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Abstract

Fermentation employing Saccharomyces cerevisiae has produced alcoholic beverages and

bread for millennia. More recently, S. cerevisiae has been used to manufacture specific

metabolites for the food, pharmaceutical, and cosmetic industries. Among the most

important of these metabolites are compounds associated with desirable aromas and

flavors, including higher alcohols and esters. Although the physiology of yeast has been

well‐studied, its metabolic modulation leading to aroma production in relevant industrial

scenarios such as winemaking is still unclear. Here we ask what are the underlying

metabolic mechanisms that explain the conserved and varying behavior of different

yeasts regarding aroma formation under enological conditions? We employed dynamic

flux balance analysis (dFBA) to answer this key question using the latest genome‐scale

metabolic model (GEM) of S. cerevisiae. The model revealed several conserved

mechanisms among wine yeasts, for example, acetate ester formation is dependent on

intracellular metabolic acetyl‐CoA/CoA levels, and the formation of ethyl esters facilitates

the removal of toxic fatty acids from cells using CoA. Species‐specific mechanisms were

also found, such as a preference for the shikimate pathway leading to more 2‐

phenylethanol production in the Opale strain as well as strain behavior varying notably

during the carbohydrate accumulation phase and carbohydrate accumulation inducing

redox restrictions during a later cell growth phase for strain Uvaferm. In conclusion, our

new metabolic model of yeast under enological conditions revealed key metabolic

mechanisms in wine yeasts, which will aid future research strategies to optimize their

behavior in industrial settings.
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1 | INTRODUCTION

The genetics and metabolism of the yeast, Saccharomyces cerevisiae,

have been studied extensively as a model eukaryotic organism

(Botstein et al., 1997; Liti, 2015). However, despite its general use for

industrial processes such as winemaking, variability in fermentation

performance, especially in growth and aroma production, is not

entirely understood (Hirst & Richter, 2016). Since prominent aromas,

for example, higher alcohols and esters, are partially produced during

active growth, factors that affect yeast growth simultaneously

influence essential aroma formation (Dekoninck, 2012). Furthermore,

commercial yeast strains vary by orders of magnitude in their aroma

production (Gonzalez & Morales, 2017; Pérez et al., 2021; Steensels

et al., 2014). This variation has been associated with a myriad of

genetic (Peter et al., 2018) and environmental factors such as

nitrogen and micronutrients concentration levels (Su et al., 2021),

temperature (Rollero et al., 2015), pH (Lam et al., 2014), ethanol

concentration levels (Snoek et al., 2016), and the presence of toxins

(Viegas et al., 1989).

Commercial strains of wine yeast respond to these factors

differently in poorly understood ways, but their responses appear to

be correlated with specific parts of yeast metabolism, such as those

involved in lipid formation and membrane composition (Henderson

et al., 2013). Moreover, it has been suggested that particular aromas

are synthesized because of the detoxification of medium‐chain fatty

acids. It is also speculated that aroma formation is part of a metabolic

process used to balance the acetyl‐CoA/CoA ratio (Mason &

Dufour, 2000). Understanding the differences in metabolism in yeast

strains will lead to a greater ability to control and manipulate aroma‐

related performance. That greater metabolic understanding will

facilitate insight into the specific mechanisms inducing aroma

formation.

Several studies have examined the production of volatile organic

compounds (VOC) or aroma (Carrau et al., 2008; Miller et al., 2007;

Seguinot et al., 2018). Some of these studies have combined omics

approaches, exploring the link between yeast gene expression and

metabolomics (Dunn et al., 2005; Minebois et al., 2020) or analyzing

the transcriptome and metabolome profiles of yeast strains to assess

the expressed genes on aroma formation during wine fermentation

(Rossouw et al., 2008). Although there is experimental evidence for

differences in the metabolism of various strains and genes involved in

aroma formation, these experimentally‐derived large data sets can be

challenging to generate and analyze, especially in terms of finding the

most important differences relevant to the metabolism being studied.

As an alternative, mathematical modeling of yeast metabolism can

provide a more comprehensive means to examine how yeast

metabolism changes during the entire course of wine fermentation

and which parts of overall metabolism are interrelated.

Metabolic modeling of yeast under enological conditions has

been reported for some time (Boulton, 1980; Cramer et al., 2002;

Pizarro et al., 2007; Sainz et al., 2003). The general approach has

been to use Flux Balance Analysis (FBA) with a subset of metabolites

and metabolic reactions found in yeast during alcoholic fermentation

(Quiros et al., 2013), often augmented with dynamic FBA (dFBA) to

account for the time‐dependent nature of wine fermentations and

their associated yeast metabolism. More recently, the number of

metabolites and reactions included in models of S. cerevisiae has

grown to be more comprehensive to the point where they are often

referred to as genome‐scale metabolic models (GEMs).

Consensus GEMs for yeast have developed from model iFF708

(1172 reactions) (Förster et al., 2003) to increasingly comprehensive

models (Aung et al., 2013; Nookaew et al., 2008) (1413 and 3498

reactions, respectively), with the newest consensus model being

Yeast8 (3498 reactions) (Lu et al., 2019). This recent model has been

further curated to include some lipid synthesis pathways and amino

acid degradation pathways to account for the production of higher

alcohols, carboxylic acids, and esters (Scott et al., 2020), which have

been proven to be key in imparting desirable aromas to alcoholic

beverages (for more details, see review by Dzialo et al., 2017).

Vargas et al. (2011) proposed the application of dFBA to less

extensive GEMs for studying wine fermentations (Vargas et al., 2011);

however, that study lacked exploration into intracellular flux behavior

and insight into how kinetic constraints impact prediction perform-

ance. Jouhten and coworkers used dFBA with Yeast5 (Herrgård

et al., 2008) to simulate the dynamic metabolic response of S.

cerevisiae exposed to sudden oxygen depletion (Jouhten et al., 2012).

Also, Sanchez and coworkers devised a dFBA framework with Yeast5

to successfully calibrate different types of data from aerobic fed‐

batch and anaerobic batch cultivations (Sánchez et al., 2014). These

two studies nevertheless pertained to S. cerevisiae grown under

glucose‐limited conditions while nitrogen‐limited growth of S.

cerevisiae is relevant to enological conditions.

Yeast8 has been combined with constraint‐based modeling

approaches to understand yeast metabolism in a few studies.

However, the use of this yeast GEM has thus far been confined to

glucose‐limited, aerobic conditions (Moreno‐Paz et al., 2022),

nutrient‐rich cases (Henriques et al., 2021b) and/or under non‐

transient model scenarios (Scott et al., 2021b), thus limiting its scope

and applicability to accurately predict enological conditions.

In this study, the Yeast8.5.0 GEM (Lu et al., 2019), along with the

dFBA framework proposed by (Henriques et al., 2021b), were

employed to predict the metabolic behavior of S. cerevisiae

commercial strains under enological conditions. The dFBA framework

proposed by Henriques et al. has advantages versus previous dFBA

frameworks using yeast GEMs because it contains a multiphase

multiobjective implementation of a parsimonious flux balance

analysis (pFBA) and a method for capturing changes in the biomass

equation at different growth phases. Our model framework was

mainly used to model nitrogen‐limited, anaerobic growth of

S. cerevisiae with appropriate kinetic constraints and utilizing a

biomass equation tailored for enological conditions. After calibrating

the model with published experimental data from four commercial

yeast strains (Scott et al., 2021a), the goodness of fit of the model

was assessed for each strain to evaluate the accuracy and quality of

the model simulations. We analyzed the metabolic flux distributions

corresponding to the best fit to the experimental data. Our analysis
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revealed conserved behavior across strains. However, some strain‐

specific mechanisms were also noticed, particularly in the Uvaferm

and Opale strains.

2 | EXPERIMENTAL PROCEDURES

2.1 | Experimental data

The experimental data for this study come from a previously described

study published by Scott and coworkers (Scott et al., 2021a). The yeast

strains used in experiments were Uvaferm 43™ (Uvaferm), Lalvin R2™

(R2), Lalvin ICV Opale™ (Opale), and Vitilevure™ Elixir Yseo (Elixir),

which are all commercial strains developed by Lallemand (Lallemand).

All yeast strains were acquired from the UC Davis Enology Culture

Collection. Fermentations were carried out for each strain in MMM

synthetic grape juice medium under nitrogen‐limited conditions (yeast

assimilable nitrogen, YAN~120mg/L). More specifically, sugar (220 g/

L; ~ 22.0oBrix), as a 1:1 mixture of glucose (110 g/L) and fructose

(110 g/L), MMM synthetic grape juice medium was prepared according

to the method of Giudici and Kunkee (1994), as previously reported

(Henderson et al., 2013). Regarding YAN, to make 1‐L of MMM

medium, 0.1 g, of ammonium phosphate, 0.1 g L‐tryptophan, 0.2 g

L‐arginine*HCl, 1.0 g L‐proline, and 2 g of vitamin‐free Casamino acid

were added. From analysis reported in Nolan (1971), 2 g of Vitamin‐

Casamino acid (Difco) consists of 0.649mM, lysine, 0.194mM histidine,

0.709mM ammonia, 0.227mM arginine, 0.029mM cysteic acid,

0.657mM asprartic acid, 0.417mM threonine, 0.623mM serine,

1.604mM glutamic acid, 1.237mM proline, 0.311mM, glycine,

0.440mM alanine, 0.600mM valine, 0.225mM methionine,

0.392mM isoleucine, 0.877mM leucine, 0.007mM tyrosine, and

0.091mM phenylalanine (Nolan 1971). The medium also contained

1000mg/L of proline, which is not commonly used by S. cerevisiae as a

source of YAN under enological conditions. The pH of the MMM

medium was adjusted to ~ 3.25 using 3N KOH. All the experiments

were carried out at a constant temperature of 20°C. These yeast strains

were selected based on their different fermentation and aroma‐

producing performance attributes. Furthermore, the manufacturers

present qualitative characterizations of these strains, but publish

information that lacks quantitative distinctions (see Table 1). For

additional information pertaining to the media preparation, yeast

strains, culture conditions, or fermentation sampling that were

performed to generate the experimental data used in this study, see

report from Scott and coworkers (Scott et al., 2021a).

2.2 | Genome‐scale metabolic model (GEM)

The GEM used in this study was Yeast8.5.0 (Lu et al., 2019), publicly

available on GitHub (see link: https://github.com/SysBioChalmers/

yeast-GEM). The GEM contains 2742 metabolites, 4058 reactions, and

1150 genes. The GEM was initially developed for S. cerevisiae S288C, a

haploid laboratory strain that is not employed in winemaking. However,

since this study was applied to fermentations under enological

conditions, we modified the GEM to appropriately reflect the anaerobic

state of metabolism. In our approach, we proceeded as suggested by

Heavner and coworkers (Heavner et al., 2013), constraining vO2 to zero

(LB =UB=0 [mmol/g DW h]), allowing unrestricted uptake of

ergosterol (r_1757), lanosterol (r_1915), zymosterol (r_2106), 14‐

demethyllanosterol (r_2134), and ergosta‐5,7,22,24(28)‐tetraen‐3beta‐

ol (r_2137) and oleate (r_2189). In addition, pathways including the

oxaloacetate‐malate shuttle and glycerol dehydrogenase reaction were

unrestricted as described by Sanchez and coworkers (Sánchez

et al., 2017; Sánchez et al., 2019) (in the model, this was achieved by

blocking reactions r_0713, r_0714, and r_0487). Heme A was also

removed since it is not used under anaerobic conditions. All the

changes related to anaerobiosis were applied either at the beginning of

the fermentation or after the depletion of the initially dissolved oxygen

in the simulated media. Moreover, Yeast8.5.0 includes expanded

coverage of aroma‐associated pathways such as an extended Ehrlich

pathway, more ester formation reactions, and enhanced sulfur

reduction pathways as previously performed and described in the

literature (Scott et al., 2020).

The GEM used in this study differs from that used in the

(Henriques et al., 2021b) study. Henriques et al. expanded Yeast8

(v.8.3.1) to include 38 metabolites and 50 reactions to explain

secondary metabolism. Furthermore, 13 aroma‐impact molecules

were added to GEM (see Table S1 in Henriques et al., 2021b, for

more details). The GEM used in this work is Yeast8 (v.8.5.0). This

version of Yeast8 contains at least 72 reactions and 50 metabolites

TABLE 1 Main enological properties of select yeast strains.

Commercial name Species Producer Wine attributes

Uvaferm 43™ Saccharomyces cerevisiae

var. bayanus

Lallemand Restarts stuck fermentations, neutral sensory impact, low volatile
acid production

Lalvin R2™ Saccharomyces cerevisiae

var. bayanus

Lallemand Improves secondary aroma which leads to generating fruity and

floral aroma precursors and fermentation esters.

Lalvin ICV Opale™ Saccharomyces cerevisiae

var. cerevisiae

Lallemand Develops more volatile aromatic compounds, resulting in intense and
complex fruit aromas

Vitilevure™ Elixir Yseo Saccharomyces cerevisiae

var. cerevisiae

Lallemand Spurs a vigorous production of fruity and floral aromas from esters

2000 | SCOTT ET AL.
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related to amino acid degradation and ester synthesis, which induce

the formation of some aroma compounds. Moreover, Yeast 8.5.0

expanded coverage is based on the work of (Scott et al., 2020) (see

version release details for the complete list of updates here: https://

github.com/SysBioChalmers/yeast-GEM/releases).

2.3 | Flux balance analysis

Flux balance analysis (FBA) (Orth et al., 2010; Varma & Palsson, 1994)

is a modeling framework based on knowledge of reaction stoichiom-

etry and mass/charge balances. The framework relies on the pseudo‐

steady‐state assumption (no intracellular accumulation of metabolites

occurs). The well‐known expression captures FBA:

⋅S v 0=

where S is the stoichiometric matrix of (nmetabolites by m reactions),

and b is a vector of metabolic fluxes. The number of unknown fluxes

is higher than the number of equations; thus, the system is

undetermined. Still, it is possible to find a unique solution under

the assumption that cell metabolism evolves to pursue a predeter-

mined goal which is defined as the maximization (or minimization) of

a particular objective function (J):

⋅

J
s t

S v = 0
LB < v < UB

max
. . :

where LB and UB correspond to the lower and upper bounds on the

estimated fluxes. Examples of objective functions J include growth

rate, ATP, or the negative of nutrient consumption, etc.

The solution to an FBA problem is often not unique, i.e., several

different combinations of fluxes may lead to the same optimum. A

common approach to finding a single solution is to further constrain

the problem with prior knowledge or biological intuitions. Often, the

so‐called parsimonious FBA (pFBA) is used. The underlying idea is to

find the solution that minimizes overall flux through the metabolic

network (a proxy for minimizing the total necessary enzyme mass to

implement the optimal solution). (Lewis et al., 2010; Machado

et al., 2014).

2.4 | Parameter estimation

Parameter estimation aims to compute the unknown parameters—

growth‐related constants and kinetic parameters—that minimize

some measure of the distance between the data and the model

predictions. The maximum‐likelihood principle yields an appropriate

measure of such a distance (Walter & Pronzato, 1997):







∑ ∑ ∑J θ

y θ y

σ
( ) =

( ) −
,mc

k

n

j

n

i

n
k j i k j i

m

k j i=1 =1 =1

, , , ,

, ,

2exp obs st

where nexp, nobs and nst σk j i, , , yk j i
m
, , , yk j i

m
, , and Cm y θ( )k j i, , corresponds to

model predicted values, X and C. Observation functions were

included for CFUs and OD600 to scale viable cell mass (XV) and

active cell mass (XA), respectively.

Parameters are estimated by solving a nonlinear optimization

problem where the aim is to find the unknown parameter values (θ) to

minimize J θ( )mc subject to the system dynamics—the model—and

parameter bounds (Balsa‐Canto et al., 2010).

To assess the confidence in the parameter estimates we

estimated the covariance matrix from the Fisher Information Matrix:























F E
dJ θ

dθ

dJ θ

dθ
=

( ) ( )
y

mc mc
T

m θ| *|

where E represents expected value and θ* is the optimal parameter

value. Remark that the evaluation of the derivatives of the log‐

likelihood function (Jmc) with respect to the parameters, requires the

computation of the sensitivities of the measured states with respect

to the parameters. The Cramèr‐Rao inequality provides a lower

bound on the covariance of the estimators:

C F θ≥ ( *)−1

The confidence interval for a given parameter is then given by:

t γ Ciiα
2

where tγα/2 is given by the Students t‐distribution, γ regards the

number of degrees of freedom, and α is the (1−α) 100% confidence

interval.

2.5 | The multiphase multiobjective flux balance
analysis framework

In this work, we have adapted the model described in (Henriques

et al., 2021b) that accounts for the dynamic nature of batch

fermentation and divides the process into five phases: the lag phase,

exponential growth, growth under nitrogen limitation, stationary

phase, and decay. Each phase is characterized by a cellular objective

and a set of constraints. Their duration is imposed by the estimated

parameters TL, TCA, TS, and TD. Interested readers can find a

detailed description of the model equations for the different phases

(Henriques et al., 2021b). Here we summarize some of the most

relevant characteristics for each phase:

• Lag phase: The objective is to maximize ATPase expenditure

(equivalent to maximizing ATP production).

• Exponential growth phase (until the nitrogen sources were nearly

exhausted): The objective is to maximize the growth rate.

• Carbohydrate accumulation phase: The objective is to maximize

protein production with constrained carbohydrate accumulation.

SCOTT ET AL. | 2001
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• Stationary and decay phases: The objective is to maximize ATP and

protein production.

These objectives were chosen assuming that cells behave

optimally throughout the process. Typically, the cellullar objective is

assumed to be maximizing biomass. However, in batch conditions, it

is observed that growth is not possible in specific phases. In those

phases we assume that cells will behave efficiently to conserve

existing biomass. In particular, we chose protein and ATP maximiza-

tion objectives during the carbohydrate, stationary, and decay

phases. The rationale behind is that yeast cells are subject to protein

turnover and when it is not possible to sustain growth, yeast cells

will try to retain as much nitrogen as possible. Further, enforcing

maximum ATP production, we assume that metabolism will be as

energy efficient as possible.

Constraints on the external fluxes were modeled using kinetic

models in ordinary differential equations. The transport of hexoses

was described using Michaelis–Menten type kinetics subject to

noncompetitive inhibition of ethanol (Hjersted et al., 2007). The

production of ethanol, the highest alcohols, carboxylic acids, and

esters, was proportional to the amount of hexoses transported. The

transport of nitrogen sources was encoded with Michaelis–Menten

type kinetics for the case of ammonia and mass action for the

amino acids.

During the exponential phase, the protein content on the

biomass was assumed to be 50%. The level of mRNA is assumed to

be proportional to the protein content. Maintenance of growth‐

associated ATP (GAM) was also updated to account for the

polymerization costs of the different macromolecules (proteins,

RNA, DNA, and carbohydrates):

GAM GAM GAM GAM GAM GAM= + + + +F Prot RNA Carbs DNA

where GAMF is a species or strain‐dependent parameter estimated

from the data, and the rest are the polymerization costs of the

different biomass precursors (adapted from (Lu et al., 2019)). All

scripts necessary to reproduce the results are distributed (https://

sites.google.com/site/amigo2toolbox/examples).

2.6 | Analysis of dynamic metabolic fluxes

Here, we evaluated metabolic pathways using a flux ratio,

which measures net flux over time during growth and stationary

phases. In particular, we computed the integral of each flux

multiplied by the biomass (mmol. h−1) over time and normalized its

value with the accumulated flux of consumed hexoses (glucose

and fructose):

∫

∫ ∫
S

v t DW t

v t DW t v t DW t
=

( ). ( )

( ). ( ) + ( ). ( )
i G

T

T
i

T

T
Glx T

T
F

.
L

S

L

S

L

S

∫

∫ ∫
S

v t DW t

v t DW t v t DW t
=

( ). ( )

( ). ( ) + ( ). ( )
i CA

T

T
i

T

T
Glx T

T
F

.
E

S

E

S

E

S

∫

∫ ∫
S

v t DW t

v t DW t v t DW t
=

( ). ( )

( ). ( ) + ( ). ( )
i D

T

T
i

T

T
Glx T

TD
F

.
S

D

S

D

S

where Si G, corresponds to the flux score i during growth, Si CA,

corresponds to the score during stationary and Si D, decay phases, vi(t)

(mmol. h−1. DW−1) is the flux under scrutiny, vGlx(t) (mmol. h−1. DW−1)

is the glucose flux, vFr(t) (mmol. h−1. DW−1) is the flux of fructose and

DW is the predicted dry weight biomass (g). The results correspond

to the mmol of compound produced per mmol of hexose consumed ×

100 (denoted mmol/mmolH). Score values indicate the overall impact

of each reaction in the net oxidation or reduction of electron carriers

during the given phase of fermentation.

2.7 | Computing environment

The modeling was performed in MATLAB® 2020b (The MathWorks,

Inc.) using CobraToolbox 3.0 (Heirendt et al., 2019) and implemented

on a Windows 10 (Microsoft Corporation) Intel® (Intel Corporation)

Core™ i7‐7500 CPU @ 2.70 GHz–2.90 GHz processor. The GEM was

imported into MATLAB as an SBML file and curated using Cobra

Toolbox. Git version 2.3.0 was installed before cloning COBRA with

GitHub and initializing COBRA in MATLAB.

The multiphase multi‐objective genome‐scale model framework

was implemented as a script for AMIGO2 toolbox (Balsa‐Canto

et al., 2016) to facilitate parameter estimation, simulation, and quality

of fit analyses. From the possibilities available in AMIGO2, we

selected to solve the model using the initial value problem solver

CVODES (Hindmarsh et al., 2005) and a Nelder–Mead method

(fminsearch, in MATLAB) to optimize parameter values in reasonable

computational time. In addition, the tool automatically computes the

FIM‐based confidence intervals for the optimal parameter values.

3 | RESULTS AND DISCUSSION

3.1 | Multiphase multiobjective dynamic flux
balance analysis framework

We adapted the model reported earlier (Henriques et al., 2021a) to

describe the intracellular fluxes. Here, we divided the process into

five phases in which cellular objectives and flux constraints must be

adapted: lag, exponential growth, carbohydrate accumulation, sta-

tionary, and decay (see Figure 1). The duration of the phases was

determined by the parameters tL, tE, ts, and tD.

In its original version, the model relied on a dynamic biomass

equation dependent on the amount of YAN in the medium.

2002 | SCOTT ET AL.
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Nevertheless, this equation required estimating several parameters

without information about biomass composition (protein, mRNA,

carbohydrates). In addition, the model could not accurately explain

the observed behavior of the non‐cerevisiae species (Uvaferm). This

strain showed a long growth period with virtually no nitrogen sources

available. To address this, we replaced the phase regarded as growth

under nitrogen limitation with a phase characterized by carbohydrate

accumulation (see Henriques et al., 2021a) for further details).

Most nitrogen sources, except glycine, were consumed primarily

during the exponential growth phase. In this period, the cellular

objective was the maximization of biomass. In contrast to the

previous model, during carbohydrate accumulation, we assumed cells

maximize protein and activated the procedure to simulate protein

turnover (described in (Henriques et al., 2021b)). Also, to simulate

carbohydrate accumulation during this period, an exchange flux for

this compound (s_3717[c]) was added to the stoichiometric network

determined by the equation:



 


v τ θ

X

X
= ∙ − ,carb Carb Carb

Carb

where XCarb(g/L) is the carbohydrate quantity present in the biomass, X

is the biomass (g/L),θCarb is the final carbohydrate content and τCarb is the

parameter controlling the convergence rate towards θCarb (see supple-

mentary code example [dynamic genome‐scale modeling of yeast

fermentation]: https://sites.google.com/site/amigo2toolbox/examples).

Higher alcohol production can occur due to the assimilation/

catabolism of amino acids or due to de novo synthesis. In its previous

version, the model considered that higher alcohol production started

during growth under nitrogen limitation and was prolonged through

the stationary phase. The experiments considered in that work

included ammonium diphosphate supplementation, and the final

concentrations of higher alcohols were higher than those found in

the present work. Here, the relative contributions of higher alcohols

produced during the first hours of growth were relevant. Thus, to

account for this effect, during exponential growth, we set the

production of isoamyl alcohol, 2‐phenyl ethanol, and isobutanol at

the same flux as the consumption of the corresponding amino acids

(leucine, phenylalanine, and isoleucine).

3.2 | Goodness of fit of the model against
enological fermentation data

This study employed data from experimental fermentations carried

out under enological conditions (see Scott et al., 2021a) to calibrate

model parameters. The final model contained 50 ODEs, consisting of

60 parameters determined from time‐course data for all measured

extracellular metabolites and biomass. The best fit to the data for

glucose and fructose uptake, and the secretion of ethanol, acetate,

malate, succinate, and glycerol, are shown in Figure 2 for the four

strains. For the primary metabolites, glucose in the medium was

consumed first, followed by fructose since hexose transporters in the

cytoplasm have a higher affinity for the former (Figure 2). A

stoichiometrically accurate yield of ethanol (~101 g/L) was predicted

for the strains, reaching an average simulated concentration of

100 g/L with the initial starting concentration of total sugar used in

this study (~220 g/L) (Figure 2). Moreover, the values were within

the range of similar enological fermentations (Ribéreau‐Gayon

et al., 2000). Various other essential extracellular metabolites are

also measured and predicted throughout fermentation (Figure 2),

including glycerol, malate, succinate, and acetate, with average

yields among strains of ~7 g/L, ~3.2 g/L, ~1.4 g/L, and ~0.5 g/L,

respectively.

Consumption of glucose and fructose, and production of ethanol

simulations were representative of the enological conditions achiev-

ing excellent fits against the experimental dynamic profiles (with

median R2 values of 0.98, 0.96, and 0.98 among the strains) (see

Figure 2 and Table S1). YAN and biomass (dry cell weight) curves

were also successfully predicted for all the strains, where the median

R2 values among the strains are 0.92 and 0.96, respectively (see

Table S1). In addition, the production of some essential by‐products

of wine fermentation, including glycerol, succinate, and acetate, were

successfully simulated by the model achieving moderately good fits

among the strains with median R2 values of 0.89, 0.81, and 0.77

(Figure 2 and Table S1). Maximum glycerol (~6.9 g/L) and succinate

(~ 1.3 g/L) produced during the fermentation were quantitatively well

predicted using the model, while acetate (~ 0.5 g/L) prediction was

reasonably good (Figure 2).

The nitrogen consumed by the yeast was in the form of amino

acids and ammonium in the MMM synthetic grape medium, and the

F IGURE 1 Details on the implementation of the multiphase and
multi‐objective dynamic genome‐scale model to simulate batch
fermentation. Multiphase and multiobjective dynamic FBA and
methodology to compute dynamic flux rates. The process starts at t0 ¼

0 and ends at tF; the timing of each phase tL, tE, tS, and tD is computed
through parameter estimation.

SCOTT ET AL. | 2003
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model profiles for the nitrogen sources for the four strains are shown

(Figure 3). As expected, since it has been well documented that wine

fermentations are nitrogen‐limited as suggested in several studies

(Cramer et al., 2002; Ingledew & Kunkee, 1985; Varela et al., 2004),

the yeast assimilable nitrogen (YAN) (a measure of the concentration

of all nitrogen in the free amino acids and ammonium) was consumed

very rapidly. At that point, the maximum cell density was reached.

Figures 2–4 showed a mixture of AA and NH3. The dFBA also

F IGURE 2 Overview of central carbon metabolism. Panels (a)–(f) depict model predictions versus the experimental data on extracellular
metabolite concentrations associated with glycolysis and central carbon metabolism for the four strains. Panel (g) illustrates the predicted
intracellular dynamic flux ratios during the carbohydrate accumulation phase, showing how the four commercial strains employ different redox
balance strategies. These differences result in the differential production of relevant external metabolites such as succinate (a), glycerol (d),
ethanol (e), and acetate (f).

2004 | SCOTT ET AL.
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accurately simulated the profiles of several important VOCs for the

four strains (Figure 4).

For the consumption of nitrogenous compounds, the model

simulations obtained excellent fits against experimental data with each

of the amino acid dynamic profiles containing a median R2 > 0.92 except

for histidine (0.83), lysine (0.80), and asparagine (0.79). The model also

simulated kinetic curves that were in reasonably good agreement with

experimental data for theVOCs for most strains that have R2 > 0.85 (see

F IGURE 3 Overview of higher‐alcohol production. Panel (a) depicts the predicted intracellular flux dynamic flux ratios related to higher
alcohols: propanol, 2‐phenylethanol (PEA), isobutanol, and isoamylol during the carbohydrate accumulation phase and their related effect on the
redox balance of cofactors. Panels (b) to (f) represent a comparison between model predictions and experimental values of PEA, threonine,
propanol, isobutanol, and isoamylol, respectively.

SCOTT ET AL. | 2005
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Table S1). However, the VOCs of some strains (Opale and R2), for

example, ethyl hexanoate were predicted with an R2 = 0.22 and 0.16,

respectively (Table S1 and Figure S2). There was only a slight

underprediction of propanol for the Uvaferm strain (see Figure 3).

When examining the dynamic concentration profiles, the most

apparent differences among the strains correspond to extracellular

metabolites associated with core carbon, nitrogen, and lipid metabo-

lism. These notable differences are evident when observing the

F IGURE 4 Overview of acetate and fatty acid ethyl ester production. Panel (a) shows the predicted intracellular dynamic flux ratios
corresponding to the production of esters: 2‐phenylethyl acetate, isoamyl acetate, ethyl acetate, and ethyl butanoate during the carbohydrate
accumulation phase and their respective impact on the cofactor balance. Panels (b) to (i) correspond to the comparison between model
predictions and experimental data of 2‐phenylethyl acetate, isoamyl acetate, ethyl acetate, ethyl butanoate, respectively.

2006 | SCOTT ET AL.
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secretion dynamics of acetate, glycerol, and succinate (Figure 2) as

well as the overall production of many VOCs, for example, propanol,

isoamylol, isobutanol, isoamyl acetate, phenylethyl acetate, and ethyl

butanoate (Figures 3 and 4).

3.3 | Key flux predictions across various cell
phases suggest the most distinct strain behavior
occurs during the carbohydrate accumulation phase

The model framework was employed to elucidate the metabolic

mechanisms adopted by the strains to achieve different compound

concentration levels. Using the Yeast 8.5.0 combined with the dFBA

model framework, it is possible to predict the change of the entire set

of fluxes throughout the simulated fermentation. The dynamic flux

ratios were determined using the aforementioned equations (see

Section 2.5 in Materials and Methods). Their values for some of the

key intracellular fluxes between 6‐ and 40‐h during fermentation

(carbohydrate accumulation phase) are presented in Figure S1.

Essential fluxes concerning an anaerobic nitrogen‐limited yeast

phenotype were observed in all growth phases (see supplementary

data files). These fluxes pertained to specific pathways of the central

carbon, nitrogen, and lipid metabolism. This key set of fluxes suggests

the role of NAD‐dependent acetaldehyde dehydrogenase (r_2115) to

restoring redox balance and allow anaerobic growth at differing levels

among the strains as suggested previously (Scott et al., 2021b; Vargas

et al., 2011). The model predictions for growth were similar among

the strains except for the Uvaferm strain, which experienced a later

onset of stationary phase (150 h) compared with other strains (80 h)

(Table S1). This distinction could be related to dissimilarity in protein

turnover and synthesis especially pertaining to the Uvaferm strain.

The dynamic flux ratios pointed to aspartate‐semialdehyde

dehydrogenase ( ̃s = 6.33 × 10−4, 1.05 × 10−3, 1.22 × 10−4, and

9.36× 10−4mmol/mmolH for Opale, R2, Elixir, and Uvaferm respec-

tively), homoserine dehydrogenase ( ̃s = 6.33 × 10−4, 1.05× 10−3,

1.22× 10−4, and 9.36 × 10−4mmol/mmolH for Opale, R2, Elixir, and

Uvaferm respectively), and glycerol‐3‐phosphate dehydrogenase

( ̃s = 7.10× 10−2, 8.00 × 10−2, 6.31× 10−2, and 7.95× 10−2mmol/

mmolH for Opale, R2, Elixir, and Uvaferm, respectively) (where mmolH

is millimoles of consumed hexose) (shown as r_0219, r_0547, and

r_0492 in Figure 2) as the responsible for strain‐dependent behavior.

These differences relate to the variation in extracellular productions of

glycerol and succinate (Figure 2a,d) The homoserine dehydrogenase

enzyme is involved within the aspartate where it regulates the NAD(P)‐

dependent reduction of aspartate beta‐semialdehyde into homoserine

which subsequently leads the biosynthesis of methionine, threonine,

and isoleucine. In addition, the glycerol‐3‐phosphate dehydrogenase

enzyme is responsible for catalyzing the NADH‐aided reduction of

dihydroxyacetone phosphate to glycerol 3‐phosphate, which leads to

the biosynthesis of phospholipids.

As nitrogen limitation conditions arise, yeast metabolism

circulates more sugar flux into the fermentation. As such, there is a

decline in cell growth, and what is not spent (sugar, nitrogen, etc.,

flux) on biomass synthesis is directed to other routes. Overall, for

Uvaferm, the decline in protein synthesis and lipid production

lowered the demand for NADPH (see fluxes Table S2). At the onset

of carbohydrate accumulation due to nitrogen limitation, restriction

of NAD+ occurred. As nitrogen limits the rate of glucose and fructose

uptake in conjunction with growth, the model opted to employ the

glyoxylate cycle to reduce NADH production while still producing

necessary tricarboxylic acid (TCA) cycle intermediates (Figure 2).

Overall, in this regard, the model simulations underscore the tight link

between glycolysis, the TCA cycle, lipid, and amino acid metabolism

under nitrogen‐limited conditions.

Under nitrogen‐limited fermentation conditions, sluggish fer-

mentation can occur due to lower relative protein turnover, resulting

in higher relative amounts of RNA and storage carbohydrates, for

example, trehalose (Varela et al., 2004). Furthermore, the release of

C6 sugars from trehalose and glycogen mainly occurs during the

onset of the stationary phase (Schulze et al., 1996). For the strains in

this study, excluding the Uvaferm, this release was predicted to

occur at the carb. accumulation phase Uvaferm showed comparably

lower flux values for both the carbohydrate pseudo‐reaction (r_4048:

̃s =8.51 × 10−3 mmol/mmolH) and trehalose‐phosphatase (r_1051:

̃s =1.18 × 10−3 mmol/mmolH). However, Uvaferm was the only strain

to have predicted flux for both reactions during the stationary phase.

This particularity suggests intracellular mechanisms bring about

carbohydrate storage or accumulation for the other strains or later

for Uvaferm. Furthermore, a later carbohydrate accumulation could

affect the fermentative performance and capacity of the yeast strain

(François & Parrou, 2001; Pérez‐Torrado & Matallana, 2015).

Yeast cells produced most of the succinate during the carbon

accumulation phase, where the Uvaferm strain contained a higher

dynamic flux ratio than the other strains (Table S3, e.g., r_1000). This

higher succinate concentration in Uvaferm is caused by cells taking up a

preferred nitrogen source, that is, glutamate via the GABA shunt, which

becomes deaminated by NAD+ dependent glutamate dehydrogenase to

discharge α‐ketoglutarate and ammonium (Figure 2, r_0471). Conse-

quently, the increase in the intracellular α‐ ketoglutarate concentration

increases enzyme activities of the oxidative branch of the TCA cycle,

causing succinate production. Previous works have alluded to the fact

that carbon skeletons derived from deaminated glutamate are easily

facilitated into the TCA cycle and, hence, transformed into succinate

(Tesnière et al., 2015). This premise is supported by the model, which

uses an aspartate transaminase‐associated reaction (r_0216) to link

glutamate and thus steer succinate formation (Figure 3).

Although Uvaferm strain experienced substantial flux

( ̃s > 1 × 10−6 mmol/mmolH) in many reactions associated with redox

balance and acetyl CoA (e.g., r_2242, r_2266, r_2274, and r_2278,

r_2279 as shown in Figure 4) during the stationary phase while the

other strains did not show any flux, the intracellular behavior differs

among the strains with higher standard deviations (see Supporting

Information) most significantly during the carbohydrate accumulation

phase. The exponential and carbohydrate accumulation phases also

coincide with the vigorous production of higher alcohols and esters,

desirable in fermented beverages such as wine and beer and

SCOTT ET AL. | 2007
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commercially crucial for fragrances (for more info, see Figure S1

and S2). For instance, isoamyl acetate known for producing

fruity aromas, experienced predicted ̃s = 6.5 × 10−5, 5.3 × 10−5,

6.5 × 10−5, and 6.8 × 10−5 mmol/mmolH during the exponential and

carbohydrate acc. phases whereas during the stationary phase the

Uvaferm strain was the only strain to experience a flux which was

6.8 × 10−5 mmol/mmolH.

3.4 | The role of acetate and ethyl esters in the
transitions from growth to the stationary phase

Esters are a class of compounds that imbue a range of desirable fruity

and floral aromas to wines and beer (Hirst & Richter, 2016). These

esters are produced by a condensation reaction between acetyl or

acyl‐CoA and alcohol (Saerens et al., 2010). Two types of esters are

synthesized, acetate esters and fatty acid ethyl esters, respectively,

based on whether acetyl‐ CoA or acyl‐CoA is employed when

forming them (Dzialo et al., 2017). More specifically, acetate esters

are synthesized via the condensation of higher alcohols with acetyl‐

CoA, catalyzed by alcohol acetyltransferase enzymes (AATs) (Mason

& Dufour, 2000). Acetate esters, primarily ethyl acetate, isoamyl

acetate, isobutyl acetate, and 2‐phenylethyl acetate, are quantita-

tively the most abundant type of esters formed during fermentation.

Our modeling analysis illustrated that acetate ester production

was predominately modulated by the shifting of the acetyl‐CoA/CoA

ratios as the yeast cells transitioned from the exponential to the

carbohydrate accumulation phase. This reflection was seen most

strikingly from examining reactions associated with acetyl‐CoA

synthetase, alcohol acetyltransferase, malate synthase, and serine

O‐acetyltransferase (ACSs, ATFs, MS, and SAT related to reactions:

r_0112, r_0113, r_0158 ‐ r_0162, r_0716, and r_0992) where the

strains that maintained the highest flux ratios between phases,

produced the most acetate esters.

For instance, during the exponential phase, the model predicted a

significant flux from isoamylol to isoamyl acetate inside the cytoplasm

( ̃s = 6.5 × 10−5, 5.3 × 10−5, 6.5 × 10−5, and 6.8 × 10−5mmol/mmolH for

Opale, R2, Elixir, and Uvaferm respectively; Figure 4; r_0160). This

reaction sustained the same fluxes for all the strains during the

carbohydrate accumulation phase. The same behavior was also

observed in other ATF‐associated reactions. In this reaction (r_0160),

acetyl‐CoA is consumed to form CoA, thereby illustrating that strains

with higher flux ratios of acetyl‐CoA/CoA were superior in producing

higher acetate ester fluxes. This simulation result has been previously

explored experimentally by Hong and co‐workers (Hong et al., 2019).

They showed that acetate ester formation in yeast is modulated by

changing the CoA and acetyl‐CoA levels by deleting and overexpressing

the BAP2 and ATF1genes, respectively (Hong et al., 2019). Further-

more, it has been shown that commercial yeast strains differ in the

production of acetate esters, by orders of magnitude, even under

identical fermentation conditions (Steensels et al., 2014). Our model

and those previous results suggest that optimizing the activity of genes

responsible for regulating acetyl‐CoA/CoA could be beneficial in

obtaining the appropriate acetate ester yield. For example, a researcher

could adapt a platform tuning the enzyme expression of acetyl‐CoA

carboxylases for acetate esters, similar to a recent study for improving

supplies of acetyl CoA and NADPH and eventual production of 3‐

hydroxypropionicacid (Qin et al., 2020).

Although there is much certainty regarding the mechanisms that

form acetate esters during fermentation, the mechanisms, including

genetics and regulation of fatty acid ester formation, are still less

clear. However, medium‐chain fatty acids (MCFA) intermediates are

prematurely released from the cytoplasmic fatty acid synthase (FAS)

complex during the late exponential growth phase. This release

triggers ester synthesis as pointed out by (Taylor & Kirsop, 1977).

Subsequently, CoA can activate an MCFA in combination with ATP

and ethanol to enzymatically form an MCFA‐ethyl ester (Saerens

et al., 2010). This mechanism can be observed in our predictions in

Figure 4 (e.g., r_4631). Additionally, transitions in fluxes were noticed

in FAS reactions (r_2140 and r_2141, fatty‐acyl‐CoA synthase) from

the exponential growth phase to the carbohydrate accumulation

phase. For instance, these shifts in flux values among the strain

between growth phases could correspond to the activity in CoA with

MCFA. This elaborate relationship causes the levels of fatty acid

esters to depend significantly on lipid metabolism and acetyl‐CoA.

Several investigations indicate at least three modulating routes

for the flow of MCFAs to produce ethyl esters. Firstly, the

upregulation of fatty acid synthases (FAS1 and FAS2) and acyltrans-

ferases (EEB1 and EHT1) (Saerens et al., 2010). Secondly, reduced

acetyl‐CoA carboxylase activity has been shown to play a role where

the inhibition of acetyl‐CoA carboxylase facilitates the discharge of

MCFAs from the FAS complex (Hirst & Richter, 2016). Third, an

increase in MCFA concentrations induces higher concentrations of

ethyl esters in wine (Saerens et al., 2008).

Here, it was inferred the model is in line with the hypothesis that

these three routes play a significant factor in producing MCFA ethyl

esters. Higher fluxes during the exponential and carbohydrate

accumulation phases in reactions associated with fatty‐acyl‐CoA

synthase (n‐C16:0CoA), fatty‐acyl‐CoA synthase (n‐C18:0CoA),

alcohol acyltransferase (butyryl‐CoA), and alcohol acyltransferase

(hexanoyl‐CoA) (r_2140, r_2141, r_4631, and r_4629) resulted in the

higher overall production of ethyl butanoate and ethyl hexanoate –

essential MCFA ethyl esters found in wines ‐ for the Uvaferm and

Opale strains (Figures 4 and 5). For instance, Uvaferm and Opale

experienced 71.1% and 12.6%, respectively, more flux than the Elixir

strain for the reaction associated with fatty‐acyl‐CoA synthase

(n‐C16:0CoA), which resulted in 14.4% and 8.2% more overall

production for Uvaferm and Opale, respectively, than the Elixir strain.

Conversely, when examining the effect of acetyl‐CoA carboxylase,

the strain (R2) that experienced the lowest flux value for an acetyl‐

CoA carboxylase‐associated reaction (r_0109) during the exponential

phase showed the highest flux for the formation of ethyl butanoate

during the carbohydrate accumulation phase ( ̃s = 6 × 10−6 mmol/

mmolH, r_4646).

Lastly, a relationship was deduced by observing the intracellular

fluxes related to the production and consumption of CoA (Figure 5). For

2008 | SCOTT ET AL.
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instance, we could see an uptick or higher flux in ethyl esters for the

strains that experienced more significant imbalances of CoA and acetyl‐

CoA (based on greater flux values in the direction of acetyl‐CoA

consumption). After evaluating the difference in CoA and acetyl‐CoA

producing/consuming reactions, it was determined that the Uvaferm

strain had the most significant disparity. This result aligns with the

prediction of the Uvaferm strain producing the most ethyl butanoate

(Figure 4). This detected mechanism for yeast to produce MCFA ethyl

esters to correct imbalances of CoA and acetyl‐CoA has been

hypothesized before (Lambrechts & Pretorius, 2000). However, here

we show that metabolic modeling supports this view. Also, since MCFAs

are toxic to yeast and, at sufficient concentrations, can lead to stuck or

sluggish fermentations (Viegas et al., 1989), strains better at producing

ethyl esters from CoA are predicted to achieve a fitness advantage.

Taken together, we report a model able to predict the main routes

of ester formation over the course of wine fermentation for different

commercial yeast strains. Our results reveal that ester formation

depends on intracellular acetyl‐CoA/CoA levels. In addition, we gained

novel insights about metabolic routes taken to form key esters which

pave the way for future metabolic engineering strategies to manage

ester content in alcoholic fermentations. For instance, one can

genetically modify an available GEM to delete, add, sub‐express, or

over‐express, for a metabolite of interest (Copeland et al., 2012). Then,

appropriately calibrate the model using experimental data, especially

from sugar and nitrogenous substrates. Finally, one can examine the

effect of genetic modification and/or varying the substrate composition

on the predictions of certain aroma profiles.

4 | CONCLUSION

As yeast becomes increasingly utilized by the food, biotechnology,

and cosmetic sectors to produce desirable aroma compounds

organically, it is crucial to understand how the most prominent of

these alluring aromas are produced under industrially‐related

settings. By applying an adapted dynamic flux balance analysis

framework, this study was able to predict many aspects of an

experimental enological fermentation conducted using commercial

wine strains, including the production of primary metabolites and

biomass, as well as key aromas, for example, esters. By observing

from simulations that pivotal intracellular flux routes varied among

the strains chiefly during the carbohydrate accumulation phase,

underlying mechanisms related to redox balance and the utilization

of acetyl‐CoA were understood to be responsible for observed

phenotypic behavior. Moreover, the dynamic genome‐scale modeling

approach allowed the study of individual fatty acid fluxes over time,

supporting the potential role that certain ethyl esters form to remove

toxic fatty acids from the cell by previous experimental work. Future

research should look further into the genes regulating the acetyl‐

CoA, as mentioned above, with other commercial strains. This type of

research could establish a clearer, more general picture of how

various types of aromas are produced during yeast fermentation.

Overall, the predictions agreed with previous experimental findings

and illustrated which metabolic pathways play a role in aroma

production, making this a promising approach for future use in

studies related to individual fluxes of important metabolites in

oenological conditions and for comparing metabolic differences

between commercial wine yeast strains.
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