The FST values between DFR lines 1 to 6 were 
lower than the FST values between breeds (Table 2.2), meaning that the DFR lines 1 
to 6 were more related to each other than the breeds were. The FST values between 
DFR line 7 and the other lines were somewhat higher than the values found between 
the breeds as presented in Table 2.2. 
 

 
Figure 2.2. Principal component analysis (PCA) of seven Dutch Red and White Friesian (DFR) 
lines on 36,625 single-nucleotide polymorphisms (SNPs) [star = DFR line 1; circle white = DFR 
line 2; triangle point up black = DFR line 3; circle black = DFR line 4; square grey = DFR line 5; 
triangle point down = DFR line 6; asterisk = DFR line 7]. 
 
The average kinships between-line and within-line of the DFR breed are presented 
in Table 2.4 and 2.5. Within-line kinships were higher (Table 2.5; varying between 
0.131 and 0.478) compared with the between-line kinships (Table 2.4; varying 
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between 0.041 and 0.157). The lines 1 to 5 were more related to each other than to 
the lines 6 and 7. DFR line 7 showed the highest within-line kinship (0.478) and the 
lowest between-line kinship (ranging from 0.041 to 0.053). DFR line 6 had the lowest 
level of within-line and the second lowest level of between-line kinship. 
 
Table 2.4. Estimated pairwise FST as a measure of genetic differentiation (below diagonal) and 
average genomic kinship (above diagonal) between seven Dutch Red and White Friesian (DFR) 
lines. 

 DFR  
line 1 

DFR  
line 2 

DFR  
line 3 

DFR  
line 4 

DFR  
line 5 

DFR 
line 6 

DFR 
line 7 

DFR line 1 – 0.119 0.123 0.135 0.095 0.078 0.052 
DFR line 2 0.042 – 0.140 0.114 0.091 0.080 0.053 
DFR line 3 0.061 0.058 – 0.112 0.110 0.108 0.045 
DFR line 4 0.036 0.056 0.078 – 0.157 0.069 0.043 
DFR line 5 0.040 0.046 0.059 0.012 – 0.063 0.042 
DFR line 6 0.048 0.049 0.057 0.063 0.046 – 0.041 
DFR line 7 0.158 0.166 0.190 0.171 0.149 0.149 – 

 
Table 2.5. Average genomic kinship (f) within lines and contribution of lines to a core set in 
which the diversity is maximized (= average f minimized). Unique diversity is measured as the 
increase in f when the core set is formed without a contribution of that breed/ line. 

 f DFR lines All breeds/lines 
  Contribution Unique 

diversity 
Contribution Unique 

diversity 
DFR line 1 0.176 12.63% 0.005 13.26% 0.0002 
DFR line 2 0.192 11.70% 0.004 11.90% 0.0002 
DFR line 3 0.265 6.81% 0.001 15.37% 0.0003 
DFR line 4 0.205 10.01% 0.002 16.35% 0.0002 
DFR line 5 0.140 19.02% 0.008 14.97% 0.0002 
DFR line 6 0.131 26.02% 0.020 14.82% 0.0002 
DFR line 7 0.478 13.81% 0.014 13.21% 0.0004 
Core set 0.126  –   

Abbreviations: DFR = Dutch Red and White Friesian. 
 
The contribution of each line (in %) to the DFR breed is shown in Table 2.5. All lines 
contributed to the diversity of the DFR breed. The highest contribution to the total 
diversity of the DFR breed was observed for line 6 (26.02%), while line 3 showed the 
smallest contribution (6.81%). The total diversity of the DFR was 0.874. The largest 
part of diversity of most lines is represented in the other lines as well. The highest 
impact on the diversity was observed when line 6 or line 7 was removed, leading to 



2 Conservation priorities for different lines of DFR
 

26 
 

a decrease in overall diversity of the DFR breed by approximately 2.3% and 1.6%, 
respectively. Removing one of the lines 1 to 5 had only a small impact on the 
diversity. Apparently, the diversity contained in these lines is almost completely 
present in the other lines as well. 
 
2.3.3 Contribution of the DFR lines to the total genetic diversity 
The average kinship between DFR lines and the Dutch cattle breeds are presented in 
Table 2.6. This kinship varied from −0.079 to 0.085. The highest values were 
estimated between DFR lines and DF, while the lowest values were observed 
between DFR lines and GWH. Line 6 was the line most closely related to HF, and line 
7 was the line least related to DF. 
 
Table 2.6. Average genomic kinship between Dutch cattle breeds and Dutch Red and White 
Friesian (DFR) lines. 

 GWH DF MRY HF 
DFR line 1 −0.065 0.027 −0.046 −0.040 
DFR line 2 −0.065 0.030 −0.048 −0.040 
DFR line 3 −0.073 0.031 −0.054 −0.045 
DFR line 4 −0.074 0.050 −0.058 −0.051 
DFR line 5 −0.079 0.085 −0.065 −0.056 
DFR line 6 −0.058 0.010 −0.046 −0.003 
DFR line 7 −0.060 −0.007 −0.030 −0.017 

Abbreviations: DFR = Dutch Red and White Friesian; GWH = Groningen White headed; DF = 
Dutch Friesian; MRY = Meuse-Rhine-Yssel; HF = Holstein Friesian. 
 
Results of assessing the impact of removing one line from the DFR breed and 
calculating the contribution of each line (in %) to the pool of Dutch dairy cattle 
breeds with maximal genetic diversity are shown in Table 2.5. When considering all 
Dutch dairy cattle breeds, removing one of the DFR lines has a small impact on the 
diversity (loss of 0.0002 to 0.0004; Table 2.5). When considering all breeds, the 
contribution of DFR line 6 was considerably smaller (14.82%) compared to DFR lines 
analysed in separation (26.02%). This was due to the inclusion of the HF breed, 
removing the HF breed increased the contribution of line 6 with 4.7% (results not 
shown). The contribution of DFR line 5 to the diversity across all breeds is also smaller 
(14.97%) compared to DFR lines only (19.02%). For DFR line 3, the contribution to 
the diversity across all breeds is larger (15.37%) compared to DFR lines only (6.81%). 
 
Removing DF increased the contribution of DFR, especially by the contribution of line 
5. Thus, analysing DFR in isolation of the other breeds suggests, for some lines, a 
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larger proportion of unique diversity, while part of this diversity apparently is due to 
influences of the other breeds, in particular DF and HF, as revealed by the analysis 
including other breeds. 
 
2.4 Discussion 
2.4.1 Relationship of DFR cattle breed with other Dutch dairy breeds 
Genetically, Dutch cattle breeds are clearly distinct from each other as shown by the 
PCA results, except for DF and DFR. As expected from breed history, the DFR breed 
is closely related to the DF breed (FAO 2007b). These breeds were recorded as 
separate breeds for slightly more than 100 years. Red offspring of the DF breed, born 
out of the combination of two red factor carriers, could be incorporated in the DFR 
breed. From 1970, DF and DFR became rare (Porter 2002). Genetic differentiation 
between the breeds (pairwise FST) and the between-breed kinship also indicated that 
DFR and DF were more related to each other than to the other Dutch breeds. In 
European cattle breeds, pairwise FST values have been reported, that is ranging from 
0.035 to 0.132 (Gautier et al. 2007) and from 0.059 to 0.142 (Neuditschko 2011). The 
FST between DFR and DF of 0.056 is at the lower end of these ranges. DFR showed a 
reasonable contribution (19.84%) to the total genetic diversity of Dutch cattle breeds 
and contains a small amount of genetic diversity not present in the other Dutch 
breeds. This contribution is comparable to the contribution of each of the other 
breeds. Thus, although DFR and DF are closely related, the results of this study 
showed that DFR has its own genetic identity, containing some genetic diversity not 
present in other breeds. 
 
2.4.2 Genetic management of lines within breeds 
Management of breeds subdivided in lines implies a compromise of different factors: 
first, the maintenance of the highest possible levels of genetic diversity for the whole 
breed; second, the preservation of the genetic differentiation between lines; and 
third, the restriction of within-line diversity to acceptable levels, so inbreeding would 
not increase beyond these acceptable levels (Fernandez et al. 2008). The results of 
our study revealed a high level of admixture between lines 1 and 5. This reflects the 
similar origin of these lines. Consequently, there seems to be no necessity to 
conserve these 5 lines separately, because their level of differentiation is very low. 
The line with the highest overall contribution to diversity in DFR is line 6. However, 
part of this diversity is due to some HF blood and therefore of lower conservation 
value. 
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The pairwise FST values indicated that DFR line 7 had a high level of genetic 
differentiation from other lines. This line has been bred for a considerable time in 
isolation from the other lines and apparently conserved genetic diversity not present 
anymore in the rest of the population. However, this line showed high levels of 
inbreeding, and a low level of diversity. 
 
2.4.3 Contribution of lines within breeds to the total genetic diversity 
across breeds 
A way to measure the influence of one line over the others in the DFR breed is to 
ascertain its genetic contribution to diversity by removing this line from the whole 
DFR breed and determining the remaining genetic diversity (Caballero and Toro 
2002; Eding et al. 2002). However, the results are different when relationships of 
other Dutch cattle breeds are taken into account. Some DFR lines contains a portion 
of genetic diversity which is also represented in the other Dutch cattle breeds. 
Maximizing genetic diversity within a breed is therefore not always the best strategy. 
Thus, our results demonstrate that when establishing conservation programmes, it 
is necessary to take relationships with other breeds into account as well. Lenstra 
(2006) also indicated that for decisions on conservation priorities, the diversity of all 
local breeds related to the endangered population should be taken into account to 
assess their unique contribution to diversity. 
 
2.4.4 Assessing contributions of lines without pedigree relationship 
to herdbook animals 
Previously, pedigree information was the most important information used for 
registration of animals in a herdbook. Use of genome-wide SNP information now 
provides a way to assess the relationship of animals without pedigree to animals 
registered in a herdbook. The Dutch DFR herdbook ‘Stichting Roodbont Fries Vee’ 
had assigned 48 sampled animals in this study to five different lines. Two additional 
DFR lines were defined consisting of animals that were not registered (DFR line 6 and 
7). The lines might be considered as subpopulations, but there are no formal 
restrictions on pairing animals from different lines with each other, whereas crosses 
between animals of different breeds are considered cross-breds and not registered 
as belonging to either breed. Consequently, in the context of diversity, relationships 
between lines are generally much higher than relationships between breeds. 
 
For the lines without an official pedigree, the results of this study showed similarities 
and differences to the five lines (DFR lines 1 to 5) with an official pedigree. This study 
indicated that line 6, a group with some HF blood, indeed represents part of the HF 
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genetic diversity. Currently, there seems to be no necessity to conserve DFR line 6. 
However, conserving line 6 in situ may be useful in practice for several reasons: first, 
this line consists of approximately 100 animals, while the total population size of DFR 
is 500; second, to increase the milk production of the DFR breed; and third, to 
increase the genetic diversity of DFR and consequently to decrease the chance of 
inbreeding. However, conserving line 6 should not be at the expense of other lines.  
This study distinguished DFR line 7 from the other DFR lines. However, considering 
all Dutch cattle breeds, line 7 is closely related to DFR and DF. This isolated group of 
animals will maximize the level of genetic diversity for the whole DFR breed and will 
increase genetic differentiation between lines, despite its high levels of inbreeding. 
Therefore, line 7 makes a unique contribution to the DFR cattle, and it is worthwhile 
to include this line without an official pedigree in the herdbook. The DFR herdbook 
and breeders are now considering the inclusion of line 6 and line 7 in the herdbook. 
It is often not possible and may also not be desirable, to conserve all breeds/lines, 
mostly due to financial limitations (Bennewitz et al. 2007). As shown in this study, 
taking relationships with other breeds into account can change conservation 
priorities within a breed and thus may affect conservation decisions made for this 
breed. This is applicable not only to the lines within a breed in this study, but also for 
breeds within a species or in a gene pool of national breed as in this study. 
 
Conservation decisions also should take into account the degree of endangerment 
and costs of conservations and economic, cultural and historical values of different 
characteristics of a breed (Simianer et al. 2003; Bennewitz et al. 2007). 
Endangerment of most DFR lines is similar; however, line 7 is clearly more 
endangered since the owner has stopped active farming. DFR line 6 had the highest 
overall contribution to diversity in DFR; however, when considering HF, the 
contribution of DFR line 6 was considerably smaller, indicating that the 
endangerment of line 6 is not really a threat for the DFR breed as a whole. 
Consequently, conservation priorities based on genetic diversity coincides with 
priority based on degree of endangerment. 
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Abstract 
Background 
The pig breeding industry has undergone a large number of mergers in the past 
decades. Various commercial lines were merged or discontinued, which is expected 
to reduce the genetic diversity of the pig species. The objective of the current study 
was to investigate the genetic diversity of different former Dutch Landrace breeding 
lines and quantify their relationship with the current Dutch Landrace breed that 
originated from these lines. 
 
Results 
Principal component analysis clearly divided the former Landrace lines into two main 
clusters, which are represented by Norwegian/Finnish Landrace lines and Dutch 
Landrace lines. Structure analysis revealed that each of the lines that are present in 
the Dutch Gene bank has a unique genetic identity. The current Dutch Landrace 
breed shows a high level of admixture and is closely related to the six former lines. 
The Dumeco N-line, which is conserved in the Dutch Gene bank, is poorly 
represented in the current Dutch Landrace. All seven lines (the six former and the 
current line) contribute almost equally to the genetic diversity of the Dutch Landrace 
breed. As expected, the current Dutch Landrace breed comprises only a small 
proportion of unique genetic diversity that was not present in the other lines. The 
genetic diversity level, as measured by Eding’s core set method, was equal to 0.89 
for the current Dutch Landrace breed, whereas total genetic diversity across the 
seven lines, measured by the same method, was equal to 0.99. 
 
Conclusions 
The current Dutch Landrace breed shows a high level of admixture and is closely 
related to the six former Dutch Landrace lines. Merging of commercial Landrace lines 
has reduced the genetic diversity of the Landrace population in the Netherlands, 
although a large proportion of the original variation is maintained. Thus, our 
recommendation is to conserve breeding lines in a gene bank before they are 
merged. 
 
Key words: genetic diversity, SNP, pig breeds, consolidation breeding lines 
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3.1 Introduction 
The pig is a major livestock species, which in 2016 accounted for 37% of the meat 
production worldwide (FAO 2016). The global pork production primarily relies on the 
use of a limited number of international commercial breeds, specifically Duroc, Large 
White, and Landrace. In the mid-twentieth century, a large number of breeding 
associations that operated regionally were responsible for pig breeding. Each of 
these breeding associations and breeding companies had their own breeding stock, 
which was usually based on the same limited number of commercial breeds, but 
often originated from national or regional, and therefore unique, populations. 
 
Over the past decades, the commercial breeding industry has seen considerable 
business consolidation through mergers and take-overs, which have resulted in a 
limited number of remaining internationally operating breeding companies (De Man 
2008). Consequently, the breeding lines owned by these companies have 
experienced a high degree of consolidation as well. Breeding lines that lost the 
competition in terms of performance and genetic gain were often discontinued but 
perhaps more often, breeding lines were merged ‘asymmetrically’, keeping the old 
breeding line’s name, but with extraneous influences. 
 
The process of consolidation of breeding lines in domestic farm animals is most 
advanced in poultry, where both for broiler and laying chickens, the global market 
relies on just a handful of breeding lines/populations. Currently, the global poultry 
breeding market is primarily covered by just a few breeding companies, which has 
led to a loss of genetic diversity in these breeds (Muir et al. 2008). Pig breeding shares 
similarities with poultry breeding in that it relies on a limited number of international 
breeds. Nevertheless, consolidation of pig breeding lines (and breeding companies, 
for that matter) has not yet progressed to the same extent. However, worldwide, 
genetic variation in pigs is threatened by the progressive marginalization of local 
breeds for the benefit of commercial breeds (Herrero-Medrano et al. 2014; FAO 
2015). The continued merging of the many distinct local populations of these 
commercial pig breeds and lines is expected to further increase the loss of genetic 
potential for pig production. 
 
Traditional pig breeds and pure breeding lines are valued resources, not only for 
meat production, but also for cultural, historical, sociological, and environmental 
aspects. The underlying genetic variation may disappear, or may already have 
disappeared, from the global highly productive breeds that dominate modern 
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intensive livestock production systems. Thus, the continued merging of breeding 
companies increases the concern of losing essential genetic variation (Hillel et al. 
2003). 
 
The consolidation of breeding lines is often poorly documented, with public records 
usually limited or absent. Even for breeding lines listed by the FAO, which include 
data on their current status and vulnerability, information is often limited or 
outdated. A post hoc evaluation of loss of diversity in the aftermath of company 
mergers by genotyping is further hampered by the absence of reference samples 
from the pre-merger breeding lines. Here, we present a relatively well-documented 
case of the merging of a number of breeding associations that operated at the 
national level (the Netherlands) into an internationally operating breeding company 
(Topigs Norsvin). Although consolidation affected all breeding lines owned by the 
breeding companies, we will focus on one particular breed in this paper, i.e. the 
Dutch Landrace. 
 
Our objective was to investigate the consequences of merging and discontinuing 
breeding populations on the genetic diversity of the Dutch Landrace breed over the 
past decades. To achieve this objective, we used genotype data of boars from the 
former Dutch Landrace breeding lines that have been conserved in the Dutch Gene 
bank to quantify their relationship with the current Dutch Landrace breed, and to 
estimate the loss (if any) of genetic diversity as a result of the merging of lines. 
 
3.2 Methods 
3.2.1 Description of the Landrace breed 
The Dutch Landrace breed originated from the original native Landrace pig, with 
infusions of the German Landrace and the Danish Landrace around 1900 (Haring 
1961). By 1933, the Dutch Landrace was officially recognized as a Dutch native breed. 
By 1960, different breeding associations started selecting their own Dutch Landrace 
populations for their specific breeding goals. In the 1970s, Finnish and Norwegian 
Landrace pigs were imported into the Netherlands for use in crossbreeding programs 
(Hoving et al. 2017). During the 1990s, the Cofok, Dumeco, Fomeva, and Stamboek 
breeding associations, which together represent the majority of pig sales in the 
Netherlands, merged into a new internationally operating breeding organization 
called Topigs (Slaghuis 2009). During this period, semen from breeding lines that 
were owned by the parent breeding organizations was deposited into the Dutch 
Gene bank (http://www.genebankdata.cgn.wur.nl/). This practice has been 
continued by Topigs (now called Topigs Norsvin) during the last two decades, 
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resulting in a unique collection of material from breeding lines that were either 
discontinued or altered by merging lines. The timeline of consolidation of the 
different Landrace breeding lines in the Netherlands since 1960s is illustrated in 
Figure 3.1. (Hoving et al. 2017). 
 

 
Figure 3.1. Timeline showing the consolidation of the Landrace breeds in the Netherlands 
since the 1960s (after Hoving et al. 2017). Abbreviations: CNF Cofok Norwegian and Finnish 
Landrace, DL Dumeco L-line, DN Dumeco N-line, FL Stamboek Finnish Landrace, FZ Fomeva Z1-
line, SB Stamboek Dutch Landrace, TN Topigs Norsvin N-line. 
 
3.2.2 Animals and genotypes 
The Centre for Genetic Resources, the Netherlands (CGN) of Wageningen UR, i.e., 
the Dutch Gene bank, stores cryopreserved genetic material, primarily semen, from 
the former pig breeding associations in the Netherlands. From 1998 to 2003, CGN 
collected genetic material from six Landrace breeding lines of breeding associations 
that existed at that time. Merging of Dutch Landrace lines was in full progress and 
consequently the number of animals was already reduced. To select the group of 
boars, from the available animals, with minimal kinship and maximum diversity, 
optimal contributions were estimated using Gencont (Meuwissen 2002). From 2011 
to 2016, CGN has preserved genetic material from the current Dutch Landrace line 
(Topigs Norsvin N-line; hereafter referred to as “TN line”) in the Dutch Gene bank. 
Genotype data, provided by CGN and Topigs Norsvin, were available for 187 animals 
from six former Dutch Landrace lines (Dutch lines from Fomeva, Dumeco and 
Stamboek, and Dutch Norwegian/Finnish lines from Cofok, Dumeco and Stamboek) 
and the current TN line (Table 3.1). 
 
The 187 animals were genotyped using the PorcineSNP80 BeadChip (Illumina Inc., 
San Diego, CA, USA). All samples had a genotype call rate higher than 90%. For quality 
control, SNPs with a GenCall score lower than 0.20, a minor allele frequency lower 
than 0.02 and a per SNP genotype call rate less than 100% were removed from 
further analyses, the latter because some of the subsequent analyses cannot deal 
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with missing genotypes. Imputing missing genotypes was not appropriate for this 
dataset, since it requires more animals for each of the lines involved to be 
genotyped. In addition, applying a call rate threshold of 100% left a sufficient number 
of SNPs in the dataset for subsequent analyses. The final dataset included 42,655 
SNPs with calls for all 187 animals. 
 
Table 3.1. Number of genotyped animals in six former and the current Dutch Landrace line 
(TN line). 

Line Abbreviation Origin of 
the linesa 

Semen 
collection 

year 

Number 
of 

animals 
Cofok Norwegian and Finnish 
Landrace 

CNF FN 2000–2002 46 

Dumeco L-line DL NL 1998–2002 49 
Dumeco N-line DN FN 1998–2002 24 
Stamboek Finnish Landrace FL FN 2002 11 
Fomeva Z1-line FZ NL 2000 11 
Stamboek Dutch Landrace SB NL 2002–2003 12 
Topigs Norsvin N-line TN TN 2011–2016 34 

aOrigin of the lines: FN: Finnish/Norwegian; NL: Dutch; TN: current line. 
 
3.2.3 Population structure 
To examine relatedness between the Landrace lines, a principal component analysis 
(PCA) was performed using the prcomp function in R (R Core Team 2013). To identify 
subpopulations (clusters), genotypes of all individual animals were analysed by the 
model-based clustering algorithm implemented in the software Structure (version 
2.3.4) (Pritchard et al. 2000; Falush et al. 2003). Subpopulation numbers (K) ranging 
from 2 to 7 were evaluated by repeating each analysis 10 times. A burn-in of 10,000 
iterations and subsequent 50,000 iterations of the Markov chain Monte Carlo were 
applied, with all other program parameters set to their default values. The most 
likely number of subpopulations was inferred with the ΔK method of Evanno (Evanno 
et al. 2005), implemented in the R package pophelper (version 2.2.3) (Francis 2017). 
The program CLUMPP (Jakobsson and Rosenberg 2007) implemented in pophelper 
was used to align the 10 independent runs for each K. Pophelper was also used to 
plot results for K = 2 to 7. The Structure analysis was performed a second time by 
applying the “Use Population Information” setting, such that individuals of the TN 
line (POPFLAG = 0) were assigned to clusters that were defined by the allele 
frequencies of the other lines (POPFLAG = 1). A neighbour-joining tree (Saitou and 
Nei 1987) was computed based on the resulting distance matrix using the R package 
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APE (version 4.1) (Paradis et al. 2004). Genetic divergence between each pair of 
Landrace lines was quantified by calculating pairwise FST, as defined by Weir and 
Cockerham (Weir and Cockerham 1984), using the R-package ‘hierfstat’ (version 
0.04–22) (Goudet 2005). 
 
3.2.4 Genetic diversity 
The contribution of breeds to genetic diversity was analysed using the marker-
estimated kinships and the core set method of Eding et al. (2002). In this method, 
kinship coefficients are estimated based on SNP genotypes, and the genetic diversity 
within a breed is estimated as one minus the average kinship coefficient in that 
breed. The average kinship coefficient was also estimated across breeds to 
determine the genetic diversity of the whole set. The total genetic diversity of a set 
depends on the contribution of each breed to the total set. If all breeds contribute 
equally, the total genetic diversity is equal to one minus the average within- and 
across-breed kinship coefficients. Otherwise, the kinship coefficients of each breed 
have to be weighted by their contribution, as: 
 

𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝟏𝟏𝟏𝟏 − 𝒄𝒄𝒄𝒄′𝑴𝑴𝑴𝑴𝒄𝒄𝒄𝒄 
 
where c is a vector of the n (number of breeds) contributions of each breed 
(summing to 1) and M is a n × n matrix with within- and across-breed kinship 
coefficients. Thus, if a relatively uniform breed contributes more to the total set, the 
genetic diversity of the total set will be lower than when a relatively diverse breed 
contributes. 
 
In the core set method of Eding et al. (2002) the contribution of each breed that 
maximizes the genetic diversity is estimated as: 
 

𝑪𝑪𝑪𝑪𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑴𝑴𝑴𝑴−𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝒏𝒏𝒏𝒏
𝟏𝟏𝟏𝟏𝒏𝒏𝒏𝒏′𝑴𝑴𝑴𝑴−𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝒏𝒏𝒏𝒏

 

 
where cmax is the vector of contributions that maximizes the diversity in the total set, 
1n is a vector of n ones, and M is the n × n matrix with the average within- and 
between-breed kinships. Then, the total diversity in the set is estimated as: 
 

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝟏𝟏𝟏𝟏 − 𝒄𝒄𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎′𝑴𝑴𝑴𝑴𝒄𝒄𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎  =  𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏𝒏𝒏𝒏𝒏′𝑴𝑴𝑴𝑴−𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝒏𝒏𝒏𝒏
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Thus, the contribution of each breed to this core set depends on both the between- 
and within-breed components of genetic diversity. However, this contribution is not 
the only one that determines the relative importance of a breed to total genetic 
diversity. A breed that only contributes a small amount to the core set (e.g. when 
their within-breed kinship is high) can, nevertheless, increase the total genetic 
diversity considerably, e.g., when its across-breed kinships are low. Therefore, the 
average kinship coefficient of the core set when the breed is included is compared 
to the average kinship coefficient of the core set when the breed is excluded (Eding 
et al. 2002). 
 
The required kinship coefficients were obtained by first computing the genomic 
relationship matrix (G) according to Yang et al. (2010), using the software Calc_grm 
(Calus 2013). Using G, average within- and between-breed kinship coefficients were 
computed across all pairwise relationships within and between breeds, including 
self-kinship coefficients. 
 
3.2.5 Identification of selection signatures by using FST 
Selection signatures were detected for each pairwise comparison between the 
current TN and the six former lines, by using the FST-outlier approach implemented 
in the BayeScan software (version 2.1), using default settings (Foll and Gaggiotti 
2008). SNPs with a q-value lower than 0.05 were considered as outliers, which 
indicate regions potentially under selection. Genes that are located within 10 kb (5 
kb downstream/upstream) of the SNP outliers were identified as candidate genes, 
based on the Ensembl annotation of Sscrofa10.2 
(https://may2017.archive.ensembl.org/Sus_scrofa/Info/Index). The candidate 
genes were characterized using the PANTHER Classification System version 14.1 
(http://geneontology.org/) (Mi et al. 2019), in particular, with the GO-Slim Biological 
Process annotation dataset. Overrepresentation analysis of GO-Slim Biological 
Process terms was also done using PANTHER; GO terms with a p ≤ 0.05 after 
Bonferroni correction were deemed significant. Compared to using the entire GO 
term database, GO-Slim uses a limited set of GO terms to provide a more general list 
of functions that map to genes.  
 
3.3 Results 
3.3.1 Population structure 
The current Dutch Landrace (TN: Topigs Norsvin N-line) is the result of the 
consolidation of six former Landrace lines that existed from the 1960s until early 
2000 (CNF: Cofok Norwegian and Finnish landrace, DL: Dumeco L-line, DN: Dumeco 
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N-line, FL: Stamboek Finnish Landrace, FZ: Fomeva Z1-line and SB: Stamboek Dutch 
Landrace). The PCA clearly indicates a division of the seven Landrace lines into two 
main clusters; on the one hand, the former Norwegian/Finnish Landrace lines (CNF, 
DN and FL lines), which were introduced in the Netherlands between 1970 and 1980, 
and, on the other hand, the former Dutch Landrace lines (DL, FZ and SB) (Figure 3.2a). 
Clearly, the current commercial Dutch Landrace line (TN) is a mixture of the former 
breeding lines, since the old breeding lines included the extremes of the first 
principal component (PC1). The widespread distribution of the animals along PC1 for 
the current TN line shows that the contribution of the Dutch and Norwegian/Finnish 
lines to the current line differs between pigs. The second principal component (PC2) 
distinguished the DN line from the other six lines. 
 
A unique genetic identity was identified for each of the six former Landrace lines 
based on the cluster analysis using the Structure software (Figure 3.2c). At K = 2, the 
two ancestries clearly reflected Dutch Norwegian/Finnish versus Dutch Landrace 
origins. At K = 3, DN was separated from CNF and FL (representative of Dutch 
Norwegian/Finnish Landrace). Based on ΔK, the most likely number of genetic groups 
(clusters) was equal to 5. While all parent lines appeared to be well separated at K = 5 
(with the exception of FZ and SB), TN is clearly an admixed population with 
substantial contributions from the former breeding lines CNF, FL, and FZ/SB. At K = 5, 
the average proportion of membership of the founder breeds to TN was 0.205, 
0.043, 0.350, 0.290, and 0.112 for CNF (cluster 1), DN (cluster 2), FL (cluster 3), FZ/SB 
(cluster 4), and DL (cluster 5), respectively. Results of the Structure analysis with no 
prior population information (POPFLAG = 0 for TN line) is shown in Figure S1 
(Additional file 1: Figure S1), and confirmed the results of the PCA, i.e., that the 
contributions from the former lines differed between individuals. A neighbour-
joining tree separated the breeding lines from each other in separate clades, except 
for the current TN line (Figure 3.2b). 
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Figure 3.2. Population structure and relationships of Landrace breeding lines in the 
Netherlands. A) Principal component (PC) analysis, PC 1 against PC 2. B) Neighbour-joining 
tree of the relationships between the seven lines. C) Proportion of ancestry for each individual 
assuming different numbers of ancestral populations (K = 2 to 7). Colours of each vertical line 
represent the estimated proportion of an animal’s genome that is assigned to a source 
population. Abbreviations: CNF Cofok Norwegian and Finnish Landrace, DL Dumeco L-line, DN 
Dumeco N-line, FL Stamboek Finnish Landrace, FZ Fomeva Z1-line, SB Stamboek Dutch 
Landrace, TN Topigs Norsvin N-line; FN: Finnish/Norwegian; NL: Dutch; L: current line. 
 
Genetic differentiation among the Landrace lines was low to moderate, as indicated 
by the pairwise FST values that ranged from 0.02 to 0.10 (Table 3.2). The genetic 
differentiation of the current TN breeding line from the six former lines was low, 
which indicates that the current breeding line is closely related to the former 
breeding lines. 
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Table 3.2. Estimated pairwise FST as a measure of genetic differentiation (below the diagonal) 
and average genomic kinship (above the diagonal) between the Landrace breeding lines. 
  CNF DL DN FL FZ SB TN 
CNF – − 0.072 0.044 0.008 − 0.092 − 0.091 0.013 
DL 0.066 – − 0.070 − 0.072 0.025 0.048 − 0.019 
DN 0.051 0.077 – − 0.018 − 0.109 − 0.105 − 0.033 
FL 0.036 0.044 0.074 – − 0.074 − 0.087 0.010 
FZ 0.055 0.030 0.098 0.088 – 0.025 − 0.034 
SB 0.054 0.024 0.094 0.085 0.0588 – 0.039 
TN 0.032 0.035 0.061 0.029 0.0412 0.0310 – 

Abbreviations: CNF Cofok Norwegian and Finnish Landrace, DL Dumeco L-line, DN Dumeco N-
line, FL Stamboek Finnish Landrace, FZ Fomeva Z1-line, SB Stamboek Dutch Landrace, TN 
Topigs Norsvin N-line. 
 
3.3.2 Genetic diversity 
The average kinship coefficients between and within the Landrace lines are in Tables 
3.2 and 3.3. As expected, within-line kinship coefficients were higher (Table 3.3; 
ranging from 0.051 to 0.249) than the between-line kinship coefficients (Table 3.2; 
ranging from − 0.092 to 0.074). The higher negative between-line kinship coefficients 
between the former Dutch Norwegian/Finnish and the Dutch breeding lines 
indicates that the distance between these lines was greater than between individuals 
within the lines. The within-line kinship coefficient was lowest (0.051) for the current 
TN. 
 
Table 3.3. Average genomic kinship coefficient (�̅�𝒇𝒇𝒇) within lines and the contribution of lines 
to a core set in which the diversity is maximized (= �̅�𝒇𝒇𝒇 minimised). 

Line �̅�𝒇𝒇𝒇 Contribution (%) Unique diversity 

CNF 0.170 15.74 0.005 
DN 0.249 17.79 0.008 
FL 0.158 14.70 0.007 
DL 0.143 12.45 0.007 
FN 0.186 13.28 0.004 
SB 0.121 10.84 0.004 
TN 0.051 15.18 0.003 
Core set 0.007 

 
– 

Abbreviations: CNF Cofok Norwegian and Finnish Landrace, DL Dumeco L-line, DN Dumeco N-
line, FL Stamboek Finnish Landrace, FZ Fomeva Z1-line, SB Stamboek Dutch Landrace, TN 
Topigs Norsvin N-line. 
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The contribution of each line (in %) to the genetic diversity in the overall Landrace 
population is shown in Table 3.3. All lines contributed to the diversity of the core set. 
The largest contribution to the total genetic diversity of the Landrace breed was 
observed for DN (17.79%), whereas it was smallest for SB (10.84%). Each line had a 
certain proportion of unique genetic diversity. The total genetic diversity of the 
Landrace breeding lines, estimated by Eding’s core set method, was 0.993, and that 
of the six former breeding lines was 0.990, while the genetic diversity of TN was 
0.894. 
 
3.3.3 Identification of selection signatures using FST 
As breeding lines are merged, selection continues, although in some cases the 
breeding goal may be different in the consolidated line compared to the parent lines. 
SNP genotypes were used to estimate allele frequency differentiation (measured as 
FST) in pairwise comparisons between the current TN and the six former lines. Outlier 
(high allele frequency differentiation) SNPs are an indication of regions that are 
potentially under selection. The log10 Bayes factor values for each SNP are shown in 
Figure 3.3. The number of loci with statistically significant patterns of divergent 
genetic differentiation (q-value ≤ 0.05), which were identified by pairwise 
comparisons, revealed that CNF and TN had the largest number (93) of outlier SNPs 
(Table 3.4). The outlier SNPs were located close to or within 20 candidate genes. 
Among these outlier SNPs, 29% (n = 27) were located almost at the end of 
chromosome 13 (SSC13: 191,713,636–196,766,412). Almost all of these 27 outliers 
are intergenic variants, which lie in-between genes (Additional file 2: Table S1). 
Additional file 2: Table S1 lists the outlier SNPs, candidate genes, and their respective 
assigned GO-slim terms (Biological Processes). Fifty-three SNPs were identified as 
loci that were under diversifying selection between the DL and TN lines, and these 
corresponded to 20 candidate genes. Seven outlier SNPs were located within small 
nucleolar RNAs (snoRNAs). Pairwise comparison between DN and TN revealed 46 
SNP outliers (q-value ≤ 0.05) with 13 candidate genes. Pairwise comparisons of TN 
with each of the other four lines revealed 46 significant SNPs (q-value ≤ 0.05) 
between DN and TN, 18 between FL and TN, 21 between FZ and TN, and 7 between 
SB and TN. No candidate genes were found for the comparison between SB and TN. 
GO annotation of the candidate genes showed that most genes were linked to 
biological processes associated with cellular processes, metabolic processes, and 
intracellular transport (Table 3.4 and Additional file 2: Table S1). However, no 
significant over-representation was observed for any biological process. 
 
 



3

3 Impact of merging breeding lines 
 

43
 

 
Figure 3.3. Genome-wide distribution of log10 Bayes factor values in the pairwise comparison 
between the current TN and the six former lines. a CNF versus TN, b DL versus TN, c DN versus 
TN, d FL versus TN, e FZ versus TN and f SB versus TN. Abbreviations: CNF Cofok Norwegian 
and Finnish Landrace, DL Dumeco L-line, DN Dumeco N-line, FL Stamboek Finnish Landrace, 
FZ Fomeva Z1-line, SB Stamboek Dutch Landrace, TN Topigs Norsvin N-line. The threshold for 
significance of signatures of selection is denoted with a line (q-value ≤ 0.05) 

 

a b 

c d 

e f 
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Table 3.4. Number of outlier SNPs detected (q-value ≤ 0.05) by BayeScan and their respective 
candidate genes within 5 kb up- or downstream. 

Pairwise 
comparison 
of lines 

Number 
of 

outlier 
SNPs 

Candidate genes General Term GO BP 

CNF – TN 93 CDC6, CIB4, CLEC1A, 
CLEC7A, 

ENSSSCG00000000959, 
ENSSSCG00000007221, 
ENSSSCG00000008799, 
ENSSSCG00000012012, 
ENSSSCG00000020566, 
ENSSSCG00000025389, 
ENSSSCG00000027643, 
ENSSSCG00000027841, 
ENSSSCG00000028250, 
GALM, GDE1, LAPTM5, 

LRRK2, RAB39A, SLC35F2, 
TCN1 

cell cell signalling / immune, 
cell communication, cell cycle, 

intracellular transport, 
metabolic process, skeletal 

muscle function and 
regeneration, system process, 

transmembrane transport 

DL –TN 53 ABRACL, BECN1, CCDC6, 
ENSSSCG00000010218, 

GARS, KIAA0513, MINDY4, 
NOL10, REPS1, SPNS2, 

SPNS3, UST, WNK4 

(cell) 
development/differentiation, 
cell communication, cellular 
processes, gene expression, 

intracellular transport, 
metabolic process 

DN – TN 46 CACNG3, CD48, CFAP45, 
DDX42, 

ENSSSCG00000024706, 
ENSSSCG00000026756, 
ENSSSCG00000027460, 

GLO1, GOT1, KSR1, 
PKHD1L1, ssc-mir-4331, 

TSPAN11 

cell communication, cellular 
processes, immune,  

intracellular transport, 
metabolic process 

FL – TN 18 EHBP1L1, KCNK7, MPP7, 
VAT1L, ZNF354C 

intracellular transport, 
metabolic process 

FZ – TN 21 FZD2, IL17REL, PLEKHM1, 
WDR92 

cellular process, 
developmental processes, 

intracellular transport 
SB - TN 7 -  

Abbreviations: CNF Cofok Norwegian and Finnish Landrace, DL Dumeco L-line, DN Dumeco N-
line, FL Stamboek Finnish Landrace, FZ Fomeva Z1-line, SB Stamboek Dutch Landrace, TN 
Topigs Norsvin N-line. 
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3.4 Discussion 
In this study, we investigated the consequences for genetic diversity of the merging 
of lines within a breed, with the individual lines being discontinued thereafter. The 
data were derived from samples of boars that are included in the Dutch Gene bank 
collection, which led us to assume that these would encompass the genetic variation 
present in the modern breeding population (Berg and Windig 2017). Sample size of 
some Dutch Landrace lines used in this study were relatively small, due to limited 
availability of samples, and differed between lines, ranging from 11 samples for the 
lines FL and FZ lines to 49 for the DL line. Small sample size can lead to incorrect 
estimates of allele frequencies (Abi-Rached et al. 2018) and a proportion of genetic 
diversity present in the lines may remain undetected. Nevertheless, the results 
showed that the sampled animals formed genetic clusters that corresponded to their 
line designations (Figure 3.1). The results also showed that, genetically, the current 
commercial Dutch Landrace line (TN) is a mixture of the six former Landrace lines in 
the Netherlands. In general, the results reported here are in good agreement with 
the known history of the different Landrace lines examined (Slaghuis 2009; Hoving 
et al. 2017). 
 
3.4.1 Genetic diversity 
Genetic differentiation between the lines (pairwise FST) was moderate to low. 
Wilkinson et al. (2011a) reported a mean FST value of 0.156 between three British 
Landrace lines. For wild pigs sampled across different locations of the state of Florida 
(USA), pairwise FST values ranged from 0.020 to 0.256 (Hernández et al. 2018). The 
FST values (0.02 to 0.10) found in our study are at the lower end of this range. 
According to Willing et al. (2012), FST can be accurately calculated based on small 
sample sizes (as small as n =  4 to 6) if the number of markers examined is large, i.e. 
larger than 1000. 
 
The results reported here showed that the merging of commercial Landrace lines has 
reduced the genetic diversity of the Landrace population in the Netherlands. For 
poultry, Besbes et al. (2008) also reported that the merging of lines leads to a 
decrease in genetic diversity of the available gene pool. However, our results also 
showed that, after merging, a large proportion of the genetic variability was 
maintained, and that all former lines showed a lower genetic diversity than the 
current TN. This indicates that merging lines is a better strategy for maintaining 
genetic diversity than just continuing with one line and discontinuing the other lines.  
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In this study, the total genetic diversity of the Landrace lines was estimated using the 
optimal contribution strategy. The optimal contributions of breeding lines were 
derived such that the average kinship coefficient in the core set was minimal, and 
thus the genetic diversity was maximal. Because breeding programs compete for 
market share, they select their lines intensively. Due to the breeding strategies that 
were followed over time, the actual genetic contributions of the different parent 
lines to the current Landrace line differed from the optimal contributions, indicating 
that part of the genetic diversity was lost. In addition, the DN line was poorly 
represented in the current Dutch Landrace. These observations support the 
recommendation that all breeding lines should be conserved before merging and 
discontinuing them. 
 
3.4.2 Identification of selection signatures using FST 
Commercial pig breeds have been subject to intense artificial selection for 
production traits. Functional analysis of regions under positive selection in pig breeds 
has identified genes that are involved in the development of the nervous system and 
of muscle, and in growth, pigmentation, metabolism, visual/odour perception, 
immune and inflammatory responses, and reproduction (Gouveia et al. 2014). 
Functional annotation analyses of the candidate genes in our study are shown in 
Table 3.4. For the interpretation of our results, it should be noted that we used the 
Ensembl annotation of Sscrofa10.2 and not the latest version Sscrofa11.1  (Warr et 
al. 2020). Furthermore, a small sample size can lead to poor population structure 
estimates, which affects the ability to differentiate between loci that were under 
selection and neutral population structure (Ahrens et al. 2018). However, in our 
study at least 11 animals per line were used, in line with a previous study that 
suggested that detecting regions under selection with FST methods requires at least 
10 samples (Willing et al. 2012). 
 
We detected no over-representation of any GO biological process among the 
candidate genes in our study. It should be noted that most traits that are under 
selection in pigs are complex traits that are regulated by many genes (Te Pas et al. 
2017). We identified a number of candidate genes that were located within 10 kb (5 
kb downstream/upstream) of the SNP outliers, most of them being associated with 
cellular processes, metabolic processes and intracellular transport (Table 3.4 and 
Additional file 2: Table S1). The candidate genes that were found in the comparison 
between the CNF and FN lines are involved in fertility (LAPTM5 (Abd El Naby et al. 
2013); CIB4 (sheep) (Yu et al. 2010)), the immune system (RAB39A (Zhi et al. 2018)), 
and intramuscular fat content (ENSSSCG00000012012 (Wang et al. 2019)). In the 
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comparison between the DL and TN lines, we identified BECN1, which is a muscle-
related gene (Liu et al. 2015; Lloyd et al. 2017), GARS and NOL10, which are 
associated with meat quality (Fontanesi et al. 2017; Xu et al. 2018), and KIAA0513, 
which is associated with the male reproduction trait “Seminiferous tubule diameter” 
(Zhao et al. 2016). In the comparison between the DN and TN lines, we detected 
several candidate genes: GLO1, which is assumed to be involved in fatness (Fowler 
et al. 2013), is important for nutrition energy intake and obesity (Kumar et al. 2007), 
and is connected with pig birth weight variability (Wang et al. 2016); GOT1 and 
PKHD1L1, which have been reported as candidate genes for intramuscular fat 
content (Ros-Freixedes et al. 2016) and variation in pH of meat (Chung et al. 2015), 
respectively; and TSPAN11, which was associated with metabolic body weight in a 
study on Holstein dairy cows (Hardie et al. 2017). In the comparison between the FZ 
and TN lines, we found the candidate gene WDR92, which is associated with total fat 
in Duroc and Yorkshire F2 intercrosses (Pant et al. 2014). It should be kept in mind 
that, although these associated SNPs and respective genes may be involved in certain 
biological processes related to selection events, further experimentation needs to 
be performed to verify these associations. 
 
As shown by our results, differences can be pronounced even between populations 
that have common origins, which stresses the value of gene banks to record and 
preserve variation that is lost in the process of merging, even over short periods of 
time. 
 
3.4.3 Consolidation 
The breeding industry has undergone a strong consolidation process in the past 
decades and this will likely continue (Gura 2007; FABRE Technology Platform 2008; 
Franz and Rolfsmeier 2016). Economic reality forces breeding companies to discard 
breeding lines that are not of immediate value for product formulation or do not 
have potential to be used in the near future. Inevitably, maintaining genetic diversity 
in breeds and breeding lines has a cost, while the benefits are not immediately 
translated into profit. However, the consequences of losing genetic diversity are 
generally acknowledged; maintaining it is essential to provide future opportunities 
of selection for changing markets, consumer preferences, products etc., to allow 
sustained genetic improvement, to develop alternatives to intensive management, 
to decrease disease incidence and increase health, and to anticipate future changes 
in climate (Notter 1999; FAO 2007b; FABRE Technology Platform 2008; Boettcher et 
al. 2014). 
 



3 Impact of merging breeding lines
 

48 
 

3.5 Conclusions 
The current Dutch Landrace (TN line) shows a high level of admixture and is closely 
related to the six former Dutch Landrace lines. However, the merging of commercial 
Landrace lines has reduced the genetic diversity of the Landrace population in the 
Netherlands, and the DN line is poorly represented in the current Dutch Landrace. 
Thus, it is recommended to conserve selection lines in a gene bank before merging. 
Our findings also showed that the merging of lines results in a large proportion of 
the original variability being maintained. 
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Simple Summary 
Over the last century, genetic diversity in the cattle species has been affected by the 
replacement of many local, dual-purpose breeds with a few specialized, high-output 
dairy breeds. This replacement caused a sharp decline in the population size of local 
breeds. In the Netherlands, the local Dutch Friesian breed has gradually been 
replaced by the Holstein Friesian. This resulted in a rapid decrease in numbers of the 
Dutch Friesian breed with an associated risk of loss of genetic diversity due to drift. 
The objective of this study was to investigate genome-wide genetic diversity 
between a group of historic and recent Dutch Friesian bulls and a group of recently 
used Holstein Friesian bulls. Our findings showed that a large amount of diversity is 
shared between the three groups, but each of them has some unique genetic identity 
(12% of the single nucleotide polymorphism were group-specific). The genetic 
diversity of the Dutch Friesians reduced over time, but this did not lead to higher 
inbreeding levels—especially, inbreeding due to recent ancestors has not increased. 
Genetically, the recent Dutch Friesians were slightly more different from Holstein 
Friesians than the historic Dutch Friesians. Our results also highlighted the presence 
of several genomic regions that differentiated between the groups. 
 

 



 
 

Abstract 
Over the last century, genetic diversity in many cattle breeds has been affected by 
the replacement of traditional local breeds with just a few milk-producing breeds. In 
the Netherlands, the local Dutch Friesian breed (DF) has gradually been replaced by 
the Holstein Friesian breed (HF). The objective of this study was to investigate 
genome-wide genetic diversity between a group of historically and recently used DF 
bulls and a group of recently used HF bulls. Genetic material of 12 historic (hDF), 12 
recent DF bulls (rDF), and 12 recent HF bulls (rHF) in the Netherlands was sequenced. 
Based on the genomic information, different parameters—e.g., allele frequencies, 
inbreeding coefficient, and runs of homozygosity (ROH)—were calculated. Our 
findings showed that a large amount of diversity is shared between the three groups, 
but each of them has a unique genetic identity (12% of the single nucleotide 
polymorphisms were group-specific). The rDF is slightly more diverged from rHF than 
hDF. The inbreeding coefficient based on runs of homozygosity (Froh) was higher for 
rDF (0.24) than for hDF (0.17) or rHF (0.13). Our results also displayed the presence 
of several genomic regions that differentiated between the groups. In addition, 
thirteen, forty-five, and six ROH islands were identified in hDF, rDF, and rHF, 
respectively. The genetic diversity of the DF breed reduced over time, but this did 
not lead to higher inbreeding levels—especially, inbreeding due to recent ancestors 
was not increased. 
 
Key words: genetic diversity; Dutch Friesian; Holstein Friesian; cattle breeds; WGS 
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4.1 Introduction  
Over the last century, genetic diversity in many European national cattle populations 
has been affected by replacement of traditional local breeds with just a few 
specialized milk producing breeds, e.g., the Holstein Friesian, Brown Swiss, and 
Jersey. The predominant use of these breeds caused a sharp decline in the 
population size of local dual-purpose breeds (Marchitelli and Consortium 2006; 
Medugorac et al. 2009). Although less productive under intense production 
conditions, these local breeds may carry alleles that enabled them to adapt to local 
conditions. Moscarelli et al. (2021) reported the presence of several genomic regions 
that vary between original and modern Brown cattle populations, in line with their 
different breeding histories. Selection and genetic drift will both have contributed to 
the genetic differentiation between original and modern breeds. Therefore, local 
breeds might represent an important genetic resource to facilitate animal breeding 
when changes occur in production systems and market requirements. 
 
The change in use from local breeds to specialized breeds has been observed in many 
industrialized European countries including the Netherlands (Oldenbroek 2007; 
Hiemstra et al. 2010). Until 1975, the Dutch Friesian cattle (DF) dominated the Dutch 
national cattle population (76%) (van Breukelen et al. 2019; Doekes 2020). By the 
late nineteenth century, the Dutch Friesians were internationally known as 
exceptionally productive dairy cattle. American dairy farmers imported them in the 
1870s and 1880s for this reason (Theunissen 2012). In the United States, where their 
progeny became known as Holstein Friesians, the farmers continued to breed them 
as high-yielding dairy cows (Theunissen 2012). In the Netherlands, there was 
emphasis on conformation and beef production in addition to milk production, 
because the Dutch Friesians were kept as a dual-purpose breed. Since the 1960s and 
1970s, Holstein Friesians (bulls, semen, and embryos)—descendants of the original 
Dutch Friesian cattle—were imported from the United States into the Netherlands 
and used to improve the genetic ability for milk production. Consequently, DF in the 
Netherlands has gradually been replaced by Holstein Friesian (HF) during the past 
decades. Currently, more than 90% of the Dutch dairy cattle population consists of 
HF (Maurice - Van Eijndhoven 2014; van Breukelen et al. 2019). This upgrading 
process resulted in a rapid decrease in numbers and, therefore, a potential loss in 
genetic diversity due to drift in the DF breed (Fimland and Oldenbroek 2007). Since 
the beginning of the 1960s, genetic material from Dutch local cattle breeds and later 
from the HF as well has been collected and stored in the Dutch gene bank. Stored 
material contains genetic diversity of the breed at the time of sampling, which may 
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include diversity that, since then, has been lost in situ due to selection and genetic 
drift. 
 
Currently, single nucleotide polymorphism (SNP) chips are available for the majority 
of livestock species, targeting genetic variants widely spread along their entire 
genomes. Importantly, SNPs detected in commercial breeds were selected and used 
to design the chips leading to some ascertainment bias when using these chips in 
studies with local breeds (Perez-Enciso et al. 2015). The latest advances and 
increasing economic accessibility of whole-genome sequencing (WGS) brings new 
perspectives exploring the genetic information of local breeds. Unlike SNP chips, 
WGS is the complete genome sequence containing all polymorphisms present on the 
genome. Thus, WGS does not have the problem of ascertainment biases. Another 
advantage of WGS is that it contains information on rare variants (Eynard et al. 2016) 
and, additionally, maps genomic regions highly affected by selection pressure 
(Eusebi et al. 2019). WGS enables the estimation of relationships between 
individuals more accurately because it is based on both common and rare variants. 
Furthermore, WGS has information on common variants in local breeds, which might 
be rare or absent in specialized dairy breeds, such as Holstein Friesian. However, to 
date, much of the effort has been devoted to dominant commercial breeds, with 
local breeds rarely studied. Furthermore, changes to genetic diversity in breeds over 
time is also rarely studied. 
 
The objective of this study was to investigate genome-wide genetic diversity and loss 
of alleles between three groups of bulls, chosen from the historic (1961–1989) and 
recent (2003–2015) DF population and the recent HF (1998–2014) population. 
Differences in allele frequencies and in homozygosity will provide insights into the 
mechanisms underlying their genomic differences caused by selection or a sharp 
decrease in the number of breeding animals. 
 
4.2 Materials and Methods 
4.2.1 Animals 
Genetic material from purebred Dutch Friesian animals born from 1961 onwards has 
been preserved by the Centre for Genetic Resources, the Netherlands (CGN) of 
Wageningen University and Research, i.e., the Dutch Gene bank 
(https://www.genebankdata.cgn.wur.nl, accessed on 27 July 2021). From this 
genetic material, a group of 12 historic (1961–1989; hDF) and a group of 12 recent 
(2003–2015; rDF) Dutch Friesian bulls were sequenced. The animals were selected 
based on their year of birth by taking the oldest and youngest DF sires, while avoiding 
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closely related animals in the selection. Furthermore, sequence data from a group of 
12 recently used Holstein Friesian bulls in the Netherlands (1998–2014; rHF) were 
available for this study. These bulls were a selection of unrelated animals born in 
different years and sequenced for a project in 2017 on efficiency and health indices 
of the breeding company in dairy cattle CRV. 
 
4.2.2 Short Read Sequencing Mapping and Variant Calling 
DNA was isolated from sperm using the Echolution Sperm DNA kit (BioEcho Life 
Science GmBH, Köln, Germany). Library preparation and sequencing of the DF 
animals were performed at the Institute national de la Recherche Agronomique 
(INRA), France, following their established protocols. Library preparation and 
sequencing of the rHF animals were performed at BGI, China, following their 
established protocols. Paired-end sequencing was performed on the Illumina HiSeq 
platform. All animals were sequenced with short reads at 10× coverage. We followed 
the 1000 Bull Genomes Project Run 7 guideline (1000 bulls GATK fastq to GVCF 
guidelines; version: 18 June 2018) to process the raw sequence data into both binary 
alignment map (BAM) and genomic variant call format (GVCF) files (Hayes and 
Daetwyler 2019). A per-base sequence quality, for the raw sequence reads, was 
examined using the fastQC software (version: 0.11.7) (Andrews 2010). The reads 
were trimmed and filtered using Trimommatic (version: 0.38) (Bolger et al. 2014) and 
then mapped against the bovine reference genome ARS-UCD1.2_Btau5.0.1Y 
(version: 8 May 2018) using the Burrows–Wheeler Aligner (BWA; version: 0.7.17) (Li 
and Durbin 2009). Samtools (version: 1.8) (Li et al. 2009) was used to sort the BAM 
files and create index files. Polymerase chain reaction (PCR) duplicates were 
identified using the ‘MarkDuplicates’ function of Picard (version: 2.18.2) software 
(http://broadinstitute.github.io/picard, accessed on 27 July 2021). Base quality 
recalibration (BQSR) was performed with ‘BaseRecalibrator’ and ‘PrintReads’ of the 
Genome Analysis Toolkit (GATK; version: 3.8-1-0-gf15c1c3ef). The known variants 
file (ARS1.2PlusY_BQSR.vcf.gz; version: 15 June 2018) generated by the 1000 Bull 
Genomes Project was used to mask out positions with known variation to avoid 
confusing real variation with errors. The before/after BQSR reports were checked 
using ‘AnalyzeCovariates’ to ensure that base quality scores were corrected as 
expected. SNPs were called using the GATK ‘HaplotypeCaller’ with ‘-ERC GVCF’ 
option. The rate of genome alignment and average sequencing depth were 
determined with Qualimap (version 2.2.1) software (Okonechnikov et al. 2016). The 
‘GenotypeGVCFs’ arguments of GATK were used to identify variants simultaneously 
in all samples. ‘VariantRecalibration’ and ‘ApplyRecalibration’ were used to produce 
filtering information for SNPs. The process has been shown to outperform the ‘hard’ 
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filtering of variants (Pirooznia et al. 2014). For the recalibration steps, the truth and 
training datasets described by Jagt et al. (2018) were used, replacing the Run6 
datasets of the 1000 bulls by datasets of Run 7. 
 
The variants were called across all three groups combined. Only biallelic SNPs were 
kept, and filtration for Minor Allele Frequency was not applied at this stage. Per 
group (hDF, rDF, and rHF), a maximum of 2 out of 12 animals were allowed to have 
a missing value per SNP. These criteria resulted in a total of 10,780,681 SNPs, 
genotyped in all three groups, for further analysis. 
 
4.2.3 Group Structure and Identification of Group-Specific SNPs 
To identify group-specific SNPs, each SNP that passed the applied filtering criteria 
was analysed according to the information about the three groups. An allele was 
labelled as group-specific if it was only present in one of the three groups and not 
detected in any of the other two, also called private allele (Ramos et al. 2011). 
 
To explore the genetic distance between animals of the three groups, a Principal 
Component Analysis (PCA) was performed using the --pca function in PLINK (version: 
1.90) (Purcell et al. 2007). The graphical representation was depicted using the 
statistical R software (http://www.R-project.org/, accessed on 4 November 2021). 
 
4.2.4 Genetic Diversity Parameters 
Various parameters were used to estimate genetic diversity within the groups: 
Observed (Ho) and Expected Heterozygosity (He) and Minor Allele Frequency (MAF). 
Observed and Expected Heterozygosity were calculated using VCFtools (version 
0.1.13) (--het) (Danecek et al. 2011). The MAFs were calculated using the—freq 
option in PLINK. 
 
4.2.5 Selection Signature Analysis 
The fixation index (FST) was used to characterize the differentiation between the 
groups, i.e., to identify selection signatures. The pairwise estimates of FST among the 
three groups (hDF-rDF, hDF-rHF, and rDF-rHF) were calculated using VCFtools with 
the Weir and Cockerham approach (--weir-fst-pop) (Weir and Cockerham 1984). 
Windows of SNPs were used to minimize the stochastic effect of a single SNP. The 
FST values were averaged across 40-kb windows, with a sliding frame of 20 kb at a 
time. The parameters for the VCFtools program were “—fst-window-size 40,000--
fst-window-step 20,000”, following Rafiepour et al. (2021). To normalize the mean 
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FST values, Z-transformation was performed ZFST= 𝐹𝐹𝐹𝐹ST−𝜇𝜇𝜇𝜇𝐹𝐹𝐹𝐹ST
𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹ST

, where FST is mean FST in a 

window, µFST is an average FST over all windows, and αFST is a standard deviation of 
FST values of all windows tested for a given comparison (Rubin et al. 2010; Turner 
2014). The ZFST was visualized in the form of a Manhattan plot by the R package 
‘qqman’ (version 0.1.8) (Turner 2014). Candidate genomic regions under selection 
were defined as regions where the ZFST value > 8. To reduce the number of false 
positives, windows with less than 5 SNPs were removed. 
 
4.2.6 Measure of Runs of Homozygosity 
Runs of homozygosity (ROHs) were calculated to identify contiguous regions of the 
genome where an animal is homozygous across sites. ROHs were calculated 
individually using PLINK with adjusted parameters: --homozyg --homozyg-window-
snp 50 --homozyg-snp 50 --homozyg-kb 300 --homozyg-density 50 --homozyg-gap 
1000 --homozyg-window-missing 5 --homozyg-window-threshold 0.05 --homozyg-
window-het 3, following Cheng et al. (2020). No linkage disequilibrium (LD)-based 
pruning was performed before calculating ROHs. Individual degree of inbreeding 
based on ROH analysis (Froh), genomewide as well as chromosome-wide, was 
calculated using the function Froh_inbreeding of the R package ‘detectRUNS’ 
(version 0.9.6) (Biscarini et al. 2018). In addition, Froh (Froh > 2 Mb, Froh > 4 Mb, 
Froh > 8 Mb, and Froh > 16 Mb) derived from ROHs of different length (>2, >4, >8, 
and >16) were calculated. 
 
4.2.7 Runs of Homozygosity Islands 
To identify genomic regions most commonly associated with ROH, i.e., ROH Islands, 
the percentage of the occurrences of a SNP in ROH was calculated by counting the 
number of times the SNP was detected in those ROHs across animals (Gorssen et al. 
2020) within each group using the R package ‘detectRUNS’. The most common runs 
were retrieved using the function ‘tableRuns’ of the package ‘detectRUNS’ with a 
threshold value of 0.8. This means that a ROH has to be present in at least 80% (10 
of the 12 animals) of each group hDF, rDF, and rHF to be included in a ROH island. 
 
4.3. Results 
4.3.1. SNP Distribution 
Among the set of 10,780,681 SNPs, 11.98% were identified as putatively group-
specific (Figure 4.1), indicating that the genotype of one of the alleles was present in 
only one of the three groups (hDF, rDF, and rHF). SNPs specific for rHF were the most 
abundant (6.69%), while rDF displayed the lowest number of group-specific SNPs 
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(2.14%). It is notable that the percentage of group-specific SNPs for the DF (hDF and 
rDF) groups was 7.82%, which is slightly higher as for rHF (6.69%). Over 77% of the 
SNPs occurred in all three groups. 
 

 
Figure 4.1. Venn diagram showing percentage of shared and group-specific variants in each 
group. Abbreviations: hDF = historic Dutch Friesian; rDF = recent Dutch Friesian; rHF = recent 
Holstein Friesian. 
 
The genetic structure of the three groups assessed with the first three principal 
components of PCA accounted for 13.5% (PC1), 6.4% (PC2), and 5.6% (PC3) of the 
total variation (Figure 4.2). The first principal component (PC1) distinguished hDF 
and rDF from rHF. The hDF group differentiated across the second principal 
component (PC2), while rDF grouped more together, although overlapping with hDF. 
One rDF animal was positioned away from the other rDF animals along PC2. The third 
PC distinguished variation within the rHF, indicating one sire more distantly from the 
others. 
 
4.3.2. Genetic Diversity Parameters 
Minor Allele Frequency together with Observed and Expected Heterozygosity (Ho 
and He), were used to determine the levels of genetic variability in the three groups 
(Table 4.1). The average MAF and He were almost similar for the three groups (MAF: 
0.16; He: 0.25). For all three groups, Ho was lower than He. There were small 
differences in Ho between three groups: rHF had the lowest Ho value (0.19) and rDF 
had the highest Ho value (0.20). 
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Figure 4.2. Genetic relationships based on PCA between the three groups. Abbreviations:  hDF 
= historic Dutch Friesian; rDF = recent Dutch Friesian; rHF = recent Holstein Friesian. 
 
Table 4.1. Genetic diversity parameters of within-group diversity of hDF, rDF, and rHF (mean 
± standard deviation). 

Group Abbreviation MAF Ho He 
Historic Dutch 
Friesian 

hDF 0.165 ± 0.152a 0.195 ± 0.025 0.250 ± 0.0005a 

Recent Dutch 
Friesian 

rDF 0.164 ± 0.155b 0.201 ± 0.015 0.250 ± 0.0003a 

Recent Holstein 
Friesian 

rHF 0.161 ± 0.153c 0.188 ± 0.035 0.249 ± 0.0016b 

a, b, c Different letters within a column indicates significant differences at p < 0.05. 
 
Genetic differentiation among the three groups ranged from low to moderate, as 
indicated by the weighted pairwise FST values that ranged from 0.01 to 0.11 (Table 
4.2). Recent and historic DF were genetically very similar, and somewhat different 
from rHF. 
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Table 4.2. Estimated pairwise FST (fixation index) as a measure of genetic differentiation 
between the three groups (Weir and Cockerham mean FST, above diagonal; Weir and 
Cockerham weighted FST, below diagonal). 

 hDF rDF rHF 
hDF - 0.0005 0.0624 
rDF 0.0100 - 0.0719 
rHF 0.0978 0.1105 - 

Abbreviations: hDF = historic Dutch Friesian; rDF= recent Dutch Friesian; rHF= recent Holstein 
Friesian. 
 
4.3.3. Genomic Inbreeding Coefficients 
The inbreeding coefficient derived from ROH (Froh) in different length categories 
differentiated past and recent inbreeding (Table 4.3). Recent DF tended to have a 
larger fraction of the genome covered by ROH compared with hDF and rHF. The 
general average inbreeding coefficient was significantly higher for rDF (0.24) than 
rHF (0.13) (p < 0.05). The level of ancient inbreeding reached 0.05–0.13 (Froh > 2 
Mb) with rDF having the highest level, whereas the recent inbreeding load was 0.01 
(Froh > 16 Mb) for all three groups. So, Froh decreased as the minimum length of the 
ROH increased. 
 
Table 4.3. Mean and standard deviation of inbreeding coefficients (Froh) calculated from runs 
of homozygosity (ROH) with minimum length of 2 (ROH > 2), 4 (ROH > 4), 8 (ROH > 8), and 16 
(ROH > 16) Mb for the three groups. Between brackets is the number of animals in the classes. 

Group General 
Mean 

Froh 
ROH >  
2 Mb 

ROH >  
4 Mb 

ROH >  
8 Mb 

ROH >  
16 Mb 

Historic Dutch 
Friesian 

0.169 ± 
0.095ab (12) 

0.081 ± 
0.061ab (11) 

0.058 ± 
0.034 (9) 

0.019 ± 
0.012 (9) 

0.010 ± 
0.005 (3) 

Recent Dutch 
Friesian 

0.243 ± 
0.062a (12) 

0.132 ± 
0.066a (12) 

0.078 ± 
0.055 (12) 

0.035 ± 
0.028 (11) 

0.011 ± 
0.007 (5) 

Recent Holstein 
Friesian 

0.130 ± 
0.067b (12) 

0.047 ± 
0.036b (10) 

0.031 ± 
0.022 (7) 

0.019 ± 
0.013 (5) 

0.012 ± 
0.005 (2) 

a, b Different letters within a column indicates significant differences at p < 0.05. 
 
The mean Froh values for each chromosome followed the same pattern as those 
computed for the whole genome, but there was variation across the chromosomes 
(Additional file 3, Figure S1). For most chromosomes, the mean Froh was highest for 
rDF and lowest for rHF. Only chromosome 25 showed lower values for rDF compared 
with hDF and rHF. The chromosomal Froh variability within groups was high. 
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4.3.4. Measure of Runs of Homozygosity 
The number and length of ROHs differed among animals and across groups (Table 
4.4). The rDF group had the highest number of ROHs (513), whilst rHF had the lowest 
number (424). Additionally, rDF had the highest average length of ROHs (1.19 Mb) 
and rHF the lowest (0.73 Mb). Variation existed in the distribution of the various ROH 
length classes, but a common pattern was observed across the groups (Figure 4.3, 
Figure S1). The majority of ROH segments (~85 to 95%) is found in the length class 0 
to 2 Mb for all three groups. The number of ROHs was the highest for rDF and the 
lowest for rHF in all classes, except class >16 Mb. The range of number of ROHs was 
more variable in the hDF and rHF groups in comparison with a more even number of 
ROHs for rDF group. 
 
Table 4.4. Summary of specific regions of homozygosity (ROHs) in the three groups. 

Group # Animals 
Number of 

ROH 
Total ROH 

Length (Mb) 
Average ROH 
Length (Mb) 

Mean ± sd Range Mean ± sd 
hDF 12 449.75 ± 

180.96 
132–745 421.04 ±  

235.43ab 
rDF 12 513.50 ±   

44.14 
421–570 603.54 ±  

154.92a 
rHF 12 424.00 ± 

161.48 
75–653 323.92 ±  

166.72b 
a, b Different letters within a column indicates significant differences at p < 0.05. 
Abbreviations: hDF = historic Dutch Friesian; rDF = recent Dutch Friesian; rHF = recent Holstein 
Friesian. 
 
4.3.5. Genome-wide Selection Signature Analysis 
To identify the differentiated genomic regions among the groups, the Z-transformed 
FST (ZFST) values based on SNPs in 40-kb sliding windows with 20-kb steps were 
calculated. The ZFST varied markedly across the genome in all three comparisons 
(hDF-rDF, hDF-rHF, and rDF-rHF) (Figure 4.4). We identified highly differentiated 
genomic regions (ZFST > 8) across autosomal chromosomes, i.e., thirty-eight for hDF 
versus rDF, nine for hDF versus rHF, and seven for rDF versus rHF (Figure 4.4, 
Additional file 1: Table S1). For the comparisons between hDF and rDF, the strongest 
differentiated genomic regions were detected on BTA1 (96.50–96.58 Mb and 98.80–
98.86 Mb) and BTA2 (72.54–72.62 and 75.80–75.86 Mb). For hDF–rHF comparison, 
the strongest differentiated region was detected on BTA4 (44.66–44.72 Mb). In the 
case of the rDF versus rHF group, the strongest differentiated regions were located 
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on BTA1 (101.26–101.30 Mb), BTA16 (9.88–9.92 Mb), BTA20 (28.84–28.88 MB), 
BTA22 (three regions between 52.80–52.88 Mb), and BTA24 (44.16–44.20 Mb). 
 

 
Figure 4.3. The mean and standard deviation of the average length of runs of homozygosity 
(ROH) (A) and mean number of ROH within each ROH length class (B). Abbreviations: hDF = 
historic Dutch Friesian; rDF = recent Dutch Friesian; rHF = recent Holstein Friesian. 
 
4.3.6. Runs of Homozygosity Islands 
The genomic distribution of ROH islands was nonuniform across chromosomes, 
regardless of the group (Additional file 2: Table S2). Differences in the segments of 
ROH islands on the chromosomes were identified between the three groups. In total, 
we identified thirteen, forty-five, and six ROH islands for hDF, rDF, and rHF, 
respectively. Almost all ROH islands found in hDF overlapped with ROH islands found 
in rDF. No genomic regions were common to all the three groups. Only one of the 
ROH islands identified ((BTA1: 101.26–101.30 Mb in rDF) overlapped with the 
genomic regions identified using pairwise FST (hDF vs. rDF and rDF vs. rHF). 
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Figure 4.4. Manhattan plots of Z-transformed fixation index (ZFST) across all autosomes. The 
ZFST values were calculated for each sliding 40-kb window with steps of 20 kb across all 
autosomes. The solid red line indicates ZFST values > 8; differentiated genomic regions (ZFST 
values > 8 and the number of SNPs in the region > 5) are highlight green. Abbreviations: hDF 
= historic Dutch Friesian; rDF = recent Dutch Friesian; rHF = recent Holstein Friesian. 
 

hDF-rDF 

hDF-rHF 

rDF-rHF 
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4.4. Discussion 
4.4.1. General 
In this study, we investigated genome-wide genetic diversity within and between 
groups of historic and recent DF bulls, and a group of recent HF bulls. In the 
Netherlands, local, dual-purpose cattle breeds, including the DF breed, have 
gradually been replaced by the specialized dairy breed HF during the past decades. 
This has caused a decline in the population size of local breeds and potentially a loss 
of genetic diversity. The historic Dutch Friesian animals used in this study were born 
between 1961–1989, when the population size of DF was still large. The recent DF 
animals were born between 2003 and 2015. In the approximately 5–10 generations 
between hDF and rDF, the population size (number of adult cows) of DF has declined 
significantly, from 629,410 in 1970 to 3153 in 2017 (van Breukelen et al. 2019). DF is 
now classified as being at risk (https://www.fao.org/dad-is; accessed on 15 October 
2021). 
 
4.4.2. Divergence between Groups 
Our findings indicate that a large amount of diversity is common to the three groups. 
A high percentage of shared SNPs was found for the 3 groups, which is expected 
since all groups descend from the same ancestors. The founders of the Holstein 
Friesian breed originated from the Dutch Friesian breed (Felius et al. 2011). 
Furthermore, all three groups have a small number of group-specific SNPs (2–7%), 
indicating that each has some unique genetic identity. The PCA analysis displayed 
that the rDF group has diverged slightly from hDF group over the last approximately 
5–10 generations, presumably as a result of genetic drift. Genetically, DF is distinct 
from HF, probably resulting from the selection of HF as a specialized dairy breed, 
whereas farmers aimed to maintain DF as a dual-purpose breed. The genetic 
distinction between DF and HF is in agreement with results reported by van 
Breukelen et al. (2019) and Hulsegge et al. (2019b). Likewise, a PCA analysis 
separated the Swedish Holstein Friesian breed from native Swedish cattle breeds 
(Upadhyay et al. 2019). In our study, the results of the PCA are confirmed by the 
pairwise FST. Although the DF and HF groups are selected for different purposes, we 
expected some similarities between them, and these are indicated in this study by 
the moderate average FST values (0.1). A similar pairwise FST value between DF and 
HF, based on SNP array data and a larger number of animals, was reported by 
Hulsegge et al. (2017). 
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4.4.3. Genetic Diversity within Groups 
A decimation in numbers of a population is expected to reduce its genetic diversity 
and increase inbreeding levels. Indeed, diversity in the DF has reduced, e.g., rDF 
contains fewer specific alleles than hDF and, in the Principal Component Analysis, 
members of hDF are spread out across PCA2 while rDF animals cluster. However, 
based on manually checking the individual pedigrees of the hDF and rDF group, 
inbreeding levels have not increased. On the contrary, Ho, an indication of a lack 
inbreeding has increased in rDF. This is confirmed by the inbreeding level determined 
by pedigree for the whole population (CRV 2021b), which increased initially from 
around 3% in 1990 to above 5% in 2005 and decreased since then to under 4% in 
2020; in 1970, the average inbreeding level was around 0% (Mill and Nauta 2010). 
One explanation for lower Observed Heterozygosity than expected is local 
inbreeding. 
 
Manual checking of individual pedigrees indicated local breeding in historic DF. 
Breeders generally used their own bulls and certainly no bulls from other regions. In 
particular, there was a separation between Friesian bulls and bulls from the North 
Holland region. The animals from North Holland were, for example, slightly larger 
and produced more milk, but had less conformation than the animals from Friesland 
(Theunissen 2008). Currently, this separation has largely disappeared, and most 
animals have similar ancestry. However, one breeder went against the tide and 
eliminated from his stock all influence of an ancient Friesian bull who is ancestor to 
most other animals in the breed (pers. comm. Henk Sulkers). The deviating bull in 
rDF in PCA2 was bred by this breeder. 
 
In the 1990s, when the DF rapidly declined, the DF herdbook initiated a strategy 
called fundament breeding to counter the loss of diversity. In this strategy, the breed 
is divided into several fundaments, each consisting of one or a few herds. Within 
each fundament, 4–5 own bulls are used and rotated over groups of cows so that 
inbreeding is postponed for at least three generations. Bulls should not be 
exchanged across fundaments to safeguard their genetic distinctness. This latter 
point was not strictly adhered to (Mill and Nauta 2010) and our data show no clear 
separation of fundaments in rDF; however, the strategy to postpone inbreeding 
seems to have worked. Although ROH levels are higher in rDF, this is due to ROH 
segments of shorter length only. These shorter segments indicate inbreeding due to 
ancestors further back in the pedigree. 
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In conclusion, although the diversity has reduced, this has not led to higher 
inbreeding levels—particularly, inbreeding due to recent ancestors has not 
increased. The policy of the breeding organization has influenced inbreeding levels 
but has not prevented the loss of some diversity, and diversity conserved in the gene 
bank has been lost from the live population. Therefore, to maintain and improve the 
genetic diversity in the current DF population, material from historic individuals 
present in the gene bank, should be used in the life population. Furthermore, the 
current strategy of rotating bulls within the fundaments should be maintained to 
limit the increase in inbreeding. 
 
4.4.4. Differentiated Genomic Regions 
The pairwise FST highlighted the presence of several genomic regions that 
differentiated between the groups. The FST-based approach does not directly 
indicate in which group selection is operating. In this study, the region with the 
highest ZFST values for the comparison hDF–rDF are observed from BTA1 (96.50–
96.58 and 98.80–98.86 Mb) and BTA2 (72.54–72.62 and 75.80–75.86 Mb). In two of 
the four regions, no genes are located, while three genes are located in the other 
two regions: EIF5A2, RPL22L1, and ENSBTAG00000051422. EIF5A2 is associated with 
fertility traits. EIF5A2 has been reported as a candidate gene for age at sexual 
maturity in Indian Buffalo (Vohra et al. 2021) and for infertility in human (Christensen 
et al. 2005). RPL22L1 is also described as a candidate gene for age at sexual maturity 
in Indian Buffalo (Vohra et al. 2021). Furthermore, RPL22L1 is reported as associated 
gene in low-fertility buffalo bull spermatozoa (Paul et al. 2020). This gene is also 
mentioned as a candidate gene for birth weight in Holstein Friesian (Cole et al. 2014; 
Zaborski et al. 2014). This is in agreement with Estimated Breeding Values (EBV) for 
DF reported between 1980 and 2020, which indicate a decrease in fertility and birth 
weight (CRV 2021a). For the hDF–rHF comparison, we detected the strongest signal 
on BTA4 (44.66–44.72 Mb). In this region, the gene RELN is located. As stated by Cerri 
et al. (2012), RELN is involved in the regulation of pregnancy and lactation in Holstein 
cows. The latter is also reported by Lonergan et al. (2016). Furthermore, RELN 
affected aggressive behaviour in pigs (Terenina et al. 2012). 
 
In the case of the rDF versus rHF group, we identified seven highly differentiated 
regions. Genes are only found in two regions on BTA22: ALS2CL, LRRC2, and TDGF1. 
 
4.4.5. Runs of Homozygosity Detection and Distributions 
Almost all ROH islands found in hDF partially overlapped with ROH islands found in 
rDF. These partially overlapped regions probably preserve segments in high 



4

4 Comparison rDF, hDF and HF 
 

69
 

homozygosis, characteristic of the ancient selection of the population. In these 
regions, several known candidate genes, such as HCHD7, FBXO2, MAD2L2, MOS, and 
PLAG1, are mapped (Additional file 2: Table S2). These candidate genes are 
predominantly related to biological regulation (32.8% of the candidate genes) and 
metabolic processes (26.2% of the candidate genes (http://www.pantherdb.org/; 
accessed on 24 October 2021). Some traits are associated with these candidate 
genes as well. For example: the PLAG1-CHCHD7 region (BTA14: 23.33–3.38 Mb) is 
associated with stature; body size, including height; and weight in many cattle 
breeds (Nishimura et al. 2012; Bouwman et al. 2018; An et al. 2019; Smith et al. 2019; 
Zinovieva et al. 2020). 
 
The largest ROH island in the rDF group was found on BTA7 between 50.03–50.86 
Mb. This region seems to coincide with an ROH island reported for taurine and 
indicine cattle breeds by Sölkner et al. (2014) and for eight Chinese local cattle 
breeds reported by Xu et al. (2019). There are 15 candidate genes located within this 
ROH island: CTNNA1, DNAJC18, ECSCR, LRRTM2, MATR3, MZB1, PAIP2, PROB1, SIL1, 
SLC23A1, SMIM33, SNORA74, SPATA24, STING1, UBE2D2. Among them, we highlight 
the CTNNA1 gene, which has been associated with muscle development, skeletal 
muscle growth, and meat tenderness (Bongiorni et al. 2016; Jang et al. 2021). 
 
The largest ROH island in the rHF group was found on BTA8 between 105.89–106.21 
Mb. This region contains one gene: ASTN2. The ASTN2 gene has been related to 
carcass weight of cattle (Junior et al. 2016) and meat traits in pigs (Hlongwane et al. 
2020). 
 
4.4.6. Gene Bank 
Our results revealed that the Dutch national gene bank has stored material 
containing genetic diversity that has been lost in-vivo by selection and drift. Gene 
bank collections have been shown to capture more diversity than some in situ 
populations thanks to periodic resampling (Blackburn 2012; Paiva et al. 2016; Boitard 
et al. 2021). It is also important that the gene bank pool stores genetic variation 
existing in the whole population. Van Breukelen et al. (2019) reported that within 
the DF populations there are fundamental breeding groups, which have a unique 
genetic diversity. For pigs, Hulsegge et al. (2019a) reported that merging of 
commercial Landrace lines has reduced the genetic diversity of the Landrace 
population in the Netherlands, although a large proportion of the original variation 
is maintained. This stresses the value of gene banks to record and preserve variation 
that is lost in the process of merging lines, even over short periods of time. 
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4.4.7. Limitation of the Study 
The accuracy with which allele frequencies and, therefore, inbreeding is estimated 
will depend on the sample size and number of SNPs (Schmidt et al. 2021). In this 
study, we used 12 animals per group, which may have influenced the results. 
Although the sample size is small, it has previously been shown that a small sample 
size does accurately estimate population parameters when a large number of SNPs 
are used (Nazareno et al. 2017). Our study contains a large number of SNPs (n = 
10,780,681). According to Willing et al. (2012) and Nazareno et al. (2017), FST can be 
accurately calculated based on small sample sizes (as small as n = 4 to 6) if the 
number of markers examined is large, i.e., larger than 1000. A small sample size can 
lead to poor population structure estimates, which affects the ability to differentiate 
between loci that were under selection and neutral population structure (Ahrens et 
al. 2018). However, in our study, 12 animals per group were used, in line with a 
previous study that suggested that detecting regions under selection with FST 
methods requires at least 10 samples (Willing et al. 2012). 
 
4.5. Conclusions 
Through the present study with WSG data, we have described the genetic differences 
between historic and recent Dutch Friesian groups, and a recent Holstein Friesian 
group. Our findings revealed that a large amount of diversity is shared in the three 
groups and each of the groups has a small number of group-specific SNPs. The two 
DF groups are genetically distinct from the HF group. rDF is slightly more diverged 
from rHF than hDF. We identified changes in the genetic composition of the DF 
population in the approximately 5–10 generations between the historic and the 
recent DF group. The genetic diversity has reduced and a more homogeneous group 
has emerged. Although diversity was reduced, this did not lead to higher inbreeding 
levels—especially, inbreeding due to recent ancestors has not increased. 
 

 



4

4 Comparison rDF, hDF and HF 
 

71
 

Supplementary Materials 
The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/ani12030329/s1, Table S1: Differentiated 
genomic regions (ZFST > 8) across autosomal chromosomes for the hDF versus rDF 
population, the hDF versus rHF population and the rDF versus rHF population; Table 
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Abstract 
Reliable breed assignment can be performed with SNP. Currently, high density SNP 
chips are available with large numbers of SNP from which the most informative SNP 
can be selected for breed assignment. Several methods have been published to 
select the most informative SNP to distinguish among breeds. In this study, we 
evaluated Delta, Wright's FST, and Weir and Cockerham's FST, and extended these 
methods by adding a rule to avoid selection of sets of SNPs in high linkage 
disequilibrium (LD) providing the same information. The SNP that had a r2 value >0.3 
with any of the SNP already selected were discarded. The different selection 
methods were evaluated for both the 50K SNP and 777K Bovine BeadChip. Animals 
from four cattle breeds (989 Holstein Friesian, 97 Groningen White headed, 137 
Meuse-Rhine-Yssel, and 64 Dutch Friesian) were genotyped. After editing 30,447 and 
452,525 SNP were available for the 50K and 777K SNP chip, respectively. All selection 
methods showed that only a small set of SNPs is needed to differentiate among the 
four Dutch cattle breeds, whereas comparison of the selection methods showed only 
small differences. In general, the 777K performed marginally better than the 50K 
BeadChip, especially at higher confidence thresholds. The rule to avoid selection of 
SNP in high LD reduced the required number of SNP to achieve correct breed 
assignment. The Global Weir and Cockerham's FST performed marginally better than 
other selection methods. There was little overlap in the SNP selected from the two 
BeadChips, whereas the number of SNP selected was about the same. 
 
Key words: assignment test, cattle breeds, high density SNP chips, SNP selection 
methods  
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5.1 Introduction 
Known origin of individual animals is important in multiple aspects of animal 
production, such as breeding and tracing of animal products. Genetic markers can 
be used to infer the relationship among individuals. In several livestock species, 
including cattle, panels comprising tens of thousands of SNP are now available at 
affordable cost. While many SNP are needed to obtain commonalities among cattle 
breeds (de Roos et al. 2008), only a small set of SNP, if accurately chosen, is needed 
to differentiate among breeds (Wilkinson et al. 2011b). Currently, most studies on 
cattle breed identification are based on the BovineSNP50 BeadChip. The SNP with 
high minor allele frequency across cattle breeds were preferentially selected in the 
design of the BovineSNP50 BeadChip. Therefore, SNP data may suffer from an 
ascertainment bias. This ascertainment bias may be overcome by using whole 
genome sequence data or may perhaps be alleviated using a higher density SNP chip, 
such as the BovineHD BeadChip that contains 777K SNP. In our study, it is 
hypothesized that using a selected subset of high density SNP will lead to more 
accurate assignment of cattle to their known breed of origin because of less 
ascertainment bias. One important consequence of increased SNP density is that the 
linkage disequilibrium (LD) among SNP increases. Proposed SNP selection methods 
select most informative SNP (Ding et al. 2011; Wilkinson et al. 2011b) but do not 
account for the fact that some selected SNP may be highly correlated, due to LD, and 
therefore explain largely the same variance. As a result, the selected subset may 
contain redundant SNP. 
 
The objective of this study was to compare different SNP selection methods, using 
the BovineSNP50 BeadChip and BovineHD 777K BeadChip, in terms of the minimum 
required number of informative SNP to differentiate among cattle breeds. Published 
SNP selection methods were extended with simple rules to avoid selection of 
redundant SNP. 
 
5.2 Material and Methods 
Animal Care and Use Committee approval was not obtained for this study because 
data were generated from multiple studies. 
 
5.2.1 Genotypes and Allele Frequencies 
Genotyped animals included 1,287 cows from The Netherlands, of four different 
breeds [989 Holstein Friesian (HFR), 97 Groningen White headed (G), 137 Meuse-
Rhine-Yssel (MRY), and 64 Dutch Friesian (FH)]. All animals were 100% purebred. 
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Holstein Friesian animals were genotyped with a 50K chip and, together with 2,349 
additional HFR cows from outside The Netherlands that were also genotyped with a 
50k chip, imputed to high density (777K), based on a reference population consisting 
of 3,150 Holstein Friesian animals (1,366 males and 1,784 females). This imputation 
step was performed using Beagle (Browning and Browning 2009). The mean Beagle 
r2 value, which reflects the accuracy of imputation, was 0.96 across the imputed loci, 
indicating that the imputation was highly accurate and that imputation will have 
influenced breed assignment results marginally, at most. During an initial quality 
check, 50K SNP with a call rate <95% were deleted. Animals from the other three 
breeds were genotyped with a high density chip (777K). The quality check for this 
dataset involved deleting SNP with a GenCall score ≤0.2, GenTrain score ≤0.55, and 
call rate ≤95% in one of the breeds. The GenCall and GenTrain score are quality 
measures on genotype calls from the genotyping assay (Illumina 2005). Within both 
datasets, SNP without known map position, as well as SNP located on the sex 
chromosomes, were deleted. After combining genotypes from all cows of the four 
breeds in this entire dataset, SNP with a minor allele frequency ≤0.5% and SNP in 
complete LD with a neighbouring SNP were deleted. After all these editing steps, 
452,525 of the 777,962 SNP remained. Because one of the objectives of our study 
was to investigate whether the initial number of SNP affects the number of SNP 
required to predict breed of origin with high accuracy, a subset of those 452,525 SNP 
was selected. This subset contained SNP that are also included on the second version 
of the Illumina 50K SNP chip (Illumina Inc., San Diego, CA), being 30,447 in total, 
hereafter is termed “50K.” The term “777K” will be used for the 452,525 SNP. 
 
5.2.2 Selection Methods to Find Most Informative Markers 
To find the most informative markers to distinguish among breeds, the statistical 
selection methods described by Wilkinson et al. (2011b) were used, namely: Delta, 
Wright's FST, and Weir and Cockerham's FST. For Wright's FST and Weir and 
Cockerham's FST, the global FST among all breeds were calculated, as well as pairwise 
FST between each pair of breeds. All these parameters were calculated for each SNP, 
using data in the reference populations (i.e., data of animals with known breed of 
origin). 
 
Delta, the absolute allele frequency difference observed between two populations, 
is the most commonly used measure of marker informativeness. For a biallelic 
marker, it is calculated as |PBi – PBj|, where PBi and PBj are the frequencies of allele B 
in the ith and jth population, respectively. Pairwise comparisons for each SNP were 
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averaged to obtain an overall estimate of the level of genetic information contained 
in each SNP. 
 
Wright's FST statistic, the standardized variance in allele frequencies among 
populations, was calculated as 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗(𝑷𝑷𝑷𝑷𝑩𝑩𝑩𝑩)/𝑷𝑷𝑷𝑷𝑩𝑩𝑩𝑩(𝟏𝟏𝟏𝟏 − 𝑷𝑷𝑷𝑷𝑩𝑩𝑩𝑩) , where is 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗(𝑷𝑷𝑷𝑷𝑩𝑩𝑩𝑩) the 
variance of the frequency of allele B across breeds and 𝑷𝑷𝑷𝑷𝑩𝑩𝑩𝑩  is the mean allele 
frequency of allele B across breeds. 
 
The Weir and Cockerham's unbiased estimator (W&C) was calculated using an R 
script written by Chan (2012). This script estimates the variance components and 
fixation indices as described by Weir and Cockerham. The W&C's FST (Weir and 
Cockerham 1984) was calculated as 
 

�̂�𝜽𝜽𝜽 =  𝒗𝒗𝒗𝒗
𝒗𝒗𝒗𝒗 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄𝒄𝒄 

 
where 𝒗𝒗𝒗𝒗 = variance of allele frequencies among populations, 𝒃𝒃𝒃𝒃 = variance of allele 
frequencies among individuals within populations, and 𝒄𝒄𝒄𝒄 = variance of allele 
frequencies among gametes within individuals. 
 
When applying SNP selection methods as described above, the possibility exists that 
pairs of SNPs that are selected are in strong LD, implying that one of those SNP will 
contribute very little to breed assignment, because it largely explains the same 
variation as the other selected SNP. To avoid selection of such redundant SNP for 
each measure, we included a rule that avoided selection of SNP with a r2 value >0.3 
(calculated according to Hill and Robertson (1968)), with any SNP that were already 
selected. 
 
5.2.3 Individual Assignment 
The individual assignment method of Paetkau et al. (Paetkau et al. 1995) is used in 
this study, because it is most frequently used in empirical studies (Wilkinson et al. 
2011b). 
 
The individual assignment analysis encompasses 3 steps. First, the probability that 
genotypes 0, 1, and 2 occur were calculated per locus (j) and breed (k), whereby 1 
indicates heterozygote genotype and 0 and 2 indicate the 2 homozygotes. If pjk is the 
frequency of the allele that homozygote genotype is coded as 2, then the probability 
of genotype 0 is calculated as Pjk(0) = (1 – pjk)2; Pjk(1) = 2pjk(1 – pjk), and Pjk(2) = pjk2. 
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Because the next step involves calculation of the log of those probabilities and log(0) 
is not defined, allele frequencies with values of zero or one were, respectively, 
replaced by a value of 1 × 10–5 or 0.99999 (Wilkinson et al. 2011b). Next, for each 
genotype, the log-likelihoods for all breeds were calculated, using the probabilities 
from the first step as the sum of the log(10) probabilities for all selected loci. Finally, 
the log-likelihood ratios (LLR) were calculated by subtracting the log-likelihood of an 
individual being assigned to any of the breeds from the likelihood of it being assigned 
to another breed, resulting in three LLR values for each of the four breeds. 
 
Four different confidence thresholds were applied as confidence levels of 
assignment precision: LLR > 0, LLR > 1, LLR > 2, and LLR > 3. The LLR > 0 implies that 
a genotype is more likely in one breed than another. The LLR > 1, LLR > 2, and LLR > 
3 means that an observed multilocus genotype has to be 10, 100, or 1,000 times 
more likely in one breed than any other to be assigned. For details, see Wilkinson et 
al. (2011b). Breed assignment, following the different methods of SNP selection, 
followed when all of the three calculated LLR for a specific breed were greater than 
the selected confidence threshold. If the LLR was lower than the selected confidence 
threshold, the individual animal could not be definitely assigned to a specific breed. 
To enable this evaluation, the complete genotype dataset was split into two subsets: 
80% of each breed were randomly selected to represent a sample of animals that 
have genotypes and breed known, hereafter referred to as reference data (n = 
1,032), and the remaining 20% represented a sample of individual animals for which 
we wanted to predict their breed of origin (n = 255). 
 
All analyses were performed using a combination of in-house R (www.r-project.org) 
and Perl (www.perl.org) scripts. 
 
5.3 Results 
5.3.1 Comparison of SNP Selection Methods 
Distributions of calculated Wright's and W&C's FST statistics for individual SNPs were 
predominantly right skewed (Figure 5.1). The distributions of Delta estimates were 
more symmetric but were also slightly right skewed. Distributions of measures for 
777K were almost similar in shape to the 50K distributions, indicating that 
ascertainment bias was similar for 50K and 777K. Summary statistics of the different 
selection methods of SNP informativeness are shown in Supplementary Table S5.1. 
The average level of Delta, Global Wright's FST, Pairwise Wright's FST, Global W&C's 
FST, and Pairwise W&C's FST were 0.17, 0.10, 0.06, 0.11, and 0.11, respectively. 
Average estimates were similar for 50K and 777K. The estimates of individual SNP 
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were highly correlated among the different methods, with Spearman rank 
correlation coefficients ranging from 0.78 between Delta and Global W&C's FST to 
0.97 between Pairwise Wright's FST and Pairwise W&C's FST. The correlation 
coefficients among methods were comparable for 50K and 777K.  
 
5.3.2 Removing Redundant SNP 
Filtering the most informative SNP, by discarding SNP that had a r2 > 0.3 with any of 
the SNP that were already selected, reduced the number of SNP necessary for 
correct assignment of individual animals (Table 5.1). This filtering had the most effect 
for the selection method Global W&C's FST, where the reduction ranged between 47 
and 57 SNP, and 58 to 69 SNP for 50K and 777K, respectively. The reduction in the 
required number of SNP is found for the 50K, as well as for the 777K. However, the 
degree of reduction was larger for the 777K than for the 50K. 
 
5.3.3 Breed Assignment of Individual Animals 
Overall, 95% of the sample of individual animals (n = 255), whose breed of origin was 
predicted, were assigned correctly, using ≤37 SNP (Table 5.2). Differences in the 
percentage of individuals assigned correctly to their breed of origin using the 
different SNP selection methods were small. Global W&C's FST and Delta performed 
marginally better than other selection methods. Figure 5.2 shows overlap of the top 
50 SNP selected by the methods Delta and Global W&C's FST, using both types of 
chips. There was almost no overlap between the 50K and 777K, as well as between 
Global W&C's FST and Delta. There were only 3 and 6 SNP selected by both chips (50K 
and 777K) for Delta and Global W&C's FST, respectively. 
 
The number of SNP required for accurate breed assignment depends on the 
confidence level used for breed assignment. We used the confidence LLR > 0, LLR > 
1, LLR > 2, and LLR > 3 (Figure S5.1). Correctly assigning 95% of the individual 
genotypes at LLR > 0 required ≤13 SNP, whereas LLR > 3 required ≤37 SNP (Table 
5.2). The Global W&C's FST required the smallest number of SNP to reach 90%, 95%, 
and 100% correct assignment at the confidence values of LLR followed by Delta, 
whereas Pairwise Wright's FST performed the worst. The number of SNP necessary 
for correct assignment of individual animals differed very little between the 50K and 
777K. The difference in the required number of SNP to reach 100% correct 
assignment at confidence threshold LLR > 0 between the 50K and 777K ranged from 
1 to 8. In general, the 777K performed marginally better than the 50K, especially at 
higher confidence thresholds. 
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Figure 5.1. Distribution of estimates for each selection method. (Left estimates for the 
BovineSNP50 BeadChip (50K) and right for the BovineHD 777K BeadChip (777K)). 
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Table 5.1. Number of SNPs required to achieve 100% correct assignment for the 50K and 777K 
at the four confidence thresholds for each SNP selection method, with and without LD 
restriction (r2 > 0.3). 

 No LD restriction LD restriction (r2 > 0.3) 
 LLR0 LLR1 LLR2 LLR3 LLR0 LLR1 LLR2 LLR3 
50K          
Delta  33 35 36 38 24 33 39 39 
Global Wright's FST  38 53 57 60 22 30 33 34 
Pairwise Wright's FST  30 35 37 41 29 32 38 42 
Global W&C's FST  66 79 80 81 19 22 25 29 
Pairwise W&C's FST  21 31 36 39 24 30 30 37 
777K          
Delta  33 45 46 62 17 23 35 36 
Global Wright's FST  63 76 86 87 24 38 46 52 
Pairwise Wright's FST  57 57 59 62 28 29 37 42 
Global W&C's FST  76 77 78 90 11 15 20 21 
Pairwise W&C's FST  64 68 70 77 25 33 38 42 

Abbreviations: LD = linkage disequilibrium; LLR0 = log-likelihood ratio > 0; LLR1 = log-likelihood 
ratio > 1; LLR2 = log-likelihood ratio > 2; LLR3 = log-likelihood ratio > 3. 
  
 
 

 

 
Figure 5.2. Overlap for the top 50 selected SNP between the Global Weir and Cockerham's 
(W&C’s) FST and Delta selection methods. (50K = BovineSNP50 BeadChip; 777K = BovineHD 
777K BeadChip). 
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Table 5.2. Number of SNP required to achieve 90%, 95%, and 100% correct assignment for the 
50K and 777K at the 4 confidence thresholds for each SNP selection method. 

  50K 777K 
  90% 95% 100% 90% 95% 100% 
Delta        
 LLR0 7 11 24 5 8 17 
 LLR1  13 19 33 10 13 26 
 LLR2  20 22 39 13 17 35 
 LLR3  24 27 39 17 20 36 
Global Wright's FST        
 LLR0  8 10 22 7 8 24 
 LLR1  12 14 30 17 20 38 
 LLR2  16 19 33 21 30 46 
 LLR3  20 22 35 28 37 52 
Pairwise Wright's FST        
 LLR0  9 13 29 6 12 28 
 LLR1  16 22 32 14 16 29 
 LLR2  20 24 38 16 21 37 
 LLR3  23 26 42 21 21 42 
Global W&C's FST        
 LLR0  4 5 19 3 3 11 
 LLR1  7 9 22 7 7 15 
 LLR2  9 12 25 8 11 20 
 LLR3  16 17 29 13 14 21 
Pairwise W&C's FST        
 LLR0  7 10 24 2 8 25 
 LLR1  13 15 30 11 12 33 
 LLR2  15 15 30 12 15 38 
 LLR3  18 19 37 19 21 42 

Abbreviations: LLR0 = log-likelihood ratio > 0; LLR1 = log-likelihood ratio > 1; LLR2 = log-
likelihood ratio > 2; LLR3 = log-likelihood ratio > 3; 50K = BovineSNP50 BeadChip; 777K = 
BovineHD 777K BeadChip. 
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The percentage of individuals from a known breed of origin allocated to each breed 
category was calculated using the Delta selection method, which is an efficient and 
simple method, and at the lowest confidence threshold (LLR > 0; Table 5.3).  
 
Table 5.3. Percentage of individuals from a known breed of origin allocated to each breed 
category, using the Delta selection method at the lowest confidence threshold level (LLR > 0). 
Breed of origin is indicated in columns, whereas assigned breed is indicated in rows. 

 50K 777K 
G FH MRY HFR G FH MRY HFR 

5 SNPs         
G 100 8.3 0 0.5 89.4 8.3 0 2.0 
FH 0 91.7 0 8.6 5.3 83.4 0 1.5 
MRY 0 0 92.6 4.6 0 8.3 77.7 3.0 
HFR 0 0 7.4 86.3 5.3 0 22.4 93.4 
15 SNPs         
G 100 0 0 0 100 0 0 0.5 
FH 0 100 0 1.5 0 100 0 1.0 
MRY 0 0 96.3 1.0 0 0 100 0.5 
HFR 0 0 3.7 97.5 0 0 0 98.0 
25 SNPs         
G 100 0 0 0 100 0 0 0 
FH 0 100 0 0 0 100 0 0 
MRY 0 0 96.3 0 0 0 100 0 
HFR 0 0 3.7 100 0 0 0 100 
35 SNPs         
G 100 0 0 0 100 0 0 0 
FH 0 100 0 0 0 100 0 0 
MRY 0 0 100 0 0 0 100 0 
HFR 0 0 0 100 0 0 0 100 

Abbreviations: G = Groningen White headed; FH = Dutch Friesian; MRY = Meuse-Rhine-Yssel; 
HFR = Holstein Friesian; 50K = BovineSNP50 BeadChip; 777K = BovineHD 777K BeadChip. 
 
The evaluation was performed considering 5, 15, 25, or 35 SNP. In the range of 15 to 
30 selected SNP, the 777K performed marginally better than the 50K. Using five 
selected SNP, the 50K performed slightly better than the 777K for three out of four 
breeds. To achieve 100% correct assignment for all breeds, more SNP were needed 
using the 50K in comparison to using the 777K. Incorrectly assigned animals with the 
same breed of origin tended to be spread across the other breeds. One exception is 
MRY, where incorrectly assigned animals were always assigned to HFR. 
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5.4 Discussion 
Numerous studies have shown that SNP can be used to identify the breed of origin 
of an individual (for cattle: e.g., Lewis et al. 2011; Pant et al. 2012). Several selection 
methods are available to determine which SNP panel contains most information to 
predict breed of origin (Rosenberg et al. 2003; Ding et al. 2011; Wilkinson et al. 
2011b). In this study, we compared five different SNP selection methods, using the 
BovineSNP50 BeadChip (50K) or BovineHD BeadChip (777K), to investigate whether 
the minimum required number of informative SNP to differentiate among cattle 
breeds depends on the chip used and whether the SNP selection methods perform 
similar for different chips. Our results clearly show that using the 777K instead of the 
50K chip only marginally increased the percentage of correct breed assignments, and 
this limited increase does not justify the additional costs of using the 777K instead of 
the 50K chip for the purpose of breed assignment. 
 
In addition, the SNP selection methods were extended with a rule that the maximum 
allowed squared correlation among selected SNP was 0.3 to avoid selection of 
redundant SNP as a result of high LD between, generally, neighbouring SNP. This rule 
directly accounts for the overlap of the variance explained by two SNP and is 
therefore expected to be more efficient than avoiding selection of SNP with a small 
physical distance between them (e.g., Ding et al. 2011). The current results show that 
adding the rule of a maximum allowed squared correlation among selected SNP of 
0.3 to the SNP selection methods reduced the required number of SNP for correct 
breed assignment, especially when using the BovineHD BeadChip, because the 
higher LD among SNP leads to more redundancy in the selected SNP. Most studies 
on cattle breed identification using SNP are based on the 50K SNP chip (e.g., 
Wilkinson et al. 2011b; Dimauro et al. 2013). During the development of this chip, 
SNP with high minor allele frequency across cattle breeds were preferentially 
selected in the design (Matukumalli et al. 2009). Therefore, SNP data may suffer from 
an ascertainment bias (Nielsen 2004; Albrechtsen et al. 2010; Wang and Nielsen 
2012), which may also have an impact on the selection of SNP to differentiate among 
populations. The BovineHD BeadChip tended to give only marginally better results 
than the Bovine50SNP BeadChip and this indicates that the assumed larger 
ascertainment bias of the Bovine50SNP BeadChip hardly affected the results. Most 
likely, the selection methods are efficient enough to select a small set of SNPs from 
the Bovine50SNP BeadChip that differentiate the breeds with high accuracy, despite 
the ascertainment bias. In other words, the selection methods used in this study are 
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robust to the effect of ascertainment biases and adding SNP from the 777K only 
marginally improves results. 
 
All selection methods showed that only a small set of SNPs is needed to differentiate 
among populations and there were little differences among the different selection 
methods (Table 5.2). The number of SNP necessary for correct assignment of 
individual genotypes differed very little between the Bovine SNP50 and BovineHD. 
At a confidence threshold of LLR > 0 and considering the level of 95% correct 
assignment, the required number of SNP ranged from 5 to 13 and from 3 to 12 for 
BovineSNP50 and BovineHD, respectively (Table 5.2). Developing a reduced SNP 
panel that is tailored to breed assignment lowers the animal genotyping cost and 
therefore would be more cost effective if animals are genotyped only for breed 
verification purposes. 
 
Our findings indicated that all SNP selection methods performed well. The Global 
W&C's FST performed marginally better than other selection methods in the 
individual assignment of Dutch cattle breeds. However, different studies (e.g., 
Kersbergen et al. 2009; Ding et al. 2011; Wilkinson et al. 2011b) reported that using 
Global FST's, including Global W&C's FST, is not optimal for selection of informative 
SNP when analysing >2 different breeds at the same time. Global FST will most likely 
select SNP that are specific for only the most distinct population. 
 
Since the Delta selection method was a very useful estimator and it is easy to 
compute, as reported by Yang et al. (2005), we used this method to assign individuals 
to breed of origin. Using this selection method, the minimum number of SNP needed 
for accurate breed assignment (≥95%) was < 27 SNP, regardless of the chosen degree 
of confidence (LLR > 0, LLR > 1, LLR > 2, and LLR > 3). The number of SNP required to 
reach 95% correct assignment increased using higher confidence threshold levels, 
whereas the percentage of correct assignment decreased. This is in agreement with 
results reported by Wilkinson et al. (2011b). The number of SNP needed, according 
to our analyses, is less than what was reported by Wilkinson et al. (2011b). This is 
probably due to two differences between both studies. First, our analyses include 
only four breeds, whereas the analysis by Wilkinson et al. (2011b) included 17 
breeds. Assignment precision is expected to decrease with an increase in number of 
populations included in the reference population, simply because there are more 
populations in which an animal erroneously can be assigned. Decreasing assignment 
success with an increase in number of populations is also observed using 
microsatellites (e.g., Talle et al. 2005). Second, in our analysis, the SNP selection 
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methods avoided selection of redundant SNP, which makes them more efficient as 
shown in our results. 
 
The percentage of individual genotypes correctly assigned to their known breed of 
origin (Figure S5.1) shows a typical pattern across different numbers of SNP used for 
breed assignment. It consists of a rapid increase in correct assignment percentage at 
a low number of SNP, then plateaus and only a marginally higher percentage of 
individual genotypes could be assigned after a certain number of SNP were already 
selected. This pattern was observed for all selection methods and was also found by 
Ding et al. (2011) and Wilkinson et al. (2011b). Bjørnstad and Røed (2002) reported 
for crossbred animals that the percentage of individuals correctly assigned increased 
at a much slower rate compared with purebred animals. For all selection methods 
and confidence thresholds, 100% correct assignment was reached in our study using 
a maximum of 52 SNP. This means that the individual animals for which we predicted 
their breed of origin were genetically typical for their breed. As suggested by others 
(Bjornstad and Roed 2002; Talle et al. 2005; Dalvit et al. 2008), there is the possibility 
that some individual animals will never be assigned correctly, even when using a high 
number of SNP, because the considered breeds are too closely related or because 
some individuals are genetically atypical of their breeds. To avoid the latter from 
happening, it is important that the reference population reflects the complete range 
of genotypes in a breed. This implies that when setting up a reference population for 
breed verification purposes, especially when its size is limited, it is important to 
sample widely from the population and avoid sampling of closely related animals. 
 
5.5 Conclusions 
Although tens of thousands of SNP markers are now available, only a small set of 
SNPs, if accurately chosen, is needed to differentiate among the cattle breeds G, FH, 
MRY, and HFR, with high accuracy. Using the 777K instead of the 50K chip only 
marginally increased the percentage of correct breed assignments and this limited 
increase does not justify the additional costs of using the 777K instead of the 50K 
chip for the purpose of breed assignment. From both chips, the number of SNP 
selected was about the same. Avoiding selection of SNP in high LD reduced the 
required number of SNP for correct breed assignment. The selection methods 
investigated in this study showed very few differences. The Global W&C's FST 
performed marginally better than other selection methods in the individual 
assignment of individuals to four cattle breeds. We have shown that ≤37 SNP are 
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needed to successfully assign 95% of unknown cattle individuals to one of four cattle 
breeds. 
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Supplementary Materials 
 
Table S5.1. Summary statistics of different measures used for SNP selection. 

Measure Mean Std Dev Min Max 
50K     
Delta 0.1737 0.0820 0.0057 0.5209 
Global Wright’s FST 0.0977 0.0729 0.0001 0.6359 
Pairwise Wright’s FST 0.0639 0.0468 0.0001 0.3633 
Global W&C FST 0.1103 0.0951 -0.0037 0.8370 
Pairwise W&C FST 0.1067 0.0743 -0.0054 0.4839 
777K     
Delta     
Global Wright’s FST 0.1768 0.0823 0.0013 0.5361 
Pairwise Wright’s FST 0.0980 0.0733 0.0000 0.7070 
Global W&C FST 0.0644 0.0473 0.0000 0.3857 
Pairwise W&C FST 0.1104 0.0946 -0.0038 0.8646 

Abbreviations: 50K = BovineSNP50 BeadChip; 777K = BovineHD 777K BeadChip. 
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Figure S5.1. The percentage of correctly assigned individuals across different numbers of 
selected SNP. X axis values are numbers of SNP and Y axis values are correct assignment 
percentage of the individual genotypes . (Left for the 50k and right for the 777K). 
Abbreviations: LLR0 = log-likelihood ratio > 0; LLR1 = log-likelihood ratio > 1; LLR2 = log-
likelihood ratio > 2; LLR3 = log-likelihood ratio > 3.
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Highlights 
• Only a small set of SNPs, when accurately chosen, was needed to 

differentiate among the Dutch local cattle breeds. 
• The reference population of purebred animals showed genetic clusters that 

corresponded to their breed designations and its usefulness for assignment 
of future unknowns. 

• A genetic test was developed to unequivocally determine the breed origin 
of animals without pedigree data. 

 
Abstract 
Breed registries have been established for livestock species to maintain the purity of 
breeds and to document the ancestry of animals. However, a significant number of 
animals are unregistered with no or incomplete pedigree data and uncertain 
ancestral breed origin. Although many local livestock breeds are “at risk” on the basis 
of the number of purebred breeding females in a breed registry, there is often also 
a reservoir of unregistered animals that may belong to the same breed. However, 
due to the missing pedigree it is not possible for breed societies or herdbooks to 
include those animals in their breeding program for purebred animals. A genetic test 
was developed to unequivocally determine the breed origin of cattle without 
pedigree data. Such a test will open up the possibility to incorporate animals without 
pedigree data in the breed registry that turn out to be purebred based on the test 
results. In this study we developed and validated such a test. Genotype data (50k 
SNP array) were used to compose reference populations for six local Dutch cattle 
breeds. The combination Principal Component Analysis and Random Forest was used 
to perform SNP selection. A total of 133 informative SNPs were selected to 
determine breed composition of individual animals. Overall, 82.0% of the animals in 
the test population are correctly assigned to the breed in question. For Dutch Red 
and White Friesian and Deep Red Cattle we suggest that if an animal has a 
percentage for its own breed <0.775 to use the combined percentage of two breeds 
(Deep Red Cattle with Meuse‐Rhine‐Yssel and Dutch Red and White Friesian with 
Dutch Friesian). Using this criterion 88.9% (104 out of 117) of the animals in the test 
population is correctly assigned. 
 
The developed test was successful and will be implemented in practice to identify 
(partly) unregistered individuals as being purebred (or not) for one of the Dutch local 
cattle breeds.  
 
Key words: Genetic test, Breed purity, Assignment, SNP, Cattle breeds 
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6.1 Introduction 
Modern livestock production is dominated by global use of highly productive breeds, 
while many local breeds have become endangered. Nowadays, most of these local 
farm animal breeds are at risk of extinction on the basis of their small (effective) 
population sizes (www.fao.org/dad-is). Moreover, in numerically small populations 
inbreeding can increase rapidly and consequently genetic variation will be eroded. 
Breed registries have been established to maintain the purity of breeds and to 
document the ancestry of breeding animals, and to enable breed specific breeding 
programs. However, there is also a significant number of unregistered animals that 
have no or incomplete pedigree or ancestral breed composition data. 
 
According to Regulation (EU) 2016/1012 on Animal Breeding (EU 2016b) this 
potential “reservoir” of animals without pedigree data cannot enter the main section 
of the herdbook. However, with reference to article 19 of the Regulation, Member 
States can decide to implement a specific derogation for the conservation or 
reconstruction of endangered breeds. Furthermore, in the event of disease 
outbreaks that could threaten the survival of local breeds, derogations are also 
allowed on the basis of the EU animal health legislation (EU 2016a). It allows 
competent authorities to take specific measures to protect purebred animals of local 
breeds. 
 
Traditionally, the determination of purebred animals is derived from pedigree 
information. When pedigree information is lacking, alternatively, molecular markers 
can be used to estimate breed purity. In several livestock species, including cattle, 
tens of thousands of Single Nucleotide Polymorphisms (SNP) markers located across 
the whole genome are available (Matukumalli et al. 2009). The availability of 
genotypes of these SNPs allows estimation of breed composition of individual 
animals using genomic data (Manel et al. 2005; Kuehn et al. 2011; Frkonja et al. 2012; 
Hulsegge et al. 2013). 
 
On the basis of established methods it is possible to estimate breed composition and 
purity and to allow incorporating purebred animals in the breed registry for purebred 
animals. 
 
A purity test requires genotypes of reference individuals whose breed of origin is 
known, a so called reference population. The individuals in a reference population 
should match the full range of genetic diversity within a particular breed. Based on 
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these reference individuals, SNP markers can be selected, which contain sufficient 
genetic information to be able to discriminate amongst the breeds. Preferably the 
number of SNP markers should be limited, in order to simplify the test, to reduce the 
costs and to speed up computations. The information of the selected SNPs from the 
reference populations subsequently could be used to infer the ancestry of individuals 
with unknown origin. For a purity test it is necessary to draw a threshold value for 
which an allocation of an unknown individual to a breed is accepted. 
 
For implementing the methodology in practice, a rapid and reliable method for 
genetic purity testing of animals is needed, distinguishing crossbred animals from 
purebred animals and to determine the breed composition. Furthermore, there is 
genetic variation within breeds and consequently a breed purity test will depend on 
how well this genetic variation will be reflected in the reference populations dataset. 
Finally, some introgression of genes of other breeds is generally accepted, e.g. 
animals registered with 87.5% pedigree purity are generally considered purebred, so 
the challenge is to determine a threshold value for purity that is generally accepted. 
 
The general aim of this study was to set up an easy applicable, highly accurate and 
affordable breed composition and purity test for the purpose of breed purity 
determination where pedigree is unknown or unable to verify with traditional 
methods. The specific objectives of this study were to: (1) build reference 
populations with individuals whose breed of origin is known; (2) select SNP markers 
that contain sufficient genetic information to be able to discriminate amongst the 
cattle breeds, (3) demonstrate the effectiveness of the test and (4) validate the test. 
 
6.2. Materials and methods 
6.2.1. Animals and genotypes 
Six local cattle breeds in the Netherlands were incorporated in the purity test: Deep 
Red Cattle, Dutch Belted, Dutch Friesian, Dutch Red and White Friesian, Groningen 
White Headed and Meuse-Rhine-Yssel. Genotype data for these local breeds were 
available from former studies (Maurice-Van Eijndhoven et al. 2015; Francois et al. 
2017; Hulsegge et al. 2017; Manzanilla-Pech et al. 2017) and the recently available 
genotype data from bulls in the Dutch gene bank, born between 1960 and 2015. Data 
on the six local breeds were provided by the Centre for Genetic Resources, The 
Netherlands (CGN). Individuals were genotyped with the Illumina BovineSNP50 or 
BovineHD Beadchip. The dataset includes data from bulls in the Dutch gene bank 
collection, suggesting they would include the genetic variation present in the 
population (Berg and Windig 2017). The cows were selected from several farms for 
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each breed. As the local breeds are sometimes crossed with Holstein Friesians, we 
included genotype data of a small group of Holstein Friesian animals as an outgroup 
to the dataset with the local cattle breeds. Data of Holstein Friesians were from cows 
of the Dairy Campus Research dairy herd (Wageningen University & Research, 
Wageningen Livestock Research, Lelystad, The Netherlands). Previously performed 
editing and imputation steps of these data are described by Manzanilla-Pech et al. 
(2017). After combining the different genotype datasets, a total of 36,148 SNPs 
remained for a total of 1850 animals with pedigree breed percentage > 87.5% (8/8 
breed fraction) 
 
6.2.2. Quality control 
Prior to the analysis, several quality control measures were applied to the genotype 
data. The dataset was pruned by excluding SNPs and animals with a call rate < 90%. 
Missing genotypes were imputed using Beagle with 20 iterations (Browning and 
Browning 2009). Imputation was carried out for each breed and chromosome 
independently, except for the Holstein Friesian samples which were already 
imputed. Rare alleles were not excluded, because these are important for the 
differentiation between breeds (Bertolini et al. 2015). SNPs were pruned for Linkage 
Disequilibrium (LD, threshold: > 0.2) with the SNP Relate (version 1.12.2) package in 
R (Zheng et al. 2012). After quality control, a total of 10,449 SNPs and 1774 purebred 
animals remained for the analysis. 
 
6.2.3. Reference and test population 
Each cattle breed was divided into a reference population and a test population. The 
test population was generated by randomly sampling 10% of the animals within each 
breed with a maximum of n = 20. The test population included 4 Deep Red Cattle, 4 
Dutch Belted, 5 Dutch Red and White Friesian, 20 Dutch Friesian, 12 Groningen 
White Headed and 20 Meuse-Rhine-Yssel (Table 6.1). The remaining animals formed 
the reference population (Table 6.1). The test population was supplemented with 59 
crossbred animals with known breed composition, 29 purebred- and 9 crossbred 
animals of other breeds (20 Improved Red Cattle, 8 Lineback Cattle and 1 Belgian 
Red Cattle) (Table 6.1).  
 
The difference in number of samples per breed could bias the analysis. Therefore, 
we performed the analysis using a maximum of 150 randomly selected animals per 
breed. We included genotype data of a small group of Holstein Friesian animals as 
an outgroup to the dataset with the local cattle breeds (test population n = 19; 
reference population n = 50). The final reference population included a total of 572 
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purebred animals (36 Deep Red Cattle, 32 Dutch Belted, 43 Dutch Red and White 
Friesian, 150 Dutch Friesian, 111 Groningen White Headed, 150 Meuse-Rhine-Yssel 
and 50 Holstein Friesian (Table 6.1). 
 
Table 6.1. Number of animals per breed in the reference population (REF) and test population 
(TEST). Reference is the population used to develop the breed composition and purity test; 
test population are animals with known breed composition used to validate the developed 
test. 

Breed Name REF TEST population by breed percentage (12.5%) 
>87.5% >75% >62.5% 50% >37.5% 

Deep Red Cattle 36 4 0 0 1 1 
Dutch Belted 32 4 1 0 0 0 
Dutch Friesian 150 20 4 1 0 1 
Dutch Red and White 
Friesian 

43 5 0 1 0 2 

Groningen White headed 111 12 13 6 1 4 
Meuse‑Rhine‑Yssel 150 20 14 1 0 2 
Holstein Friesian 50 19 1 4 0 1 
Other breed  29 5 1 0 3 

 
 
6.2.4. Selection of informative SNPs 
A combined approach of Principal Component Analysis (PCA) and Random Forest 
(RF) (Bertolini et al. 2015) was used to determine which SNPs contained the most 
information to discriminate among breeds. PCA was performed using the prcomp 
function in R (Core Team 2016). The first two principal components (PC1 and PC2) 
were used to reduce the number of SNPs needed to discriminate between breeds. 
The contribution of each SNP to PC1 and PC2 was estimated using the function 
get_pca_var incorporated in the factoextra package (version 1.0.5) in R (Kassambara 
2017). The contribution of each SNP to each of the PCs was ranked and the 500 SNPs 
with highest contribution were selected, leading to 1000 selected SNPs. After 
removing duplicates, 976 SNPs remained. Random Forests based on the selected 976 
SNPs were built using the Random Forests (RF, version 4.6 12) R package (Liaw and 
Wiener 2002), where the number of trees was set to ntree = 10,000 and the number 
of candidate predictors considered at each split to mtry = 500. The classification 
confusion matrix, an error matrix, as well as the out-of-bag error (OOB), the 
estimated prediction error, were used to evaluate the quality of classification. It has 
been shown that the Mean Decrease in Gini Index (MDGI), a relevance measures, is 
most likely to promote SNPs with high minor allele frequencies (Boulesteix et al. 
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2012), which was found to be beneficial in a similar study investigating the selection 
of informative SNPs to differentiate four cattle breeds (Bertolini et al. 2015). Based 
on the ranked MDGI score of the SNPs the 100 most informative SNPs were selected. 
 
6.2.5. Clustering animals 
The model-based clustering method implemented in the program STRUCTURE 
(version 2.3.4) (Pritchard et al. 2000) was used to infer the most probable number of 
genetically distinct clusters present in the reference population and to estimate 
admixture proportions within each of those clusters. The software clustered the data 
according to allele frequencies into K populations (clusters). The admixture model, 
correlated allele frequencies (Falush et al. 2003) and the number of populations K = 
6 to 8 were used for the STRUCTURE analyses, a total of 200,000 Markov chain 
Monte Carlo (MCMC) iterations were run, with a burn-in period of 100,000 
iterations. The seed was set at 1234. Results of clustering based on higher and lower 
numbers of clusters (K) confirmed that seven clusters were the best fit to the data at 
hand. 
 
6.2.6. Validation 
Predicting individual breed composition and purity of the test population based on 
the 133 informative SNPs was calculated using the program STRUCTURE (version 
2.3.4) (Pritchard et al. 2000; Porras-Hurtado et al. 2013). The data of the test 
population was treated as having unknown affinity and the program assigned the 
test individuals to the seven genetic clusters from the reference population. The 
USEPOPINFO model was used, whereby the reference populations were used to 
estimate the ancestry of the test population with unknown origin. Clustering and 
allele frequencies were updated using only individuals from the reference 
populations (POPFLAG=1) so that individuals from the test population were forced 
to cluster with one or more of the reference population clusters. Based on 
preliminary analysis (data not shown), the GENSBACK (“generations back” infers only 
whether an individual itself is a migrant) was set to 1 and the prior on migration rate 
(MIGRPRIOR) to 0.01. Again, a total of 200,000 MCMC iterations were run, with a 
burn-in period of 100.000 iterations. STRUCTURE assigned each individual to the 
inferred clusters based on the individual proportion of membership (Q-value) and its 
confidence interval (90% CI). In order to distinguish purebreds from crossbreds a 
threshold value needed to be set. The threshold value was set based on achieving an 
optimal balance between false positives (a crossbred animal assigned as purebred) 
and false negatives (a purebred animal assigned as crossbred). Therefore, the 
proportion of membership of the purebred animals (≥ 87.5%; 7/8 and 8/8) of the test 
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population was determined and subsequently the proportion of membership of the 
crossbred animals (that must be excluded). The set threshold, as best as possible, 
assigned the purebred animals but excluded the crossbred animals. 
 
6.3. Results 
6.3.1. Selection of informative SNPs 
The first three PCs separated the 572 individual animals from the reference 
population according to their breed (Figure 6.1). PC1 accounted for 6.3% of the total 
variation and separated the Dutch Friesian breeds (Dutch Red and White Friesian 
and Dutch Friesian) on the one hand and Groningen White Headed on the other hand 
from Holstein Friesian, Meuse-Rhine-Yssel and Deep Red Cattle. PC2 (5.5%) 
separated Meuse-Rhine-Yssel and Deep Red Cattle on the one hand and the Dutch 
Friesian breeds and Groningen White Headed on the other hand from Dutch Belted 
and Holstein Friesian, while PC3 distinguished all local breeds from Holstein Friesian. 
A partial overlap between Dutch Friesian and Dutch Red and White Friesian as well 
as between Meuse-Rhine-Yssel and Deep Red Cattle was observed as expected 
based on their history.  
 
Assigning the reference population animals to breeds rendered too many 
misclassifications when based on RF and 976 SNPs (Table 6.2). Therefore, a second 
selection step was performed to render a more (and reduced) informative set of 
SNPs. Based on the ranked MDGI score of the SNPs the 100 most informative SNPs 
were selected.  
 
To improve the assignments of the closely related breeds (Dutch Friesian and Dutch 
Red and White Friesian, as well as Meuse-Rhine-Yssel and Deep Red Cattle), 
additional SNPs were selected. For both comparisons, the 20 SNPs with the highest 
differences in allele frequency between the two breeds were selected. These 40 
SNPs and the 100 most informative SNPs selected with RF were combined. After 
removal of duplicates 133 SNPs remained. This set of 133 SNPs resulted in less 
misclassification as the error rate reduced from 6.3% when using 976 SNPs to 4.4%. 
However, the error rate within some breeds was still unacceptably high (Table 6.2) 
when keeping in mind an application in practice. We therefore considered breed 
assignment using the STRUCTURE program in which for each animal proportions of 
membership to each of the seven clusters (that is, breeds) was provided.  
 
Figure 6.2 shows the distribution of the 133 SNPs over the different chromosomes. 
SNP name, chromosome and location of the SNPs is available in Suppl. Table 6.1. The 
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selected 133 informative SNPs were located across all chromosomes, where the 
number of SNPs per chromosome ranged from one to 12. 
 

 
Figure 6.1. PCA results visualizing individuals of various breeds within the reference 
population using 10,449 SNPS, with the percentage of variance explained in Brackets. 
Abbreviations: DRC = Deep Red Cattle, DB = Dutch Belted, DF = Dutch Friesian, DRF = Dutch 
Red and White Friesian, GWH = Groningen White Headed, MRY = Meuse-Rhine-Yssel and HOL 
= Holstein Friesian.  
 
 
 
 

 
Figure 6.2. Distribution of the 133 SNPs over the chromosomes.  
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Table 6.2. Assignment of reference population animals to breeds based on Random Forest 
(RF) classification using 976 and 133 SNPs. 

Breed DRF DF GWD DB DRC MRY Hol 
Error 
rate 

RF classification 976 SNPs       

DRF 25 16 1   1  0.419 
DF 1 149      0.007 
GWH   111     0.000 
DB   1 29 1  1 0.094 
DRC 1    20 15  0.444 
MRY 1     149  0.007 
HOL       50 0.000 

RF classification 133 SNPs       

DRF 29 13    1  0.325 
DF  150      0.000 
GWH   111     0.000 
DB 1   30   1 0.063 
DRC     29 7  0.194 
MRY  1   1 148  0.013 
HOL       50 0.000 

Abbreviations: DRC = Deep Red Cattle, DB = Dutch Belted, DF = Dutch Friesian, DRF = Dutch 
Red and White Friesian, GWH = Groningen White Headed, MRY = Meuse-Rhine-Yssel and HOL 
= Holstein Friesian.  
 
6.3.2. Breed assignment 
The STRUCTURE analysis (K = 6 to 8) using the 572 animals in the reference 
population showed the lowest cross/validation error at K = 7 and confirmed the 
presence of seven breeds. The purebred animals of the Dutch Friesian, Groningen 
White Headed, Dutch Belted, Meuse-Rhine-Yssel and Holstein-Friesian breeds within 
the reference population showed large proportion of membership in one of the 
inferred clusters (mean proportion of membership was > 0.9; Table 6.3). These 
animals were therefore correctly assigned to their breed of origin. However, this did 
not hold for the purebred animals of the Dutch Red and White Friesian and Deep Red 
Cattle breeds within the reference population. Mean proportion of membership of 
purebred Dutch Red and White Friesian animals to inferred cluster 5, the cluster 
representing this breed, was 0.731 (Table 6.3). A considerable average proportion of 
membership (0.227; Table 6.3) was also assigned to inferred cluster 2, the Dutch 
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Friesian breed. Similarly, the average proportion of membership of purebred Deep 
Red Cattle animals to inferred cluster 6, the cluster representing this breed, was 
0.894 (Table 6.3). The second largest average proportion of membership for the 
purebred Deep Red Cattle animals was 0.044 to inferred cluster 3, the Meuse-Rhine-
Yssel breed.  
 
Table 6.3. Average proportion of membership of the animals in the reference population to 
the seven clusters. The highest contributions per breed are in boldface. 

Breed 
Inferred clusters Number 

of animals 1 2 3 4 5 6 7 
DRF 0.012 0.227 0.008 0.004 0.731 0.007 0.011 43 
DF 0.009 0.935 0.005 0.004 0.023 0.009 0.015 150 
GWH 0.009 0.005 0.004 0.959 0.008 0.008 0.007 111 
DB 0.042 0.009 0.011 0.007 0.013 0.013 0.907 32 
DRC 0.023 0.011 0.044 0.004 0.013 0.894 0.012 36 
MRY 0.007 0.004 0.937 0.003 0.005 0.038 0.006 150 
HOL 0.949 0.006 0.016 0.006 0.006 0.011 0.006 50 

Abbreviations: DRC = Deep Red Cattle, DB = Dutch Belted, DF = Dutch Friesian, DRF = Dutch 
Red and White Friesian, GWH = Groningen White Headed, MRY = Meuse-Rhine-Yssel and HOL 
= Holstein Friesian.  
 
6.3.3. Assignment testing 
In general, animals from the test population showed a high proportion of 
membership to the same cluster as the reference population representatives of the 
same breed (Supp. Table 2). Average proportion of membership of the animals in the 
test population ranged from 0.687 for the Dutch Red and White Friesian to 0.929 for 
the Groningen White Headed (Figure 6.3). The 90% probability interval of the 
purebred test population of Groningen White Headed was smaller than that of the 
other breeds, suggesting that the genetic diversity within Groningen White Headed 
(or at least within this data set) is lower than within the other breeds and/or 
Groningen White Headed has more unique alleles compared to the other breeds.  
 
A low proportion of membership to their breed of origin was observed for several 
test animals (Figure 6.3). For example, proportion of membership of one Dutch Red 
and White Friesian animal was 0.251. For this particular animal a higher proportion 
of membership was observed for the Dutch Friesian breed (0.627), which could be 
explained by its ancestors (mostly from Dutch Friesian).  
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The threshold value for which an allocation of an unknown individual to a breed is 
accepted was set to 0.775 (proportion of membership). The threshold value was set 
based on achieving an optimal balance between false positives (a crossbred animal 
assigned as purebred) and false negatives (a purebred animal assigned as crossbred). 
Accuracy in breed assignment of the test population as determined by the number 
of animals correctly assigned to their breed of origin using the threshold value for 
proportion of membership of 0.775 is shown in Table 6.4. Overall, 82.0% (96 out of 
117) of the animals in the test population is correctly assigned to the breed in 
question. No animals were assigned to another breed and no animals from the other 
breeds (Improved Red Cattle, Lineback Cattle and Belgian Red Cattle) were assigned 
to the Dutch local breeds in question. As previously indicated, the Dutch Red and 
White Friesian cattle is closely related to the Dutch Friesian breed, as well as Deep 
Red Cattle is closely related to Meuse-Rhine-Yssel. For these breeds, if an animal is 
not correctly assigned, but the combined (Meuse-Rhine-Yssel and Deep Red Cattle 
or Dutch Red and White Friesian and Dutch Friesian) proportion of membership is 
≥0.775, the animal can be considered as purebred, provided that the phenotype, 
colour and/or pattern and meets the requirements for the breed, as determined by 
the herdbook. Using this criterion 88.9% (104 out of 117) of the animals in the test 
population is correctly assigned. Of the 34 purebred animals (≥87.5%) that are 
composed of breeds not in the reference populations (Improved Red Cattle, Lineback 
Cattle and Belgian Red Cattle), 33 animals were not assigned as belonging to one of 
the seven breeds in the reference population. One Improved Red Cattle was 
incorrectly assigned as purebred Deep Red Cattle.  
 
The proportion of membership of crossbred animals should be below the threshold 
value of 0.775. In total 73.3% of the crossbred animals were indeed assigned as 
admixture (Table 6.5). Noticeably, almost half of the crossbred animals of the 
Groningen White Headed were assigned as purebred Groningen White Headed. One 
Dutch Red and White Friesian crossbred animal (75% Dutch Red and White Friesian 
and 25% unknown) was assigned as purebred (Table 6.5). It is very plausible that the 
unknown breed Dutch Red and White Friesian breed or Dutch Friesian was. 
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Figure 6.3. Boxplot of the breed proportion of membership for the six local cattle breeds.  
(greysquare= average proportion of membership; Dutch Red and White Friesian (DRF) n = 5; 
Dutch Friesian (DF) n = 23; Groningen White Headed (GWH) n = 25; Dutch Belted (DB) n = 5; 
Deep Red Cattle (DRC) n = 4 and Meuse-Rhine-Yssel (MRY) n = 34). 
 
Table 6.4. Assignment accuracy of the test population. 

Breed⁎⁎ # purebred 
(≥87.5%) 

# assigned 
# assigned 
from other 

breeds** 

Purebred 
(Q-value ≥ 

0.775 

Crossbred 
(Q-value < 

0.775) 

Other 
breed⁎⁎ 

DRF 5 3 2 0 0 
DF 24 19 5 0 0 
GWH 25 25 0 0 0 
DB 5 4 1 0 0 
DRC 4 3 1 0 0 
MRY 34 24 10 0 0 
HOL 20 18 2 0 0 
Total 117 96 21 0 0 
DRF + DF* 29 25 4 0 0 
MRY + DRC* 38 32 6 0 0 
Total 117 104 13 0 0 

⁎Combined membership proportion.  
⁎⁎Other breed(s) = breeds within the reference population: Deep Red Cattle, Dutch Belted, 
Dutch Friesian, Dutch Red and White Friesian, Groningen White Headed, Meuse-Rhine-Yssel 
and Holstein Friesian. 
Abbreviations: DRC=Deep Red Cattle, DB = Dutch Belted, DF = Dutch Friesian, DRF = Dutch Red 
and White Friesian, GWH = Groningen White Headed, MRY = Meuse-Rhine-Yssel and HOL = 
Holstein Friesian.  
 
 



6 Genetic tool for determining breed purity
 

104 
 

Table 6.5. Assignment accuracy of the crossbred animals and animals from other breeds. 

Breed # crossbred # correctly assigned 
crossbred (Q-values < 0.775) 

# assigned 
purebred 

DRF 3 2 1 
DF 2 2 0 
GWH 11 6 5 
DB – – – 
DRC 2 2 0 
MRY 3 2 1 
HOL 5 5 0 
OTH 4 3 1 
Total 30 22 8 

Abbreviations: DRC=Deep Red Cattle, DB = Dutch Belted, DF = Dutch Friesian, DRF = Dutch Red 
and White Friesian, GWH = Groningen White Headed, MRY = Meuse-Rhine-Yssel, HOL = 
Holstein Friesian and OTH] Other Breed: Improved Red Cattle, Lineback Cattle and Belgian Red 
Cattle. 
 
6.4. Discussion 
In this study we set up a test to determine breed composition and purity and quality 
control where pedigree is unknown or unable to verify with traditional methods 
 
6.4.1. Breeds 
Six local Dutch cattle breeds were incorporated in the purity test: Deep Red Cattle, 
Dutch Belted, Dutch Friesian, Dutch Red and White Friesian, Groningen White 
Headed and Meuse-Rhine-Yssel.  
 
Anecdotally and according to breed registry information, the Dutch Red and White 
Friesian cattle is closely related to the Dutch Friesian breed, as well as the Deep Red 
Cattle is closely related to the Meuse-Rhine-Yssel. The Dutch Red and White Friesian 
Cattle originated from Dutch Friesian. With the increasing demand for black and 
white pied animals for export, the red pied Dutch Friesians were no longer allowed 
to be registered as Dutch Friesian. However, some farmers kept breeding with red 
pied animals and in 1975 the Dutch Red and White Friesian became an official cattle 
breed. Both are now registered as one breed, with an additional notification for 
colour. Similarly, the Deep Red Cattle and Meuse-Rhine-Yssel are closely related. 
These two breeds have a common history. With the increasing interest in highly 
productive dairy cattle the number of purebred Meuse-Rhine-Yssel decreased 
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rapidly. Farmers attempted to improve production in local cattle breeds through 
crossing with more productive breeds. In Meuse-Rhine-Yssel white colouring was 
preferred because a link of this colouring to milk production was suspected. Farmers 
opposing these changes, moved back to the old type of dual-purpose cattle with its 
typical deep red coat colour, creating a new line within the breed: Deep Red Cattle 
(de Haas et al. 2009). The separation of Deep Red Cattle as an official studbook was 
in 2004. This clarifies why the PCA, RF and STRUCTURE had difficulties to distinguish 
between these breeds. 
 
6.4.2. Reference population 
The genotype data available for this study was not specifically gathered to build a 
reference population for the purpose to setup a breed composition and purity test. 
The genotype data of the different breeds used to compose the reference 
populations originated from different studies (Maurice-Van Eijndhoven et al. 2015; 
Francois et al. 2017; Hulsegge et al. 2017; Manzanilla-Pech et al. 2017) and the 
recently available genotype data from bulls of which semen is stored in the Dutch 
national gene bank of CGN, born between 1960 and 2015, suggesting they would 
include the genetic variation present in the population (Berg and Windig 2017). Cows 
were selected from several farms for each breed, suggesting that they represent 
different families and thereby relevant variation in the population. The variation 
present in a population should be represented by a reference population, to avoid 
exclusion of atypical animals or even whole breeding lines or families (Hulsegge et 
al. 2013). Dalvit et al. (2008) and Rosenberg et al. (2001) suggested for real and 
practical use of breed assignment methods to verify the suitability of collected 
samples to be used as a reference population. For pigs, Funckhouser et al.  (2017) 
indicated that subpopulations within a breed may differ in allele en haplotype 
frequencies, highlighting the importance of having a representative reference 
population that capture the genetic variation existing among animals to be tested. 
Our results showed that the animals of the reference population form genetic 
clusters that correspond to their breed designations and that these animals can be 
used in a reference population for assignment of future unknowns. We have no 
indications that the genetic diversity range of the reference population is too small. 
Another important aspect for a reference population is the minimum number of 
animals that would be required to accurately assign an animal to a breed using 
genotype data (Connolly et al. 2014). The data used in this study included an unequal 
number of animals in the breeds of the reference population. Connolly et al. (2014) 
indicated that at least 50 animals are required in a reference population when 
attempting to discriminate between distantly related breeds, and many more (400 
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to 500) if the breeds are closely related. This latter number is probably difficult to 
realize in regard to the small population sizes of most of the Dutch cattle breeds. 
Frkonja et al. (2012) reported that a very small number of samples of purebred 
(ancestral) individuals (10) is sufficient to provide accurate estimates of admixture. 
Although the results showed that the breed assignment of the test population using 
the current reference population was successful, we propose, based on the 
arguments mention above, to add additional animals to the reference population. 
When adding additional animals to the reference population one should sample 
widely from the breed and avoid adding closely related animals. So, the reference 
populations could still be improved on numbers and potentially representation of 
the total genetic diversity. 
 
6.4.3. Selection of informative SNPs 
Genotyping and analysing a large number of SNPs is costly and time-consuming. 
Therefore, selecting a subset of SNPs that is sufficiently informative is an important 
step toward a breed composition and purity test. Several methods can be used to 
determine which SNPs contain the most information to discriminate between 
populations (Ding et al. 2011; Wilkinson et al. 2011b; Bertolini et al. 2015). In this 
study we used the combination of PCA and RF to perform SNP selection (Bertolini et 
al. 2015). PCA has been used already in cattle to reduce dimensionality of large SNP 
data sets and to identify breed informative SNPs (Lewis et al. 2011; Wilkinson et al. 
2011b; Bertolini et al. 2015). This pre-filtering PCA step was combined with RF, an 
approach that can classify and assign individuals. Bertolini et al (2018) demonstrated 
the usefulness of RF in combination with other SNP reduction techniques to identify 
breed informative SNPs and that PCA is the best technique to combine with RF in 
order to classify and assign individuals to breeds. From tests selecting different 
numbers of informative SNPs (data not shown) the selection of 1000 informative 
SNPs through PCA and out of these 1000 the 100 most informative SNPs found by RF 
was large enough to distinguished between the Dutch cattle breeds. However, for 
the closely related breeds Dutch Red and White Friesian and Dutch Friesian, as Deep 
Red Cattle and Meuse-Rhine-Yssel the 100 selected SNPs were not sufficient. 
Therefore, we added additional SNPs based on allele frequency between Dutch Red 
and White Friesian and Dutch Friesian and between Deep Red Cattle and Meuse-
Rhine-Yssel, resulting in a total of 133 selected SNPs. The closely related breeds 
Dutch Red and White Friesian and Dutch Friesian showed overlap in the results of 
PCA and RF. This overlap is partial and does not hold for all animals of the Dutch Red 
and White Friesian population. Hulsegge et al. (2017) stated that Dutch Friesian and 
Dutch Red and White Friesian are closely related, but that some of the breeding lines 
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in the Dutch Red and White Friesian population are genetically distinct from each 
other, from Dutch Friesian and the other breeds. A similar challenge occurred with 
the differentiation between Deep Red Cattle and Meuse-Rhine-Yssel, which also had 
a slight overlap between the populations in the PCA and RF results. This overlap can 
be traced back to the common history of both breeds. As well as the fact that there 
are still some (crossbred) Meuse-Rhine-Yssel bulls used in the Deep Red Cattle 
breeding program. 
 
The number of selected informative SNPs depends on the breeds under 
consideration in the reference population and their respective levels of genetic 
heterogeneity. 
 
The 133 identified SNPs were useful to discriminate among all the cattle breeds 
under study. These markers are probably not useful to discriminate among other 
cattle breeds or even same breeds but from different countries. However, the used 
strategy can be reproduced to develop marker sets to discriminate other breeds. 
 
6.4.4. Breed assignment 
Several studies have proven the software of STRUCTURE to be efficient in assigning 
animals to their breed of origin (Padilla et al. 2009; Rogberg-Munoz et al. 2014). 
Although the genealogical purity of animals used in the reference populations was 
known based on pedigree information, we followed the suggestion of Pritchard et 
al. (2000) and applied for cattle by Padilla et al. (2009) of assigning animals. That is, 
before making use of population information, clustering the data without using prior 
population information should be performed, to check that the genetically defined 
cluster does agree with population labels. STRUCTURE showed that the reference 
population split in seven clusters (K = 7) each corresponding to a breed. The 
genetically defined clusters agreed with the original breeds. Padilla et al. (2009) 
showed that posterior use of population information improved the accuracy of 
assigning animals to clusters and the estimates of the probabilities of membership 
for each animal in each cluster, giving a greater precision in the assignment of 
individuals lacking genealogical information. Therefore, we activated the PopFlag 
option in STRUCTURE. In this way, animals of the reference populations were a priori 
assigned to their predefined clusters (PopFlag = 1), while the animals of the test 
population (PopFlag = 0) were probabilistically assigned to breeds without using 
prior knowledge. 
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6.4.5. Assignment testing 
The number of animals of some breeds for assignment testing was very limited, due 
to lack of more genotype data.  
 
Breed assignment was performed for animals whose listed breed composition is 
comprised of one of six local breeds in the reference populations. Animals that were 
composed of breeds not in the reference population got predicted as a seemingly 
random mixture of the reference populations. 
 
Using the threshold value for the proportion of membership of ≥ 0.775 purebred 
animals from the test population (based on pedigree) were correctly assigned and 
crossbreds (again based on pedigree) were identified. There are no firm guidelines 
for acceptable false positive and false negative results. According to Miciak et al. 
(2015) the criteria can be ultimately pragmatic, using an optimal balance between 
false positives and false negatives. The proportion correctly assigned for the 
purebred test animals differed between breeds, with the highest proportion for 
Groningen White Headed and lowest for Dutch Red and White Friesian. As 
mentioned earlier, Meuse-Rhine-Yssel and Deep Red Cattle breeds separated in the 
recent past, while for Dutch Friesian and Dutch Red and White Friesian recent mixing 
occurred. For these breeds we suggest that if an animal has a percentage for its own 
breed < 0.775, but the combined percentage of the two mentioned breeds (Meuse-
Rhine-Yssel and Deep Red Cattle or Dutch Friesian and Dutch Red and White Friesian) 
is ≥ 0.775, the animal can be considered as purebred, provided that the phenotype, 
colour and/or pattern, meets the requirements for the breed as determined by the 
herdbook. However, for Groningen White Headed almost half of the crossbred 
animals were assigned as purebred Groningen White Headed using this threshold 
value. The threshold value for this breed may have to be set differently. 
 
Altogether, in general the animals of the test population were very well assigned to 
the correct breed in question, and crossbred animals and the animals from other 
breeds were identified as well. This latter is beneficial in the way that animals which 
are not actual purebred for one of the Dutch local cattle breeds, would not be 
classified as such. And even though the average proportion of membership differed 
between the breeds, the proportion of membership represented an accurate 
indication about whether or not an animal is purebred. 
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6.5. Conclusion 
Although tens of thousands of SNP markers are now available, only a small set of 
SNPs (n = 133), when accurately chosen, was needed to differentiate among the 
Dutch local cattle breeds. The reference population of purebred animals showed 
genetic clusters that corresponded to their breed designations and its usefulness for 
assignment of future unknowns. Although the reference populations could still be 
improved on numbers and representation of the total genetic diversity. The breed 
assignment of the test population using STRUCTURE software, the current reference 
population and the selected SNPs was successful. Therefore, this test was 
implemented in practice to identify (partly) unregistered individuals as being 
purebred (or not) for one of the Dutch local cattle breeds. 
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7.1 Introduction 
Nowadays, genomic information is available for choices to be made in conservation. 
Genomics can estimate genetic diversity more accurately than is possible with 
pedigree information only. Moreover, it can describe in great detail the genetic 
diversity across the genome. Therefore, it can substantially improve the selection 
and prioritisation of animals for conservation of genetic resources. Bruford et al. 
(2015) stated that the livestock sector needs to make a concerted effort to use the 
powerful genomic tools that are now at its disposal, and to apply them to breed 
conservation and breed development. According to Oldenbroek et al. (2022), 
genomics is of importance for various stakeholders – gene bank managers, rare 
breed associations and commercial breeding companies – in order to improve their 
efforts to conserve and use genetic diversity. 
 
Gene bank collections are important for three reasons: (1) they are an insurance 
policy against changes in market or environmental conditions; (2) they are a 
safeguard against emerging diseases, political instability, and natural disasters; and 
(3) they provide opportunities for research (Gandini and Oldenbroek 2007; 
Blackburn et al. 2022). Genomic characterisation of gene bank collections is 
important to unlock their genetic potential, to assess the genetic diversity captured 
in gene bank collections, and to understand genetic changes over time better. 
Examples of the use of genomics to characterise populations and gene bank 
collections include the characterisation of French local chicken breeds (Restoux et al. 
2018) and Dutch cattle breeds (van Breukelen et al. 2019). In this thesis I have used 
a range of techniques for the analysis of genomic data to better conserve Dutch 
livestock breeds. In Chapter 2, I demonstrated that both the population structure of 
a breed and its relationship with other breeds should be taken into account in the 
conservation decisions for a breed. Chapters 3 and 4 illustrated the value of gene 
bank collections for the conservation of genetic diversity. These chapters showed 
that genomic characterisation allows us to get a much richer picture of the content 
of the Dutch gene bank. In Chapters 5 and 6, I demonstrated that only a small set of 
informative SNPs is needed to differentiate among Dutch local cattle breeds. Using 
such a small set of informative SNPs, a genetic tool (DNA test) was developed for 
determining the breed purity of cattle. Genomic tools can be used to identify 
individual uniqueness, to identify genome regions or even specific markers of 
importance (i.e., signals of selection in Chapter 4), and to accurately estimate 
relationships between breeds and individuals. These applications show that genomic 
information should be routinely available for choices to be made in conservation, 
because it is more accurate than a combination of pedigree and phenotype. 
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In this general discussion I will elaborate on this statement. I will address questions 
and opportunities related to conservation of genetic diversity based on genomic 
information. In addition, I will discuss the upcoming developments in genomics and 
how they can best be used for genetic conservation, and in particular, how gene 
banks can benefit from these developments, and in addition, how gene banks should 
be set up to maximise their potential from a genomic viewpoint. 
 
7.2 From Single Nucleotide Polymorphisms arrays to Whole 
Genome Sequencing 
7.2.1 Single Nucleotide Polymorphisms 
New technology and market/research requirements drove the development of SNP 
arrays for various livestock species with a range of marker densities. For example, in 
2015 there were 11 commercial SNP arrays available for cattle, with the number of 
SNPs ranging from <3K (low-density) to >500K (high-density) (Nicolazzi et al. 2015). 
In addition, there is a constantly growing number of custom-made SNP arrays which 
are not commercially available for third parties, and are developed by consortia (e.g. 
EuroGenomics) (Nicolazzi et al. 2015; Boichard et al. 2018). Generic SNP arrays are 
known to lack a substantial proportion of globally rare variants and tend to be biased 
towards variants present in the commercial breeds (such as Holstein Friesian) that 
were involved in the development process of the SNP arrays (Perez-Enciso et al. 
2015; Geibel et al. 2021). This is known as SNP ascertainment bias. As a consequence, 
informative and breed-specific variants segregating in various local breeds (such as 
Dutch Friesian Cattle breed) have not been considered. Analysis of local breeds 
based on commercial SNPs arrays are therefore prone to this ascertainment bias 
(Neto and Barendse 2010). For this reason, custom SNP arrays may be required for 
local breeds. Specific variants on customized SNP arrays are particularly interesting 
for the maintenance of breed-specific genomic variants and properties of different 
small populations with a specific genealogy (Neumann et al. 2021). For that reason 
and to facilitate the genotyping of animals in gene banks, two multi-species SNP 
arrays have been developed to facilitate genotyping of animals in gene banks within 
the H2020 project “Innovative Management of Animal Genetic resources” (IMAGE) 
(IMAGE 2020; FAO 2021; Tixier-Boichard et al. 2022). These two arrays (IMAGE001 
and IMAGE002) capture genetic diversity of traditional breeds across Europe. 
Another example, which focuses on managing and maintaining the endangered 
German Black Pied cattle (DSN) population, is the developed and customised SNP 
array (DSN200k) that considers genetic variants unique to DSN in addition to 
informative SNPs from the Illumina BovineSNP50 and genetic information from 
additional breeds (Neumann et al. 2021). SNPs for these arrays need to be identified 
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by WGS data from a diverse set of individuals representing the breed. Gene banks 
contain the required genetic material for sequencing and are therefore a valuable 
resources for developing custom SNP arrays for local breeds. 
 
7.2.2 Whole Genome Sequence 
With the ongoing developments of WGS, especially the decreasing costs, it is 
expected that WGS will replace SNP arrays over time. Compared to SNP arrays, the 
use of WGS provides various advantages in assessing genetic diversity, such as the 
avoidance of ascertainment bias and a significantly higher information content. WGS 
delivers information on rare variants and it maps genomic regions highly affected by 
selection pressure. For example, a mutation that leads to the typical dwarfism 
phenotype in Friesian horses (Leegwater et al. 2016) and mutations associated with 
polledness in cattle (Medugorac et al. 2017; Aldersey et al. 2020) could only be 
discovered with the help of WGS. Conservation of rare variants has received little 
attention due to their inaccessibility through SNP arrays (Eynard et al. 2016). As WGS 
data capture both common and rare variants, it better meets one of the major goals 
of genetic diversity management in livestock species, the conservation of rare 
variants for both long- and short-term perspectives (Eynard et al. 2016; Eusebi et al. 
2019). WGS may help to identify unique genetic variation in breeds, which is an 
important characteristic for the prioritisation of breeds for conservation. For 
example, in Chapter 4, I identified a number of genetic variants in the Dutch gene 
bank not present in the living Dutch Friesian population, indicating in detail that the 
genetic diversity within the breed has changed in approximately 5–10 generations. 
This knowledge can be of great value for the maintenance of the Dutch Friesian 
breed, especially when inbreeding threatens to increase, which made the 
conservation of sires from 50 years ago meaningful. Thus, WGS is the preferred 
technology to identify rare variants and genetic variation. 
 
7.2.3 Number of Single Nucleotide Polymorphisms to use in analysing 
genetic diversity 
Despite the advantages of WGS over SNP arrays, it may not always be the method of 
choice to analyse genetic variation. Genotyping methods differ with respect to the 
number of markers and cost per sample. Given this premise, choosing the best 
method for analysing genetic diversity requires clarity on two key aspects, i.e., the 
number of markers sufficient to fulfil the goals and the cost associated with each 
alternative. Despite the large reduction in the cost of WGS, sequencing large number 
of individuals remains expensive. In addition, routine analyses of WGS data from a 
large number of individuals still face serious challenges, such as their analyses being 
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labour intensive and requiring expertise, and the requirement of expensive 
hardware equipment for the scale needed in breeding programmes. The expected 
value of the information gained by genotyping/sequencing for breeding and 
conservation should be reasonably in line with the cost of obtaining the genotypes, 
especially in practice. Therefore, it is good to realise that WGS is not required for 
every purpose related to conservation. SNP arrays used in livestock species are 
available with different marker densities: 1) low-density, below 20k SNPs, 2) 
medium-density, ~50KSNPs, and 3) high-density, >500K SNPs. Low-density arrays 
have been developed for purposes such as: breed assignment, breed traceability of 
animals and animal products, and parentage verification and reconstruction (see e.g. 
Wilkinson et al. 2011b; Dimauro et al. 2013; Flanagan and Jones 2019; Wilmot et al. 
2022a; Wilmot et al. 2022b). In Chapter 6, I demonstrated that only a small set of 
informative SNPs is needed to differentiate among Dutch local cattle breeds. In order 
to achieve these informative SNPs, it was necessary to genotype gene bank animals 
in much greater detail with a medium-density array. Using this small set of 
informative SNPs a genetic tool (DNA test) was developed for determining breed 
purity of cattle. Out of tens of thousands of SNP markers, only 133 SNPs were needed 
to assign animals correctly to the different Dutch cattle breeds. In 2018, the DNA test 
has been implemented in practice in The Netherlands and herdbooks are increasing 
their breeding population by registering animals without pedigrees as purebred 
based on the DNA test results. Until now (27-07-2023), 267 non-registered animals 
were tested for their purebred status. Out of these 267 animals, 211 animal were 
tested as purebred and could be incorporated in one of the herdbooks. An increase 
in population size is very important to avoid inbreeding in these small populations. 
As indicated, a small set of SNPs, if accurately chosen, is sufficient to differentiate 
the genetic origin of a group of specific breeds. However, more genetic markers will 
be required to successfully assign closely related breeds and far fewer for distantly 
related breeds. 
 
Medium-density arrays are useful for e.g. genomic prediction, precision livestock 
farming, controlling inbreeding, and marker imputation (see e.g. Daetwyler et al. 
2012; Hoze et al. 2013; Zhang et al. 2015; Iheshiulor et al. 2016). High-density arrays 
are, aside from these applications, also used for the detection of genetic associations 
with complex traits, QTL mapping, detecting signatures of selection, and 
increasingly, for implementing genomic selection to farm animal species (Kranis et 
al. 2013). In contrast, there are some other applications, for which having millions of 
SNPs provided by WGS is a clear benefit. This includes the detection of lethal 
recessive and deleterious alleles in general, the identification of rare alleles or even 
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de novo variants, QTL mapping, the calling of structural variants beyond SNPs, such 
as copy number variants and reciprocal translocations (see e.g. Harland et al. 2017; 
Zhang et al. 2017; Derks et al. 2018; Eusebi et al. 2019; Bouwman et al. 2020; 
Reynolds et al. 2021). For gene banks, collections of WGS data will be valuable, since 
it will help, for example as discussed in 7.2.2, to identify rare genetic variants that 
were lost over time or variants that are unique to a specific breed. However, the 
budgets of gene banks for sequencing samples of their collection is limited. As a 
result, it is necessary to balance between the cost and accuracy of the genomics 
information. Taking all this into consideration, I propose a strategy for genetic 
conservation, 1) genotype all animals with a medium-density array and 2) sequence 
a limited number of animals periodically. The animals that will be selected for 
sequencing (point 2) should differ sufficiently in diversity from the animals already 
sequenced. The selection of animals could be done by screening the medium-density 
genotype information of individuals (point 1). Previous studies have described 
methods and opportunities of genomics for the conservation of genetic diversity 
(e.g. Eding et al. 2002; Engelsma 2012; Eynard 2018). 
 
7.3 Dynamics of genetic diversity 
Genetic diversity of populations is always changing. Breeds undergo constant 
changes in genetic makeup, more evident in local breeds due to their small sizes and 
improper genetic management, which leads to serious genetic drift. Three chapters 
in this thesis demonstrated that genomics helps to gain insight into genetic diversity 
and to better understand the dynamics of genetic diversity in populations through 
time. In Chapter 2, I showed that a Dutch Red and White Friesian cattle line for a 
considerable time in isolation from other lines of the Dutch Red and White Friesian 
cattle breed has apparently conserved genetic diversity not present anymore in the 
rest of the population. Chapters 3 and 4 deal with changes in genetic diversity over 
time as well. Chapter 3 showed that the merging of commercial Dutch Landrace pig 
lines over time has reduced the genetic diversity of the Landrace population in the 
Netherlands, while at the same time, has produced new combinations of genetic 
diversity. For poultry, Besbes et al. (2007) also reported that the merging of lines 
leads to a decrease in the genetic diversity of the available gene pool. The WGS study 
in Chapter 4 showed that the genetic diversity of the Dutch Friesians has reduced 
over time probably due to the decline in population size. In addition, I identified 
highly differentiated genomic regions across autosomal chromosomes in the 
recently bred Dutch Friesian bulls. This latter was in agreement with Moscarelli et al. 
(2021), who reported the presence of several genomic regions that vary between 
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original and modern Brown cattle populations, in line with their different breeding 
histories, with respect to the breeding goal. 
 
All breeds tend to be subject to selection and genetic drift; as a result, after several 
generations, differences will emerge, in allele and haplotype frequencies, between 
the gene bank collection and the in situ population. This necessitates the resampling 
of breeds over time. As a result of periodic resampling, gene banks pools sometimes 
capture more genetic diversity than is present in the current population (Blackburn 
2012; Paiva et al. 2016; Boitard et al. 2021). The frequency of resampling of a breed 
depends upon the genetic change that is occurring. Estimates of how often this 
should be done have been made, and indicate roughly every 4 to 7 generations 
(Blackburn 2018; FAO 2021). Similarly, environmental influences can exert selection 
pressure within and among breeds. The existence of subpopulations within a breed 
suggests that breeds can adapt to varying environmental factors. Such 
subpopulations contain potentially useful genetic resources for future use and 
should therefore be sampled for gene bank collections (Blackburn 2018). In 
conclusion, periodic resampling of breeds is necessary to keep the gene bank 
collection up to date. 
 
7.4 The future of gene banks in the genomic era 
In this section, I will argue that “digital gene banks” are the future. Gene banks 
should expand from simply germplasm collections to physical and digital resources. 
This means that, in addition to the actual germplasm collection, gene banks also 
contain large amounts of associated information from various data domains, such as 
phenotypic, molecular, morphologic and geographic data. These will provide better 
and more targeted access to the material, and increase its use. Consequently, in my 
view, in the genomic era where bioinformatics plays an important role, this is the 
time for gene banks to review and revise their approach. Currently, conservation 
budget in The Netherlands is allocated for both in situ and ex situ conservation. My 
findings suggest that gene banks should also invest in collecting detailed information 
on the stored material in the gene bank, in particular genomic data, and to make this 
information accessible. This should become an additional effort from gene banks 
besides the important conservation work they already do, hence it will require an 
increase in the conservation budget. 
 
Modern genomic tools and methods, such as high-density genotyping, whole 
genome sequencing, and bioinformatics, have been developed since the gene banks 
emerged. It can be expected that the technologies will continue to improve, such 
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that obtaining genotypes, or even whole‐genome sequences of all material in gene 
banks, may be an option that becomes available to many gene bank collections in 
the near future. By implementing the shift to genomic tools and methods, traditional 
gene banks, which focus on the preservation of collections, will be able to transform 
into digital resource centres, which combine the conservation of materials with their 
genomic and phenotypic characterisation. The creation of “digital gene banks” based 
on genomic information will help gene banks become more efficient, cost‐effective, 
and informative as collectors, conservers, and providers of samples and information. 
This information should facilitate the use of gene bank material in the genomic 
management of small as well as of main stream commercial populations. Already in 
2014, Van Treuren and Van Hintum (2014) indicated that gene banks should start re‐
thinking their mission, especially considering users' needs, as well as presenting 
information in an accessible and useful way. The greatest challenges in creating 
“digital gene banks” revolve around cost, funding, availability of genomic resources, 
technical and infrastructural capacity, and expertise in different domain areas. 
Phenotypic information of individual animals in gene banks is often limited. It would 
be very helpful if genomic information and bioinformatics could overcome this 
omission, e.g. by predictions of the phenotypes. Recently, plant genetic resources 
took the first steps towards digital gene banks. In a study, González et al. (2018) 
examined strategies to unlock historical research data as a first step towards 
extending the gene bank into a bio‐digital resource centre facilitating an educated 
choice of barley genetic resources for research and breeding. An important next step 
was reached with the genomic characterisation of gene bank collections, such as the 
genomic characterisation of the barley collection comprising more than 22,000 
accessions (Milner et al. 2019). For some crops, massive sequencing has been 
undertaken, as shown in rice, wheat and barley germplasm collections (Wang et al. 
2018; Milner et al. 2019; Sansaloni et al. 2020). Gene banks for animal genetic 
resources lag behind those for plant resources in thinking about digital gene banks 
that provide material and information that meet the needs of users. However, some 
first steps for animal gene banks have been taken through the IMAGE project 
(https://www.imageh2020.eu/ [cited 8‐8‐2022]). Based on the results of the IMAGE 
project, the Food and Agriculture Organization of the United Nations (FAO) has 
drawn up new guidelines that include a section on information of critical importance 
for gene bank management, new types of information available for improved 
management of gene bank collections and for placing of gene bank data in the public 
domain (FAO 2021). 
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The challenges for animal gene banks in the future will be to raise global awareness 
of the value of their collections for research and breeding, as well as to further 
strengthen, implement and optimize the ex situ conservation strategies (Blesbois et 
al. 2022). Finally, for nearly all aspects of daily life, the quantity and importance of 
information increased in recent years. Gene banking is no exception. Data about 
stored samples should be considered an integral aspect of the collection. Modern 
systems and tools for management of these data, including their integration with 
other sources of complementary information, and sharing it with stakeholders are 
becoming more and more fundamental features of gene banks (Blesbois et al. 2022). 
 
7.5 Further developments 
This thesis demonstrates that the use of genomic data and methods leads to a more 
detailed understanding of the genetic diversity conserved in gene banks and in 
current populations of numerically small breeds. Both approaches, in situ and ex situ, 
are generally considered complementary to each other (FAO 2019). The goal of 
almost all management and conservations actions is to obtain comprehensive 
knowledge of the species/breeds to inform decision making. Many management and 
conservation questions can be much better addressed using genomic information 
from SNP arrays, for example, the question posed in Chapter 2: What is the 
relationship of DFR with other Dutch dairy breeds and the contribution of the DFR to 
the total genetic diversity in Dutch dairy cattle breeds? Questions that cannot be 
fully resolved with SNP arrays or require sophisticated insights may be answered by 
WGS using next generation sequencing (NGS). Developments in genomic data and 
methods may also contribute to management and conservation of genetic diversity. 
Two of these developments are worth discussing here: new sequencing technologies 
and pan-genomes. 
 
7.5.1 From first to third generation sequencing 
Continuous improvement in sequencing technology implies that the whole genome 
can be sequenced faster, more easily, and with a higher accuracy since the start of 
Sanger sequencing (mid-1970s), the so-called first-generation sequencing. At 
present, the NGS (or second-generation sequencing or short-read sequencing) 
technology is widely used (Dunisławska et al. 2017; Slatko et al. 2018; Hu et al. 2021). 
NGS platforms generate relatively short reads (up to ~600 nucleotides). NGS has 
made it possible to explore genetic diversity with a higher level of detail. However, 
the short read lengths of NGS methods pose a limitation for the identification of 
structural variants, sequencing repetitive regions, phasing of alleles and 
distinguishing highly homologous genomic regions (Mantere et al. 2019). 
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Furthermore, short-read data analysis is highly dependent on the reference 
genomes, which are known to be imperfect (Mantere et al. 2019) and represent only 
a single genome. In response to these limitations, long-read sequencing (or third 
generation sequencing) platforms have been developed, which are characterised by 
long reads with an average length of more than 10 kb. However, relative to short 
read sequencing, long read sequencing suffers from higher nucleotide calling error 
rates, higher costs, and more limited throughput (Goodwin et al. 2016). New 
methodologies are focusing on generating synthetic long reads by taking advantage 
of the benefits of short-read technology but incorporating information from long 
strands of DNA. This allows for the barcoded short reads to be associated with their 
original long molecules producing a novel data type known as “Linked-Reads” (i.e., 
synthetic long reads) (Marks et al. 2019; Stervander and Cresko 2021). After the 
development of three generations, DNA sequencing technology is now entering the 
era of single molecule nanopore technology (Feng et al. 2015). The significant 
advantages of nanopores include label-free, ultra-long reads high throughput, and 
low material requirement (Feng et al. 2015). Although the nanopore-based 
sequencing technology has emerged to be a promising tool, several problems remain 
to be solved. The main bottlenecks are sample imaging, the relatively low efficiency 
of molecular processes, data handling, and interpretation (Ke et al. 2016). In the 
coming years, new sequencing platforms will probably appear producing a larger 
amount of data (in Terabyte), which in turn requires the development of new 
approaches and applications capable of analysing this large amount of data. 
 
7.5.2 Pan-genome 
In Chapter 4, I aligned the DNA sequences from the animals to the cattle reference 
genome ARS-UCD1.2 in order to investigate genome-wide genetic diversity between 
a group of historic Dutch Friesians bulls, a group of recent ones, and a group of 
recently used Holstein Friesian bulls. This reference genome is derived from a single 
European Hereford cow (Rosen et al. 2020). A complete and accurate reference 
genome is fundamental for read alignment and subsequent comprehensive 
discovery of genomic variants. However, there is increasing awareness that a 
reference genome from a single individual cannot fully represent the genomic 
diversity of one species since many sequences could be absent in the reference 
genome (Li et al. 2019; Sherman and Salzberg 2020; Derks et al. 2022). For example, 
regions (i.e. structural variations) in the DNA that are unique to a specific breed will 
be completely missed if mapped to a single reference genome, leading to a so called 
“reference bias”. Hence, numerous potentially interesting sites of variation will be 
missed, affecting downstream analysis. Hence, downstream analyses are biased 
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towards the alleles and haplotypes present in the reference sequence. To overcome 
this reference bias, a new concept called pan-genomics has gained strong interest in 
plant, human and livestock genetics ((Sherman and Salzberg 2020; Miga and Wang 
2021; Wang et al. 2022) (human); (Golicz et al. 2016; Bayer et al. 2020; Della Coletta 
et al. 2021) (plant); (Li et al. 2019; Tian et al. 2020; Derks et al. 2022; Talenti et al. 
2022) (livestock)). A pan-genome is a collection of sequences and genes within a 
species, consisting of a core genome and a variable genome (Li et al. 2019). The pan-
sequences can aid population genomics research to understand population 
stratification, the fine mapping of causal genes and variants to better understand the 
molecular mechanisms underlying (complex) traits (Wong et al. 2018). Therefore, it 
is necessary to build a pan-genome by uncovering the pan-sequences that are absent 
from the reference genome to maximally represent the genetic diversity within one 
species. Talenti et al. (2022) illustrated this by aligning five African cattle assemblies, 
that a substantial portion (4.2 %) of the cattle pan-genome is likely missing from the 
Hereford reference. By sampling a diverse set of individuals, one can begin to 
assemble a pan-genome: a collection of all the DNA sequences that occur in a 
species. Pan-genomes are usually set up in a graph structure and tools (‘pantools’) 
have been developed to map genomic information to these graph structures and to 
assess structural differences (‘bubbles’) between genomes (Sheikhizadeh Anari 
2020). 
 
The importance of pan-genomes has been widely accepted in the field of plant 
genomics (Golicz et al. 2016; Zhao et al. 2018; Della Coletta et al. 2021). Animal 
genomes are much more conserved, as generally, only intergenic or fragmented 
genic regions are involved in the gain/loss of genomic sequences in animals. This 
makes it more challenging to assess the impact of such variations. Nonetheless, with 
increasing quantities of (third generation) sequence information, pan-genomics is 
becoming more popular in animal genomics. To better assess structural variation 
between breeds or samples, the pan-genome is of great value, because structural 
variation calling with short-read whole-genome sequence data still poses challenges 
(especially in highly complex regions) (Tian et al. 2020). Putting together a pan-
genome for a complex genome, like genomes of farm animal species, is facilitated by 
improvements in genome sequencing technologies, particularly long-read 
sequencing (third generation sequencing). Larger genomes contain higher 
proportions of repetitive sequences, which are more difficult to analyse using short 
reads (next generation sequencing). By sampling a diverse set of individuals, one can 
begin to assemble a pan-genome: a collection of all the DNA sequences that occur in 
a species. In pan-genomics gene banks can be important, not only because they 
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contain many different breeds, but also because they contain animals from long ago 
that often contain diversity no longer present in the living animals. 
 
7.6 Final words 
Overall, genetic diversity is essential to ensure that livestock can adapt to 
(un)expected changes in breeding goals. In this thesis, I demonstrated that the use 
of genomic data and methods leads to a more detailed understanding of the genetic 
diversity conserved in gene banks and in current populations of numerically small 
breeds. Using genomics, it is possible to quantify genetic diversity within and 
between breeds, the genetic distance between breeds and relationships between 
animals within breeds to a high degree of accuracy. Furthermore, genomics provides 
detailed information about inbreeding and genetic drift, as well as the genomic 
regions under selection, and can be used to detect potentially valuable rare alleles 
and haplotypes and their carriers in breeds. Genomics enables us to choose 
candidates for conservation based on specific genetic diversity. Genomics is of high 
value as a practical application for conserving the genetic diversity of Dutch livestock 
(in situ and ex situ). 
 
Genomic technologies, methods and analyses will continue to develop and 
populations will always change. Therefore, gene banks have to adapt as well by 
continuously updating collections through adding samples. Furthermore, gene banks 
have to stay alert as to whether new genomic techniques can provide new insights 
to conserve populations better and, where necessary, genotype their collections 
using the latest techniques.
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In this thesis, I apply genomics into conservation practises. Conserving genetic 
diversity is essential for the sustainability of populations. In livestock, the amount of 
genetic diversity should be large enough to enable the adaptation of populations to 
changing environments and market requirements, and for selection to genetically 
improve important traits. Unfortunately, the current trend in populations is often for 
a reduced genetic diversity due to intense selection or random drift. Consequently, 
breeding methods and gene banks were developed to avoid the risk of losing genetic 
diversity. As genomic information becomes more accessible, we now have the option 
to better manage genetic diversity. In this thesis, I used genomic tools and methods 
to conservation of Dutch livestock breeds and thereby improve the understanding of 
the genetic diversity conserved in gene banks and in living populations of numerically 
small breeds. 
 
In Chapter 2, an investigation was conducted on how to deal with lines or supposed 
lines within a numerically small breed and what the consequences may be for 
conservation. The genetic diversity within the Dutch Red and White Friesian cattle 
(DFR), a local Dutch breed was evaluated with genomics. I demonstrated that the 
several different lines within the DFR all contribute to the diversity of the breed. 
Moreover, the results of this study revealed a high level of admixture between 5 of 
the 7 lines. This reflects the similar origin of these lines. Consequently, there seems 
to be no necessity to conserve these 5 lines separately, because their level of 
differentiation is very low. The other two lines contained unique diversity. However, 
in one line this was mainly due to introgressed Holstein Friesian blood and was 
therefore of lower conservation value. The other line was bred for several 
generations in isolation from other lines. Although it was highly inbred and had a low 
level of diversity within the line, it had apparently conserved genetic diversity not 
present anymore in the rest of the population. This study also illustrates that, when 
taking conservation decisions for a breed, it is worthwhile to take into account both 
the population structure of the breed itself and the relationships with other breeds. 
 
In Chapter 3, a genomics analysis was performed to investigate the implications for 
the genetic diversity of merging and terminating lines of the Dutch Landrace pig 
breed. Over time, lines have been merged and some discontinued, due to 
consolidation in the pig breeding industry. The merging of lines did reduce the overall 
genetic diversity in the Landrace population in the Netherlands, albeit a large 
proportion of the original variation is maintained in the current population. The 
original lines have been conserved in the gene bank and are now used by hobby 
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breeders to recreate the original Dutch landrace pig. This shows the important role 
gene banks can have for commercial breeds as well. Especially when large changes, 
such as merging selection lines are about to occur, it is important to conserve current 
genetic diversity in a gene bank.  
  
In Chapter 4, Whole Genome Sequencing (WGS) was used to evaluate the 
consequences for the whole genome and especially for its rare allelic variants of the 
replacement of the Dutch Friesian cattle by the Holstein Friesian breed. I compared 
genome-wide genetic diversity in three groups of bulls, chosen from the historic 
(1961–1989) (hDF) and recent (2003–2015) Dutch Friesian cattle (rDF) population 
and the recent Holstein Friesian (rHF) (1998–2014) population. The Dutch Friesian 
cattle was the dominant cattle breed in the Netherlands before the 1990s. Since then 
it has gradually been replaced by the HF and currently is a rare breed. Over the last 
century, genetic diversity in the cattle species has been affected by the replacement 
of many local, dual-purpose breeds with one or a few specialized, high input-high 
output dairy breeds. Analysis of the WGS data indicated a large overlap of genetic 
diversity between the three groups due to their common history. However, each of 
the three groups has a number of group-specific SNPs. The two DF groups are 
genetically clearly different from the rHF group. The genetic difference between the 
rDF and rHF is slightly larger than that between the hDF and rHF. The genetic 
diversity of the DF breed reduced over time, but this did not lead to higher 
inbreeding levels—especially, inbreeding due to recent ancestors has not increased. 
The results also highlighted the presence of several genomic regions that 
differentiated between the groups. The DNA regions that clearly differ are related to 
traits such as fertility and weight. 
 
In Chapter 5, I evaluated different methods of SNP selection, using either the 
BovineSNP50 BeadChip or the BovineHD 777K BeadChip, in terms of the minimum 
required number of informative SNP to differentiate among local Dutch cattle 
breeds. In this study, I evaluated Delta, Wright’s FST, and Weir and Cockerham’s FST, 
and extended these methods by adding a rule to avoid selection of sets of SNPs in 
high linkage disequilibrium providing the same information. Only a small set of SNPs 
(≤37) is needed to differentiate among four Dutch cattle breeds regardless of the 
selection methods, and selection methods showed only small differences. The 777K 
BeadChip performed marginally better than the 50K BeadChip. The Global Weir and 
Cockerham’s FST performed marginally better than other selection methods. The rule 
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to avoid selection of SNPs in high LD further reduced the required number of SNPs 
to achieve correct breed assignment.  
 
In Chapter 6, the development of a genetic tool for determining breed purity of 
Dutch cattle breeds is described. Breed registries have been established for livestock 
species to maintain the purity of breeds and to document the ancestry of animals. 
However, a significant number of animals can be unregistered with no or incomplete 
pedigree data and an uncertain ancestral breed origin.  A genetic test was developed 
to unequivocally determine the breed origin of cattle without pedigree data.  
Reference populations for the six Dutch cattle breeds were constructed based on 
genotype data (50K SNP array). A combine approach of Principal Component Analysis 
and Random Forest was used to perform SNP selection, using the genotype data of 
the reference populations. A total of 133 informative SNPs were selected to 
determine breed composition of individual animals. The developed test was 
successful and is implemented in practice to identify (partly) unregistered individuals 
as being purebred (or not) for one of the Dutch cattle breeds. 
 
In the general discussion (Chapter 7), I addressed the recent developments in 
genomics and how they can be used effectively for genetic conservation, and in 
particular how gene banks can benefit from these developments, and I outline 
possible future directions for (a more effective ) conservation of breeds using 
genomic methods. The discussion included the applications from SNP arrays to WGS, 
and from first to third generation sequencing, as well as the new concept of pan‐
genomics. I also argued the need for gene banks to transform from “traditional gene 
banks” to “digital gene banks”. 
 
Conclusive remarks: Several SNP arrays including low‐ to high‐density have been 
developed. However, SNP arrays are known to lack a substantial proportion of 
globally rare variants and tend to be biased towards variants present in the breeds 
that were involved in the development process of the SNP arrays. Inherently, 
informative, and breed‐specific variants segregating in various local breeds have not 
been considered through this ascertainment bias. Compared to SNP arrays, the use 
of WGS provides various advantages in assessing genetic diversity, such as the 
avoidance of ascertainment bias and a significantly higher information content. WGS 
may help to identify unique genetic variation in breeds, which is an important 
characteristic in the prioritization of breeds for conservation. Continuous 
improvement in sequencing technology implies, that the whole genome can be 
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sequenced faster, easier and with a higher accuracy since the start of Sanger 
sequencing (mid-1970s). In the coming years, new sequencing platforms will 
probably appear producing a larger amount of data which requires the development 
of new approaches and applications capable of analysing this large amount of data. 
Sequencing a large number of individuals is still expensive and analyses require 
expertise and expensive hardware. Therefore, it is good to realise that WGS is not 
necessary for every purpose related to the use and conservation of genetic variation. 
For example, only a small set of informative SNPs is needed to differentiate among 
Dutch local cattle breeds. 
 
Genetic diversity of populations is constantly changing. All breeds tend to be under 
selection and genetic drift; as a result, after several generations, differences will 
emerge, in allele and haplotype frequencies. As a consequence, differences arise 
constantly between the gene bank collection and the in situ population. This 
necessitates the resampling of breeds over time. As a result of periodic resampling, 
gene banks pools capture more genetic diversity than in situ populations that are 
under selection and drift. Genomics helps to gain insight into genetic diversity and 
to better understand the dynamics of genetic diversity in populations through time. 
Therefore, gene banks, which focus on preserving collections, should also invest in 
collecting genomic and relevant phenotypic information on the stored material in 
the gene bank, and to make this information accessible. Efforts should be made by 
gene banks to transform from “traditional gene banks” to “digital gene banks”, which 
complement the conservation of materials with associated information from various 
data domains. This will provide better and more targeted access to the material and 
increase its use for the genomic management of small and large populations. 
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