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Abstract 

Background  Single-step genomic best linear unbiased prediction (ssGBLUP) models allow the combination of 
genomic, pedigree, and phenotypic data into a single model, which is computationally challenging for large geno-
typed populations. In practice, genotypes of animals without their own phenotype and progeny, so-called genotyped 
selection candidates, can become available after genomic breeding values have been estimated by ssGBLUP. In some 
breeding programmes, genomic estimated breeding values (GEBV) for these animals should be known shortly after 
obtaining genotype information but recomputing GEBV using the full ssGBLUP takes too much time. In this study, first 
we compare two equivalent formulations of ssGBLUP models, i.e. one that is based on the Woodbury matrix identity 
applied to the inverse of the genomic relationship matrix, and one that is based on marker equations. Second, we 
present computationally-fast approaches to indirectly compute GEBV for genotyped selection candidates, without 
the need to do the full ssGBLUP evaluation.

Results  The indirect approaches use information from the latest ssGBLUP evaluation and rely on the decomposition 
of GEBV into its components. The two equivalent ssGBLUP models and indirect approaches were tested on a six-trait 
calving difficulty model using Irish dairy and beef cattle data that include 2.6 million genotyped animals of which 
about 500,000 were considered as genotyped selection candidates. When using the same computational approaches, 
the solving phase of the two equivalent ssGBLUP models showed similar requirements for memory and time per itera-
tion. The computational differences between them were due to the preprocessing phase of the genomic information. 
Regarding the indirect approaches, compared to GEBV obtained from single-step evaluations including all genotypes, 
indirect GEBV had correlations higher than 0.99 for all traits while showing little dispersion and level bias.

Conclusions  In conclusion, ssGBLUP predictions for the genotyped selection candidates were accurately approxi-
mated using the presented indirect approaches, which are more memory efficient and computationally fast, com-
pared to solving a full ssGBLUP evaluation. Thus, indirect approaches can be used even on a weekly basis to estimate 
GEBV for newly genotyped animals, while the full single-step evaluation is done only a few times within a year.
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Background
The original single-step genomic best linear unbiased 
prediction (ssGBLUP) genomic evaluation studies [1, 2] 
presented a theoretically well-justified model for genetic 
evaluation, which allows the inclusion of pedigree and 
phenotypes of genotyped and non-genotyped animals. 
Practical implementation of ssGBLUP has met both com-
putational and modelling challenges (e.g., [3, 4]). Several 
approaches have been presented to allow efficient mod-
elling and solving of ssGBLUP (e.g., [5–8]). In practice, 
estimated breeding values for dairy and beef cattle are 
computed three to four times for a trait or trait group 
during a year, but genotypes for newly born animals 
become available almost continuously throughout the 
year. Because the computation of the full data ssGBLUP 
predictions is demanding, computationally efficient cal-
culation of breeding values for these newly genotyped 
animals is desirable. We will use the term genotyped 
selection candidate for a newly genotyped animal with-
out progeny and own phenotype and for which we would 
like to compute genomic predictions.

Legarra and Ducrocq [9], Fernando et  al. [6], Liu 
et  al. [7], and Taskinen et  al. [10] presented single-step 
approaches, which are hereinafter denoted ssSNPBLUP 
where the mixed model equations (MME) include single 
nucleotide polymorphism (SNP) effects. Solutions of the 
SNP effects allow a simple approach to estimate GEBV 
for genotyped selection candidates without the need to 
solve the full updated MME. Lourenco et  al. [11] pre-
sented a similar approach for ssGBLUP where the SNP 
effects are estimated using a formula derived from a 
GBLUP model. Pimentel et al. [12] presented and tested 
approximate approaches for the prediction of selection 
candidates in ssGBLUP, which were based on SNP-BLUP 
or GBLUP and facilitated by including the so-called 
residual polygenic (RPG) effect. Liu et al. [13] presented 
formulas for predicting breeding values of genotyped 
selection candidates when solutions from ssSNPBLUP 
were available and the model had an RPG effect.

Prediction of breeding values of genotyped selection 
candidates can be integrated with the existing computa-
tional approaches used for solving the full data ssGBLUP. 
Mäntysaari et al. [8] presented an efficient computational 
approach with T-factoring named ssGTBLUP for single-
step genomic evaluations. This approach assumes that the 
genomic relationship matrix has the form G = ZZ′ + C , 
where Z is a centered and scaled genotype marker matrix 
and C is a non-singular easily invertible regularization 
matrix. The main computational step in solving the MME 
of ssGBLUP by an iterative method is the calculation of 
G−1 times a vector product in each iteration. In ssGT-
BLUP, this product was shown to require two products 
involving a rectangular matrix of size m by n where m is 

the number of SNPs and n is the number of genotyped 
animals. Consequently, computational work increases 
linearly with the number of genotyped animals n instead 
of quadratically as in regular ssGBLUP. According to 
Mäntysaari et al. [3], absorption of the SNP effects in the 
MME of the ssSNPBLUP model proposed by Liu et al. [7] 
leads to ssGTBLUP where C is the pedigree-based rela-
tionship matrix among genotyped animals multiplied by 
the proportion of RPG effect.

In this study, we present a unified model for ssGTB-
LUP [8] and ssSNPBLUP [7], which extends the general 
regularization matrix C used in ssGTBLUP to be inte-
grated in ssSNPBLUP. Furthermore, we present efficient 
indirect approaches for both ssGTBLUP and ssSNPBLUP 
models that allow the prediction of GEBV for the geno-
typed selection candidates under different regularization 
matrices. We investigate and compare the performance 
of the ssGTBLUP, ssSNPBLUP and indirect approaches 
by using a multi-trait model with more than 2.6 million 
genotyped animals.

Methods
ssGTBLUP and ssSNPBLUP
We investigated two computational approaches for 
single-step genomic evaluation. First, we use a general 
notation to describe the ssGTBLUP approach proposed 
by Mäntysaari et  al. [8]. Second, ssGTBLUP is used to 
derive the ssSNPBLUP approach by Liu et al. [7]. In spite 
of apparent differences in the MME of these approaches, 
we show how, in theory, they are computationally similar.

The ssGTBLUP approach
A standard univariate mixed model for ssGBLUP can be 
written as:

where y is the vector of records, b is the vector of fixed 
effects, un is the vector of additive genetic effects for 
the non-genotyped animals, ug is the vector of additive 
genetic effects for the genotyped animals, and e is the 
vector of residuals. The matrices X , Wn , and Wg relate 
records in y to the corresponding effects.

We assume normally distributed additive genetic 
effects u′ =

[
u′n u′g

]
 with a mean zero and a covariance 

structure matrix H , 
[
un
ug

]
∼ MVN

(
0,Hσ 2

u

)
, where σ 2

u is 

the additive genetic variance and H is the additive genetic 
covariance matrix defined below. Without loss of gener-
ality, we assume an independent and identical normal 
distribution for the residual effects e ∼ MVN

(
0, Iσ 2

e

)
, 

(1)y = Xb+

[
Wn 0
0 Wg

][
un
ug

]
+ e,
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where I is the identity matrix and σ 2
e  is the residual 

variance.
In ssGTBLUP [8], the genomic relationship matrix is 

assumed to have the form GC = Gm + C, where Gm is 
a function of genomic data and C is an invertible regu-
larization matrix. We define the genomic part as having 
the form Gm = ZBZ′, where Z = (M − P) is an n by m 
matrix of centered marker genotypes with n being the 
number of genotyped animals and m being the number 
of SNPs, M is an n by m matrix of SNP genotypes, P is 
an n by m centering matrix and B is an m by m diagonal 
scaling matrix. The centering matrix has often the form 
P = 21np

′ where the vector p has m allele frequencies. 
The marker genotype matrix M has counts of the first 
allele, such that the homozygous genotype for the second 
allele has a value of 0, the heterozygous genotype has 1, 
and the homozygous genotype for the second allele has 2. 
It is recommended to use base population allele frequen-
cies in the vector p [14]. In VanRaden’s [14] Method 1, 
the scaling matrix B is equal to BVR = I 1

k with the scal-
ing constant k = 2

∑m
i=1pi(1− pi) . The linear system of 

MME for ssGTBLUP is [8]:

where � =
σ 2
e

σ 2
u
 , X′ =

[
X′
n X′

g

]
 , H

−1 =

[
H

nn
H

ng

H
gn

H
gg

]

= A
−1 +

[
0 0

0 G
−1

C − A
−1
gg

]
 , A–1 is the inverse of the pedi-

gree-based relationship matrix, and Agg is the pedigree-
based relationship matrix among the genotyped animals. 

Matrix A−1 =

[
Ann Ang

Agn Agg

]
 is denoted similarly as for 

H−1 . The inverse genomic relationship matrix can be 
expressed using the Woodbury matrix identity [8] as:

where K = Z′C−1Z+ B−1 is a symmetric positive defi-
nite matrix.

Solving MME (2) iteratively using the preconditioned 
conjugate gradient (PCG) approach requires computing 
the product of the MME coefficient matrix times a vec-
tor, say v . When the number of genotyped animals is 

(2)




X′X X′
nWn X′

gWg

W′
nXn W′

nWn +Hnn
� Hng

�

W′
gXg Hgn

� W′
gWg +Hgg

�






�b
�un
�ug


 =




X′y
W′

ny
W′

gy


,

G−1
C =

(
ZBZ′ + C

)−1
= C−1 − C−1ZK−1Z′C−1

,

large, most of the computing time for this product is due 
to G−1

C v . Thus, it is important that the product C−1v is 
fast, especially for many genotyped animals. Mäntysaari 
et al. [8] presented two previously proposed forms for C 
that allow fast computation of C−1v. First, C = εI, where 
ε is a small number (e.g., 10–2). Second, C = wAgg where 
w is the proportion of polygenic variance not accounted 
for by the markers, i.e., the RPG proportion. When 
C = εI, the K matrix becomes K = 1

ε
Z′Z+ B−1, with 

B = BVR = I 1
k
. When C = wAgg , the K matrix becomes 

K = 1
wZ

′A−1
gg Z+ B−1. Furthermore, the proportion 

( 1− w ) of additive genetic variance accounted for by the 
markers must be included in the scaling matrix B , i.e., 
B = (1− w)BVR = I 1−w

k  when Gm is computed following 
VanRaden’s [14] Method 1.

The first proposition of the ssGTBLUP approach 
[8] (hereafter called original ssGTBLUP approach) 
was derived to give the product G−1

C v of form 
G−1
C v =

(
C−1 − T′

C
TC

)
v, where TC = L−1

C
Z′C−1, 

with the lower triangular matrix LC being the Cholesky 
decomposition of K , i.e., LCL′C = K. Using double-preci-
sion arithmetic, software that rely on this original ssGT-
BLUP approach will use 8  nm bytes for storing TC in 
memory.

However, instead of computing the product 
G−1
C v =

(
C−1 − T′

C
TC

)
v , a computationally more effi-

cient approach proposed by Mäntysaari et al. [3] can be 
to use the original form explicitly, as follows (hereafter 
called component-wise ssGTBLUP approach):

where the matrix times vector products are calculated 
from the innermost brackets to outward, and the back-
slash ( \ ) is an operator indicating that the system of equa-
tions is solved by forward or backward substitutions. This 
approach allows the computations that involve Z to use 
M , which can be efficiently stored in a compressed form 
to take less memory than TC [3].

From ssGTBLUP to ssSNPBLUP
The MME (2) can be reformulated using an equivalent 
model by appending the vector of estimated SNP marker 
effect solutions ĝ to the vector of solutions of MME (2) 
[7]. An extended MME form can be written as:

G−1
C v = C−1v − C−1

(
Z
(
LC\

{
L′C\

[
Z′
(
C−1v

)]}))
,

(3)




X′X X′
nWn X′

gWg 0

W′
nXn W′

nWn + Ann
� Ang

� 0

W′
gXg Agn

� W′
gWg +

�
Agg − A−1

gg + C−1
�
� −C−1Z�

0 0 −Z′C−1
� K�







�b
�un
�ug
�g


 =




X′y
W′

ny
W′

gy

0


,
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where the vector ĝ has the estimated SNP effect solu-
tions . The extended MME (3) is the same as that derived 
for the ssSNPBLUP when the RPG regularization matrix 
C = wAgg is used.

We can denote the inverse of the covariance structure 
in MME (3) as:

Following Liu et  al. [7], we have Var




un
ug
g


 = HLσ

2
u 

with HL defined as:

This is the same definition of the (co)variance structure 
matrix used in Christensen and Lund [2] when C = wAgg 
in HL. When C = 0 in HL, we have the same definition of 
the (co)variance structure matrix that is used in Legarra 
et al. [15] and Fernando et al. [6]. Thus, on the one hand, 
changes in the regularization matrix C affect the part of 
the genetic covariance not including the SNP effects. On 
the other hand, changes in the scaling matrix B affect only 
the marker effect (co)variances. Furthermore, it should 
be noted that the upper left two by two block of matrices 
in HL is the same as the H of ssGBLUP. This further illus-
trates the auxiliary nature of the vector of SNP effects g 
in the described ssSNPBLUP. In other words, the breed-
ing values in ssGBLUP and ssSNPBLUP have the same 
covariance structure, which have been augmented with 

H−1
L =



Ann Ang 0

Agn Agg − A−1
gg + C−1 −C−1Z

0 −Z′C−1 K


.

HL =



Ann + AngA

−1
gg

�
GC − Agg

�
A
−1
gg Agn AngA

−1
gg GC AngA

−1
gg ZB

GCA
−1
gg Agn GC ZB

BZ
′
A
−1
gg Agn BZ

′
B




=



Ann + AngA

−1
gg

�
(Gm + C)− Agg

�
A
−1
gg Agn AngA

−1
gg (Gm + C) AngA

−1
gg ZB

(Gm + C)A−1
gg Agn (Gm + C) ZB

BZ
′
A
−1
gg Agn BZ

′
B




=



AngA

−1
gg GmA

−1
gg Agn AngA

−1
gg Gm AngA

−1
gg ZB

GmA
−1
gg Agn Gm ZB

BZ
′
A
−1
gg Agn BZ

′
B




+



Ann − AngA

−1
gg Agn 0 0

0 0 0

0 0 0




+



AngA

−1
gg CA

−1
gg Agn AngA

−1
gg C 0

CA
−1
gg Agn C 0

0 0 0


.

the marker covariances in ssSNPBLUP. It is worth noting 
that MME (3) cannot be derived for C = 0 because C = 0 
is not invertible.

Indirect prediction of GEBV for genotyped selection 
candidates
Computation of GEBV for the genotyped selection can-
didates, i.e., genotyped animals without own and prog-
eny records, using solutions from the previous ssGBLUP 
evaluation facilitates earlier obtention of selection can-
didate predictions than waiting for the next full data 
genetic evaluation. Furthermore, to reduce the compu-
tational costs of the single-step genomic evaluations, it 
can be of interest [16] to ignore the genotypes of animals 

without own and progeny records and to predict indi-
rectly their GEBV afterwards by using the solutions of 
the latest single-step genomic evaluation.

Computation of indirect GEBV predictions can use the 
decomposition of GEBV u′ =

[
u′n u′g

]
 corresponding to 

the (co)variance structure matrix HL , as follows:

where

(4)
[
un
ug

]
=

[
AngA

−1
gg Zg

Zg

]
+

[
ǫ

0

]
+

[
dn
dg

]
,

 
[
AngA

−1
gg Zg

Zg

]
∼ MVN

(
0,

[
AngA

−1
gg GmA

−1
gg Agn AngA

−1
gg Gm

GmA
−1
gg Agn Gm

]
σ 2
u

)
, 

ǫ ∼ MVN
(
0,
(
Ann − AngA

−1
gg Agn

)
σ 2
u

)
 is the vector of 

imputation residuals, and
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 d =

[
dn
dg

]
∼ MVN

(
0,

[
AngA

−1
gg CA−1

gg Agn AngA
−1
gg C

CA−1
gg Agn C

]
σ 2
u

)
 is 

a vector that corresponds to the part of the genetic effects 
not explained by the genomic data.

If C = εI, the d vector is usually neglected. However, 
when C = wAgg , the d vector corresponds to the RPG 
effects [2] which account for the genetic variation that is 
not accounted for by the markers. Thus, for the genotyped 
animals, the GEBV can be decomposed into two compo-
nents: the direct genetic value due to the marker effects, 
Zg, and the estimated breeding value due to the RPG 
effects dg [2, 12, 17].

Based on Eq. (4), the GEBV of genotyped selection can-
didates can be predicted using already computed GEBV 
( ̂u ) and SNP solutions ( ̂g ) from ssSNPBLUP. GEBV of the 
genotyped selection candidates consist of two components: 
the direct genetic value due to the marker effects (i.e., Zcĝ ) 
and the estimated breeding value due to the RPG effects 
(i.e., d̂c ). Thus, the GEBV of the genotyped selection can-
didates can be computed as ûc = Zcĝ + d̂c . When ssGT-
BLUP has been used, the marker solutions ĝ can be easily 
calculated in a post-processing step after solving the MME 
(2) by using the Eq. (17) in Liu et al. [7]:

The computation of GEBV for the selection candidates 
( ̂uc ) is straightforward when the model has no RPG 
effects (i.e., dc = 0 ) or if the effect of the regularization 
matrix C can be ignored (i.e., dc ≈ 0 ). For these cases, 
the GEBV of the genotyped selection candidates can be 
directly computed using their centered genotypes and 
the estimated marker effect solutions, as ûc = Zcĝ.

Efficient computation of the dc effects
While the direct genetic values Zcĝ due to the marker 
effects can be easily computed for the genotyped selec-
tion candidates, the estimated breeding values due to the 
RPG effects d̂c are not directly available from the solutions 
of the latest single-step evaluation, and must therefore be 
computed. When C = wAgg , Liu et al. [13] showed that the 
RPG effects for the genotyped selection candidates can be 
computed as:

where Acg is the pedigree-based relationship matrix 
between the genotyped selection candidates and the gen-
otyped animals already included in the latest single-step 
evaluation, and the RPG effects for the genotyped ani-
mals are computed as: d̂g = ûg − Zĝ.

The computation of d̂c using Eq.  (6) can be done using 
the Eq. (22) of Fernando et al. [6] as follows:

(5)ĝ = K−1Z′C−1ûg .

(6)d̂c = wAcgG
−1
C ûg = AcgA

−1
gg d̂g ,

where 



Aoo Aog Aoc

Ago Agg Agc

Aco Acg Acc


 =



Aoo Aog Aoc

Ago Agg Agc

Aco Acg Acc



−1

 is the 

inverse of the pedigree relationship matrix partitioned 
among the genotyped animals ( g ) included in the latest 
single-step genomic evaluation, the selection candidates 
( c ) and the non-genotyped ancestors ( o ) of the genotyped 
animals and selection candidates, and so is the vector of 
estimated breeding values due to the RPG effects for 
non-genotyped ancestors of the genotyped animals and 
selection candidates.

To avoid the solving of a system involving the matrix [
Aoo Aoc

Aco Acc

]
 , the computation of d̂c using Eq.  (6) can be 

done efficiently in two steps. First, calculate x = A−1
gg d̂g 

for which efficient sparse matrix computations can be 
used [18]. Second, d̂c = Acgx can be computed using the 
algorithm of Colleau [19] that performs the full pedigree-
based relationship matrix times vector product, i.e. 

sn
�dg
�dc


 =



Ann Ang Anc

Agn Agg Agc

Acn Acg Acc





0
x
0


.

The computation of d̂c = AcgA
−1
gg d̂g can be further 

simplified by splitting it into separate computations for 
two sets of animals. In the computation of d̂c = Acgx 
using the algorithm of Colleau [19], it can be noted that 
d̂c depends only on the estimated breeding values due to 
the RPG effects of the genotyped animals and all their 
ancestors. Thus, first, the vector of estimated breeding 
values due to RPG for the non-genotyped ancestors of 
the genotyped animals, d̂ancg , can be computed as:

where the matrix 
[
Aancg ,ancg Aancg ,g

Ag ,ancg Agg

]
 is the inverse of the 

pedigree relationship matrix among the genotyped ani-
mals included in the latest single-step genomic evalua-
tion and all their ancestors ( ancg ). Second, the vector of 
estimated breeding values due to RPG for the genotyped 
selection candidates, d̂c , can be computed by calculating 
the parent average of the estimated breeding values due 
to RPG from the oldest to the youngest animal included 
in the pedigree of the genotyped selection candidates.

The presented formulas are based on derivations from 
the MME of the ssSNPBLUP model and therefore yield 
exact solutions. We introduce a regression-based 
approach for the RPG part of GEBV d̂c that allows an 
even simpler computational approach than the one 

[
so

d̂c

]
= −

[
Aoo Aoc

Aco Acc

]−1[
Aog

Acg

]
d̂g ,

d̂ancg = −
(
Aancg ,ancg

)−1
Aancg ,g d̂g ,
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presented. The RPG term d̂c can be estimated by the 
mean of parent RPG effect values. The parent average 
uses d̂g for the genotyped animals but values from a 
regression equation are used for the non-genotyped par-
ents. Thus, for the genotyped parents, the RPG part for 
the genotyped reference animals is computed as 
d̂g = ûg − Zĝ . For the non-genotyped parents, d̂n is 
approximated by d̃n = â+ b̂ûn where the coefficients â 
and b̂ are estimated by linear regression of d̂g on ûg , that 
is d̂g = â+ b̂ûg . Thus, d̂c is approximated by a parent 
average using values in the vector d̃ =

[
d̃n

′
d̂′g

]′
 . Then, 

GEBV of selection candidates can be calculated as 
ûc = Zcĝ + d̃c.

Consideration of other effects in the indirect prediction 
of GEBV
In addition to the direct genetic values due to the marker 
effects ( Zcĝ ) and the estimated breeding values due to 
the RPG effects ( ̂dc ) when C = wAgg , the GEBV may 
also include other effects, such as the contributions of a 
covariate that models the difference from the pedigree 
base to the genomic base (hereinafter called J-factor; 
[20–22]), or the contributions of genetic groups in the 
model. For example, if a J-factor is fitted in the model, 
Eq. (4) for GEBV becomes:

where 1 is a vector of 1s, and µ is the covariate that mod-
els the difference from the pedigree base to the genomic 
base. The GEBV for the genotyped selection candidates 
can therefore be computed as:

[
uj,n
uj,g

]
=

[
−AngA

−1
gg

−I

]
1µ+

[
AngA

−1
gg

I

]
Zg +

[
ǫ

0

]
+

[
dn
dg

]
,

ûj,c = −1cµ̂+ Zcĝ + d̂g ,

with µ̂ being the solution estimated in the latest single-
step genomic evaluation. This approach can also be used 
for genetic groups.

It is worth noting that our proposed indirect approach 
is similar to previously proposed indirect approaches 
(e.g., [11, 12, 23]). However, our proposed approach is 
different in the sense that all GEBV components are com-
puted without approximation for the indirect computa-
tion of GEBV for selection candidates. Further details on 
the similarities and differences between our approach 
and previously proposed approaches can be found in the 
"Discussion" section.

Data and models
The single-step genomic evaluations and indirect predic-
tion approaches were tested using data from the routine 
six-trait calving-difficulty evaluation for Irish dairy and 
beef cattle performed by Irish Cattle Breeding Federation 
(ICBF; Ireland) in March 2022. The single-step genomic 
evaluations were based on the same multi-trait animal 
model and variance components as the current official 
routine breeding value evaluation described in more 
detail in Evans et al. [24].

After extraction and editing, the data file included 
16.59 million data records (across the 6 traits), and the 
pedigree included 26.46 million animals. The number 
of records per trait is in Table 1. The genotypes of 2.61 
million genotyped animals included 47,006 SNPs on 29 
bovine autosomes, with a minor allele frequency higher 
or equal to 0.01. The genotype data was from 30 differ-
ent arrays ranging in size from 3 to 850K SNPs. How-
ever, 91% were from the International Beef and Dairy 
(IDB) customised chip with an array density between 50 
and 54K and within those IDB chips 55% were Illumina 
Bead Chip technology (Illumina, San Diego, USA) and 
the remaining 45% were Thermofisher Scientific Micro-
array technology (Thermofisher Scientific Waltham, 
MA, USA). Missing SNP genotypes were imputed using 
FImpute [25] to a 50K SNP set based on version 3 of the 
IDB chip. Among the 2.61 million genotyped animals, 
457,171 genotyped animals were without their own and 
progeny records. The remaining 2.16 million genotyped 
animals had either their own records or descendants 
with records.

The six-trait linear mixed effects model included 
random effects (additive direct and maternal genetic, 
contemporary group, and residual effects), fixed co-
variables for direct breed proportion (n = 22), dam 
breed proportion (n = 22), specific heterosis coeffi-
cients (n = 13), age of dam (primiparous), age nested 
with parity (multiparous), and fixed cross-classified 
effects for birth year and sex of calf. For all single-step 
genomic evaluations, an additional J-factor, which is 

Table 1  Number, means and standard deviations (SD) of 
records, and heritabilities for the six traits

1 h2
d
 = heritability of the direct additive genetic effect

2 h2m = heritability of the maternal additive genetic effect

Trait Number of records Mean SD h
2

d
h
2
m

1 2,099,743 1.30 0.60 0.13 0.04

2 7,085,063 1.20 0.50 0.07 0.02

3 984,905 1.39 0.71 0.16 0.08

4 6,255,183 1.26 0.57 0.14 0.08

5 2,280,213 3.16 0.68 0.19 0.05

6 232,582 41.51 7.94 0.14 0.03
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a fixed covariable that models the difference from the 
pedigree base to the genomic base, was fitted separately 
for the direct and maternal genetic effects of each trait 
[26]. A single J-factor was fitted for all breeds following 
Aldridge et  al. [27]. The genotype matrix was centred 
using observed allele frequencies computed over all 
breeds.

Study design
Single‑step genomic evaluations
The ssGTBLUP (hereinafter called ssGTABLUP when 
an RPG effect is fitted) and ssSNPBLUP models used an 
RPG effect. The RPG proportion was equal to w = 0.20 . 
The two models were used to compute GEBV from a full 
and a reduced dataset. First, the models were solved with 
the full dataset that included all phenotypic and genomic 
information, i.e., 2.61 million genotypes (i.e., includ-
ing genotypes of the selection candidates). Second, both 
models were solved with a reduced dataset that did not 
include genotypes of the selection candidates, i.e., there 
were 2.16 million genotypes. Thus, the reduced dataset 
analysis included all phenotypic information, but only 
the genotypes of animals with their own records or with 
descendants (across all generations) with records. For 
both datasets, the pedigree was extracted for the pheno-
typed animals and the selected set of genotyped animals.

All models were solved with the software MiXBLUP 3.0 
[28] using the solver hpblup, which used the PCG method 
for solving the MME. The convergence efficiency of the PCG 
method relies mainly on the so-called preconditioner P . In 
this study, for both ssGTABLUP (MME (2)) and ssSNPBLUP 
(MME (3)), the submatrix of P corresponding to the fixed 
effects, Pff  , was equal to Pff = X′X + diag

(
X′X

)
∗10−4 

with diag
(
X′X

)
 corresponding to the diagonal elements of 

X′X . This addition to the diagonal elements ensures that Pff  
is positive definite, as required for its Cholesky decomposi-
tion. The submatrix of P corresponding to the random 
effects, Prr , included for both ssGTABLUP and ssSNPBLUP 
a block-diagonal matrix with blocks corresponding to equa-
tions for different traits within a level (e.g., an animal). While 
the original and component-wise ssGTABLUP approaches 
have the same coefficient matrix (MME (2)), the block-diag-
onal matrix of Prr corresponding to ug were different for 
these two approaches because the contributions of the diag-
onal elements of 1

w2A
−1

gg
ZK−1Z′A−1

gg  (being a term of 

G−1
a − A−1

gg =

(
1
w − 1

)
A
−1

gg
− 1

w2A
−1

gg
ZK−1Z′A−1

gg  ) were 

not computed and, thus, were not available for inclusion in 
for the component-wise ssGTABLUP approach. For ssSN-
PBLUP, it is worth noting that, for the SNP effects, the i-th 
diagonal element of Z′A−1

gg Z of K = 1
wZ

′A−1
gg Z+ B−1 was 

approximated by 2pi(1− pi)n [29], and that a second-level 

diagonal preconditioner was also included, as in Vandenplas 
et al. [29].

The software MiXBLUP supports reading genomic 
information in the Plink 1 binary form [30], and for both 
the full and reduced datasets the genotypes were pro-
vided in this form. Both the original and component-wise 
approaches for solving ssGTABLUP with an RPG effect 
are implemented in MiXBLUP. Briefly, for the origi-
nal ssGTABLUP approach, the solver hpblup requires 
a matrix equal to Ta = 1

wL
−1Z′A−1

gg  with L being the 
Cholesky decomposition of K = 1

wZ
′A−1

gg Z+ B−1 . The 
Ta matrix was computed using double-precision arith-
metic with the program calc_grm [31], i.e., Ta used 8nm 
bytes. In the solving phase, Ta was stored in the random 
access memory (RAM) to allow efficient parallel compu-
tations using multi-threading. For the component-wise 
ssGTABLUP approach, the solver hpblup only requires 
L and M , both stored in memory. The marker matrix 
M is stored in RAM using the Plink 1 binary form that 
requires nm/4 bytes [26].

For both ssGTABLUP approaches, the SNP effects 
ĝ were computed by the solver after the end of the 
PCG iterative process using Ta as ĝ = L−1′Taûg 
(derived from Eq.  (5)) for the original approach, and 
as ĝ = 1

wL
−1′L−1Z′A−1

gg ûg for the component-wise 
approach. This strategy allows the computation of SNP 
effects in less time than needed for one PCG iteration.

Similarly to the component-wise ssGTABLUP 
approach, the ssSNPBLUP approach allows direct use of 
the marker matrix M for the multiplication of the coef-
ficient matrix by a vector in MME (3). Consequently, for 
solving the ssSNPBLUP model, the marker matrix M was 
also stored in the RAM using the Plink 1 binary form 
[26].

The convergence criterion for the PCG iteration was 
the relative difference between the left- and right-hand 
sides of the MME:

where CMME is the coefficient matrix of the MME, s[k] is 
the vector of solutions at round k , and rMME is the right-
hand side vector. For all evaluations, convergence was 
assumed to be reached when Cr < 10–7.

Indirect approaches
Four approaches for computing indirectly GEBV for the 
genotyped selection candidates using solutions from 
the reduced data single-step evaluations were com-
pared with those calculated in the full data single-step 
evaluations. The indirect prediction approaches were: 

Cr =

√(
CMMEs[k] − rMME

)′(
CMMEs[k] − rMME

)

rMME
′rMME

,
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(1) the parent average (PA): mean of parent GEBV com-
puted in a previous single-step approach; (2) the direct 
genomic values (DGV) computed as Zcĝ , using esti-
mated SNP effects ĝ from the reduced data single-step 

evaluation; (3) the regression approach (REG): GEBV 
computed as ũj,c = −1µ̂+ Zcĝ + d̃c with d̃c being 
approximated using the regression approach; and (4) 
exact computation of GEBV (that is, of genomic and 

Table 2  Computational statistics of ssGTABLUP and ssSNPBLUP using the full and reduced datasets

Neq = number of equations in millions; RAM = software peak random access memory (RAM) defined as the peak resident set size (VmHWM) obtained from the Linux/
proc virtual file system; �min = smallest effective eigenvalue of the preconditioned coefficient matrix; �max = largest effective eigenvalue of the preconditioned 
coefficient matrix; Time/iteration = Average wall clock time per PCG iteration (expressed in seconds); Total time = wall clock time of the MiXBLUP software expressed in 
hours
a Time = wall clock time of the program calc_grm expressed in hours
b Time = wall clock time of the solver expressed in hours

Computational statistic Original ssGTABLUP Component-wise ssGTABLUP ssSNPBLUP

Full Reduced Full Reduced Full Reduced

Ta matrix (or its components) 1004 832 1000 829 – –

 RAM 31.0 23.6 22.3 18.1 – –

 aTime (h)

Neq 372 366 372 366 372 367

Number of PCG iterations 488 595 478 584 828 872

�min(10–5) 4.77 3.13 4.98 3.24 3.42 2.75

�max 2.98 2.98 2.98 2.98 3.59 3.34

RAM2 (GB) 1015 845 102 95 86 79

Time/iteration (sec) 172.4 143.4 64.9 51.2 65.4 52.7
bTime (h) 26.4 25.9 9.9 9.5 16.4 13.7

Total time (h) 62.2 52.8 37.0 32.5 21.9 18.8

Fig. 1  Convergence according to the termination criteria used (y axis in in log10 units) during PCG iteration for ssSNBPLUP and the original (ori.) and 
component-wise (comp.) ssGTABLUP approaches with the reduced and full datasets
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residual polygenic values; GRV): the GEBV computed as 
ûj,c = −1µ̂+ Zcĝ + AcgA

−1
gg d̂gwithd̂g = ûg − Zĝ.

The PA approach is the simplest approach and can 
be considered as a reference. The DGV, REG, and GRV 
approaches were implemented in a Fortran 2018 program 
called indirectpred. This program requires the genotypes, 
the inbreeding coefficients, the SNP effect solutions, 
and the GEBV solutions for all animals included in 
the reduced data single-step evaluation, as well as the 
genotypes and the pedigree of the genotyped selection 
candidates.

GEBV computed indirectly for the genotyped selection 
candidates were compared with the GEBV computed 
from the full data single-step evaluations for both ssS-
NPBLUP and ssGTABLUP. For each trait and for both 
direct and maternal genetic effects, we calculated (1) the 
Pearson correlations between GEBV from the full data 
evaluations and the indirect GEBV hereinafter also called 
accuracy, (2) dispersion biases as the regression coeffi-
cients of the regression of GEBV from the full data evalu-
ations on the indirect GEBV, and (3) level biases for each 
trait j , defined as the average of 

(
ûj,c − ûj,c,full

)
/σj where 

ûj,c and ûj,c,full are the indirect GEBV and the full data 
GEBV for the genotyped selection candidates, respec-
tively, and σj is the genetic standard deviation of trait j.

All computations for ssSNPBLUP, ssGTABLUP and 
indirect approaches, were performed on a computer with 
2.9 TB RAM and running RedHat 7.7 (x86_64) with four 
Intel Xeon Gold 6242 (2.80  GHz) processors, each hav-
ing 16 cores. The number of OpenMP threads used for 
all computations was equal to 10. All reported times are 
indicative, because they may have been influenced by 
other jobs running simultaneously on the computer.

Results
Performances of ssSNPBLUP and ssGTABLUP
The Pearson correlations for all traits between GEBV for 
ssSNPBLUP and ssGTABLUP were higher than 0.997, 
and all regression coefficients of the regression of GEBV 
for ssSNPBLUP on GEBV for ssGTABLUP were between 
0.991 and 1.009, for both the reduced and full datasets. 
Thus, the GEBV for all direct and maternal traits of the 
ssSNPBLUP and ssGTABLUP evaluations were (almost) 
the same after convergence was reached for both the 
reduced and full datasets. Comparing GEBV obtained 
with the full dataset and the reduced dataset for animals 
present in both datasets resulted in Pearson correla-
tions higher than 0.993 and regression coefficients of the 
regression of GEBV for the full dataset on GEBV of the 
reduced dataset between 0.991 and 1.014, for both ssG-
TABLUP and ssSNPBLUP (results not shown).

Computational statistics of ssGTABLUP and ssSNPB-
LUP using the full and reduced datasets are in Table  2. 

The MME of ssGTABLUP and ssSNPBLUP evaluations 
included about 372 million and 366 million equations 
with the full and reduced datasets, respectively. When 
analysing the full dataset, the solver required 1015 GB of 
RAM and 26 h with 488 iterations for the original ssG-
TABLUP, 102  GB of RAM and 10  h with 478 iterations 
for the component-wise ssGTABLUP, and 86  GB RAM 
and 16 h with 828 iterations for ssSNBPLUP (Fig. 1 and 
Table  2). Each iteration required on average 172  s for 
the original ssGTABLUP, and 65  s for both the compo-
nent-wise ssGTABLUP and ssSNPBLUP. Analysing the 
reduced dataset resulted in a reduction of the computing 
time per iteration of about 17% for the original ssGTA-
BLUP, and between 20 and 21% for the component-wise 
ssGTABLUP and ssSNPBLUP, although the number 
of iterations to reach convergence increased for both 
approaches with the reduced dataset. The estimated 
effective smallest eigenvalues were around 10–5 for all 
systems of equations, while the estimated effective larg-
est eigenvalues were equal to 2.98 for both ssGTABLUP, 
and a bit larger for ssSNPBLUP (i.e., 3.34 and 3.59 for the 
reduced and full dataset, respectively; Table 2).

Our implementation of the original ssGTABLUP 
requires the computation of an additional matrix based 
on the genomic and pedigree information, that is Ta . The 
computation of Ta was performed with the program calc_
grm and required 1004 GB and 31 h for the full dataset, 
and 832 GB and 24 h for the reduced dataset (Table 2). 
Our implementation of the component-wise ssGTAB-
LUP requires the computation of L . Like the computation 
of Ta , the computation of L was performed with the pro-
gram calc_grm and required 1000  GB and 22  h for the 
full dataset, and 829 GB and 18 h for the reduced dataset 
(Table 2). Finally, the complete evaluation that included, 
among others, the editing and renumbering of all files, 
the computation of pedigree-based inbreeding coeffi-
cients, the computation of the additional matrices for the 
two ssGTABLUP approaches, and solving of the MME, 
required 62 and 53  h for the full and reduced original 
ssGTABLUP, respectively, 37 and 33  h for the full and 

Table 3  Computational statistics of indirect predictions of direct 
and maternal GEBV

REG. GEBV with approximated residual polygenic effects, GRV exact computation 
of GEBV. RAM = software peak random access memory (RAM) defined as the 
peak resident set size (VmHWM) obtained from the Linux/proc virtual file system

Model Approach RAM (GB) Total Time (h)

ssGTABLUP REG 44 0.49

GRV 50 0.55

ssSNPBLUP REG 44 0.48

GRV 50 0.52
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reduced component-wise ssGTABLUP, respectively, and 
22 and 19 h for the full and reduced ssSNPBLUP, respec-
tively. Thus, the reduction in total computing time was 
around 15% for both ssGTABLUP and ssSNPBLUP when 
analysing the reduced instead of the full data (Table  2). 
However, the reduction for the solver step for both ssG-
TABLUP approaches was almost nil, due to the increase 
in the number of iterations to reach convergence.

Accuracies and bias of the different indirect prediction 
approaches
The indirect predictions of direct and maternal GEBV for 
all genotyped selection candidates required about 50 GB 
RAM and 0.5  h for both the original ssGTABLUP and 
ssSNPBLUP (Table  3). Results for the component-wise 
ssGTABLUP are equivalent to those obtained with the 
original ssGTABLUP, because both ssGTABLUP rely on 
the same MME, and thus are not presented.

Accuracies, dispersion biases, and level biases of the 
indirect GEBV for the selection candidates with both, 
only one and no parents genotyped, were computed 
for both the direct and maternal genetic effects and all 

traits separately (Figs. 2, 3, 4) and (see Additional file 1: 
Tables S1 to S6). Because ssGTABLUP and ssSNPBLUP 
arrived at (almost) the same GEBV, the results for indi-
rect GEBV were also (almost) the same for ssGTAB-
LUP and ssSNPBLUP. Therefore, this section will only 
present results for the indirect GEBV computed from 
ssSNPBLUP. All results for both ssGTABLUP and ssSN-
PBLUP are in Additional file 1: Tables S1–S6.

The indirect GEBV approximated by the GRV 
approach were associated with the highest accuracies 
(i.e., correlations higher than 0.996 on average), the 
lowest level biases, and no over- or under-dispersion 
(i.e., regression coefficient close to 1.0), across all traits, 
all genetic effects, and all categories of selection candi-
dates (Figs. 2, 3, 4, 5, 6 and 7). In comparison, the REG 
approach resulted in the same accuracy and bias as the 
GRV approach for the selection candidates with both 
parents genotyped, as expected. However, for the selec-
tion candidates with only one or no genotyped parents, 
indirect GEBV computed with the REG approach for 
both genetic effects were slightly less accurate (correla-
tions between 0.980 and 0.992 on average), with some 
dispersion bias (regression coefficients between 0.983 

Fig. 2  Pearson correlations for direct GEBV computed from the full ssSNPBLUP and from the indirect prediction approaches for genotyped 
selection candidates with both parents genotyped (GG), with only one parent genotyped (NG), and no parents genotyped (NN). Indirect prediction 
approaches are: (1) PA: mean of parent GEBV; (2) DGV: direct genomic values; (3) REG: GEBV with approximated residual polygenic effects; and (4) 
GRV: exact computation of GEBV
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and 0.997), and with some level bias between −  0.014 
and 0.018 points of genetic standard deviation (Figs. 2, 
3, 4, 5, 6 and 7).

Approximating the GEBV of selection candidates 
with the DGV approach resulted in indirect GEBV 
associated with an average accuracy of 0.948 or higher 
across all groups of selection candidates (Figs.  2 and 
5). In addition to being less accurate than the GRV and 
REG approaches, the indirect GEBV computed with 
the DGV approach showed also more level bias, which 
was almost equal to 0.2 points of genetic standard 
deviation across all traits (Figs. 4 and 7), and more dis-
persion, as shown by averaged regression coefficients 
between 1.005 and 1.032 (Figs. 3 and 6). Finally, the PA 
approach was the least accurate and showed the high-
est dispersion and level biases (Figs. 2, 3, 4, 5, 6 and 7).

Discussion
In this study, first, we presented a unified model for 
ssGTBLUP and ssSNPBLUP, and we introduced differ-
ent approaches to predict GEBV of genotyped selec-
tion candidates based on solutions of a single-step 

evaluation that does not consider the pedigree and 
genotypes of these selection candidates indirectly. The 
performance of the different models and methods was 
investigated using a dataset with a total of 2.61 million 
genotypes. In this section, we will discuss the follow-
ing three points: (1) the computational similarities and 
differences between ssGTBLUP and ssSNPBLUP; (2) 
the indirect prediction of GEBV; and (3) the perfor-
mance gains by ignoring genotypes of selection candi-
dates in the single-step evaluation models.

Computational similarities and differences 
between ssGTBLUP and ssSNPBLUP
Within a PCG iteration, the computations needed in 
MME (2) and (3) are theoretically similar. The main com-
putational task in each iteration of the PCG method is 
the MME coefficient matrix times a vector product. Any 
differences in the necessary MME coefficient matrix 
times a vector product in MME (2) and (3) are due to 
differences in H−1 and H−1

L
 . However, these products 

can be arranged so that they perform with similar effi-
ciency, as shown with the component-wise approach of 
ssGTBLUP. The use of Ta in the current implementation 

Fig. 3  Regression coefficients of direct GEBV computed from the full ssSNPBLUP on GEBV computed from the indirect prediction approaches for 
genotyped selection candidates with both parents genotyped (GG), with only one parent genotyped (NG), and no parents genotyped (NN). Indirect 
prediction approaches are: (1) PA: mean of parent GEBV; (2) DGV: direct genomic values; (3) REG: GEBV with approximated residual polygenic effects; 
and (4) GRV: exact computation of GEBV
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of MiXBLUP explains the RAM and time differences 
observed between the original ssGTABLUP and the com-
ponent-wise ssGTABLUP and ssSNPBLUP in MiXBLUP. 
As expected, the component-wise ssGTABLUP approach 
and ssSNPBLUP require similar times per PCG iteration 
as well as similar RAM. The differences in RAM between 
these two approaches can be explained by the storage of L 
in RAM as a double precision dense matrix that requires 
8m2 bytes. Consequently, our results illustrate that the 
component-wise ssGTBLUP (MME (2)) approach and 
ssSNPBLUP (MME (3)) result in performing a similar 
number of floating-point operations.

Vandenplas et al. [26] showed that the multiplication of 
Z by an array with the use of M stored using the Plink 
1 binary form was more than twice as fast compared to 
the same multiplication using the Intel MKL DGEMM 
subroutine, thanks to the efficient use of parallelization, 
vectorization, and CPU cache with the packed M matrix. 
The efficiency of the packed matrix operations is also 
indicated by the fact that ssGTABLUP and ssSNPBLUP 
approaches showed a similar reduction in computing 
time per iteration in the solver step when analysing the 
reduced data instead of the full data. This illustrates the 

fact that both approaches behave numerically similarly 
when the number of genotyped animals changes.

Although the computations needed for ssGTABLUP 
and ssSNPBLUP within a PCG iteration are theoretically 
similar, both ssGTABLUP approaches needed a longer 
total computing time than for ssSNPBLUP. This longer 
time is mainly due to the heavy preprocessing step to 
compute Ta for the original ssGTABLUP approach and 
L for the component-wise ssGTABLUP approach. Both 
matrices are computed with the same procedure of the 
program calc_grm, except that the last steps for comput-
ing Ta from L and writing it to a file, are skipped for the 
component-wise ssGTABLUP approach. This current 
implementation explains the reduced times and similar 
amounts of RAM for the preprocessing step of the com-
ponent-wise ssGTABLUP approach in comparison to the 
original ssGTABLUP approach, as both computations 
use a genotype matrix stored in a 8-byte array. These pre-
processing costs could be reduced by computing a sin-
gle Ta or L for multiple genomic evaluations that share 
a common set of genotyped animals. Since ssSNPBLUP 
has no such preprocessing step, for this model it is more 
attractive to define minimal sets of required genotypes 

Fig. 4  Level bias of direct GEBV computed as the difference between the average of the indirect predictions and ssSNPBLUP solutions expressed 
in genetic standard deviation units, for genotyped selection candidates with both parents genotyped (GG), with only one parent genotyped (NG), 
and no parents genotyped (NN). Indirect prediction approaches are: (1) PA: mean of parent GEBV; (2) DGV: direct genomic values; (3) REG: GEBV with 
approximated residual polygenic effects; and (4) GRV: exact computation of GEBV
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for each genomic evaluation separately, by removing gen-
otypes of animals that had neither own nor progeny phe-
notypes, as done here.

Finally, both H−1 and H−1
L

 contain K . Because the size of 
this matrix is limited by the number of markers m when 
the SNP effects are assumed to have the same weights 
across all traits, this dense matrix can be stored in com-
puter RAM. In MME (2), its inverse, K−1 , or its Cholesky 
decomposition LC , can be precomputed to gain efficiency 
in the PCG iterations. It is worth noting that MME (3) 
can be more easily applicable for a model where K is not 
the same across the traits because K does not need to be 
inverted as in MME (2). Then, instead of precomputing K 
for each trait, a computationally more efficient approach 
for MME (3) can be the computation of the needed 
matrix times vector product during the PCG iteration. 
Consider the product Kg = Z′C−1Zg + B−1g . Because 
the s = Zg product needs to be computed at each itera-
tion, and because the number of iterations is typically 
much smaller than the number of SNPs, the multiplica-
tion of Z′

(
C−1s

)
 during each iteration is less demanding 

than precomputing once the product Z′C−1Z [26].

The ssGTABLUP approach showed a better conver-
gence than the ssSNPBLUP approach. This can be attrib-
uted to a better preconditioner in ssGTABLUP. In the 
ssGTABLUP, the diagonal of the MME matrix is easier 
to compute than in the ssSNPBLUP approach where 
the diagonal for the marker effects is approximated [26], 
because K is not computed explicitly as done for ssGTA-
BLUP. The computation of K for ssSNPBLUP would lead 
to a similar preprocessing time as for ssGTABLUP and 
could allow faster convergence. However, the total com-
puting time for ssSNPBLUP would be increased. This 
illustrates that the preconditioner is a compromise that 
is achieved within the tolerated preprocessing computing 
time.

Indirect prediction of GEBV
As shown by our results, the GRV and REG approaches 
proposed in this study for predicting indirectly and 
efficiently GEBV of genotyped selection candidates 
are accurate and (almost) unbiased. The accuracy and 
unbiasedness of the GRV and REG approaches can be 

Fig. 5  Pearson correlations for maternal GEBV computed from the full ssSNPBLUP and from the indirect prediction approaches for genotyped 
selection candidates with both parents genotyped (GG), with only one parent genotyped (NG), and no parents genotyped (NN). Indirect prediction 
approaches are: (1) PA: mean of parent GEBV; (2) DGV: direct genomic values; (3) REG: GEBV with approximated residual polygenic effects; and (4) 
GRV: exact computation of GEBV
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explained by the fact that all components of a GEBV are 
adequately computed by the proposed indirect predic-
tion approaches. Approximating some components of 
the GEBV, such as the RPG and SNP effects, or ignor-
ing some of them, such as the contribution of the J-fac-
tor, may result in less accurate and more biased indirect 
GEBV. Hereinafter we discuss alternatives illustrated by 
the indirect approaches that approximate the GEBV.

The SNP effects can be computed from GEBV esti-
mated with ssGTBLUP without any approximations 
using Eq. (5), that is ĝ = K−1Z′C−1ûg . This Eq. (5) yields 
exact solutions for ĝ and can be efficiently implemented 
for all versions of ssGBLUP, in contrast to the equation 
ĝ = BZ′G−1

C ûg requiring G−1
C  and often used in the litera-

ture [12, 16, 23]. While it can be shown that the equation 
ĝ = BZ′G−1

C ûg is equivalent to Eq.  (5), its implementa-
tion for large genotyped datasets requires an approxi-
mated G−1

C  [16, 23], resulting in an approximated ĝ . An 
alternative approach to compute ĝ without comput-
ing G−1

C  has been proposed by Pimentel et  al. [12]. This 
approach consists of solving a SNPBLUP model with 
GEBV as phenotypes. However, in the presence of an 

RPG effect, this approach still leads to an approximated 
ĝ because it assumes implicitly that C = εI instead of 
C = wAgg.

The computation of the RPG effects for the selection 
candidates can be efficiently implemented with our exact 
alternative approach to Eq. (6), or with the approximated 
REG approach that uses a mean parent RPG value when 
the genotyped parent’s RPG value is known but a regres-
sion approach is used for a non-genotyped parent. Ignor-
ing the RPG effects leads to dispersion bias of the indirect 
GEBV, as shown by the results for the DGV approach. 
The proposed exact approach gains efficiency because it 
requires neither G−1

C  [16, 23] nor A−1
gg  [12, 13], as previ-

ously proposed in the literature.
Although our REG approach resulted in accurate indi-

rect GEBV for the selection candidates, other approaches 
for approximating the RPG effects for the selection 
candidates have been proposed or could be tested. For 
example, Lourenco et  al. [23] proposed to use the lin-
ear regression of individual GEBV on direct genomic 
values, i.e., estimate a and b in the linear regression 
ûg = â+ b̂Zĝ , to compute directly GEBV of selection 

Fig. 6  Regression coefficients of maternal GEBV computed from the full ssSNPBLUP on GEBV computed from the indirect prediction approaches for 
genotyped selection candidates with both parents genotyped (GG), with only one parent genotyped (NG), and no parents genotyped (NN). Indirect 
prediction approaches are: (1) PA: mean of parent GEBV; (2) DGV: direct genomic values; (3) REG: GEBV with approximated residual polygenic effects; 
and (4) GRV: exact computation of GEBV
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candidates as ûc = â+ b̂Zcĝ . An alternative linear 
regression to that proposed in the "Methods" section 
here, would be to use the linear regression of individual 
on parent average GEBV, i.e., estimate a and b in the lin-
ear regression d̂g = â+ b̂ûg ,PA using genotyped animal 
values for d̂g and ûg ,PA . Thus, the estimated coefficients 
â and b̂ are used in the prediction equation for the candi-
date animals to estimate the RPG effects d̂c = â+ b̂ûc,PA 
where the ûc,PA vector has parent average GEBV for the 
genotyped selection candidates. This approach has the 
advantage that the mean parent GEBV is used directly 
without having to know the genotyping status of either 
of the parents. Another alternative is to compute the 
RPG effect of the selection candidates as the three sire 
parent averages when the dam is missing [12]. Finally, it 
is worth noting that we used an RPG proportion of 0.20 
in this study. The use of an RPG proportion close to 0 
will improve the accuracy and the dispersion bias of the 
indirect GEBV by decreasing the importance of d̂c and 
increasing the importance of DGV.

No level bias was observed with the GRV method, and 
the bias was negligible for the REG approach. In the pres-
ence of level bias, animals with indirect GEBV cannot be 
compared to animals with GEBV computed by a single-
step evaluation. Level bias can be attributed to unac-
counted differences between the pedigree and genomic 
bases [12, 16, 23], as well as to approximated RPG effects 
(but with a smaller contribution than the first one), as 
illustrated by the DGV and REG approaches. The issue 
of level bias was solved in the literature with different 
approaches, such as by adding the mean GEBV of the 
genotyped animals of the previous single-step evaluation 
[23], or by adding a general mean that is estimated simul-
taneously with the estimates of SNP effects using GEBV 
of genotyped animals [12]. The mean computed by these 
two approaches can be considered as an approximation 
of the J-factor covariate fitted explicitly in this study. For 
ssGBLUP approaches in which the J-factor effect is fitted 
as a random effect and absorbed in the additive genetic 
effect [20], its value can be easily computed from the 
GEBV of the genotyped animals as:

Fig. 7  Level bias of maternal GEBV computed as the difference between the average of the indirect predictions and ssSNPBLUP solutions expressed 
in genetic standard deviation units, for genotyped selection candidates with both parents genotyped (GG), with only one parent genotyped (NG), 
and no parents genotyped (NN). Indirect prediction approaches are: (1) PA: mean of parent GEBV; (2) DGV: direct genomic values; (3) REG.: GEBV 
with approximated residual polygenic effects; and (4) GRV: exact computation of GEBV
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where k is a function of the proportion of RPG and the 
variance of the J-factor effect [20].

Performance gains by ignoring the genotypes of selection 
candidates
Ignoring the genotypes of the selection candidates, that 
is genotyped animals without own or progeny records, 
can be an effective method to reduce the computational 
costs of the single-step genomic evaluations in some 
single-step genomic evaluations. In our study, ignoring 
17% of the whole genotype set decreased the comput-
ing time for Ta , and the computing time per iteration of 
ssGTABLUP and ssSNPBLUP by between 17 and 23%, 
while leading to almost the same GEBV for the animals 
included in both the reduced and full evaluations. The 
observed reductions in computing time per iteration 
matches our expectations. The main computational 
costs within each iteration are due to the multiplica-
tion of Ta (or Z ) and its transpose by an array, for which 
the computational costs depend linearly on the number 
of genotyped animals. Therefore, it will be easy to esti-
mate the potential performance gains by ignoring the 
genotypes of selection candidates in routine single-step 
genomic evaluations.

It is worth noting that small GEBV differences can 
be expected between the reduced and the full single-
step evaluations for non-genotyped parents of selec-
tion candidates, as the genotypes of their non-included 
progeny will not contribute to the imputation of their 
genotype within the single-step evaluations. The impact 
of this effect could be larger and should be further 
investigated, e.g., for species with large litters because 
the accuracy of the imputed genotype of a non-geno-
typed parent increases with the number of genotyped 
offspring [32].

Conclusions
In this study, first, we presented a unified model for two 
single-step approaches, ssGTBLUP and ssSNPBLUP. Sec-
ond, we presented different approaches to predict indi-
rectly GEBV of genotyped selection candidates based on 
solutions of a single-step evaluation that does not con-
sider the genotypes of these selection candidates. Based 
on our results, ignoring genotypes of selection candidates 
resulted in faster single-step evaluations, and the pro-
posed indirect approaches resulted in accurate indirect 
GEBV for selection candidates, with almost no dispersion 

µ̂ = k1′G−1
C ûg = k1′

(
C−1 − C−1ZK−1Z′C−1

)
ûg

= k1′C−1
(
ûg − Zĝ

)
= k1′C−1d̂g ,

and level bias. The proposed indirect approaches are also 
more memory efficient and computationally fast, com-
pared to solving the single-step evaluations. Therefore, 
they can be computed even on a weekly basis to estimate 
GEBV for newly genotyped animals while the full single-
step evaluation is done only a few times within a year.
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