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ABSTRACT Walking ability of broilers can be
improved by selective breeding, but large-scale pheno-
typic records are required. Currently, gait of individual
broilers is scored by trained experts, however, precision
phenotyping tools could offer a more objective and high-
throughput alternative. We studied whether specific
walking characteristics determined through pose estima-
tion are linked to gait in broilers. We filmed male broilers
from behind, walking through a 3 m x 04 m
(length x width) corridor one by one, at 3 time points
during their lifetime (at 14, 21, and 33 d of age). We used
a deep learning model, developed in DeepLabCut, to
detect and track 8 keypoints (head, neck, left and right
knees, hocks, and feet) of broilers in the recorded videos.
Using the keypoints of the legs, 6 pose features were quan-
tified during the double support phase of walking, and 1
pose feature was quantified during steps, at maximum leg
lift. Gait was scored on a scale from 0 to 5 by 4 experts,

using the videos recorded on d 33, and the broilers were
further classified as having either good gait (mean gait
score <2) or suboptimal gait (mean gait score >2). The
relationship of pose features on d 33 with gait was ana-
lyzed using the data of 84 broilers (good gait: 57.1%, sub-
optimal gait: 42.9%). Birds with suboptimal gait had
sharper hock joint lateral angles and lower hock-feet dis-
tance ratios during double support on d 33, on average.
During steps, relative step height was lower in birds with
suboptimal gait. Step height and hock-feet distance ratio
showed the largest mean deviations in broilers with sub-
optimal gait compared to those with good gait. We dem-
onstrate that pose estimation can be used to assess
walking characteristics during a large part of the produc-
tive life of broilers, and to phenotype and monitor broiler
gait. These insights can be used to understand differences
in the walking patterns of lame broilers, and to build
more sophisticated gait prediction models.
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INTRODUCTION

Impaired walking ability is a welfare concern in broiler
production (Knowles et al., 2008). Broiler walking abil-
ity is commonly assessed by a manual gait scoring sys-
tem, for example, that of Kestin et al. (1992). With this
system, experienced scorers observe individual birds
while walking and grade their walking ability along a 6-
point scale, with a gait score (GS) of zero representing
birds that walk normally and a GS of 5 representing
birds that are incapable of sustained walking on their
feet. Impaired walking ability has a high prevalence in
broiler production. For example, a UK survey indicated

© 2023 The Authors. Published by Elsevier Inc. on behalf of Poultry
Science Association Inc. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

Received March 10, 2023.

Accepted May 13, 2023.

!Corresponding author: istvan.fodor@wur.nl

2023 Poultry Science 102:102787
https://doi.org/10.1016/j.psj.2023.102787

that 27.6% of birds show poor locomotion (GS3 or
higher), with 3.3% being almost unable to walk
(Knowles et al., 2008).

Impaired walking ability may result in discomfort and
behavioral changes. For example, Riber et al. (2021)
showed that broilers with impaired walking ability (GS2)
were less likely to perch, spent more time sitting while feed-
ing, and spent less time performing comfort behavior (i.e.,
preening, wing flapping, stretching legs or wings, feather
ruffling/shaking) than birds walking normally (GS0).
Moreover, a tendency was observed for broilers with
impaired walking ability to spend more time inactive
(Riber et al., 2021). Together this highlights that impaired
walking ability is a welfare concern. Lameness also leads to
substantial economic losses on broiler farms, negatively
affecting daily weight gain, feed conversion ratio, mortality
rate, and condemnation rate (Gocsik et al., 2017).

It appears that there is potential for selection against
(different components of) impaired walking ability. For


http://orcid.org/0000-0002-2299-2165
http://orcid.org/0000-0001-7448-6857
http://orcid.org/0000-0001-9410-9266
http://orcid.org/0000-0001-5079-7108
http://orcid.org/0000-0001-5079-7108
http://orcid.org/0000-0001-7306-4468
https://doi.org/10.1016/j.psj.2023.102787
http://creativecommons.org/licenses/by/4.0/
mailto:istvan.fodor@wur.nl

2 FODOR ET AL.

example, it has been shown that tibial dyschondroplasia
and hock burn are heritable in broilers, with heritability
estimates of 0.10 to 0.27 and 0.06 to 0.09, respectively
(Kapell et al., 2012). However, to breed for improved
walking ability or leg health, individual-level phenotypic
records are required for many birds. As mentioned earlier,
walking ability is often scored manually, mainly through
visual gait scoring approaches (e.g., Kestin et al., 1992;
Garner et al., 2002; Dawkins et al., 2004; Webster et al.,
2008), but also a shallow water or latency to lie test can
be used (Weeks et al., 2002). However, these manual
approaches are time-consuming and laborious.

Automated approaches for scoring gait could be of
great added value. Several automated approaches have
already been developed, some of which assess proxies for
gait, while others measure walking characteristics. Cam-
eras have been used to record proxies for gait, such as
activity (Dawkins et al., 2009; Aydin et al., 2013; Silvera
et al., 2017) or lying behavior (Aydin, 2017b). Another
option is to use body-worn sensors, for example, to
record activity using ultra-wideband technology (van
der Sluis et al., 2021), or to follow the broilers’ behavior
using accelerometers (Abdoli et al., 2018). Walking
characteristics in poultry have been analyzed using
kinetic sensors, for example, a pedobarograph (Corr
et al., 1998) or a force plate (Corr et al., 2007), however,
computer vision-based solutions have been gaining pop-
ularity. Video recordings have been made of birds walk-
ing along a walkway or corridor, which were
subsequently analyzed using image analysis to extract
features such as speed, step frequency, step length, and
lateral body oscillation (Aydin, 2017a). Features
describing walking were used in a decision tree classifica-
tion approach (de Alencar Néis et al., 2021), whereas
others detected and tracked keypoints on the bodies of
walking broilers as input for pose estimation-based mod-
els (Nasiri et al., 2022), to predict lameness.

There are several challenges when implementing these
sensor-based approaches for larger-scale automated gait
scoring. For example, birds need to be individually han-
dled to record the data (e.g., Aydin, 2017a), which can
be time-consuming and provides only a single time point
record. Other methods can record data at the individual
level automatically over time, but might require a sensor
per animal (e.g., van der Sluis et al., 2021). There
appears to be potential to implement pose estimation-
based methods for automated gait scoring without han-
dling the birds or attaching sensors, with good results
(Nasiri et al., 2022), but using a black box approach in
which it remains unknown which exact pose features
correlate with broiler gait scores. There would be added
value in gaining insight in the walking characteristics of
broilers that underlie their gait scores.

In the current study, it was investigated whether spe-
cific walking characteristics of broilers could be deter-
mined through automated pose estimation and could be
linked to broiler gait scores. Using back-view video
recordings of broilers walking, keypoints on the broilers’
bodies were extracted for automated pose estimation of
7 features of broilers with either a good or a suboptimal

gait. The results of this study provide valuable insights
into the walking characteristics of broilers with a good
or suboptimal gait and can, although currently tested in
a small-scale setting using a walkway, contribute to
future automation of gait scoring in broilers.

MATERIALS AND METHODS
Ethical Statement

Data were collected on a broiler farm in the Nether-
lands, under control of Cobb Europe (Boxmeer, the
Netherlands). Cobb Europe complies with the Dutch
legislation on animal welfare.

Data Acquisition

Individually tagged male broilers from the same cross
were filmed 3 times, at 14, 21, and 33 d of age, at a Cobb
test facility in the Netherlands. The broilers were group-
housed, with ad libitum access to feed and water, and
wood shavings as bedding. Commercial lighting and
temperature schedules were used, and vaccination was
performed according to common practice (Cobb, 2018).
A total of 109 birds, of 14-days old, were housed in 2
pens at the start of the trial. By 21 and 33 d of age, 108
and 87 birds remained for video recording, respectively.
The major reason for removing birds from the study was
routine activities of the company for the breeding pro-
gram. For this purpose, all birds within a pen were
weighed individually, to calculate the descriptive statis-
tics of body weight per pen. Thereafter, individual birds
(n = 6 per pen, 12 birds in total) representing the mean
body weight, mean £ 1*SD, and mean 4 2*SD within
the pen were identified based on a list, and subsequently
removed from the pen. A few birds (np14_po1 = 1, npo1
_p33 = 9) were removed due to mortality. On each day
of recording, individual body weight of the birds was
measured before the walking trial. During the walking
trial, birds had to walk through a corridor created within
their pen one by one, with dimensions 3 m x 0.4 m
(length x width, Figure 1). An Intel RealSense D415
(Intel Corp., Santa Clara, CA) camera was placed at
bird level in the midline of the start of the corridor,
which recorded the birds from behind during walking.
The RGB video recordings of the camera were converted
to .mp4 format with 12 frames per second and
1,280 x 720 pixels resolution for further analysis using a
custom Python code. Start and end times were manually
recorded for each individual, and only the video frames
in this period were used for further analyses.

Keypoint Detection Using Convolutional
Neural Network

Eight keypoints (head, neck, left and right knees,
hocks, and feet) were detected using a pretrained broiler
pose estimation deep learning model, developed in Deep-
LabCut (Mathis et al., 2018). Details of the pretrained
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Figure 1. Setup of the walking trial.

broiler pose estimation model are described in Door-
nweerd et al. (2021). Briefly, the convolutional neural
network (CNN) was trained on 1,224 frames of 37
broilers, recorded from behind at 37 d of age, while com-
pleting an individual walking test in a 3 m x 0.4 m corri-
dor. Their setup was very similar to the one used in the
current study, with the same camera and viewpoint, and
the same nontransparent side panels to create the corri-
dor, although, the recording took place on another farm.
Keypoints were annotated at the following locations: the
head at the top, the neck at the base, the knees at the
estimated location of the knee, the hocks at the transi-
tion of the feathers into scales, and the feet in the middle
at the approximate height of the first toe (Doornweerd
et al., 2021). Model performance was tested on 306
frames of 10 birds. The train and test errors of this
broiler model were 2.26 and 7.56 px, respectively, on the
keypoints that surpassed the likelihood threshold of 0.6
(the default in DeepLabCut).

However, this pretrained model struggled with accu-
rately detecting the keypoints of the broilers recorded in
the new environment. The major differences in our setup
were the following: 1) illumination was different on this
farm, 2) red drinkers were present at the drinking line,
above the head of the broilers, 3) after completion of the
walking trial, some broilers stayed at the end of the cor-
ridor standing or resting, and 4) birds were recorded
already from 14 d onward, having a considerably smaller
size than 37-day-old broilers. The main issues observed
were jumping keypoint labels between the bird of inter-
est and birds staying at the end of the corridor at 14 d of
age, keypoint detections jumping between the head of
the bird and the red drinker above their head, and miss-
ing keypoint detections on the legs at later ages due to
the relatively darker circumstances. To overcome these
issues, we first adjusted the brightness of 40% of the
training frames randomly within a range of +30%, aug-
mented the training data with these frames, and applied
dynamic cropping. Dynamic cropping computes object
boundaries according to the smallest and largest x and y
coordinates of all detected keypoints in a frame, which is
further expanded by a margin, and only the posture
within this crop is further analyzed. The current position
of the object is used to update the crop window in the
next frame. These steps did not substantially improve
model performance, so we decided to further train the
model of Doornweerd et al. (2021). Therefore, video
frames of 17 birds that had been removed during our
study between d 14 and 33 were used for retraining of

this model, hereby avoiding further decrease of our sam-
ple size. Altogether, 181 frames were manually selected
from videos of 5 broilers from d 14 and 8 broilers from d
21 for further training of the model, whereas 40 frames
(2 broilers from d 14 and d 21, respectively) were used
for testing the retrained model, resulting in a 82/18
train-test split. Annotations were performed as
described in Doornweerd et al. (2021). The aim of the
manual frame selection was to further train the model
specifically on those situations that were challenging for
the pretrained model in the new environment. This
model was then used for the analysis of the newly
acquired videos, along with a spline filter and dynamic
cropping (the latter in d 14 videos only, as label jumping
between birds was mostly observed at this age) to reduce
noise in the keypoint estimates. The performance of the
retrained broiler pose estimation deep learning model
was assessed using the pixel error, which is the Euclidean
distance between the = and y coordinates of the model
predictions and the human annotator (Doornweerd
et al., 2021). The percentage of keypoints exceeding a
likelihood threshold of 0.6 by age and body part was also
assessed for the analyzed videos. These percentages
reflect the certainty of all keypoint detections in the full
length of the analyzed videos, and include, for example,
the seconds between the start of recording and placing
the bird in the corridor. Coordinates (z, y) and likeli-
hoods of the estimated keypoints from the newly
acquired videos were downloaded in .csv format and
used for pose extraction and calculating the features.

Automated Pose Extraction

Birds that did not walk during the test (np2; = 1,
np33z = 3) were excluded from further analyses, because
it was not possible to obtain reliable keypoints and poses
for them. We decided not to base the exclusions on the
gait scores, to be able to characterize birds with very
poor gait if the model could capture their keypoints and
poses.

We had 2 poses of interest: double support, when
broilers are standing with both feet on the ground, and
steps at maximum leg lift (left and right steps). The first
and last 10% of frames of each walking trial were dis-
carded. The first 10% mostly did not contain the bird of
interest or showed the moment when the bird was placed
in the corridor. Based on visual assessment, during the
last 10% the bird of interest was more difficult for the
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model to distinguish from the others standing or sitting
at the end of the walkway. Only the keypoints of the
legs were used, and the likelihood of leg keypoints had to
be >0.6 to consider the frame for pose extraction. The
location of the feet (on the ground or lifted to maximum)
during the phases of walking was detected using the
local maxima and minima of the keypoint coordinate
time series data. Double support phases within bird and
age were selected to minimize the vertical difference
between the left and right feet. Maximum leg lifts during
left and right steps were selected to maximize the verti-
cal difference between the feet. For each bird-age-pose
combination, maximum 3 frames per pose were consid-
ered for pose feature calculation, where the average of
each feature over the 3 frames represented the feature of
the bird at the given pose at the given age. The quality
of automatically detected poses was checked visually by
extracting the respective frames of 10 randomly selected
birds from each age.

Pose Features

Altogether, we defined 7 features, 6 of which were
quantified during the double support phase and 1 during
the steps (Figure 2). Features during double support
included hock joint lateral angles (degrees), medial angle
of the shank and the horizontal line (degrees), normal-
ized tibiotarsus length, normalized shank length, hock-
knee distance ratio (the ratio between the horizontal dis-
tance of hocks and that of the knees), and hock-feet dis-
tance ratio (the ratio between the horizontal distance of
hocks and that of the feet). The feature of interest dur-
ing steps was the normalized step height (%, Figure 2).
Tibiotarsus length, shank length, and step height were
expressed in relation to a normalization factor, that is,
the vertical difference between the highest knee and the
lowest foot.

Gait Scoring

The gait of the broilers at 33 d of age was assessed
based on the recorded videos on a 0 to 5 scale, using the
scoring system described in van der Sluis et al. (2021).
Although this scoring system was not exactly the same
as the one developed by Kestin et al. (1992), the overall

Knee distance

Hock Tibiotarsus length
Hock joint angle distance

Shank length Shank

B vs. floor angle

Step height {

idea is very similar, and the gait score categories from
both scoring systems are assumed to represent similar
gaits. Score 0 in the current scoring system represents
birds walking very well, score 1 means good walking
capabilities (controlled walk, capable of standing
straight on legs), score 2 is a relatively good, oriented
walk, score 3 is a mediocre walk where the bird is more
out of balance, can translocate well but sits down
quickly, score 4 is a poor walk (bent or spread legs, wad-
dling, legs pointing outward, wings often hanging
down), and broilers with score 5 can barely walk and
also use their wings when walking. Gait scoring of all
birds was performed by 4 experienced scorers (scorer A
—D) independently. Each bird was assigned the mean of
the independent gait scores. The same 15 birds were ran-
domly selected for repeated gait assessment to test intra-
observer reliability of each scorer. Due to the small
sample size in some gait score categories, broilers were
further classified into having either good (mean gait
score <2) or suboptimal (mean gait score >2) gait. This
cutoff value assumed that gait scores above 2 potentially
lead to impaired welfare in broilers (Kestin et al., 1992;
van der Sluis et al., 2021). To test the robustness of our
conclusions, we re-ran the analyses with different mean
gait score cutoff values (<2.5 vs. >2.5 and <3 vs. >3), as
well.

Statistical Analyses

Statistical analysis was performed in R version 4.2.2
(R Core Team, 2022). We analyzed those birds that
were present during the entire study (i.e., until d 33 of
age). Therefore, our final dataset contained the pose fea-
ture data and body weight of 84 birds from the 3 ages
and the corresponding gait scores at 33 d of age. For
each combination of age and pose, pose features on
either side lower than the lower quartile minus 2 times
the interquartile range or higher than the upper quartile
plus 2 times the interquartile range were excluded from
the analyses to remove outliers. The correlations among
the features of interest at 33 d of age were estimated
using Pearson’s correlation coefficient. Interobserver
agreement among the gait scorers (on a scale 0—5) was
assessed by Fleiss’ kappa, using the irr package (Gamer
et al., 2019). Intraobserver reliability of the gait scores

> Normalization factor

\ J
T

Feet distance

Double support phase

Step at maximum leg lift

Figure 2. Schematic representation of the analyzed leg features at double support (left) and steps (right).
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was estimated by Cohen’s weighted kappa, using the irr
package. The value of kappa (k) can range between —1
and 1, and the strength of agreement can be interpreted
as follows: k¥ < 0.00 = poor, «: 0.00 to 0.20 = slight, «:
0.21 to 0.40 = fair, «: 0.41 to 0.60 = moderate, «: 0.61 to
0.80 = good, «: 0.81 to 1.00 = excellent agreement
(Landis and Koch, 1977). The difference in body weight
between broilers with good vs. suboptimal gait was ana-
lyzed using a generalized estimating equations model
from the geepack package (Hojsgaard et al., 2006), with
age, binary gait class (good or suboptimal on d 33), and
their interaction as fixed effects, and chicken ID as the
grouping variable. Differences in pose features at 33 d of
age between the 2 gait classes were analyzed using linear
models with one of the pose features as the dependent
variable, and gait class (good or suboptimal on d 33),
body weight, side of the feature (left or right), and the
interaction of gait class and side of the feature as explana-
tory variables. Body weight and side were included in the
models to control for their (possible) effects on the values
of the features. If the interaction between gait class and
side of the feature was not significant, the interaction
term was removed, and the model was refitted. None of
the interactions between gait class and side were signifi-
cant (all P> 0.05). Features without left and right coun-
terparts (hock-knee distance ratio and hock-feet distance
ratio) were analyzed using similar linear models, but with
only gait class and body weight as explanatory variables.
The level of significance was set to P < 0.05, and 0.05 < P
< 0.10 was considered a tendency.

RESULTS
Pose Estimation

At 100,000 iterations, the train and test errors of the
model were 2.12 px and 4.83 px, respectively. When
only the filtered keypoints (i.e., keypoints with a likeli-
hood >0.6) were considered in the error calculation,
train and test errors were 2.11 px and 4.02 px,

respectively. The percentage of frames exceeding the
likelihood threshold decreased with age (Supplementary
Figure 1), but overall, the confidence of the deep learn-
ing model in locating the body parts during the walking
tests was high. Especially the leg keypoints, which were
the main focus of our analyses, had high mean percen-
tages of high-likelihood frames, with more than 70% of
all recorded frames exceeding a likelihood threshold of
0.6 irrespective of age, on average.

Pose Features

Examples of extracted poses are shown in Figure 3.
Summary statistics of pose features by age are shown in
Table 1 and Figure 4. For most pose features, no clear
trends were observed by age. However, hock-knee dis-
tance ratio increased slightly with age, meaning that the
knees moved relatively further apart than the feet as the
birds grew.

The correlations between the features of interest (step
height during steps and the rest of the features during
double support) were further analyzed at 33 d of age.
Strong positive correlation was found between hock
joint angle and shank vs. floor angle (0.75, P < 0.001).
This implies that individual broilers tend to have either
a more crouched or a straightened-up posture affecting
both leg angles, rather than independently varying hock
and shank angles. Strong negative correlation was
detected between relative tibiotarsus length and relative
shank length (—0.58, P < 0.001), which was expected, as
both were expressed as relative values to the same nor-
malization factor. Hock-feet distance ratio seems to cap-
ture angle information well, as it showed a strong
positive correlation with leg angles (hock joint angle:
0.78, shank vs. floor angle: 0.90, both P < 0.001).

Gait Scores

The gait score results of the 84 birds included in our
analyses are shown in Figure 5. On a scale from 0 to 5,

Figure 3. Automatically extracted double support stance, left and right steps on d 14 (images cropped and enlarged).
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Table 1. Descriptive statistics of pose features by age.

D14 D21 D33

Feature Mean SD n' Mean SD n Mean SD n

Hock joint angle (°) 154.2 6.2 164 155.6 6.0 164 151.9 6.9 164
Shank vs. floor angle (°) 83.9 5.0 166 84.9 5.0 162 824 5.8 163
Tibiotarsus relative length 0.59 0.04 158 0.55 0.05 165 0.55 0.05 168
Shank relative length 0.42 0.04 166 0.44 0.04 165 0.45 0.05 167
HKDR_2 0.59 0.08 80 0.62 0.06 83 0.65 0.06 83
HFDR? 0.86 0.06 81 0.88 0.06 82 0.85 0.06 79
Relative step height (%) 37.9 6.8 167 37.5 7.2 166 35.9 9.6 161

'Number of records.
2Hock-knee distance ratio.

#Hock-feet distance ratio. HKDR and HFDR do not have left and right counterparts, hence the number of records is lower for these features.

none of the birds was assigned score 0, but also relatively
few birds with very poor gait were found. The 3 birds
excluded from the analyses because they did not walk dur-
ing the walking test on d 33 had mean gait scores >4.25
(mean of scorers A—D), and these birds had the highest
mean gait scores among all birds (data not shown). The
highest mean gait score in the remaining sample of broilers
was 3.75, which also implies that our findings do not repre-
sent birds with the poorest gait (as expected, because of
the difficulties in obtaining proper poses). On the other
hand, this also implies that our findings represent birds up
to approximately gait score 4. Intraobserver agreement of
the 4 scorers ranged between 0.67 and 1 (Cohen’s weighted
K, good-excellent agreement). The value of Fleiss’ k was
0.27, representing a fair interobserver agreement among
the 4 scorers. After creating binary classes using mean gait
score 2 as a threshold, 48 birds (57.1%) were classified as
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having good gait and 36 birds (42.9%) as having subopti-
mal gait.

Relationship of Features With Body Weight
and Walking Ability

Broilers with a suboptimal gait by 33 d of age were
numerically heavier on each measurement day during
their lifetime. The differences remained nonsignificant
at 14 and 21 d of age, but a tendency for difference was
found at 33 d of age. The body weight difference between
birds with suboptimal vs. good gait was 9.7 g (95% CTI:
—12.3 to 31.7 g, P = 0.387) on d 14, 26.4 g (95% CI:
—11.9t064.7g, P=0.177) on d 21, and 64.3 g (95% CI:
—12.3 to 141.0 g, P = 0.100) on d 33. The body weight
of the broilers by age and gait class is shown in Supple-
mentary Figure 2.
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Figure 4. Boxplot of pose features by age.
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Figure 5. Distribution of the gait scores by observer.

The differences in the pose features on d 33 between
broilers with good vs. suboptimal gait are shown in
Table 2. Broilers with suboptimal gait had sharper hock
joint angles during double support than broilers with
good gait. The angle of the shank was also numerically
sharper in broilers with suboptimal gait, but the differ-
ence was not statistically significant. Similarly, no statis-
tically significant difference was found in relative
tibiotarsus and shank lengths, and in hock-knee distance
ratio. On the other hand, hock-feet distance ratio was
lower in birds with suboptimal gait, that is, the feet of

lame birds were relatively more spread out than the
hocks compared to the broilers with good gait. Birds
with suboptimal gait had lower relative step height, that
is, they did not lift their feet as high during maximum
leg lift as the good walkers. For each pose feature, the
difference between gait classes was also expressed as a
percentage, so the features can be compared to each
other in terms of signaling gait problems (Table 2).
Expressed in percentage difference, step height and
hock-feet distance ratio showed the largest deviations
between broilers with suboptimal vs. good gait. We also

Table 2. Difference in pose features on d 33 between broilers with good vs. suboptimal gait.

% diff.'
Feature Value at good gait Diff.! 95% CI P % diff.! 95% CI
Hock joint angle (°) 152.9 —2.2 —4.3to —0.1 0.042 —1.43 —2.82to —0.05
Shank vs. floor angle (°) 82.9 -1.3 —3.1t00.6 0.174 —-1.52 —3.72 t0 0.68
Tibiotarsus relative length 0.55 0.01 —0.01 to 0.02 0.324 1.18 —1.18 t0 3.55
Shank relative length 0.45 0.00 —0.01 to 0.01 0.945 0.11 —3.05to 3.27
HKDR’ 0.65 —0.01 —0.03 to 0.02 0.641 —1.02 —5.36 to 3.32
HFDR’® 0.87 —-0.03 —0.06 to —0.01 0.013 —3.62 —6.47 to —0.78
Relative step height (%) 37.7 —4.5 —7.2t0 —1.7 0.002 —11.81 —19.16 to —4.46

!Difference (suboptimal — good).
*Hock-knee distance ratio.
3Hock-feet distance ratio.
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tested the robustness of our results against different gait
score thresholds to distinguish broilers with good vs.
suboptimal gait. The percentage difference between the
resulting gait score classes for each feature is presented
in Supplementary Figure 3. The main conclusions
remained virtually unchanged despite the changes in
gait score threshold.

DISCUSSION

In this study, it was investigated whether automati-
cally detected poses could be used to characterize walk-
ing and lameness in broilers. In total, 7 pose features
were successfully extracted from the videos and the rela-
tionships with manual gait scores were examined.
Broilers that were manually classified as having subopti-
mal gait showed sharper hock joint angles, a lower hock-
feet distance ratio and lower relative step heights. These
differences between birds with good gait and birds with
suboptimal gait have potential to be implemented in
automation of gait scoring in broilers.

Deep Learning Model Performance

Additional training of the existing model of Door-
nweerd et al. (2021) was needed to achieve a well-per-
forming model for the current data collection
environment. However, this required only a small addi-
tional dataset (181 frames), highlighting the added
value of an existing model to build upon. Overall, the
retrained pose detection model performed well, with
train and test errors of 2.11 to 2.12 and 4.02 to 4.83,
respectively, depending on whether all keypoints or only
filtered keypoints were included. These values are in a
similar range to those of Doornweerd et al. (2021), who
reported values of 2.26 and 7.56, respectively, for key-
points that surpassed the filtering. However, the 8 key-
points showed differences in how well they could be
located, with the neck and knees being harder to locate,
and for the neck the detection certainty deteriorated
over time. Likely, the neck and knees were harder to
detect because of the thick layer of feathers covering
these areas. Similar observations were made by Door-
nweerd et al. (2021), who reported lower percentages of
keypoints remaining (i.e., keypoints with a likelihood
>0.6 over the total number of keypoints with a Euclid-
ean distance) for the knees. Furthermore, we observed
that birds tended to walk with their head down as they
grew, which could have led to the head and especially
the neck being occluded from the camera’s viewpoint by
the body, explaining the deterioration in detection of
the neck as the birds aged. However, as our study
focused on leg keypoints, the deterioration in the detec-
tion of the neck had no impact on the results.

Gait Scores and Body Weight

We used gait scores from multiple experienced observ-
ers to improve the robustness of our gold standard for

walking ability, and reduce the effects of the subjectivity
of gait scoring. The use of additional diagnostic methods
would have led to stronger conclusions on leg health.
For example, Fernandes et al. (2012) used autopsy to
assess the relationship of several leg disorders with gait.
As our study was focused on the relationship of pose fea-
tures with gait score as a measure of walking ability, and
not leg health per se, the interpretability of our findings
in relation to leg disorders is limited.

The gait score distribution observed here, with 57% of
the broilers showing a good gait and 43% showing a sub-
optimal gait, is in a similar range to other reports in lit-
erature. For example, van der Sluis et al. (2021)
reported in their study that 58% of the broilers had a
normal gait (GS < 2) and 42% had an impaired gait (GS
> 3), and Knowles et al. (2008) reported in their UK sur-
vey that 27.6% of birds showed GS3 or higher. The final
range of gait scores reported here was based on the
scores assigned by 4 experienced observers, by taking
the mean of the 4 scores. Although the intraobserver
agreement was high (Cohen’s weighted « of 0.67—1),
representing good to excellent agreement, the interob-
server score was somewhat lower (Fleiss’ « of 0.27, a fair
agreement). This reflects the challenge of objective man-
ual gait scoring, and highlights the value of an objective
automated scoring system.

Twelve broilers were removed from the study due to
routine activities for the breeding program. Removal
was based on body weight only, so that the removed
broilers represent the weight distribution within a
pen. Choosing the individually tagged broilers based
on a list (instead of the catching them as they come to
hand in the pen), and adjusting all analyses for body
weight, minimized the risk of introducing bias into our
results.

In the current study, it was observed that broilers
with an impaired gait at 33 d of age were, numerically,
but not statistically significantly, heavier at 14, 21,
and 33 d of age. This relationship between gait and
body weight (also earlier in life) in broilers has been
reported earlier. For example, van der Sluis et al.
(2021) examined gait scores at 33 to 35 d of age, for
broilers that had a relatively low or high body weight
at approximately 2 wk old. They reported that within
the lightweight broilers approximately 70% had GS <
2, while within the heavyweight broilers approxi-
mately 46% had GS < 2. This suggests that birds that
are relatively heavy earlier in life might be more likely
to develop gait problems later in life. Kestin et al.
(2001) compared 13 broiler genotypes with 2 different
feeding regimes and observed that the faster-growing
genotypes had higher gait scores than slower-growing
genotypes with the same diet. Moreover, when correct-
ing for liveweight differences, the gait score of broilers
was worse at 54 d than at 81 d. In other words, when
birds gained body weight faster their gait score was
worse (Kestin et al., 2001). The observations in the
current study are in line with these earlier reports, and
in the subsequent analyses body weight was therefore
taken into account.
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Pose Estimation Features in Relation to Gait

Different broiler lines may differ in their posture while
walking. For example, Paxton et al. (2013) aimed to
quantify the general locomotor dynamics of modern
broilers, with exclusion of visibly lame birds or birds
that were incapable of sustained walking, using kine-
matic and force plate data. They observed that one of
the pure lines included in their study showed a more
crouched limb posture (based on a lower center-of-mass
height for the same total leg length) than the other pure
line and commercial line broilers. The current study
indicates that there are also posture differences within a
single broiler line, that have potential for automated
scoring of gait, as our analysis revealed differences
between birds with good gait and birds with suboptimal
gait for several pose features.

Sex may also affect walking characteristics in broilers.
Bokkers and Koene (2002) used fast-growing male and
female broilers to study the ability to walk for a food
reward. They found that males walked faster than
females, despite their higher body weight, indicating dif-
ferences in walking characteristics by sex in broilers. It is
possible that after adjusting for body weight and gait,
pose features would still differ between male and female
broilers. As this study was a first attempt to link certain
pose features to gait as a proof of concept, further work
is necessary to optimize pose estimation for practical cir-
cumstances, and investigate the utility of pose features
for gait assessment in different sexes, broiler lines, or
even in other poultry species.

In terms of angle features, sharper hock joint angles were
observed for broilers with suboptimal gait, indicating a
more sagging posture. Moreover, a numerically sharper
shank-vs.-floor angle was observed for broilers with subop-
timal gait. These 2 features were observed to be strongly
correlated, implying that individual broilers tend to have
either a more crouched or a more straightened-up posture
affecting both these leg angles simultaneously. Mendes
et al. (2016) also studied leg angles in relation to gait scores
in broilers, through the use of frontal and side-view photo-
grammetry. They examined the angle between the distal
portion of the tibia and the center of the foot on the lateral
side of the leg (which can be viewed as the supplementary
angle of our shank-vs.-floor angle), and concluded that a
larger lateral angle is correlated with worse gait in male
broilers. In the current study, the medial shank-vs.-floor
angle was sharper in broilers with an impaired gait, there-
fore, our results are in line with those of Mendes et al.
(2016), although, the differences remained nonsignificant.
Overall, it appears that hock joint angles, and perhaps
shank-vs.-floor angles as well, have potential as indicators
of gait impairment in broilers.

A difference in hock-feet distance ratio was also
observed between birds with good gait and broilers with
suboptimal gait, with broilers with suboptimal gait
showing a smaller ratio. In other words, the feet of these
birds were relatively more spread out than the hocks
compared to the broilers with good gait. This might be
linked to the sharper hock joint and shank-vs.-floor

angles, as there were strong positive correlations
between these angles and the hock-feet distance ratio. A
smaller ratio could potentially indicate valgus deforma-
tions. It has been reported that gait problems and
varus/valgus deformations are correlated (Sanotra
et al., 2001). Fernandes et al. (2012) studied the rela-
tionship between different locomotion characteristics
and observed that, at 35 d of age, there were positive
correlations between valgus deformations in the left or
right leg and gait scores. This appears to support the
observation in the current study. However, it is impor-
tant to note that the hock-feet distance ratio measured
here may also simply be indicative of how birds are
standing, for example, with X-shaped legs. Therefore, a
smaller or larger hock-feet distance ratio does not auto-
matically indicate valgus or varus deformations. How-
ever, if a small hock-feet distance ratio is detected by the
pose estimation, this could contribute to a targeted
approach where a human observer can double-check if
valgus deformations are present.

In addition, it was observed that broilers with subop-
timal gait had lower relative step heights, in line with
earlier reports in literature. Caplen et al. (2012) studied
the gait of lame (GS3) and nonlame (GS0) broilers using
kinematic analysis. They observed, among other things,
shorter stride lengths, higher lateral back displacement
values (i.e., the maximum lateral back movement
recorded during a stride), and lower vertical leg displace-
ments (i.e., the maximum height that a leg is lifted dur-
ing a stride) for the GS3 broilers. It appears that relative
step height could be a useful indicator of lameness in
broilers, especially given that, along with hock-feet dis-
tance ratio, step height showed the largest percentual
difference between birds with good vs. suboptimal gait.
Tracking these pose features over time along with the
gait of broilers could enable timely detection of changes
in individual walking characteristics, in order to predict
the onset and progression of lameness.

Toward the Future

The results from this study provide more insight into
the differences in walking characteristics between
broilers with good gait and broilers with suboptimal
gait. Knowledge of these differences can be helpful in the
design of automated gait score prediction models for
broilers, and improve our understanding of some of the
features that black box gait prediction models might
pick up on. Currently, due to the limited data available,
birds with different gait scores were grouped into good
and suboptimal gait, using GS2 as the upper threshold
for birds with good gait. This cutoff value was based on
the general assumption that birds with GS higher than 2
have a potentially impaired welfare (Kestin et al., 1992),
and was also used in other studies (e.g., van der Sluis
et al., 2021). However, it has been reported that there is
not a very clear distinction between birds with GS2 and
birds with GS3 in terms of welfare (Skinner-Noble and
Teeter, 2009), and there may be substantial differences
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between birds with GSO and GS2 in locomotor ability
(Tahamtani et al., 2021). The analyses in this study
were also performed with GS 2.5 or 3 as cutoff values
and did not result in substantially different conclusions.
Nevertheless, additional research with larger numbers of
broilers per gait score category could shed more light on
the more subtle differences between different gait scores
and may provide further input for future automation of
gait scoring in broilers. A limitation of this study is that
our automated pose estimation approach in its current
form was not able to score walking ability of birds with
very poor gait that do not walk in the walking test. How-
ever, future research could investigate the potential of
implementing the automated pose estimation approach
in environments where birds can roam freely, without
using a walkway. In such an environment, it may be pos-
sible to capture on video even the lamest birds walking,
for example, on their way toward drinkers or feeders, as
vital resources. Whether it is then possible to reliably
determine their walking ability using our pose estima-
tion approach remains to be investigated.
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