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Summary

Plant–nematode interactions are mainly considered from the negative aspect with a focus on

plant-parasitic nematodes (PPNs), which is justified considering the agronomic losses caused by

PPNs.Despite the fact thatPPNsareoutnumberedbynonparasitic free-livingnematodes (FLNs),

the functional importance of FLNs, especially with regard to plant performance, remains largely

unknown. Here, we provide a comprehensive overview and most recent insights into soil

nematodes by showing direct and indirect links of both PPNs and FLNs with plant performance.

Weespecially emphasize the knowledgegaps andpotential of FLNs as important indirect players

in driving plant performance such as stimulating the resistance to pests via improving the disease

suppressive activity of the rhizobiome. Together, we present a holistic view of soil nematodes as

positive and negative contributors to plant performance, accentuating the positive but

underexplored role of FLNs.

Introduction: importance of soil nematodes for plant
performance

Plants are the basis of almost all life on Earth, especially that of
animals including humans. We have modified most land on Earth
for our need to grow human-essential plants in agriculture that led
to fundamental increases in food production. However, constant
food production is not guaranteed, partly because plant perfor-
mance can be reduced by pests, here referring to all organisms,
including pathogens that impair plant nutrition, growth,
and defense (Kranz, 2005; D€oring et al., 2011). These pests lead
to c. 40%global crop yield losses annually (IPPCSecretariat, 2021).
The pests are often controlled by pesticides, but at a cost: negative
side-effects, such as losses of nontarget biodiversity and detrimental
impacts on the environment might in the long-run outweigh the
short-termbenefits of plant stimulation (Oka, 2020).Topromote a
more sustainable plant protection, the EuropeanCommission aims
to halve the current use of pesticides by 2030 (European
Commission, 2022), putting yield at risk.

Among these pesticides are nematicides that act against plant-
parasitic nematodes (PPNs). Plant-parasitic nematodes are
notorious plant pests that cause annual yield losses of over
80 billion US$ worldwide (Abd-Elgawad & Askary, 2015). There
are over 4100 currently described PPN species that parasitize
virtually all plant species, including all crops (Decraemer &

Hunt, 2006). Therefore, nematodes are mostly viewed as negative
contributors to plant performance. However, nematodes can also
positively contribute to plant performance. For example, non-
parasitic free-living nematodes (FLNs) (here defined as nonpar-
asitic soil nematodes excluding entomopathogenic nematodes as
obligate insect parasites) are the most abundant soil animals that
outnumber PPNs in terms of abundance and diversity (van den
Hoogen et al., 2019). Free-living nematodes display different
functions in the soil food web and can act, for example, as
consumers of bacteria, fungi, protists, and other nematodes. Their
rapid response to environmental disturbances makes them good
bioindicators of soil health (Ferris et al., 2001). The abundance and
trophic nature of FLNs are often used for measuring different
nematode-based indicators that can reflect the ecosystem status of
soil (Du Preez et al., 2022). Furthermore, FLNs can more or less
selectively feed on members of the soil microbiome (Rønn
et al., 2012; Liu et al., 2017), acquire microorganisms on their
surface (Dirksen et al., 2016), transfer microbiomes to remote
habitats (Finkel et al., 2017), and serve as a food to higher tropic
groups (Stirling, 2014). These interactions may shape the
rhizobiome, here defined as the biodiversity attached to and
influenced by roots, and ensure nutrient transfer between
microbiomes and plants to eventually shape plant performance
(Trap et al., 2016). However, the functional links between FLNs
and plant performance remain surprisingly little studied.
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In this review, we collected reports and presented a multitude of
pathways in which PPNs and FLNs inhibit and most importantly
promote plant performance. More specifically, we show that direct
links that are governed by nematode feeding on roots are prevalent
between PPNs and plants and, thereby, negatively affect plant
performance. On the contrary, indirect links, often being plant-
beneficial, are more pronounced between FLNs and plants via
interlinkages of FLNs with the rhizobiome through predation and
dispersal. We especially highlight the knowledge gaps in under-
standing the role of FLNs to assist plant protection against pests and
explore how their multitrophic position in the food web can
contribute to this aspect.

Negative impact of nematodes on plant performance

Direct negative impact

Deeply studied, well-known and widely recognized and feared
among farmers and gardeners are PPNs that directly damage plants
via feeding mainly on roots. Among these PPNs, endoparasitic
PPNs (especially migratory and sedentary groups that we feature
below) cause the most damage as they are in the most intimate
contact with the plant (Jones et al., 2013). The damage threshold
for notorious root-knot nematodes was estimated to be only
between 1 and 8 eggs per cm3 of root material (Greco & Di
Vito, 2009). In addition to forming progenies that can amount to

several hundreds of eggs per only one female, some PPNs have the
highest spreading rate of all plant pests due to their wide host range
of many thousands of plant species (Bebber et al., 2014).
Endoparasitic PPNs use short stylets to penetrate the root and
feed directly from the parenchymal cells in the vascular cylinder
(Jones et al., 2013) (Fig. 1). Sedentary endoparasitic PPNs are
represented by two subgroups: root-knot nematodes and cyst
nematodes. Root-knot nematodes infect various plant species,
including vegetables, grasses, shrubs, and trees. Some root-knot
nematode species have a wider host range than others; for instance,
Meloidogyne incognita is ubiquitous and infects> 3000plant species
including major crops, while Meloidogyne mali parasitizes mostly
woody perennial plants. Cyst nematodes generally have a narrower
host range than root-knot nematodes, but can be devastating to
their host. Heterodera schachtii infections alone can cause 95% of
the annual yield losses in sugar beet (M€uller, 1999).

Sedentary endoparasitic PPNs have different life stages.Only the
second-stage juveniles (J2s) infect plant roots.Once inside the root,
the J2s take symplastic (cyst nematodes) or apoplastic (root-knot
nematodes) routes to reach the permanent sites for feeding. For
example, root-knot nematodes, being unable to break through the
root endodermis, enter the root at the elongation zone of the root
tips and use meristem tissue to pass to the vascular cylinder
(Grundler et al., 1992), while cyst nematodes directly pass through
the endodermis barrier (Holbein et al., 2016). At their destination,
PPNs manipulate defense mechanisms in the host plant, including

Fig. 1 Negative impact of nematodes on plant performance. Direct negative impact (parasitism): Nematode groups that feed on plants are sedentary
endoparasitic nematodes, migratory endoparasitic nematodes, and ectoparasitic nematodes. Root-knot nematodes (RKN) form galls on the roots with
hundreds of eggs in eggmasses.Migratory endoparasitic nematodes reside outside and inside the roots, where theymake necrotic lesions duringmoving and
feeding. Ectoparasitic nematodes reside outside the roots and only insert the stylet within the root, while some of them are vectors of plant viruses. Indirect
negative impact: All plant-parasitic nematodes (PPNs) create wounds for the entrance of secondary pathogens. PPNs and free-living nematodes (FLNs) can
acquire plant-deleterious microorganisms endogenously or on their surface, transport them to the roots, and stimulate the formation of a pathobiome.
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the repression of cell wall barrier defense and changes in diverse
hormonal pathways (Holbein et al., 2016). Nematode feeding
directly damages plant tissue, leading to necrosis and anatomical
alterations of the roots, such as formation of root galls by root-knot
nematodes. Deformations and impaired root growth can result in
reduced water uptake, photosynthesis and plant growth.

Migratory endoparasitic nematodes, including root lesion
nematodes (Pratylenchus spp.) and burrowing nematodes (Rado-
pholus spp.), are also among devastating PPNs (Jones et al., 2013).
All stages of migratory endoparasitic nematodes are mobile and
vermiform. A yellow disease of black pepper caused by Radopholus
similis in 1950s was responsible for the loss of 20 million black
pepper trees in Indonesia (Hubert, 1957). The root lesion
nematode Pratylenchus thornei was reported to cause between
25%and28%of grain yield losses inwheat andbarleywhenpresent
at densities between 150 and 250 nematodes g�1 soil (Fanning
et al., 2020).

In contrast to endoparasitic PPNs, ectoparasitic PPNs use their
long stylets to feed on different root parts without invading the
roots. Economically, they are less important than the endoparasitic
nematodes, especially if they primarily feed on root hairs.However,
they can also cause injuries to the outer layers of cortical tissue
and progressive deterioration of the root system as in case of
Helicotylenchus spp. (Riascos-Ortiz et al., 2020).

Indirect negative impact

Indirectly, PPNs can negatively affect plants via multifaceted
interactions with microorganisms (Fig. 1). Plant-parasitic nema-
todes can form disease complexes with some plant–pathogenic
members of the rhizobiome, including bacteria, fungi, and viruses
(Back et al., 2002; Lamelas et al., 2020). Notable examples are
diseases caused by synergistic interactions betweenMeloidogyne spp.
and Fusarium wilt pathogens, or by Pratylenchus- and Globodera-
Verticillium dahliae complexes (Back et al., 2002). Besides using the
wounds created by PPNs for the entrance into the roots, some
secondary pathogens can also use PPNs for phoresy (being
transportedon thenematodebodywithout harming thenematode).
For instance, some ectoparasitic PPNs, such as taxa in the families
Trichodoridae and Longidoridae, transmit plant-pathogenic
viruses (nepoviruses and tobraviruses) via their stylet when feeding
on roots (Decraemer & Robbins, 2007). Arguably, the most
notorious pest on vineyards is thedagger nematodeXiphinema index
that transmits Grapevine fanleaf virus (Jones et al., 2013). In
addition, some plant-pathogenic rhizobiomes seem to hitchhike on
nematodes (Karimi et al., 2000; Adam et al., 2014). It was also
shown that root-lesionnematodes can impair the symbiosis between
the soybean roots and nitrogen fixing bacteria by impairing the
formation of bacterial nodules (Elhady et al., 2020).

Recent insights into plant–nematode interactions reveal that
root infections by endoparasitic PPNs shift microbial functions
such as enhancing degradation of root compounds that increase
PPN performance and plant damage (Tian et al., 2015; Yergaliyev
et al., 2020). Collectively, PPNs and microorganisms that support
PPN development can be referred to as a pathobiome (Bass
et al., 2019). The precise interactions within this potential

pathobiome and the mechanisms of how nematodes may facilitate
the spread of other pathogens remains unknown. It has been
suggested that the specific rhizobiomes that are transmitted via the
cuticle of endoparasitic PPNs into the roots can protect PPNs
against the PPN-antagonistic root endophytes (Brown, 2018;
Topalovi�c & Vesterg�ard, 2021). Better understanding the
microbial role in the life cycle of PPNs on plants would be pivotal
for disrupting the optimal host conditions for PPN development.

In contrast to PPNs, there is little information onhowFLNsmay
negatively impact plant performance. Several studies suggested that
FLNs can also serve as vectors of plant deleterious microorganisms.
Caenorhabditis elegans and Pristionchus sp. were shown to transmit
soft-rot bacteria endogenously and on their surface to the plant
roots (Nykyri et al., 2013). Diplogaster sp. was reported as a vector
of several plant pathogens including Agrobacterium tumefaciens,
Erwinia amylovora, Ervwinia carotovora, Pseudomonas phaseolicola,
and a phage ofA. tumefaciens (Chantanao, 1969). It was shown that
nematodes feed on these bacteria, which then survive the passage
through the nematode digestive tract and get excreted outside.
More recently, Kanfra et al. (2018) reported that an increased
abundance of some FLNs, such as Acrobeles and Acrobeloides,
and their associated microbes in apple replant diseased field soils,
was associated with more serious disease symptoms (Kanfra
et al., 2018). However, the exact mechanisms behind this
interaction remain to be determined.

Positive impact of nematodes on plant performance

Direct positive impact

Unlike arbuscular mycorrhizal fungi (Bennett & Groten, 2022)
and some nitrogen (N) fixing bacteria (Schroeder et al., 2020) that
directly enhance nutrient levels in plants and increase stress
tolerance, such direct positive relationship between plants and
nematodes likely does not exist.

Indirect positive impact

Indirectly, nematodes can stimulate plant performance by
promoting the activity of plant growth-promoting rhizobiome
(PGPR) including biocontrol agents via root puncturing (PPNs),
microbe-induced carbon sequestration (FLNs), and regulation of
pests and pathogens (FLNs) (Fig. 2). In some cases, the roots
punctured by sedentary endoparasitic nematodes are less attractive
to other herbivores due to nematode-induced systemic defense
responses in plants (Wondafrash et al., 2013; Arce et al., 2017).
However, this happens only in primed plants or plants resistant to
sedentary endoparasitic nematodes and cannot be regarded as a
positive contribution of PPNs to plant defense. There is evidence
that microorganisms that attach to the surface of endoparasitic
PPNs can induce an array of early plant defense responses against
the invading nematodes, including expressions of jasmonic acid/
ethylene- and salicylic acid-signaling genes and an oxidative burst
(Topalovi�c et al., 2020). On the contrary, it was shown that when
the population of a clover cyst nematodeHeterodera trifolii is below
the damage threshold of the clover, it may stimulate the release of
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root exudates and promote microbial growth in the rhizosphere.
This can increase the biomass of the host and neighboring plants
(Denton et al., 1998; Bardgett et al., 1999; Yeates, 1999). We lack
insights into whether this positive PPN-plant link in natural
systems might be applicable in agricultural settings.

Arguably, the largest proportion of positive contributions of
nematodes to the plant come from FLNs. These contributions are
driven by plant inputs in soil (bottom-up regulation) and
multitrophic functions of FLNs, especially as predators of bacteria
and fungi (Thakur&Geisen, 2019). Somepredatory FLNsdirectly
feed on PPNs, but as predatory FLNs hardly grow in high numbers
and feed on other FLNs that may be plant beneficial, they have
never reached a wider application (Khan & Kim, 2007). Micro-
bivorous FLNs and protists feed on the microbiome through
selective and nonselective consumption (Liu et al., 2017). Similar
to protists, FLNs have aC : N ratio similar to that of theirmicrobial
prey that will be lowered in the predator through respiration of
carbon (Ferris et al., 1997). The extra N and N rich compounds
such asNH4–Nare released and available for plant uptake (Ingham
et al., 1985). Zheng et al. (2022) also revealed that nematode
predation induces competitive interactions and a higher diversity of
alkaline phosphomonoesterase (ALP)-producing bacteria and
increased ALP activity in the rhizosphere of rapeseed plants that
enhanced P availability. Another study has shown that selective
predation of fungivorous FLNs can increase the plant colonization
by arbuscular mycorrhizal fungi leading to enhances in plant P and
productivity (Jiang et al., 2020).

Besides predation, bacterial cells and fungal spores in soil can
attach to the surface of FLNs and be transported from nutrient-
poor niches (away from rhizosphere) to nutrient-rich (rhizosphere)
niches through phoresy, where some microorganisms can be
beneficial to plant performance (Horiuchi et al., 2005; Garc�ıa-
S�anchez et al., 2021). However, it is difficult to discern the ingested
and surface-attached FLN-associated microbiomes in their natural
environment (Dirksen et al., 2016), and most studies on microbial
attachment to the nematode surface are performed with PPNs that
do not ingest microorganisms (Elhady et al., 2017; Topalovi�c
et al., 2019; Mohan et al., 2020). Phoresy itself may not involve
high specificity as compared to the attachment of parasites (Elhady
et al., 2017) or nematode-protective microbiomes (Topalovi�c &
Vesterg�ard, 2021), especially if microorganisms quickly detach
from the nematode. Nonetheless, phoresy could play important
roles in transport and activation of plant growth- and plant defense-
promoting microorganisms. There is evidence, which shows that
the plant itself mediates the phoretic events between FLNs and
plant-beneficial bacteria. Horiuchi et al. (2005) have shown that
the legume Medicago truncatula releases specific volatiles, such as
dimethyl sulfide, which attract bacterivorous Caenorhabditis
elegans to roots. Thereby, C. elegans bring nitrogen-fixing Sinorhi-
zobium meliloti endogenously and on their cuticle closer to the
roots. Another study reported that root colonization by the plant-
growth-promoting rhizobacterium Pseudomonas fluorescence
increased in the presence of soil nematodes (Knox et al., 2004).
More targeted approaches such as labeling and microscopically

Fig. 2 Positive impact of nematodes on plant performance. Major positive contributions to plant performance are attributed to free-living nematodes (FLNs)
and their multitrophic position in the soil foodweb. The transfer and activation of plant growth promotingmicroorganisms (a, b): FLNs predate on soil bacteria
and fungi and release nutrients for plant uptake. Predation on plant-parasitic nematodes (PPNs) (c): some FLNs predate on PPNs and reduce their proliferation.
Entomopathogenic nematodes (d): the infective stages of entomopathogenic nematodes receive signals from the plant when endangered by larvae of insect
pests and togetherwith their endosymbiotic bacteria invade the larvae and intoxicate them. Release of root exudates formicrobial growth (e): belowdamage-
threshold populations of some PPNs (e.g. Heterodera trifolii) can promote PGPR by puncturing the roots with their stylets and releasing root exudates. (f)
Induced systemic resistance in plants against secondary pests: in plants resistant to PPNs, PPN attack can trigger plant defense against aboveground and
belowground herbivores.
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tracing microbial hitchhikers both in the rhizosphere and in planta
would provide a more precise mechanistic understanding on the
role FLNs play in an active microbial transport and its role in plant
stimulation.

Although in our review, we exclude entomopathogenic
nematodes from the definition of FLNs, it is important to mention
their indirect positive contribution to plant health. The entomo-
pathogenic rhabditid nematodes, Steinernema spp. and
Heterorhabditis spp. form symbiotic complexes with bacterial
species within the genus Xenorhabdus and Photorhabdus that jointly
kill the insect host after entering its gut (Brivio &Mastore, 2018).
The entomopathogenic nematode-microbial symbiotic complexes
are used commercially against various insect pests (Koppenh€ofer
et al., 2020).

How can FLNs assist plant resistance to pests?

Although FLNs are among the most abundant soil organisms
spanning across all trophic levels, their potential to suppress plant
pests is underexplored beyond the well-known commercial use of
entomopathogenic nematodes. For improved plant performance,
the FLNs in the rhizosphere should promote activities of plant-
beneficial microorganisms and reduce activities of plant-
deleterious microorganisms (‘disease-suppressive FLNs’). One
way to establish ‘disease suppressive FLNs’ in soil is by
employing agricultural practices that facilitate their establish-
ment. There are several empirical examples that display the
correlation between the FLN community response to certain
sustainable agricultural practices and plant disease suppression.
For instance, Masson et al. (2020) have reported that the
presence of Meloidogyne graminicola and some other PPNs in rice
roots decreased 7 yr after converting conventionally managed rice
field to conservation agriculture consisting of no-tillage,

application of mulch and inclusion of cover crops. The reduction
of PPNs in rice roots under conservation agriculture was
correlated with increased microbial richness and diversity and
increased relative abundance of different groups of nematodes,
especially omnivores. In addition, Schmidt et al. (2020) have
shown that a reduced incidence of pea root rot disease under long-
term organic minimum tillage with cover cropping and mulch
application was positively correlated with different nematode-
based indicators including increased nematode abundances, higher
metabolic enrichment, and higher bacterivore carbon footprints.
However, although there are positive links between different
nematode-based indicators and FLN groups with the suppression
of plant pests in previous studies, we need more studies that
combine laboratory assays with field experiments to unravel
whether this relationship is causative and how it can be utilized for
improved plant performance (see the Section Outstanding ques-
tions and solutions).

Another promising mechanism that can be exploited to make
FLNs applicable is their potential to disperse immobile biocontrol
agents (King&Bell, 2022). For that, FLNs could be added together
with PGPR and thereby help their establishment and efficiency.
Having this in mind, we propose how FLNs may assist direct and
indirect PPN suppression via interacting with different micro-
organisms (Fig. 3). For microorganisms that require attachment to
the PPN surface for PPN suppression, FLNs may transport these
microorganisms closer to PPNs and increase the probability of
microbial attachment to the PPN surface and PPN suppression
(Fig. 3a,c). In addition, selective predation of FLNs on certain
rhizobiome taxa can increase the abundance and activity of PPN
antagonists by inhibiting their competitors (Fig. 3b,c). Finally,
FLNs can transport some plant-beneficial rhizobiome taxa with
plant-defense promoting functions closer to the roots and prevent
root invasion by PPNs (Fig. 3d). Thus, through feeding and

Fig. 3 Indirect contributionof free-livingnematodes (FLNs) toplantdefenseagainst plant-parasitic nematodes (PPNs). FLNs transfer antagonists endogenically
andvia their cuticle close toPPNs (a). FLNs consume the competitors of PPNantagonists (b). FLNs increase the attachment of antagonists to the surfaceof PPNs
(c). FLNs mediate the plant response to PPNs in the rhizosphere via modulating the rhizobiome (d).
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phoresy, FLNs may assist PPN suppression by increasing the
abundance and activity of nematode-suppressive rhizobiome taxa.

However, the complexity of soil food webs may still impose
challenges in applying FLNs in situ (Berlinches deGea et al., 2022).
For instance, FLNs are always endangered by their own pathogenic
microorganisms in soil (Katzen et al., 2021). In addition, as
mentioned above, plant pathogens can be transferred or consumed
by FLNs (Chantanao, 1969; Nykyri et al., 2013; Kanfra
et al., 2018). To make it more complex, many microorganisms
protect themselves against predation. For instance, when endan-
gered by nematodes, some bacteria release urea that alters the
feeding lifestyle of the nematode-trapping fungus Arthrobotrys
oligospora from saprophagy to predation, such as on nematodes
(Wang et al., 2014). Other bacteria produce biofilms that reduce
consumption by FLNs (Darby et al., 2002).

More fundamental and applied research should be performed to
understand the multitude of interactions between FLNs, plants
(Box 1), disease-suppressive microbial communities in soil and
applied biocontrol agents (see the Section Outstanding questions
and solutions). This could result in mass-production of specific
FLN taxa that promote disease suppression by interacting with
other soil biodiversity and in their application as ‘bio-additives’
either alone or in a combination with biocontrol agents.

Conclusions

Soil nematodes may positively and negatively affect plant
performance. Plant-parasitic nematodes mostly negatively affect

plant performance by direct feeding as endoparasites and
ectoparasites and as facilitators of secondary pathogens in disease
complexes and disease vectors. In turn, FLNs commonly indirectly
stimulate plant performance via interactions with other soil
biodiversity, especially bacteria and fungi. Via microbial feeding
and phoresy, FLNs enhance microbial activity that might lead to
increased carbon sequestration, nutrient cycling and plant growth.
Furthermore, entomopathogenic FLNs are commercially available
antagonists of insect pests.

However, the role of FLNs as plant beneficial organisms such as
their role in suppressing pests remains poorly known despite
evident links reviewed here, and therefore not exploited at all in
applied products. This calls for an urgent need to expand ecological
work on soil nematodes, particularly on their potential as plant
promoting agents. A visionary way forward in using FLNs in
enhancing plant performance in agricultural systems is to promote
FLNs through adapted agricultural practices that are plant
beneficial, either by catalyzing soil nutrient cycling or by
manipulating the soil microbiome in favor of plant beneficial
rather than pathogenic microorganisms. Another way can be in the
application of FLNs as biological agents that shape themicrobiome
in a plant-enhancing manner. In any case, we are convinced that
FLNs are key elements driving plant performance that should be
more closely considered in both fundamental and applied research.

Outstanding questions and solutions

(1) How can we implement a more positive view on nematodes as
plant promoting agents that extends the dominating negative view
driven by PPNs?
Designing and conducting functional studies that focus on FLNs
beyond simple compositional analyses.
(2) Which levels of PPNs can be beneficial for host and non-host
plant species and under which conditions?
PPN-centered studies should involve diverse host and non-host
plant species and varying levels of PPNs to test plant performance.
(3) How do we bridge scientific insights into the positive role of
nematodes for plant performance to application?
Replicated field experiments to study nematodes in response to
other management practices and identifying key nematode taxa
linked to plant performance.
(4) What are the links between FLNs and plant diseases?
Screening the effects of diverse FLN species with disease-causing
microorganisms on different plant species in the greenhouse
experiments.
(5) Which methods are best to examine the mechanisms under-
lying plant performance increases by FLNs?
Integrative methods including laboratory, greenhouse and field
experiments followed by microscopy, transcriptomics, metage-
nomics and metabolomics to study the specificity and mechanisms
of plant-FLN-microbe associations.
(6) How to find the most effective nematode-microbial species
combinations that enhance plant performance?
Targeted cultivation and screening of the potential plant species-
and genotype-specific FLN-microbial combinations that promote
plant performance.

Box 1 Molecular aspects of plant-FLN links

The links between PPN recognition and establishment in plants have
been extensively studied and reviewed due to their well explored
direct negative impact on plant performance (Holbein et al., 2016;
Gheysen & Mitchum, 2019; Siddique et al., 2022). On the other
hand, there are fewer studies on theprecisemolecularmechanismsof
FLN-plant interactions. For example, ascarosides are signaling
molecules widely conserved among nematodes, but their role in
nematode recognition by the plant has only been studied for PPNs
(Choeet al., 2012). Plants can readandedit thechemical composition
of a specific ascaroside (asc#18), sometimes leading to a repulsive
response against PPN infection (Manoslava et al., 2015; Manohar
et al., 2020). For FLNs, the role of ascarosideswas determinedmostly
in relation to behavioral cues, such as mating and dispersal (Kaplan
et al., 2020) or in relation to other nematode groups, but not in their
relation to the plant. For example, some species of root-knot
nematodes are repelled by ascarosides from C. elegans under
laboratory conditions (Kaplanet al., 2012), and itwouldbe important
to study whether this repulsion is partly plant-mediated. Yet, plants
might ‘cry forhelp’ for entomopathogenicFLNswhenendangeredby
insect larvae by producing sesquiterpene (E)-b-caryophyllene (Ebc)
that attract nematodes close to the roots and larvae (Rasmann
et al., 2005). Conversely, some compounds, such as specific
metabolites of benzoxanoids synthesized by maize plants, act as
general repellents against some FLN taxa (Sikder et al., 2022). Future
studies should be aimed at understanding how plants respond to the
assembly of FLN communities and how it affects plant performance
(Section Outstanding questions and solutions).

New Phytologist (2023) 238: 2305–2312
www.newphytologist.com

� 2023 The Authors

New Phytologist� 2023 New Phytologist Foundation

Review Research review
New
Phytologist2310

 14698137, 2023, 6, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18925 by W

ageningen U
niversity and R

esearch B
ibliotheek, W

iley O
nline L

ibrary on [23/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(7) How to bring FLNs as biological agents to the market?
Standardization of protocols for a large-scale multiplication and
application of FLN products in the field as exemplified by
entomopathogenic nematodes.
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