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Abstract
As environmental fluctuations are becoming more common, organisms need to rapidly adapt to anthropogenic, cli-
matic, and ecological changes. Epigenetic modifications and DNA methylation in particular provide organisms with a 
mechanism to shape their phenotypic responses during development. Studies suggest that environmentally induced 
DNA methylation might allow for adaptive phenotypic plasticity that could last throughout an organism’s lifetime. 
Despite a number of studies demonstrating environmentally induced DNA methylation changes, we know relatively 
little about what proportion of the epigenome is affected by environmental factors, rather than being a consequence 
of genetic variation. In the current study, we use a partial cross-foster design in a natural great tit (Parus major) 
population to disentangle the effects of common origin from common rearing environment on DNA methylation. 
We found that variance in DNA methylation in 8,315 CpG sites was explained by a common origin and only in 
101 by a common rearing environment. Subsequently, we mapped quantitative trait loci for the brood of origin 
CpG sites and detected 754 cis and 4,202 trans methylation quantitative trait loci, involving 24% of the CpG sites. 
Our results indicate that the scope for environmentally induced methylation marks independent of the genotype 
is limited and that the majority of variation in DNA methylation early in life is determined by genetic factors instead. 
These findings suggest that there may be little opportunity for selection to act on variation in DNA methylation. This 
implies that most DNA methylation variation likely does not evolve independently of genomic changes.
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Introduction
Due to climate change and urbanization, the natural envir-
onment is changing rapidly. Phenotypic plasticity, the pro-
cess in which a genotype produces a variety of phenotypes 
under varying environmental conditions (Pigliucci 2001), is 
expected to play a crucial role when organisms attempt to 
adapt to those changes. Epigenetic modifications are me-
chanisms that regulate gene expression without changing 
the primary nucleotide sequence (Richards 2006), and they 
are expected to underlie phenotypic plasticity shaped by 
developmental processes (Pigliucci 2001). However, we 
lack information on the origin of these epigenetic modifi-
cations and how they may play a role in adaptive changes 
to rapid environmental changes (Yona et al. 2015; Liu et al. 
2020).

One of the best-studied epigenetic mechanisms is DNA 
methylation, which involves the attachment of a methyl 
group to, most commonly in vertebrates and insects, 
a cytosine base pair (Auclair and Weber 2012). In 

vertebrates, especially for DNA methylation in a CpG con-
text, a cytosine followed by a guanine nucleotide in the 5′– 
3′ direction is known to regulate gene expression (Feng 
et al. 2010). These CpG sites (CpGs) tend to cluster in 
CpG islands around promoter regions and transcription 
start sites (TSS) (Usui et al. 2009; Li 2011; Jones 2012) 
and are generally found to be hypomethylated at promo-
ters or in intergenic regions but hypermethylated in gene 
bodies (Feng et al. 2010; Deaton and Bird 2011; Laine et al. 
2016). CpG island methylation regulates gene expression 
during development (Derks et al. 2016), while it also 
has the ability to respond to environmental cues across 
a variety of organisms (Gugger et al. 2016; Lea et al. 
2016; Sheldon et al. 2018; Venkataraman et al. 2020; 
Sepers et al. 2021; Venney et al. 2021). Moreover, DNA 
methylation marks are mitotically heritable, meaning 
that alterations can persist throughout an individual’s 
lifetime through cell division, and to some extent, they 
are hypothesized to span multiple generations (Heard 
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and Martienssen 2014; Nagy and Turecki 2015; Otterdijk 
and Michels 2016; Guerrero-Bosagna et al. 2018; Perez 
and Lehner 2019). Therefore, DNA methylation has a great 
potential to explain phenotypic plasticity from a proxim-
ate perspective.

Various factors can impact the methylation state of a CpG 
site. First of all, a proportion of methylation marks is highly 
genetically programmed, and little to no variation is ob-
served between individuals (Razin and Szyf 1984). Such 
marks are important for regulating cellular differentiation 
and organogenesis: processes that bring rise to cell identity 
(Richards 2006). Interindividual variation in DNA methyla-
tion can be dependent on genetic variation and spontan-
eous mutations and/or can be environmentally induced 
(Sepers et al. 2019). Genetic variation can lead to certain epi-
genetic states, for example, when a particular sequence vari-
ation generates a specific epigenetic mark. There can be 
marks that are solely dependent on the genotype, regardless 
of environmental cues, called obligatory marks (Richards 
2006). Facilitated marks are to some extent limited to the 
genotype, such as when a certain mutation or allele leads 
to an altered or loss of protein function (Richards 2006). In 
animals, DNA methylation is catalyzed by DNA methyltrans-
ferases (DNMTs) and methyltransferase-like proteins 
(METTLs) (Cheng and Blumenthal 1999; Robertson and 
Wolffe 2000). Although the diversification of these enzymes 
in terms of structure and function across taxa is not fully 
understood, DNMTs are known to be important for both 
de novo establishment and maintenance of DNA methyla-
tion (Okano et al. 1999; Goll and Bestor 2005; Cheng and 
Blumenthal 2008; Kim et al. 2009). METLLs have not received 
as much attention as DNMTs, but their function seems to 
strongly depend on the METTL type. Some types modify 
RNA and proteins, while others modify DNA (for an over-
view, see Wong and Eirin-Lopez 2021). Therefore, genetic 
variation in at least some of the genes encoding those en-
zymes, especially DNMTs, is expected to have genome-wide 
effects on DNA methylation.

In addition to a genetic contribution, interindividual 
variation in DNA methylation can also be environmentally 
induced. Environmental cues may give rise to changes in 
epigenetic states, leading to phenotypic differences within 
the lifetime of an individual. In an absence of genetic fac-
tors on methylation states at a particular mark, this is re-
ferred to as a pure epigenetic mark (Richards 2006). 
DNA methylation is especially prone to changes during 
early life. In vertebrates, DNA methylation is reported to 
be affected during early life by temperature (Sheldon 
et al. 2020), the type of rearing environment (Morán 
et al. 2013; Venney et al. 2021), brood size (Sheldon et al. 
2018; Sepers et al. 2021), parental care (Weaver et al. 
2004), nutrition (Waterland and Jirtle 2003; Sandovici 
et al. 2011), and pollutant exposure (Laine et al. 2021; 
Mäkinen et al. 2022). Thus, methylation marks can either 
be highly programmed and differ little in state between in-
dividuals or be influenced by a combination of genetic and 
environmental factors that lead to inter- and intraindivi-
dual variation in DNA methylation states.

However, despite evidence showing phenotypic 
changes in response to environmental cues, knowledge is 
limited on the extent of the plasticity of the epigenome, 
including the proportion of the epigenome that is deter-
mined by genetic influences as opposed to environmental 
cues. Moreover, epigenetic marks that are environmentally 
induced are hypothesized to facilitate genetic change 
when inherited transgenerationally independent of the 
genotype (Jablonka and Raz 2009; Guerrero-Bosagna 
et al. 2018). One method to assess the genomic origin of 
epigenetic mechanisms is through detection of so-called 
DNA methylation quantitative trait loci (mQTL). mQTL 
studies aim to find associations between genetic variations 
and DNA methylation states using linear regression, while 
accounting for additive genotype effects. The extent to 
which genetic polymorphisms associate with variation in 
DNA methylation has been investigated in Arabidopsis 
thaliana (Dubin et al. 2015), maize (J. Xu et al. 2019), corals 
(Liew et al. 2020), red junglefowl and chicken intercrosses 
(Höglund et al. 2020), and humans (Gibbs et al. 2010; Heyn 
et al. 2013). However, we are not aware of studies that pro-
vide evidence of a genomic origin of epigenetic inheritance 
in wild birds (Sepers et al. 2019; Höglund et al. 2020).

Therefore, in the present study, we aim to disentangle 
the effects of a common origin from a common natural 
rearing environment on genome-wide DNA methylation 
in wild great tits (Parus major). For this, we performed a 
standardized partial cross-fostering experiment and as-
sessed both CpG DNA methylation and single nucleotide 
polymorphism (SNP) genotypes of over 200 nestlings using 
a reduced representation bisulfite method (epiGBS2: 
Gawehns et al. 2022). Cross-fostering is a simple and highly 
effective technique that allowed us to separate the effects 
of the natural rearing environment from the brood of ori-
gin (Anholt and Mackay 2009; Winney et al. 2015). We sub-
sequently assessed whether we could pinpoint the actual 
genetic polymorphism responsible for a brood of origin ef-
fect by conducting an mQTL study on the CpGs with sig-
nificant brood of origin effects. Great tits offer an excellent 
study system for this, as previous studies on great tits have 
shown that DNA methylation is to some extent plastic 
(Viitaniemi et al. 2019; Lindner, Verhagen, et al. 2021), while 
on the other hand, genetic siblings show a large resem-
blance (Viitaniemi et al. 2019; van Oers et al. 2020). 
Moreover, as great tits are altricial, early development con-
tinues for a longer period of time, even after fledging, which 
potentially results in a higher sensitivity to naturally fluctu-
ating conditions compared with precocial birds. These con-
ditions vary between broods, even within the same 
population. Broods vary prehatching in, for example, depos-
ited yolk hormone levels (Lessells et al. 2016; Ruuskanen 
et al. 2018) and posthatching in brood size (Pettifor et al. 
1988), habitat quality (Naef-Daenzer and Keller 1999; 
Wilkin et al. 2009), parasite abundance (Allander 1998), 
and parental traits, such as age (Lessells et al. 2016), person-
ality (van Oers et al. 2004; Dingemanse and Réale 2005), 
quality (Verhulst et al. 1995; Norte et al. 2010), and food 
provisioning (Wilkin et al. 2009; Pagani-Núñez and Senar 
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2014; van Oers et al. 2015). These developmental conditions 
subsequently affect nestling growth and condition 
(Tinbergen and Boerlijst 1990; Allander 1998; Sanz and 
Tinbergen 1999; Neuenschwander et al. 2003; Both et al. 
2005; Pagani-Núñez and Senar 2014; Sepers 2022), various 
aspects of their physiology (Mertens 1969; Keller and van 
Noordwijk 1994; Brinkhof et al. 1999; Naef-Daenzer and 
Keller 1999; Naguib et al. 2011), behavior (Carere et al. 
2005; Naguib et al. 2011; van Oers et al. 2015; Sepers 
2022), and survival (Both et al. 2005). Using the standardized 
partial cross-fostering design described above, we previously 
reported a substantial brood of rearing effect on nestling 
weight, size, and behavior (Sepers 2022). Especially variance 
in weight was explained by the rearing environment, and 
this effect increased during development. These results 
clearly show developmental phenotypic plasticity due to 
across rearing-brood variation in natural environmental 
conditions. However, as findings on plastic responses are 
limited to only a handful of phenotypic changes, we expect 
that the majority of sites that show DNA methylation vari-
ation originate from prehatching variation, such as genetic 
variation as opposed to being influenced by environmental 
cues.

Materials and Methods
Subjects, Study Site, and General Procedures
We conducted the current study during the breeding season 
of 2018 (April to June) in the mixed wood forest of 
Westerheide, near Arnhem, the Netherlands (52°01′00N, 
05°50′30E). The focal population of wild great tits (P. major) 
is part of a long-term nest box study, in which 228 next boxes 
are positioned across a 120-ha plot within the forest. To pre-
dict hatch dates, nest boxes were checked twice a week in 
April and May to establish initiation of nest building, first 
egg-laying date, clutch size, and date of start of incubation. 
We determined the exact hatch date, defined as the day 
at which the majority of eggs within a clutch hatched, by 
examining the broods from 2 days before the calculated 
hatch date until hatching.

Cross-Fostering and Brood Size Manipulation
One to two days after hatching, clutches with the same 
hatch date and similar brood sizes were assigned to a cross- 
foster pair (hereafter CF pair). Each CF pair was randomly 
assigned to either the control group or the treatment 
group. Within each pair, a partial cross-foster design was 
executed as described in van Oers et al. (2015) and 
Sepers et al. (2021). Nestlings were weighed (digital scale, 
±0.01 g) and, within their brood of origin, ranked accord-
ing to their weight. Next, the nestlings were assigned to a 
brood by moving all the even ranked nestlings within the 
CF pair to one brood while moving all the odd ranked nest-
lings to the other brood. This approach minimized weight 
differences between cross-fostered (moved) nestlings and 
those that stayed in the brood of origin (unmoved) (van 
Oers et al. 2015). For control CF pairs (249 nestlings, 30 

broods, and 15 CF pairs), nestlings were partially cross- 
fostered as described above, and the original brood size 
was maintained. For another study (Sepers 2022) in which 
we were interested in the standardized effect of brood size, 
brood sizes were manipulated in addition to the cross- 
fostering procedure for CF pairs in the treatment group. 
In one brood within a treatment CF pair, the original brood 
size was enlarged by three nestlings (159 nestlings and 14 
broods), although the original brood size of the other 
brood was reduced by three nestlings (81 nestlings, 14 
broods, and 14 CF pairs). The three nestlings were selected 
as random as possible, but we always aimed to keep the 
number of unmoved nestlings in a brood similar to the 
number of moved nestlings and the differences in weight 
between unmoved and moved nestlings minimal. Since 
we were interested in partitioning variation in DNA 
methylation into effects of the natural environmental vari-
ation and genetic origin of the nestlings, we corrected for 
this treatment effect (see below).

Blood Sample Collection
To obtain methylation levels in erythrocyte DNA, blood 
samples were taken from the nestlings and their parents. 
Blood samples provide a nonlethal way of sampling DNA 
methylation profiles of wild individuals, and erythrocyte 
DNA methylation can reflect environmental effects on 
genes that affect the phenotype (Frésard et al. 2013). 
Additionally, erythrocyte DNA methylation is highly corre-
lated with DNA methylation in brain tissue (Derks et al. 
2016). DNA in avian blood consists of over 90% of erythro-
cyte DNA.

On days 9 to 10 after hatching, parents were caught 
using spring traps placed in the nest box (117 parents, 
62 broods, and 31 CF pairs). The parents were sexed using 
breast stripe width and the presence or absence of a brood 
patch (Gosler 1993). Next, a blood sample of approximate-
ly 20 µL was taken from the brachial vein. Half of the blood 
sample was stored in Queen’s lysis buffer (Seutin et al. 
1991), while the other half was stored in cell lysis buffer 
(Gentra Puregene Kit, Qiagen, USA) and kept at the 
NIOO-KNAW at room temperature.

On day 14 after hatching, the nestlings were taken from 
the nest box and ∼10 µL of blood was collected from the bra-
chial vein. We sampled 221 control nestlings from 27 broods 
(1 incomplete and 13 complete control CF pairs), 73 nestlings 
from 13 reduced broods, and 118 nestlings from 12 enlarged 
broods (3 incomplete and 11 complete treatment CF pairs). 
The samples were stored in Eppendorf tubes with 1-mL cell 
lysis buffer (Gentra Puregene Kit, Qiagen, USA) and kept at 
the NIOO-KNAW at room temperature. Nestlings were 
sexed using molecular markers according to the method de-
scribed in Griffiths et al. (1998).

Sample Selection and Processing
From each brood in a complete CF pair (control and treat-
ment), we selected all four available parental samples 
and randomly selected the nestling samples of two or, if 
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available, three moved and two or three unmoved nest-
lings. This resulted in 64 parental samples and 222 nestling 
samples from 20 CF pairs. Out of those 286 samples, 20 
parental samples and 100 nestling samples were from 18 
control broods (9 control CF pairs), 22 parental samples 
and 67 nestling samples were from 11 enlarged broods, 
and 22 parental samples and 55 nestling samples were 
from 11 reduced broods (11 treatment CF pairs). The nest-
ling samples originated from 116 unmoved nestlings and 
106 moved nestlings.

For sequencing, the 286 samples were pooled with 3 
other samples from a different data set to generate 8 se-
quencing libraries, each containing 36–37 samples. One 
parental sample was sequenced in two libraries, as the 
number of reads in the initial library was low for this sam-
ple. To allow foster and origin sibling comparisons without 
possible effects of libraries or lanes, samples from the same 
CF pairs were pooled in the same library.

epiGBS2 Library Preparation and Sequencing
We assessed genome-wide DNA methylation levels using 
epiGBS2 (Gawehns et al. 2022), with some improvements. 
Sequencing libraries were prepared at the NIOO-KNAW as 
described in detail in Sepers (2022). In short, DNA was iso-
lated from 2 to 5 µL blood per sample using the FavorPrep 
96-Well Genomic DNA Extraction Kit (Favorgen). 
Subsequently, 800 ng DNA per sample was digested with 
MspI, a restriction enzyme that recognizes and cleaves 
the genomic DNA at 5′-C^CGG sequences. We then con-
ducted size selection by removing large fragments using 
beads (0.8 ×  AMPure XP beads). Next, the fragments 
were ligated to a unique barcoded adapter combination 
for each sample within a sequencing library, after which 
the fragments of all 36–37 samples were pooled into one 
sequencing library. The pooled fragments were exposed 
to sodium bisulfite, which converts unmethylated cyto-
sines (Cs) into uracils, which will later be amplified as thy-
mines. Bisulfite–PCR amplification was conducted with 15 
PCR cycles and the KAPA HIFI Uracil + hotstart ready mix. 
The final amplified libraries were sequenced on an Illumina 
HiSeq X (150 bp, paired-end, directional) by Novogene 
(Novogene [HK] Company Limited, Hong Kong).

DNA Methylation Analysis
Demultiplexing, Quality Control, Trimming, Alignment, and 
Methylation Calling
For details on demultiplexing, quality improvements, 
alignment, and methylation calling of the raw reads, see 
Sepers (2022). To assess DNA methylation levels at CpG 
site specifically, we used the epiGBS2 bioinformatics pipe-
line (Gawehns et al. 2022). This pipeline is integrated in a 
Snakemake v6.1.1 workflow (Mölder et al. 2021). Raw reads 
were demultiplexed, quality checked, filtered for adapter 
content, and merged as described for the P. major samples 
in Gawehns et al. (2022). Cutadapt v2.10 (Martin 2011) was 
used to trim the Illumina sequence and the custom part 
of the 3′ adapter sequence and to remove short reads 

(<20 bp). Raw and cleaned reads were quality checked using 
FastQC v0.11.8 (Andrews 2010), FastQ screen v0.11.1 in bisul-
fite mode (Wingett and Andrews 2018), and MultiQC 
v1.8 (Ewels et al. 2016). We aligned the cleaned reads 
in paired-end and nondirectional mode to the bisulfite 
converted and indexed P. major reference genome v1 
(https://www.ncbi.nlm.nih.gov/assembly/GCF_001522545.3)
(GCF_001522545.3) (Laine et al. 2016) using Bismar (https:// 
ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/9157/ 
102/) v0.22.3 (Krueger and Andrews 2011) with Bowtie 
(http://bowtie-bio.sf.net/bowtie2) v2.3.5.1 (Langmead and 
Salzberg 2012). The mapped reads of the duplicate parental 
sample were merged using SAMtools v1.9 (Li et al. 2009). 
Methylation of CpGs was called in paired-end mode while re-
moving overlap between read pairs and while ignoring the 
first four bp’s in the R1’s and R2’s using Bismark.

Filtering of Methylation Calls
All subsequent steps involving R packages were performed 
in R v4.0.1 (R Core Team 2021). Plots were created using 
the R packages BioCircos v0.3.4 (Cui et al. 2016) and 
VennDiagram v1.60.20 (Chen and Boutros 2011).

To check if samples clustered between the eight differ-
ent libraries, sexes, or groups (reduced/enlarged/control), 
a principal component analysis (PCA) was conducted 
using the raw, unfiltered data set. Additionally, a one-way 
analysis of variance (ANOVA) was conducted to test be-
tween any significant differences in average CpG methyla-
tion percentage between libraries. CpG site methylation 
was further assessed and filtered using methylKit v1.16.1 
(Akalin et al. 2012). Reads with a coverage under 10× 
were excluded from the analysis, as well as those with a 
coverage over the 99.9 percentile to avoid PCR biases. 
Next, we normalized the coverage values between samples, 
using a scaling factor based on the median of coverage dis-
tributions. When destranding filtered data, meaning that 
the reads of both strands of a CpG site were merged, 
only CpGs that were shared between more than 80% of 
the chicks (N > 178) were included. Furthermore, we ex-
cluded CpGs which were fully methylated or fully un-
methylated in all individuals.

Differential Methylation Analysis
To ensure that sex differences did not bias genetic or en-
vironmental effects on CpG methylation, we performed 
a differential methylation analysis (DMA) between the 
sexes to exclude CpG sites that significantly differed in 
DNA methylation between the sexes. However, we found 
no sex-specific CpG sites, and therefore, we did not per-
form any additional filtering steps. The methylKit object 
containing filtered CpGs was manually transformed to al-
low the loading in of these data in DSS v2.38.0 (Wu et al. 
2013; Feng et al. 2014) for DMA. DSS assumes a beta- 
binomial distribution for bisulfite sequencing data and 
uses a dispersion shrinkage method plus a Wald statistical 
test to detect any differentially methylated sites (DMS) 
(Wu et al. 2013; Feng et al. 2014). The two-group compari-
son function was used in DSS to identify DMS between 
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molecularly assigned females and males. A DMS was de-
fined as having a multiple testing corrected false-discovery 
rate (FDR) q value below 0.05 and a difference in methyla-
tion percentage over 10% between the two groups.

Variance Partitioning
Our partial cross-fostering experimental design allowed us 
to compare the variability in DNA methylation profiles be-
tween genetic siblings raised in the same brood versus 
those raised in different broods and between foster siblings 
that come from the same versus a different genetic origin. 
To partition these variances, we constructed a linear 
mixed-effects model (LMM) fitted using restricted max-
imum likelihood estimation (REML = TRUE) with the 
lme4 package v1.1 (Bates et al. 2015). The model predicted 
the percentage of DNA methylation observed in the nest-
lings at a given CpG site, including the fixed factors group 
(reduced/enlarged/control) and sex, and the random fac-
tors brood of origin and brood of rearing. We included 
group to correct for group-induced variation in brood 
size, leaving only natural environmental variation, includ-
ing natural brood size variation. We modeled the percent-
age of DNA methylation instead of account for variation in 
coverage, as an LMM (unlike a generalized LMM [GLMM]) 
does not allow for modeling the dependent variable as the 
fraction of the number of methylated Cs over the total 
number of Cs. Nonetheless, an LMM can be fitted with 
REML and is therefore the preferred method. This model 
was run for every CpG site that passed the filtering steps 
(N = 117,521). The P values of the random effects were cal-
culated using the ranova function of lmerTest v3.1.3 
(Kuznetsova et al. 2017). The intraclass correlation coeffi-
cient, which measures the proportion of variation ex-
plained by the random factors, was calculated using 
performance v0.7.2. (Lüdecke et al. 2021). A significant 
CpG site was defined as a site with an FDR-adjusted q value 
below 0.05 and an intraclass correlation coefficient 
over 15%. We present the results of the model where we 
correct for the brood size manipulation experiment as a 
fixed effect. Repeating the analysis without correcting for 
this fixed effect minimally changed the results (see 
supplementary table S3, Supplementary Material online). 
As some nestlings were sampled on day 13 (N = 5) or 15 
(N = 11) after hatching instead of on day 14 (N = 206), 
we repeated the LMM described above while including 
day after hatching as a fixed factor which again had min-
imal impacts on the results (supplementary table S3, 
Supplementary Material online).

SNP Calling
We also called SNPs from epiGBS2 reads. To be able to dif-
ferentiate between reads from different individuals during 
SNP calling, RG tags were added to the bam files that were 
generated during alignment. This was done using a custom 
Python script (v3.9.5) and the AddOrReplaceReadGroups 
function in Picard v2.26.5. To avoid memory issues, this 
was done in two batches. Next, the epiGBS2 pipeline 

(Gawehns et al. 2022), which has implemented Freebayes 
v1.3.2, was used for variant calling. The minimum coverage 
was set to three (--min-coverage 3). To exclude other types 
of polymorphisms (such as insertions or deletions), the 
SplitVcfs function and the SNP_OUTPUT option in Picard 
were used. Next, the two SNP files (vcf) were compressed 
using bgzip and indexed and merged using bcftools v1.14. If 
a SNP was present in both vcf files, the highest quality 
score was retained. The SNPs in the merged vcf file were 
subsequently filtered for an overall quality score of 50 or 
higher (-minQ 50), a minor allele frequency of at least 
0.05 (-maf 0.05), and a distance of at least 30 bp apart 
(-ld-window-bp-min 30) using vcftools v0.1.16. To ensure 
that all SNPs were actual SNPs, we filtered for SNPs that 
were also present in a baseline list containing 8,587,616 
SNPs from four whole-genome resequenced (WGS) great 
tits (Lindner et al. 2022). First, the baseline SNP list and 
the epiGBS2 SNP list were indexed using bcftools. Next, 
only SNPs for which at least 98% of the genotype was 
known and SNPs that were present in both lists were se-
lected using the bcftools options F_MISSING < 0.02 and 
isec. SNPs that were in linkage disequilibrium (LD) and 
less than 1,000 bp apart were filtered out using the bcftools 
options + prune -m 0.2 -w 1,000 (Smith 2020). An overview 
of the number of SNPs before and after filtering is given in 
supplementary tables S4 and S6, Supplementary Material
online.

For subsequent DNA mQTL analysis, five input txt files 
were created using a custom Python script. The first file 
contained the covariates age (nestling or parent) and 
sex; the second file contained the genotype per SNP per in-
dividual. The genotype was either a homozygous match 
with the reference genome (0), a heterozygous match 
with the reference genome (1), or a homozygous alterna-
tive genotype (2). The third file contained the chromo-
some and position of each SNP, the fourth file contained 
the methylation percentage per CpG site per individual, 
and the fifth and last file contained the chromosome and 
start and end position of each CpG. CpGs that overlapped 
with a SNP were not included (see supplementary table S5, 
Supplementary Material online) to avoid the inclusion of 
false-positive methylation calls.

mQTL Analysis
To identify SNPs which were significantly associated with 
the methylation percentage of CpGs for which brood of 
origin explained a significant part of the variance, we per-
formed an mQTL analysis using the R package Matrix eQTL 
v2.3 (Shabalin 2012). This package tests for associations of 
local (cis) and distant (trans) CpG–SNP pairs, and it does 
so for each pair separately. We tested for associations by 
modeling the effect of genotype (the SNP encoded by 0, 
1, and 2) on methylation percentage as additive linear 
and tested for its significance using t statistic. Included 
covariates were age (parent or nestling) and sex, and 
the covariance matrix was set to numeric() (a multiple 
of identity, homoskedastic, and independent errors). The 
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maximum distance for a CpG–SNP pair to be considered 
cis was 1 million bp; otherwise, it was defined as a trans 
pair. After the analysis, trans associations between a SNP 
and CpG site that were located on the same chromosome 
and less than 5 million bp apart (so-called long-range cis 
mQTL) were excluded using a custom Python script. We 
used a Bonferroni α-threshold of 1.09 × 10−07 after cor-
recting for 459,777 SNP–CpG tests for cis associations 
and an α-threshold of 4.63 × 10−10 correcting for 
108,719,643 tests for trans associations.

Gene Annotation
CpGs that had a significant variance component of brood of 
origin and/or brood of rearing and SNPs with a significant 
CpG–SNP association were annotated using the reference 
genome of the P. major v1 (https://www.ncbi.nlm.nih. 
gov/assembly/GCF_001522545.3). We used R packages 
GenomicFeatures v1.42.3 (Lawrence et al. 2013) and rtrack-
layer v1.50.0 (Lawrence et al. 2009) to annotate TSS regions, 
promoters, introns, exons, three prime untranslated region 
(3′UTR), and five prime untranslated region (5′UTR). We 
defined a TSS as being located between 300-bp upstream 
to 50-bp downstream of each gene’s annotated starting 
position (Laine et al. 2016). Promoters were defined as the 
region 2,000-bp upstream to 200-bp downstream of the 
genes’ annotated starting position, which therefore overlap 
with the TSS (Lindner, Laine, et al. 2021). If sites were asso-
ciated with both a promoter region and a TSS region, only 
the TSS region was reported. Upstream regions were limited 
to 10,000-bp upstream of the gene body, and downstream 
regions to 10,000-bp downstream of the gene body (Laine 
et al. 2016; Lindner, Verhagen, et al. 2021). When a CpG 
site or SNP was associated with multiple regions, we prior-
itized the regions in the following order: TSS, promoter, 
gene body (exon or intron), upstream or downstream, 
and intergenic (unannotated). To determine whether 
DNA methylation was associated with SNPs in methyltrans-
ferases, we specifically checked for the presence of signifi-
cant associations involving SNPs in the methyltransferases 
DNMT3A, DNMT3B, and METTLn (n: 2, 4, 5, 6, 7A, 8, 9, 
11B, 13, 14, 15, 16, 18, 21A, 22, 23, 24, 25, 25B, 26, and 27).

Gene Ontology Analysis
Enriched gene ontology (GO) terms were identified by 
running four GO analyses using GOrilla (Eden et al. 
2009): including 1) genes with or nearby significant CpGs 
for brood of origin, 2) genes with or nearby significant 
CpGs for brood of rearing, 3) genes with or nearby SNPs 
involved in significant cis CpG–SNP associations, and 4) 
genes with or nearby SNPs involved in significant trans 
CpG–SNP associations. We input two lists of genes for 
each analysis: one of the four target lists described above, 
as well as a background list, consisting of all genes in which 
a CpG site or SNP was located (or nearby) based on our 
epiGBS2 data. LOC genes were excluded from GO enrich-
ment analyses as there were too many LOC genes in the 
background list to check manually (1,219 and 1,473 LOC 

genes in the CpG and SNP background lists, respectively), 
and we did not want to bias the comparison between the 
target lists and the background list. The software was run 
using default parameters (species: Homo sapiens, single 
ranked list of genes, P < 0.001, GO database last updated 
on March 6, 2021). A significant GO term was defined as 
having an FDR-corrected P value below 0.05. For analyses 
1 and 2, out of 9,041 genes in the background list, 
GOrilla recognized 3,672 and 3,609 were associated with 
a GO term. For analyses 3 and 4, out of all 5,255 covered 
genes in the background list, 4,978 were recognized by 
Gorilla and 4,926 were associated with a GO term.

Results
General Results
The number of raw and converted reads per library as well as 
the GC content and mapping efficiency can be found in 
supplementary table S1, Supplementary Material online. 
A total of 117,521 CpGs passed the filtering steps, represent-
ing 1.55% of all CpG dinucleotides in the great tit genome 
(see supplementary table S2, Supplementary Material online 
for remaining CpGs after each filtering step). Mean global le-
vels of DNA methylation were 0.16% ± 6.37 × 10−5.

Variance Partitioning
For a total of 8,315 CpGs, the variance explained by brood 
of origin was found to be significant and for 101 CpGs, the 
variance of brood of rearing. Twenty-five CpGs overlapped 
between these two sets (fig. 1a). For brood of origin, a high-
er percentage of sites was located in intergenic regions 
(46.9%) compared with the background set (38.0%); fig. 
1b and c). The percentages of significant CpGs for brood 
of rearing generally matched the background set of sites 
(fig. 1b and d).

mQTL Analysis
An mQTL analysis was conducted with 16,332 SNPs and 
6,685 brood of origin CpGs, compromising 0.09% of CpG 
dinucleotides in the genome. In total, 4,956 significant as-
sociations were detected between 1,600 unique CpGs and 
2,230 unique SNPs (fig. 2). Thus, from the 6,685 CpGs for 
which brood of origin explained a significant part of the 
variance in methylation, 24% of the CpGs was significantly 
associated with one or multiple SNPs. Out of the 4,956 
associations, 754 were significant cis associations (all 
P < 1.09 × 10−07, 0.16% of all 459,777 run associations) 
between 680 unique CpGs and 499 unique SNPs (fig. 3a). 
We found 4,202 significant trans associations (all 
P < 4.63 × 10−10, 0.004% of all 108,719,643 run associa-
tions) between 1,145 unique CpGs and unique 1,836 
SNPs (fig. 3b). Out of these 4,202 significant trans associa-
tions, 517 associations (12.30%) were with a CpG site lo-
cated in a promoter region, of which 216 (5.14%) in a 
TSS region, and 722 (17.18%) associations were with a 
CpG site in a gene body. Out of the 754 significant cis as-
sociations, 97 associations (12.86%) were with a CpG site in 
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a promoter region, of which 33 (4.38%) in a TSS region, and 
160 (21.22%) associations included a CpG site in a gene 
body.

The mean distance between a cis mQTL and a CpG site 
was 150,008 bp (range: 1–990,443). Looking at different regu-
latory regions in more detail, the mean distance between a 
cis mQTL and a CpG site in a promoter region (including 
TSS), TSS, and gene body were 154,212 bp (median =  
159 bp, range = 1–974,622 bp), 96,743 bp (median = 96 bp, 
range = 3–509,893 bp), and 155,755 (median = 1,065 bp, 
range = 1–990,443 bp), respectively.

One hundred and eight SNPs were significantly asso-
ciated with two or more local (cis) CpGs and three SNPs 
to ten or more local CpGs. This involved a SNP in the 
TSS of the gene bone morphogenetic protein 3 (BMP3; 
13 associations), a SNP in an exon of the gene mediator 
complex subunit 21 (MED21; 11 associations), and an un-
annotated SNP (11 associations).

Seven hundred and thirty-nine SNP sites were signifi-
cantly associated with two or more distant (trans) CpGs 
and two SNPs to 20 or more distant CpGs. These so-called 
trans-hotspots involved a SNP that was situated both 
in an intron of the LOC gene opsin-5-like (OPN5-like; 
LOC107213364) and in an intron of the gene solute carrier 
family 9 member A8 (SLC9A8) (23 associations; fig. 3c) and 
a SNP upstream from the gene serine/threonine kinase 
32C (STK32C; 20 associations).

Thirty-seven SNPs of our background list were situated 
in or near 10 out of 23 known methyltransferases, of which 
two were significantly associated with CpG methylation 
(table 1). Nine SNPs were located in or near DNMT3A, of 
which two (located upstream and in an intron) were sig-
nificantly associated with methylation of two distant 
CpGs (fig. 3d). One of these CpGs was located in the 
exon of SELPLG and the other in an intron of CTNNA3.

Gene Ontology
We found five enriched GO terms for the CpGs of which a 
significant amount of variance was explained by brood of ori-
gin, although the terms became insignificant after FDR cor-
rection (supplementary table S7, Supplementary Material
online). The terms included the biological processes negative 
regulation of Wnt signaling pathway (GO: 0030178, FDR =  
1.00), cell–cell adhesion via plasma membrane adhesion mo-
lecules (GO: 0098742, FDR = 1.00), anatomical structure de-
velopment (GO: 0048856, FDR = 1.00), and regulation of 
axonogenesis (GO: 0050770, FDR = 1.00) (supplementary 
table S7, Supplementary Material online) as well as the mo-
lecular function proximal promoter sequence-specific DNA 
binding (GO: 0000987, FDR = 1.00) (supplementary table S8, 
Supplementary Material online). Four significant GO terms 
were found for CpGs significant for brood of rearing. The 
terms included biological processes such as DNA methyla-
tion or demethylation (GO: 0044728, FDR = 6.10 × 10−1; 
GO: 0006306, FDR = 1.00), DNA modification 
(GO: 0006304, FDR = 8.05 × 10−1), and DNA alkylation 
(GO: 0006305, FDR = 1.00). Also, these terms did not 
remain significant after correcting for multiple testing 
(supplementary table S9, Supplementary Material online).

We detected seven enriched GO terms for the genes 
associated with cis SNPs. The GO terms were mainly related 
to the cell membrane and channel activity (P < 0.001; 
supplementary tables S10–S12, Supplementary Material on-
line). For the trans SNPs, we detected ten enriched GO terms 
mainly related to cell motility, cytoskeleton, and skeletal 
system morphogenesis (P < 0.001; supplementary tables 
S10–S12, Supplementary Material online). However, none of 
the GO terms were significantly enriched after FDR 
correction.

Discussion
Epigenetic modifications have been proposed to translate 
environmental fluctuations into heritable and adaptive 
phenotypic changes. However, we know relatively little 
about what proportion of the epigenome is regulated by 
genetic versus environmental factors. Using a partial cross- 
foster experiment, we were able to partition variance in 
DNA methylation into common origin and common rear-
ing environment components in a natural population of 
great tits (P. major). Our results indicate only a small con-
tribution of environmentally induced variation to DNA 
methylation early in life even though phenotypic effects, 
such as weight, size, and behavior, have a substantial 
nest of rearing effect (Sepers 2022).

Brood of  origin
8290 Brood of rearing

76

25

7.4%

38%

16.4%

14.6%

23.6%

46.9%

18.5%

8.3%

2.3%

24% 38.6%

13.9%

9.9%

17.8%

19.8%

(a) (b)

(c) (d)

TSS
promoter

gene body
intergenic

up- or downstream

FIG. 1. Variance in DNA methylation explained by brood of rearing 
and brood of origin. (a) Venn diagram visualizing the number of 
CpGs for which a significant part of variance was explained by brood 
of origin, rearing, or both. Pie charts visualizing (b) the percentages of 
all CpGs used in the model (N = 117,515) per functional region, (c) 
the percentages of significant CpGs for brood of origin per function-
al region, prioritized as described above, and (d) the percentages of 
significant CpGs for brood of rearing per functional region. Promoter 
region is excluding TSS region.
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Variance Partitioning
We find that the relative contribution of erythrocyte DNA 
methylation that can be explained by common origin, 
a combination of genetic and prenatal environmental 
effects, by far exceeds the effect of the common rearing en-
vironment. This result is in line with studies on other verte-
brates (Höglund et al. 2020), including humans (Villicaña 
and Bell 2021). For example, up to 35% of the variation in 
DNA methylation originated from additive genetic vari-
ation in three-spined stickleback (Gasterosteus aculeatus) 
crosses between individuals originating from marine and 
freshwater populations (Hu et al. 2021). In human twins, 
at least one-tenth of the CpGs had a heritability score of 
methylation level of over 0.5 (Grundberg et al. 2013; 
McRae et al. 2014; Van Dongen et al. 2016). A study on 
Swedish A. thaliana grown under two different tempera-
ture environments also showed that DNA methylation is 
largely genetically determined and only DNA methylation 
out of the CpG context showed environmental effects 
(Dubin et al. 2015). Our results confirm, in a natural popu-
lation, that DNA methylation is a trait with limited room 
for plastic responses to environmental cues during early de-
velopmental stages, at least in this vertebrate study system.

A pronounced genetic effect on variation DNA methy-
lation implies that the heritability of epigenetic marks is fa-
vored over epigenetic plasticity. Plasticity might be favored 
in a fluctuating environment, where levels of predictability 

(variability between generations) are low, but genetic as-
similation (the process where an environmentally induced 
phenotype becomes genetically encoded) should be fa-
vored when environmental conditions are predictable 
and reliable (Angers et al. 2010). Alternatively, if a particu-
lar SNP or a combination of SNPs controls the sensitivity to 
gain alternative methylation states of a given CpG site de-
pending on the environment (either in cis or in trans), this 
allele might increase in frequency over generations, which 
will lead to an increase in sensitivity to environmental fluc-
tuations. The methylation marks are not inherited them-
selves, but the genes important for plasticity in response 
to environmental cues are. This plasticity can be regarded 
as an advantage itself, as opposed to the result of the plas-
ticity (Angers et al. 2010). This so-called Baldwin effect 
(Simpson 1953; Crispo 2007), as described in Angers 
et al. (2010), might be more beneficial as opposed to a 
strict genetic control of DNA methylation only, given 
that the environments between generations are heteroge-
neous or unpredictable (West-Eberhard 2003; Jensen 
2013). Our results suggest that, at least during early devel-
opment, a genetic rather than environmental source of 
epigenetic variation is favored.

Methylation Quantitative Trait Loci
Using the subset of CpGs that were significantly affected 
by brood of origin in a subsequent mQTL analysis, we 

FIG. 2. GWAS for significant origin CpGs. Each dot represents a significant SNP–CpG association at the Bonferroni-corrected 0.05 level. Each 
location of the SNP involved in this association is plotted against the location of the CpG within the P. major genome. Red dotted lines differ-
entiate adjacently displayed chromosomes.
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revealed candidate SNPs that underlie variation in DNA 
methylation. In addition, we identified SNPs that were 
both associated in cis and trans with the CpGs. From the 
6,685 CpGs for which brood of origin explained a signifi-
cant part of the variance in methylation and that did 
not overlap with a SNP, 24% of the CpGs (1,600 unique 
CpGs) were significantly associated with one or multiple 
SNPs. Comparing our results to findings on other study 
systems (Gibbs et al. 2010; Heyn et al. 2013; Dubin et al. 
2015; X. Xu et al. 2019; Höglund et al. 2020), we find a high-
er percentage of CpGs that are significantly associated 

with a SNP. This difference is likely to be caused by the 
fact that we used a preselected set of CpGs when conduct-
ing our mQTL analysis. Overall, we find that genetic vari-
ation does indeed explain variation in DNA methylation.

We identified 754 cis associations, which suggest that local 
genetic variation directly affects CpG methylation and pos-
sibly indirectly affects gene expression (Gutierrez-Arcelus 
et al. 2013). The genes associated with cis SNPs were mainly 
related to the cell membrane and channel activity. Cis rela-
tionships therefore seemingly play a general role in cell–cell 
communication during development. Whether these are 

FIG. 3. Significant cis and trans mQTLs. Circle plots showing the position of (a) cis mQTLs, (b) trans mQTLs, (c) trans mQTL hotspot in SLC9A8/ 
OPN5-like (LOC107213364), and (d) trans mQTL in DNMT3a. Dark blue dots represent SNPs plotted against the associated location within the 
genome. The lines connect SNPs (gene names in black) to the different trans regulated CpGs (gene names in gray).
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specific for early development is not clear and could be inves-
tigated by conducting similar studies at different ages.

Several SNPs appeared to influence DNA methylation 
state at not just one but multiple different CpGs. 
Specifically, we found two small trans-acting hotspots, in-
volving SNPs that were significantly associated with 
methylation of 20 or more distant CpGs. One of these 
SNPs was situated in an intron of the gene SLC9A8 (also 
known as NHE8) and in an intron of the gene OPN5-like 
(LOC107213364). SLC9A8 is involved in pH regulation 
(Nakamura et al. 2005), which is important for, for ex-
ample, retinal function (Jadeja et al. 2015). OPN5 is a 
photoreceptor important for entrainment of the circadian 
clock and has been linked to sexual maturation in several 
avian species (Stevenson and Ball 2012; Banerjee et al. 2018; 
Hanlon et al. 2021; Van Wyk and Fraley 2021). More SNPs 
that were significantly associated with CpG methylation 
appeared to be in or near genes associated with reproduc-
tion, maturation, and growth. Several of these SNPs were in 
or near myosin light-chain genes (MYLK2, MYL2, and 
MYL3). Genes related to the biosynthesis of myosin are in-
volved in egg laying (Kupittayanant et al. 2009; Liu et al. 
2018), and differential methylation of these genes has 
been related to growth in broiler chickens (Hu et al. 
2013) and the onset of reproduction in the great tit 
(Lindner, Laine, et al. 2021). The above-described genes 
and part of their functions are supported by the (although 
not significantly) enriched GO term skeletal system 
morphogenesis. Therefore, these results indicate that 
the identified SNPs genetically control (sexual) matur-
ation, development, and growth via DNA methylation. 

However, causal relationships between SNPs, DNA methy-
lation, gene expression, and phenotypic traits remain to be 
established. We did not find large trans-acting methylation 
hotspots as in the study of Höglund et al. (2020), where in 
red junglefowl and chicken intercrosses, almost half of the 
trans mQTL were associated with only five loci (Höglund 
et al. 2020). This is also likely caused by the limited number 
of SNPs we used on our data set.

The second small trans-acting hotspots involved a SNP 
upstream from the gene STK32C which is highly expressed 
in the brain and has been linked to, for example, 
Alzheimer’s disease (Gasparoni et al. 2018; Lin et al. 
2020) and depression (Dempster et al. 2014). More SNPs 
that were significantly associated with CpG methylation 
appeared in or near genes associated with neurological dis-
eases, cognition, or behavior. Three SNPs in an exon(s) or 
downstream of the dopamine receptor D2 (DRD2) are as-
sociated with methylation in three trans cases and one cis 
case. DRD2 methylation has been linked to personality in 
chimpanzees (Staes et al. 2022), and DRD2 polymorphisms 
have been linked to (putative) personality traits in humans 
(Smillie et al. 2010). Furthermore, associations between ex-
ploratory behavior and a polymorphism in DRD4, a gene in 
the same family as DRD2, have been detected in the great 
tit (Fidler et al. 2007; Timm et al. 2019), and variation in 
great tit personality might also be mediated by DRD4 
methylation (Riyahi et al. 2015; Verhulst et al. 2016). 
These links with neurological diseases and personality indi-
cate a role for (at least partially) genetically controlled 
DNA methylation patterns in the regulation of behavior. 
Although we previously did not find evidence that DNA 
methylation explained heritable variation in personality 
in great tits (van Oers et al. 2020), it is important to 
note that personality is polygenic (Santure et al. 2015) 
and likely affected by genotype by environment interac-
tions (van Oers et al. 2005). Thus, the DRD2 polymorph-
isms might not have been present in the individuals in 
our previous study, whereas other polymorphisms that ex-
plain variation in personality (but did not affect DNA 
methylation) were. However, this remains speculative.

In addition to these hotspots, we found SNPs in or near 
KLF8 and several DexD-box helicases (DDX23 and DDX54) 
that were associated with methylation of one or more local 
or distant CpGs. DDXn genes and KRF8 are important for 
transcription regulation and RNA metabolism (van Vliet 
et al. 2000; Fuller-Pace 2006). Interestingly, these genes 
and the myosin light-chain genes described above overlap 
in terms of gene family or function with the genes de-
scribed in an mQTL study conducted on red junglefowl 
and chicken intercrosses (Höglund et al. 2020). In that 
study, MYLK, KLF12, and DDX18 were putatively casually 
linked to methylation and gene expression in red jungle-
fowl and chicken intercrosses, indicating that these SNPs 
underlie a domesticated phenotype (Höglund et al. 
2020). We here show that these genes are also important 
for explaining natural variation in DNA methylation.

Although we did not find major trans associations in or 
near the majority of methyltransferases that were covered 

Table 1. Overview and the Number of SNPs Situated in or Near Known 
Methyltransferases.

Methyltransferase Number of SNPs Significant

DNMT3A 9 2
DNMT3B 4 0
METTL2 0 0
METTL4 0 0
METTL5 0 0
METTL6 0 0
METTL7A 2 0
METTL8 1 0
METTL9 1 0
METTL11B 2 0
METTL13 0 0
METTL14 0 0
METTL15 0 0
METTL16 11 0
METTL18 0 0
METTL21A 0 0
METTL22 0 0
METTL23 2 0
METTL24 0 0
METTL25 0 0
METTL25B 0 0
METTL26 2 0
METTL27 3 0

NOTE.—Number of SNPs in our data set and how many of those were significantly 
associated with methylation of a distant CpG site. Numbers above zero are indi-
cated in bold.

10

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/4/m
sad086/7113661 by W

ageningen U
niversity and R

esearch – Library user on 23 August 2023

https://doi.org/10.1093/molbev/msad086


Variation in DNA Methylation in Avian Nestlings · https://doi.org/10.1093/molbev/msad086 MBE

by our SNP list, we did find significant SNP–CpG associa-
tions involving DNMT3A. DNMT3A is encoded by the 
gene DNMT3A and, at least in mammals, carries out de 
novo DNA methylation. Furthermore, it has nonselective 
and ubiquitous activity and is essential for early develop-
ment (Okano et al. 1998, 1999) and cell differentiation 
(Challen et al. 2012; Wu et al. 2012). Nine SNPs were in 
or near DNMT3A, of which two (located upstream and 
in an intron) were significantly associated with methyla-
tion of two distant CpGs. One of these CpGs was located 
in an exon of the gene SELPLG, and the other was located 
in an intron of the gene CTNNA3. Both genes are involved 
in cell–cell adhesion. Previous studies have highlighted the 
role for SELPG and cadherin-associated genes for cell differ-
entiation and fibrosis. In DNMT3A and DNMT3B knockout 
experiments, another cadherin-associated gene (CTNNB1) 
was hypomethylated and overexpressed (Challen et al. 
2014). DNMT3A was found to be hypermethylated 
and underexpressed in systemic sclerosis microvascular 
endothelial cells, whereas CTNNA1 was found to be hypo-
methylated (Nada et al. 2022). Furthermore, epigenetic 
dysregulation of both DNMT3A and SELPG is associated 
with systemic sclerosis (Tsou et al. 2019). We therefore 
conclude that CpG variation caused by genomic variation 
in methyltransferases is pointing toward variation in gen-
eral preprogrammed genetic differences in early develop-
mental processes.

We did not find significant associations involving SNPs 
in METTLs, which suggest that METTLs are more import-
ant for RNA and protein modifications than for DNA mod-
ifications, at least during early development (for an 
overview, see Wong and Eirin-Lopez 2021). As we did 
not find major trans associations in or near the majority 
of methyltransferases, our results might also imply that 
DNMTs and METLLs are essential for normal development 
and functioning via regulation of DNA methylation to 
such a degree that their sequence and function have 
been highly conserved (Wong and Eirin-Lopez 2021). 
Any genetic variation could be lethal (see Lyko 2018), 
and as a result, no quantitative variation between 
individuals might be expected. Although catalyzation 
of DNA methylation seems to be a very conserved and 
stable process, demethylation might be more flexible. 
Demethylation is catalyzed by enzymes of the 10–11 trans-
location (TET) family (Tahiliani et al. 2009; Ito et al. 2011; 
Okuzaki et al. 2017). As studies on active demethylation 
have mainly focused on zebrafish and mammals (for an 
overview, see Law and Jacobsen 2010) and hardly on birds 
(Okuzaki et al. 2017), the degree of sequence and function 
variation in member of the TET family during nestling de-
velopment remains largely elusive.

When observing the results from the mQTL analysis, 
many significant associations involved SNPs near the 
ends of chromosomes. This can be explained by the fact 
that we excluded SNPs that were in LD, that is, nonran-
domly associated. LD is not evenly distributed across the 
genome as LD is lower near the ends of chromosomes 
(Stapley et al. 2010), and as a result, we excluded more 

SNPs at the center than those at the ends of chromosomes. 
The uneven distribution of LD is probably due to the un-
even distribution of recombination within bird chromo-
somes. Recombination rates are often higher at the 
telomeric regions than those at the center of chromo-
somes (Stapley et al. 2008; Backström et al. 2010; Stapley 
et al. 2010; van Oers et al. 2014). As recombination is ex-
pected to break down LD, this probably explains lower 
LD near the ends of chromosomes.

In our study, we did not find associations between 
the remaining 69% of analyzed CpGs and a SNP. There 
are several possible explanations for that. First, it is possible 
that DNA methylation on the remaining CpGs is explained 
by a common environmental effect occurring before 
cross-fostering rather than by a genetic polymorphism. 
Alternatively, since epiGBS2 only targets a fraction of the 
genome and we therefore only included 1.97% of all known 
true SNPs, it is likely that variation in many other CpGs is 
indeed associated with a SNP that was not included in the 
analyses. Given the strict filtering process, the number of 
significant associations and the number of sites for which 
methylation is explained by genetic variation are most like-
ly underestimated. However, since we were interested in 
identifying high-quality candidates, we used these strict se-
lection criteria for including SNPs in our analyses. Another 
plausible explanation might be that variation in these sites 
is explained by genetic polymorphisms other than SNPs, 
such as copy number variations (da Silva et al. 2018) or 
tandem repeats (Gemayel et al. 2010). Finally, a logical 
explanation is that some nonsignificant CpG–SNP associa-
tions were the result of type II errors. These true associa-
tions might not have been picked up because of limited 
statistical power. Regardless, the fact that 24% of the 
CpGs are associated with a SNP in our heavily filtered 
list and after strict Bonferroni correction confirms our ex-
pectation that DNA methylation is highly genotypically 
controlled.

SNP Calling with epiGBS2
To our knowledge, this is the first study that uses the up-
dated epiGBS2 pipeline to obtain both DNA methylation 
and variant information from epiGBS2 data in a vertebrate 
species (Gawehns et al. 2022), where only one study used 
the former epiGBS version (Meröndun et al. 2019). The 
number of SNPs that can be called in the available pipeline 
highly depends on the downstream analysis. A study that 
validated SNP calling from WGBS data found that 12% to 
31% of all known SNPs were also identifiable in WGBS data 
when using EpiFreebayes (Lindner et al. 2022). As epiGBS2 
is a reduced representation technique, it covers roughly 3% 
of the genome when the restriction enzyme MspI is used. 
Therefore, we would expect to identify at best 0.93% 
(31% * 0.03) of all true SNPs. However, 1.97% (169,032 
SNPs) of all known SNPs were also identifiable in our 
epiGBS2 data set, which is higher than expected.

By only including quality filtered epiGBS2 SNPs that are 
also included in the baseline SNP list, we omitted half of 
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the epiGBS2 SNPs (164,806 SNPs). The loss of SNPs is at 
least partly explained by incompleteness of the baseline 
SNP list derived from only four female great tits. Since 
the epiGBS2 data set was based on 286 individuals and 
the chance of picking up genetic variation increases with 
sample size, we likely picked up new genuine SNPs. A rea-
son for being very strict in selecting SNPs for our mQTL 
analysis is that part of the epiGBS2 pipeline is likely to con-
sist of false positives. SNP calling with bisulfite-treated data 
is challenging as true cytosine to thymine SNPs have to be 
differentiated from unmethylated Cs that appear as thy-
mines due to the chemical treatment (Lindner et al. 
2022). Methylated Cs are known to be prone to mutation 
to a thymine (Coulondre et al. 1978; Pértille et al. 2019), 
and in humans, 63% of SNPs in CpGs in CpG islands are 
C to T transitions (Tomso and Bell 2003). Therefore, this 
is an important source of error. As part of the epiGBS2 pipe-
line, this should be dealt with by the double-masking meth-
od (Nunn et al. 2022). This preprocessing step converts 
nucleotides in bisulfite context to the corresponding nu-
cleotide in the reference genome, and nucleotides which 
may have arisen as a result of the bisulfite treatment are gi-
ven a base quality score of 0. Despite the double-masking 
method, EpiFreebayes and other SNP calling tools are 
known to be most sensitive to thymine to cytosine and ad-
enine to guanine false-positive SNPs (Lindner et al. 2022).

We did encounter not only false-positive SNPs but also 
false-positive methylation calls. A total of 1,630 out of 
8,315 origin CpGs (17%) overlapped with a SNP. As we 
used SNPs called from whole-genome resequencing data to 
verify the SNPs called from the epiGBS2 data, we are confi-
dent that the SNPs are true SNPs and that some true cytosine 
to thymine and guanine to adenine SNPs were most likely 
misidentified as unmethylated Cs during methylation calling 
(Heckwolf et al. 2020). At least part of the false-positive SNP 
and methylation calls is due to nondirectional alignment of 
the reads in this study. Therefore, the data were treated as 
if it was unknown where a read originated from, and all 
four strands (original top, original bottom, complementary 
to original top, and complementary to original bottom) 
could produce valid alignments. Nondirectional mapping 
will increase the mapping efficiency as compared with direc-
tional mapping, but it will also introduce more alignment er-
rors and more incorrect methylation and SNP calls (Laine 
et al. 2022). As epiGBS2 is a (although not conventual) direc-
tional protocol, we recommend to align future epiGBS2 data 
in directional mode as is done in the epiGBS2 pipeline 
(Gawehns et al. 2022). This was not feasible with the current 
data set. Furthermore, we recommend to check bisulfite- 
treated data for false-positive methylation calls if a SNP list 
is available.

Limitations and Future Studies
Despite a carefully designed and executed experimental 
setup, we want to point out potential improvements for 
future studies. In the current study, a common origin de-
termined methylation variation at more CpGs compared 

with a common environment. Still, a large proportion of 
the variation remains unexplained, and for a large propor-
tion of the CpGs, we did not find a common origin or a 
common rearing environment effect. This is likely due to 
the limited power of current bisulfite methods (Laine 
et al. 2022). Nevertheless, this does not affect the relative 
chance of finding genetic or environmental effects on vari-
ation in DNA methylation.

Although our experimental design allowed us to separate 
genetic versus environmental effects to a large extent, the 
fact that cross-fostering happened on day 1 or 2 means 
that variation of common origin can consist of environmen-
tal effects that the nestlings experienced up until cross- 
fostering and true genetic effects. This includes the environ-
mental effects that the gametes of the parents experienced, 
effects within the egg, and influences experienced on day 1 
or 2 posthatching. In addition, our study design focused on 
methylation during early life only (until day 14 posthatch-
ing). Future studies should experimentally change early en-
vironment at an earlier stage, for example, by manipulating 
the egg environment with injecting hormones and also in-
vestigate whether the relative influence of genes and envir-
onment changes over a lifetime.

Due to the restriction enzyme used in epiGBS2 (MspI), 
we enrich our sequences heavily on CG-rich areas and 
therefore focus mainly on CpG islands. In a study on 
genome-wide human brain CpG methylation, it was con-
cluded that quantitative trait loci occurred with a higher 
likelihood for CpGs outside of CpG islands (Gibbs et al. 
2010). This indicates that we are likely very conservative 
in the number of genetic associations we present here.

Furthermore, we focused in our study on the link be-
tween genomic variation in genes and CpG methylation. 
However, the association between genetic and epigenetic 
variation can strongly depend on the genomic region. 
For example, in A. thaliana, CHH methylation on transpo-
sons was highly associated with genetic variation (Dubin 
et al. 2015). A likely role for DNA methylation on transpos-
able element activity was already identified in another 
study on great tits (Derks et al. 2016). Expanding our ana-
lysis to include transposable elements is therefore a prom-
ising avenue.

Lastly, our study focused on CpG methylation in DNA 
originating from red blood cells, as this allowed us to ob-
tain information on DNA methylation at different time 
points. Furthermore, studies on great tits have previously 
found a significant positive correlation between DNA 
methylation as measured in blood compared with DNA 
methylation in brain (Derks et al. 2016) and liver tissue 
(Lindner, Verhagen, et al. 2021). These correlations are pre-
sent at the among-gene level, but whether this also holds 
for associations between variation in gene expression and 
DNA methylation needs to be verified. This indicates the 
need for more validation steps to examine how environ-
mentally induced changes in methylation (nest of rearing 
sites) relate to changes in gene expression among various 
tissues and, consequently, the phenotype. Targeted studies 
are needed to determine if epigenetic mechanisms causally 
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affect gene expression tissue specifically and how these 
changes in gene expression also affect the phenotype.

Conclusion
Epigenetic variation that is induced during early develop-
ment has been suggested to affect the life-long expression 
of phenotypic traits and if inherited could potentially con-
tribute to soft selection (Richards 2006). We here show 
that the relative contribution of the early rearing environ-
ment to variation in DNA methylation in 14-day-old nestling 
songbirds is extremely small when compared with the genet-
ic contribution. To our knowledge, this is the first study that 
has shown evidence of genomic variation underlying epigen-
etic variation in a wild bird species. This implies that DNA 
methylation is a mechanism that mostly acts in dependence 
of genetic variation, and therefore, we conclude that it is un-
likely that DNA methylation acts as a mechanism underlying 
soft selection. Although our study did not assess functional 
causality between the SNPs and CpG methylation, the puta-
tive functions of the genes that we here identified to associ-
ate with epigenetic variation point to a genetic basis of 
variation in growth, (sexual) maturation, and early develop-
ment. This indicates that DNA methylation variation of de-
veloping vertebrates is likely an obligatory mark (Richards 
2006) translating genetic variation into gene expression, ra-
ther than being a plastic mechanism to adapt quickly to en-
vironmental changes (Kilvitis et al. 2014). Intergenerational 
patterns of CpG methylation are therefore likely caused by 
common genetic factors rather than resembling an acquired 
trait (Heard and Martienssen 2014). To better understand 
the potential evolutionary role of environmentally induced 
and genetically inherited methylation marks, a better under-
standing of the relative proportion of the respective epialleles 
(Feil and Fraga 2012), as well the functionality of the genes 
affected, is required.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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