
Journal of Cleaner Production 415 (2023) 137787

Available online 13 June 2023
0959-6526/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A model to identify entry points to curb emissions from complex manure 
management chains 

Qingbo Qu a,b, Keqiang Zhang a,c, Jeroen C.J. Groot b,* 

a Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China 
b Farming Systems Ecology, Wageningen University and Research, 6700 AK, Wageningen, the Netherlands 
c Dali Yunnan, Agricultural Ecosystem, National Observation and Research Station, 671004, Dali, China   

A R T I C L E  I N F O   

Handling Editor: Zhifu Mi  

Keywords: 
Modelling 
Manure constituent 
Greenhouse gas emission 
Solid-liquid separation 
Anaerobic digestion 
Winding stairs sensitivity analysis 

A B S T R A C T   

Livestock operations deploy increasingly complex facilities and technologies in manure management to reduce 
negative environmental impacts and to improve the agronomic value of manures. To capture and quantify 
processes of degradation, conversion and emission of manure constituents in these complex systems, this study 
presented a newly developed modular manure management (FarmM3) model. Using this model, we simulated 
flows and losses of manure organic matter (OM), carbon (C), nitrogen (N), phosphorus (P) and potassium (K) 
from manure management chains (MMCs) with deep litter, anaerobic lagoon, solid-liquid separation (SLS), 
anaerobic digestion (AD), and combinations of SLS and AD. The sensitivity of degradation and losses of manure 
constituents to changes in the configuration and parameters of MMCs was assessed. Results showed the MMCs 
with deep litter and AD led to higher OM degradation, C losses and greenhouse gas (GHG) emissions due to the 
substantial amounts of straw added to bedding and the digester. A trade-off between GHG and ammonia 
emissions was identified in the MMCs with deep litter. Application of SLS could reduce GHG emissions by 40% to 
60% due to reduced methane and nitrous oxide emissions from separated liquid fraction storage. A stronger 
reduction of ammonia emission was observed when applying SLS to digested slurry than to raw slurry. Sensitivity 
analysis showed that the N loss was most sensitive to N transformation in the MMC with deep litter, and was most 
affected by the loss coefficients of ammonia during liquid manure storage and application in MMCs with SLS and 
AD. Losses of P and K from MMCs with SLS were influenced by separation efficiencies from SLS and loss co
efficients from solid fraction storage. The impact of model input parameters on GHG emissions highly depended 
on the selected manure management facilities. This study shows that manure management facilities have a strong 
influence on the fate of manure constituents. The FarmM3 model can be used to quantify the degradation and 
losses of different manure constituents in complex MMCs and the effects of manure treatment facilities, and to 
identify the most important parameters determining these losses.   

1. Introduction 

The intensification and specialization of dairy production resulted in 
the decoupling of crop and dairy farming. With a substantial amount of 
produced manure but few available lands, these intensive dairy farming 
systems posed detrimental impacts on the environment, such as gaseous 
emissions, groundwater and surface waters pollution, and excessive use 
of feed additives (e.g., heavy metals, antibiotics, micronutrients) 
(Oenema et al., 2007; Kuppusamy et al., 2018). To reduce the envi
ronmental risk of gaseous emissions and other nutrient losses and to 
increase operational flexibility in manure management, various 

emerging manure management facilities are available and prioritized in 
dairy farms with high animal density (Hou et al., 2018; Tan et al., 2021; 
Niles et al., 2022). For example, solid-liquid separation (SLS) can be 
used to separate slurry into a diluted liquid fraction and a nutrient-rich 
solid fraction using different types of mechanical separators, which not 
only could increase manure fertilizer value but also facilitate exporting 
solid fractions to avoid nutrient surpluses within farms (Hjorth et al., 
2010; Sommer et al., 2013). Anaerobic digestion (AD) has been used to 
produce biogas (a mixture of methane and carbon dioxide) as a source of 
alternative energy by breaking down manure OM in the absence of ox
ygen (Foged et al., 2011), and has been proven to reduce GHG emissions 
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(Aguirre-Villegas and Larson, 2017; Holly et al., 2017). 
Application of these management facilities may induce changes in 

physical, chemical and/or biological properties of manure and hence 
influence the decomposition of OM and carbon (C), and the fate of nu
trients within manure management chains (MMCs) (Hou, 2016; Khalil 
et al., 2016). Aguirre-Villegas et al. (2019) found that applying SLS 
could retain more total solids and volatile solids but much less total 
ammoniacal nitrogen and total potassium in separated solid fractions, 
which resulted in both greenhouse gas (GHG) and ammonia (NH3) re
ductions from storage and land application compared to a scenario 
without SLS. AD alone and combined AD and SLS could reduce GHG 
emissions due to reduction of the quantity of volatile solids in liquid 
manure storage but could also lead to increased NH3 emissions due to 
the increased total ammoniacal nitrogen from mineralization of organic 
nitrogen during digestion. 

Given the possible interactive effects of manure management facil
ities on emissions, the importance of integrated modelling approaches in 
estimating gaseous emissions and nutrient flows from a whole chain 
perspective has been pointed out (Hou, 2016; Sajeev et al., 2018; Wei 
et al., 2021). Table A.1 provides a list of existing integrated modelling 
approaches. However, most of these approaches mainly focus on tradi
tional manure management facilities, i.e., a linear process of manure 
excretion, manure storage and application. Few of them allow to inte
grate the emerging on-farm manure management facilities (e.g., SLS, 
AD, composting, etc.) and enable to evaluate the impacts of these new 
manure management facilities on nutrient losses along the whole MMC. 
Pardo et al. (2017) designed a module (SIMSWASTE-AD) to calculate gases 
emissions from AD processes, but the new module was aimed to be 
applied within the SIMSDAIRY modelling framework (Del Prado et al., 
2011) to account for potential effects of AD on nutrient flows. 
Dairy-CropSyst developed by Khalil et al. (2019) allowed to evaluate the 
effects of diverse manure management facilities (AD, separation and 
nutrient recovery) on nutrient fate through MMCs with liquid manure 
handling systems with lagoons, while not addressing solid manure 
handling systems in MMCs. Sefeedpari et al. (2019) introduced a 
process-based analysis model that can be used to calculate degradation 
and losses of manure constituents through MMCs with different manure 
management facilities. However, Sefeedpari et al. (2019) only quanti
fied the quality of final products to applied fields without estimating the 
losses of manure constituents from manure application, which might not 
be able to fully capture the interactive effects of manure management 
facilities on nutrient losses since the reduced losses before application 
might lead to increased losses after application (Shah et al., 2013). 

The approaches listed in Table A.1 focus on only one or a few manure 
constituents or gaseous emissions (NH3, N2O, CH4, GHG, etc.), and 
conversions and losses of manure OM and C, phosphorus (P) and po
tassium (K) from MMCs are sparsely considered. It was reported that 
over 50% of the excreted manure P and K could be lost from MMCs (Bai 
et al., 2016). Knowledge of degradation of OM and losses of P and K 
along various MMCs could contribute to a more comprehensive assess
ment of the performance of MMCs. 

As discussed above, there is lack of a model that has more flexibility 
of integrating various emerging manure management facilities and 
could comprehensively evaluate flows and losses of different manure 
constituents (OM, C, N, P and K) of diverse MMCs. We address this issue 
by introducing a newly developed modular manure management 
(FarmM3) model. It has the advantage of being able to integrate more 
alternative manure management facilities from excretion to application 
to cover complex MMCs in a modular way. It can assess the effects of 
emerging manure treatment technologies on different manure constit
uents (OM, C, N, P and K). 

In this paper, we firstly describe this newly developed, flexible and 
extendable FarmM3 model for quantifying conversions and losses of 
OM, C, N, P and K along dairy MMCs with different complexity. Then 
with the FarmM3 model, we assess different MMCs with diverse manure 
management facilities and evaluate environmental impacts by 

comparing nutrient losses, NH3 and GHG emissions. Finally, a global 
sensitivity analysis is performed to investigate how the system level 
losses of OM, C, N, P and K from MMCs are influenced by variations in 
configurations of manure management facilities and loss coefficients. 

2. Material and methods 

2.1. Model description 

A modular approach developed by Qu et al. (2022) allows to estimate 
N flows and losses along diverse MMCs in a flexible way. In this study, 
we further extended this approach to quantify degradation of OM and C, 
losses of P and K by integrating loss coefficients from the literature and 
developed a modular manure management (FarmM3) model. Fig.A.1 
shows the main data window of FarmM3 model. This model includes 
four types of components: Inputs, Pools, Separators and Applications. 
The Inputs components specify the quantities of materials added such as 
the excreted manure, amendments of bedding materials or crop residues 
for co-digestion with a given composition (dry matter (DM) content, ash 
content, and C, N, P, K contents). Conversion and loss coefficients of OM, 
C, N, P and K are established from experiments or literature reviews for 
each manure management Pool in which manure is deposited or main
tained. Separators split a Pool in two new Pools and for each nutrient the 
fraction allocated to the new Pools can be specified. Applications should 
be the endpoints of the MMC, in which the loss coefficients of manure 
nutrients during application are specified. Table A.2 lists the input pa
rameters of different components in the FarmM3 model. 

Any number of these types of components can be combined into 
MMCs that start with Inputs and finish with Applications of manure 
fractions in fields or barns. Within each component, flows and losses of 
OM, C, organic N, inorganic N, P and K are quantified using a mass 
balance approach by calculating input from the previous component, 
conversion and loss within the component and output to the next 
component. The accumulated degradation and losses of manure con
stituents from the whole MMC are derived by summing up the losses in 
different types of components. Also, losses of different N species (i.e., 
NH3-N, N2O-N, NO-N, N2-N, leaching and runoff N) and different C 
species (CO2-C and CH4-C) through the MMC are presented. These losses 
are also expressed per cow and per unit of area by dividing by the 
number of cows and the total surface area of the farm. The detailed 
calculation procedures are presented in the supplementary material. 

2.2. Model visualization 

The FarmM3 modelling tool was developed in MS Visual Studio using 
the C# programming language. The flows of manure constituents along 
the whole chain of MMC were visualized using DOT language in 
Graphviz software that allows to create diagrams with code and have 
them automatically drawn (Ellson et al., 2004). As shown in Fig. 1 with a 
flow diagram of inorganic N through an example MMC as generated by 
the FarmM3 model. The nodes were labelled with different types of 
inputs, manure management facilities, or loss pathways of manure 
constituents along the MMC. The amounts of flows and losses of manure 
constituents were added to vertices between nodes. 

2.3. Analysis of manure management scenarios 

A hypothetical dairy farm with 100 cows was developed with several 
contrasting manure management scenarios as shown in Table 1. Manure 
management facilities included deep litter with farmyard manure (FYM) 
storage, anaerobic lagoon, exercise yard, SLS, AD and combinations of 
SLS and AD. The annual amount of manure excreted is 1,201,018 kg/ 
year, with different quantities of added straw for bedding or co- 
digestion, as shown in Table A.3. 
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2.4. Winding Stairs sensitivity analysis 

Variations in manure management facilities, and the inherent un
certainties associated with emission factors, can have substantial im
plications for estimated results. A variance-based Winding Stairs 
sensitivity analysis was performed to assess the effects of variations in 
loss coefficients on the expected degradation of OM, nutrient flows and 

emissions from MMCs. Given the complexity of MMCs and potential 
interactions between loss coefficients of manure management facilities, 
in this study, we selected manure management scenarios 1, 4 and 6 in 
Table 1 as examples to analyse the effects of variations in loss co
efficients on output variables. Results of the sensitivity analysis of sce
narios 2, 3, 5 and 7 are presented in Tables A.4 to A.7. 

The Winding Stairs algorithm incorporated in the FarmM3 modelling 

Fig. 1. The flow of inorganic nitrogen (Nmin) through the manure management chain (MMC) with a mechanical solid-liquid separation (SLS). The golden house 
shapes represent Inputs, the blue boxes denote Pools, the pink rectangle indicate Separators and the green boxes represent Applications. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Description of manure management scenarios. The arrows indicated the flows of manure constituents among management facilities.. 
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tool is based on Monte-Carlo sensitivity analysis but performs a sys
tematic sampling of random parameter values within user-defined 
ranges. Output variables Yi are decided by input parameters X1, X2, 
…, Xk based on a developed deterministic function f (Yi = f(X1, X2, …, 
Xk)), here represented by the model calculations as described in the 
supplementary material. Sampling of parameter values occurs in a 
cyclical order. In the first step of cycle 1, X11 is randomly adjusted, in the 
second X21, etc. thereby producing new values {X11, X21, …, Xk1}. Thus, 
each cycle contains K steps that constitute one Winding Stairs sample or 
‘winding’ (Jansen et al., 1994). The number of random Winding Stairs 
samples generated (R) can be set as a parameter of the algorithm. The 
total number of observations generated is N = K × (R+1), where 1 
represents the original parameter set that is used at the start of the first 
cycle. For each sample of parameter values the model output variables 
are calculated using the function f. This results in a matrix with K col
umns and R+1 rows, see Fig.A.2 for an example from Chan et al. (2000) 
with K = 3 and R = 4. 

In our case, the system level losses of OM, inorganic N, P, K and GHG 
emissions from MMCs were selected as output variables. We excluded 
NH3 emissions and total C losses as output variables due to strong cor
relations between NH3 emissions and inorganic N losses (Pearson cor
relation coefficients = 0.856 to 0.999), and between total C losses and 
OM degradation (Pearson correlation coefficients = 0.954 to 1.000). The 
Pearson correlation coefficients among output variables in different 
MMCs are listed in Table A.8. The original parameter values, minimum 
and maximum values of selected input parameters were specified based 
on empirical values from publications. These input factors were sampled 
randomly within the set ranges through 5000 windings (R = 5000). 

The variance of model output variables was decomposed into the 
first-order sensitivity index (FSI) and total sensitivity index (TSI). The 
FSI, also called top marginal variance, is defined as the variance 
reduction due to fixing factor Xk while varying the other factors. 
Conversely, the TSI, also denoted as bottom marginal variance, is the 
variance caused when only Xk is uncertain (Jansen et al., 1994; Chan 
et al., 2000). These indices can be used to evaluate the main effects (FSI 
values) and the total effects (TSI values), including main and interactive 
effects, of these parameters on the system level losses of OM, inorganic 
N, P, K and GHG emissions. Small differences between FSI and TSI values 
indicate that there is no interaction between parameters. 

3. Results 

3.1. Degradation and losses of manure constituents from MMCs 

As shown in Table 2, the amounts of OM degradation, C and nutrient 
losses, NH3 and GHG emissions from seven manure management sce
narios were compared. For the hypothetical dairy farm with 100 cows, 
the MMC with deep litter and FYM storage (Scenario 1) had the lowest 
NH3 emissions and total N loss. In contrast, the amounts of OM degraded 
and C lost in Scenario 1 were five to seven times higher than losses in 
Scenarios 2, 3 and 4. Additionally, the GHG emissions from Scenario 1 

were much higher than emissions from Scenarios 2, 3 and 4. The results 
indicated the pollution swapping of NH3 emissions and OM degradation, 
C loss and GHG emissions from the MMC with deep litter. The sub
stantial amount of added straw to deep litter provided more substrate for 
degradation of OM but could absorb urine N quickly and promoted the 
immobilization of inorganic N to organic N, thereby reducing NH3 
emissions. 

We compared the degradation and losses of manure constituents in 
Scenarios 2, 3 and 4 because they all have the same amounts of manure 
and bedding straw input (Table A.3). In comparison with Scenarios 2 
and 3, the larger amounts of degraded OM degradation and C loss in 
Scenario 4 were caused by the higher degradation rate of OM under 
aerobic conditions during separated solid manure storage. The SLS in 
Scenario 4 helped reduce GHG emissions by around 60%, due to lower 
total CH4 and N2O emissions compared to Scenarios 2 and 3. Small 
differences in N losses and NH3 emissions in Scenarios 2 and 4 were 
observed. Scenario 3 presented higher environmental risk of losing nu
trients (N, P and K) by leaching and runoff, compared to Scenarios 2 and 
4 (the MMCs without exercise yards). 

In Scenarios 5, 6 and 7, the OM degradation, C losses, and GHG 
emissions were relatively higher compared to other scenarios, due to the 
substantial amounts of straw added to AD. Applying SLS after AD 
(Scenario 6) reduced GHG emissions by 44% compared to applying AD 
only (Scenario 5). This was due to the lower CH4 emissions from sepa
rated liquid fraction storage in Scenario 6 (Fig. A.3). Additionally, 
Scenario 6 resulted in slightly lower N loss and NH3 emissions. Changing 
the sequence of manure management facilities might influence flows 
and losses of manure constituents. Applying SLS before AD (Scenario 7) 
resulted in lower OM degradation and C loss, but higher GHG emissions 
than applying SLS after AD (Scenario 6). The main differences between 
the GHG emissions in Scenarios 6 and 7 were due to the higher CH4 
emissions from the digested slurry storage, compared to the separated 
liquid fraction from digestate in Scenario 6 (Fig. A.3). This can be further 
explained by the larger quantity of volatile solids in the digested slurry 
storage in Scenario 7 due to a large amount of straw added to the 
digester with the separated liquid fraction. Scenario 6, on the other 
hand, only had a small percentage of volatile solids from digestate which 
can be retained in the liquid fraction after separation. Although the total 
losses of P and K from both Scenarios 6 and 7 were small, about 60% 
lower P loss was observed from Scenario 7. This was because the higher 
separation efficiency of P in digested slurry (Scenario 6) than in raw 
slurry (Scenario 7) led to more P retained in the solid fraction, thereby 
increasing leaching and runoff losses of P. Different from P, the higher 
separation efficiency of K in raw slurry than in digested slurry led to 40% 
more K loss in Scenario 7, compared to Scenario 6. These results show 
that there are contrasting effects of separation efficiency of SLS on total 
P and K losses. 

Table 2 
Amounts of OM degradation, nutrient losses and GHG emissions from different manure management scenarios. The added straw for animal bedding and anaerobic 
digester were also included in material flows.  

Scenarios Scenario description OM degraded, 
(kg/cow) 

Total C loss, 
(kg/cow) 

GHG emissions, (kg 
CO2-eq/cow) 

Total N loss, 
(kg/cow) 

NH3-N loss, 
(kg/cow) 

Total P loss, 
(g/cow) 

Total K loss, 
(g/cow) 

1 Deep litter and FYM storage 2297.1 1148.5 5765.5 44.6 30.5 24.9 3273.7 
2 Anaerobic lagoon storage 291.2 145.6 2561.7 63.7 57.3 0.0 0.0 
3 Anaerobic lagoon storage and 

yard manure storage 
370.4 185.2 2507.0 72.4 60.0 3088.9 62956.3 

4 SLS 422.3 211.1 1060.0 60.2 59.6 7.5 721.7 
5 AD 5760.1 2880.0 1974.9 120.3 120.3 0.0 0.0 
6 AD and SLS 5724.8 2862.4 1101.4 110.1 109.7 19.8 514.1 
7 SLS and AD 5380.0 2690.0 1768.3 117.9 117.4 7.5 721.7 

Note: FYM represents farmyard manure; SLS represents solid-liquid separation; AD represents anaerobic digestion. 
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3.2. Sensitivity of system level losses from MMCs to variations of loss 
parameters 

3.2.1. Degradation of organic matter 
The most important variables influencing degradation of OM differed 

among scenarios and depended on applied manure management facil
ities in MMCs. The Winding Stairs sensitivity analysis showed that 
degradation rates of OM under aerobic conditions in deep litter and in 
FYM storage contributed more than 80% of variance to total OM 
degradation from Scenario 1, whereas the contribution of degradation 
rates of OM in slurry storage was almost negligible (Table 3). In Scenario 
4, both the degradation rate of OM in separated solid manure storage 
and in separated liquid fraction storage were influential, with two times 
higher FSI value for degradation rate of OM in separated solid manure 
storage than in separated liquid manure storage (Table 3). In Scenario 6 
with a digester and a separator, the degradation of OM was the most 
sensitive to the degradation rate of OM in the digester (Table 3). The 
effects of these input parameters on degradation of OM from MMCs in 
Scenarios 1, 4 and 6 are presented in Fig. 2, with higher parameter 
values leading to more degradation of OM from MMCs. It should be 
noted that the contribution of input parameters to total variance of OM 
degradation from MMCs depends on the range of input parameters and 
the degree of influence of these parameters represented by regression 
coefficients (Fig. 2). A small range but large value of regression coeffi
cient might lead to a small fraction of explained variance, and conse
quently a small value of coefficient of determination (R2) and FSI and 
TSI values (Fig. 2d and i). 

3.2.2. Total inorganic N losses 
In Scenario 1, changes of mineralization rate of organic N in FYM 

storage contributed more than 50% variance of total inorganic N losses, 
with higher mineralization rate leading to larger inorganic N losses 
(Fig. 3b). Conversely, the immobilization rate of inorganic N in deep 

litter had a negative effect on total inorganic N losses (Fig. 3a). In total, 
these two parameters contributed more than 70% of variance of total 
inorganic N losses, much higher than contributions of loss coefficients of 
NH3-N during manure storage and application (Table A.9). On the 
contrary, in Scenarios 4 and 6, the total inorganic N losses were more 
sensitive to changes in loss coefficients of NH3-N during storage and 
application than mineralization rates of organic N. In total, loss co
efficients of NH3-N during liquid fraction storage and application 
resulted in more than 60% of variance, which was four times higher than 
the contribution of mineralization rates of organic N (Table A.9). We did 
not observe significant contribution of separation efficiency of N to 
variance of total inorganic N losses in Scenarios 4 and 6 because only a 
small percentage of inorganic N (less than 10%) would be allocated to 
the solid fraction. 

3.2.3. Total P and K loss 
Runoff and leaching losses during solid manure storage are the pri

mary loss pathways of P and K from MMCs. We observed significant 
contribution of loss coefficients of leaching and runoff from solid 
manure storage to variance of total P and K losses from the MMCs, with 
FSI values ranging from 40% to 99%. In MMCs with SLS (Scenarios 4 and 
6), both separation efficiency of P of separator and loss coefficient of P 
from solid fraction storage were influential, with two times higher FSI 
value for loss coefficient of P from solid fraction storage than separation 
efficiency of P (Table A.10). The separation efficiency of K was as 
important to total K losses as the loss coefficient of runoff and leaching 
from solid fraction storage. The differences between FSI and TSI values 
of separation efficiency of P or K and loss coefficient of P or K from solid 
fraction storage indicated interactions between these two parameters, 
contributing more than 10% of variance to total P or K losses from MMCs 
with SLS. The amounts of P or K in solid fractions are the prerequisite for 
the losses of P or K, with the more P or K staying in solid fractions 
leading to the more P or K losses by runoff and leaching during storage. 

Table 3 
Sensitivity index (%), including first-order sensitivity index (FSI) and total sensitivity index (TSI), of input parameters on total OM degradation from MMCs of Scenarios 
1, 4 and 6.  

Manure management facility Parameters Scenario 1 Scenario 4 Scenario 6 

Range FSI TSI Range FSI TSI Range FSI TSI 

Deep litter Fraction of substrate stored under oxic conditions 0.5–1.0 2.9 6.5       
Degradation rate of OM under oxic conditions 0.3–0.6 40.5 42.1       
Degradation rate of OM under anoxic conditions 0.2–0.4 − 0.3 2.6        

FYM storage Fraction of substrate stored under oxic conditions 0.5–1.0 5.3 6.6       
Degradation rate of OM under oxic conditions 0.3–0.6 41.3 42.7       
Degradation rate of OM under anoxic conditions 0.2–0.4 − 0.3 2.6        

Slurry storage Fraction of substrate stored under oxic conditions 0.0–0.1 − 1.6 0.0 0.0–0.2 − 0.8 0.2 0.0–0.2 0.0 0.0 
Degradation rate of OM under oxic conditions 0.0–0.1 − 1.6 0.0 0.0–0.1 − 0.8 0.4 0.00–0.05 − 1.2 0.0 
Degradation rate of OM under anoxic conditions 0.05–0.15 − 1.3 0.2 0.00–0.05 5.6 6.4 0.00–0.05 − 1.3 0.1  

Anaerobic digester Degradation rate of OM under anoxic conditions       0.3–0.5 56.1 56.2  

Digested slurry storage Fraction of substrate stored under oxic conditions       0.0–0.1 0.1 0.0 
Degradation rate of OM under oxic conditions       0.0–0.1 1.4 0.0 
Degradation rate of OM under anoxic conditions       0.0–0.1 5.0 5.3  

Liquid fraction storage Fraction of substrate stored under oxic conditions    0.0–0.1 0.9 0.1 0.0–0.1 0.0 0.0 
Degradation rate of OM under oxic conditions    0.0–0.1 0.8 0.0 0.0–0.3 0.1 0.1 
Degradation rate of OM under anoxic conditions    0.05–0.20 25.2 25.9 0.0–0.1 3.0 2.1  

Solid fraction storage Fraction of OM to Solid fraction    0.3–0.6 1.6 4.8 0.3–0.6 2.9 3.7 
Fraction of substrate stored under oxic conditions    0.5–1.0 3.7 7.6 0.5–1.0 1.5 2.8 
Degradation rate of OM under oxic conditions    0.05–0.40 53.9 59.7 0.0–0.6 29.7 31.4 
Degradation rate of OM under anoxic conditions    0.00–0.15 2.1 1.6 0.0–0.2 0.6 0.5 

Notes: The parameters with FSI and TSI values higher than 10% are indicated in bold. 
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The parameters relating to AD in Scenario 6 did not influence system 
level losses of P and K. 

3.2.4. GHG emissions 
The emissions of GHG from MMCs are related to C losses by emis

sions in the form of CH4, and to N2O emissions. Configurations of the 
manure management facilities in MMCs had important effects on GHG 
emissions, with stronger effects of parameters in earlier facilities of 
MMCs than in later facilities. In Scenario 1, we observed important ef
fects of degradation of C in deep litter on GHG emissions from the whole 
MMC. About more than 70% of variance of total GHG emissions could be 

explained by changes of degradation rate of OM under aerobic condi
tions in deep litter and changes of fraction of CH4-C in total C loss from 
deep litter. In Scenario 4, a larger contribution of loss coefficient of N2O 
during separated liquid fraction storage to total variance of GHG emis
sions from the MMC was observed even with a small varying range from 
0.0 to 0.1 for the loss coefficient (Table A.11). The degradation rate of C 
under anaerobic conditions in separated liquid fraction and the fraction 
of C lost as CH4-C emissions were also influential, in total contributing 
about 40% of variance to total GHG emissions from the MMC. The AD in 
Scenario 6 played the most important role in determining the uncer
tainty of GHG emissions from the MMC. The highest TSI was observed 

Fig. 2. Relationships between input parameters of different manure management facilities and total organic matter (OM) degradation from manure management 
chains (MMCs). Different colors represent different MMCs of Scenarios 1 (red, a-c), 4 (green, d-f) and 6 (blue, g-i). (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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for the effect of the fraction of CH4 produced in a digester that would be 
combusted (Table A.11), with higher fraction of CH4 combusted 
resulting in lower GHG emissions (Fig. A. 4b). Besides, the degradation 
rate of C in AD could be influential, with higher values resulting in larger 
variations of GHG emissions from the MMC (Fig. A. 4a). 

4. Discussion 

4.1. Impacts of manure management facilities on the fates of manure 
constituents 

With the newly developed FarmM3 model we quantified the degra
dation and losses of OM, C, N, P and K from several contrasting manure 
management scenarios. Comparisons among these manure management 
scenarios demonstrated the impact of choice and configurations of 
manure management facilities on flows and losses of manure constitu
ents throughout the whole MMCs. The MMCs with deep litter and AD 
had higher OM degradation, C losses and GHG emissions because of the 
added straw. Application of SLS could reduce GHG emissions by 
40–60%. These reductions were due to the lower CH4 and N2O emissions 
from separated liquid fraction storage as less volatile solids entered the 
liquid fraction, so no natural crust formed during the storage (Aguir
re-Villegas et al., 2014; Holly et al., 2017). The influence of SLS on NH3 
emissions from MMCs was affected by manure management facilities 
before and after SLS. We observed a greater reduction in NH3 emissions 
when applying SLS to digested slurry than to raw slurry. The decrease of 
NH3 emissions from MMCs with SLS might be because of less NH3 
emissions from separated solid fraction storage and from separated 
liquids application due to the quick infiltration of ammoniacal N in 
liquids to the soil (Aguirre-Villegas et al., 2014). In contrast, Kupper 
et al. (2020) found that SLS caused higher losses for NH3 due to the 
absence of a surface crust during separated liquid fraction storage (Baldé 
et al., 2018). The balance between increased NH3 emissions from 
separated liquid fraction storage and reduced NH3 emissions from solid 
fraction storage and from liquid manure application resulted in different 
effects of SLS on NH3 emissions from the whole MMC. This study also 
showed that, compared to the MMCs without SLS, separated solid 
fraction storage might increase the risks of P and K losses through 
leaching and runoff. This highlights the importance of improving man
agement of solid manure storage to reduce nutrient losses. 

4.2. The important parameters of determining losses of manure 
constituents in complex MMCs 

The FarmM3 model enabled the identification of the most important 
parameters determining losses of manure constituents in complex MMCs 
through WS sensitivity analysis. The degradation rates of OM under 
aerobic conditions during solid manure storage and under anaerobic 
conditions during liquid manure storage were the most important 
influencing parameters. The important parameters for determining GHG 
emissions varied among MMCs, indicating the effects of configurations 
of manure management facilities in MMCs on GHG emissions. 

In the MMCs with solid manure storage (e.g., the deep litter system), 
the immobilization and mineralization rate between inorganic and 
organic N were more influential than the loss coefficients of NH3-N. 
Various studies have highlighted the importance of considering N 
transformations in solid manure storage when using a inorganic N flow 
approach to estimate N losses from MMCs (Dämmgen and Hutchings, 
2008; Velthof et al., 2012). But the quantitative effects of immobiliza
tion and mineralization rates of organic N and inorganic N on total N 
losses from MMCs were rarely investigated, which prevents us from 
comparing with other studies. For liquid manure management systems 
with SLS or AD, the loss coefficients of NH3-N during liquid manure 
storage and application contributed more to the variance of total N 
losses, which is in accordance with the study of Aguirre-Villegas et al. 
(2014). The separation efficiencies of organic N and inorganic N did not 
influence the total N losses from MMCs, which agrees with the study of 
Perazzolo et al. (2017). This was mainly because of the low separation 
efficiency (0–10%) of inorganic N to solid fraction and the negligible 
inorganic N losses from solid fraction storage (Aguirre-Villegas et al., 
2019). Different from N, total losses of P and K from MMCs were sen
sitive to changes of separation efficiencies of P and K from SLS, with 
more contribution of separation efficiency of K to total losses than 
separation efficiency of P. 

4.3. Comparison with other modelling approaches 

The FarmM3 model in this study was developed based on a modular 
concept and a mass balance approach. Compared to existing modelling 
approaches that only considered the traditional manure management 
strategies (e.g., storage and application), this model has more flexibility 
that allows to integrate more alternative manure management facilities 
in a desired and feasible sequential order from excretion to application 
to cover complex MMCs. The results of quantifying flows of manure 

Fig. 3. Influence of the immobilization rate of inorganic N in deep litter (a, with FSI and TSI values of 13.6% and 12.6%, respectively) and the mineralization rate of 
organic N in farmyard manure storage (b, with FSI and TSI values of 57.5% and 58.8%, respectively) on total inorganic N losses from the MMC of Scenario 1. 
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constituents along MMCs with contrasting manure management facil
ities in this study verified the feasibility of applying the FarmM3 model 
in various MMCs in on-farm settings. Besides, this model is able to 
quantify flows of different manure constituents (i.e., OM, C, N, P and K) 
throughout MMCs, which might make it as a helpful tool for compre
hensively evaluating the effects of manure management options on 
degradation and losses of different manure constituents and for identi
fying trade-offs among these manure constituents. 

4.4. Limitations 

The developed FarmM3 model quantified the flows and losses of 
manure OM, C, N, P and K throughout MMCs based on empirical values 
of input parameters from publications. However, in practical situations, 
these input parameters, including loss coefficients, emissions factors and 
performance parameters of manure management facilities might be 
affected by management practices and environmental factors (i.e., 
temperature, rainfall etc.). In this regard, this model still has its limi
tations regarding selecting suitable parameters to specifically meet the 
on-farm situation although the simplicity of calculations with emission 
factors might make it easy to use. These limitations can be reduced 
further by identifying the most influential input parameters through 
sensitivity analysis, and by improving the accuracy of these important 
parameters by developing mechanistic estimation models or by vali
dating estimated results using data from farm measurements. 

4.5. Implications 

The developed FarmM3 model can be used as a helpful tool for 
quantifying degradation and losses of different manure constituents 
(OM, C, N, P and K) in complex MMCs. The results can contribute to 
understanding the effects of various manure management facilities on 
the flows and losses of manure OM, C, N, P and K through the whole 
MMCs. It can support farm managers in decision making on designing 
and optimizing manure management strategies by assessing trade-offs 
among these different environmental indicators. By identifying the 
most important parameters determining losses from various MMCs, it 
also helps researchers to identify future research priorities in estimating 
loss coefficients of different manure constituents from various manure 
management facilities. 

4.6. Future research 

To further validate and improve the accuracy of model estimates, on- 
farm measurements on degradation and losses of different manure 
constituents from whole MMCs might be necessary and helpful. For 
future works, the FarmM3 model can be integrated into whole-farm 
models such as the FarmDESIGN model (Groot et al., 2012) to 
improve flexibility of model application in dairy farming systems with 
complex MMCs. In addition to evaluating environmental performance in 
terms of degradation of OM, nutrient losses and gaseous emissions from 
MMCs, this model could be extended to allow a multi-criteria deci
sion-making analysis for design and optimize manure management 
scenarios considering economic aspects, such as investment and opera
tion costs of management facilities. 

5. Conclusions 

This study developed the FarmM3 model, and quantifiably compared 
diverse manure management facilities, and the relative degradation and 
losses of OM, C, N, P and K throughout their MMCs. The results showed 
that, compared to other MMCs, the MMCs with deep litter and AD 
yielded higher OM degradation, C losses and GHG emissions due to the 
more added straw. This implied the positive relationships between the 
quantity of manure dry matter and OM degradation, and GHG emissions. 
Further, the MMC with deep litter showed reduced NH3 emission, but 

increased GHG emissions due to the pollution swapping caused by 
adding straw. Application of SLS could reduce GHG emissions, but its 
effect on NH3 emissions varied depending on the characteristics of the 
separated slurry. A larger reduction in NH3 emissions was observed 
when applying SLS to digested slurry than to raw slurry. The sequence of 
manure management facilities in MMCs influenced the flows and losses 
of constituents. For example, our results showed greater reductions in 
GHG and NH3 emissions when applying SLS after AD than applying SLS 
before AD. 

Results of WS sensitivity analysis showed the most important pa
rameters for determining GHG emissions varied among MMCs, indi
cating the effects of configurations of manure management facilities in 
MMCs on GHG emissions. For N losses, the immobilization and miner
alization rates between inorganic and organic N were more influential 
than loss coefficients of NH3-N in the MMC with deep litter. In liquid 
manure systems, the loss coefficients of NH3-N from liquid manure 
storage and application were more influential than from solid fractions. 
The separation efficiencies of organic N and inorganic N did not influ
ence total N losses from MMCs with SLS. In contrast, the separation 
efficiencies of P and K from SLS were influential to total losses of P and K 
from MMCs with SLS. 

Our modelling approach could contribute to understanding the role 
of manure management facilities in farm nutrient management planning 
and could be helpful for farmers, researchers and policy makers to 
decide how to improve manure management systems at farm level. 
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