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Abstract
Understanding tropical secondary forest canopy greenness and responses to climatic conditions is
important for climate change mitigation, particularly in the tropics where secondary forest growth
is a substantial carbon sink and a promoted natural climate solution. We here test three hypotheses:
(a) forest canopy greenness is higher in younger, secondary forests than in older, primary or
mature forests, (b) secondary forests are more vulnerable to climatic pressures and (c) there are
significant differences between forest types regarding primary–secondary canopy greenness and
their differential responses to drought anomalies. To explore these relationships, we monitored wet
and dry seasonal greenness from 2001 to 2020, estimated through the enhanced vegetation index
(EVI), of Peruvian tropical dry, montane and lowland secondary forests and compared it to nearby
primary forests. We developed predictive models of seasonal EVI using remotely sensed variables,
including land surface temperature (LST), evapotranspiration (ET), potential evapotranspiration
(PET), ratio of ET and PET (ETn), and the standard precipitation index (SPI). Overall, there was a
higher change in annual and seasonal EVI for secondary forests compared to primary forests.
However, primary forests maintained relatively stable EVI levels during the wet season despite
drought anomalies. When decoupling forest type canopy greenness and drought response, primary
forest greenness in dry and lowland ecosystems were temporally more stable. Secondary montane
had a lower increase in greenness when drought anomalies held during different seasons. Stepwise
multiple linear regression models indicated that LST and ETn, a plant water use index, were the
most significant factors to predict greening fluctuations in dry and montane forest types. ET and
SPI mostly drove wet season mean EVI across all forest types. Predictors of dry season mean EVI
varied, but mostly including water availability. Our results suggest that tropical secondary forests
are more productive overall yet more vulnerable to prolonged drought.

1. Introduction

With recent increased international focus on climate
change, the potential of biomass recovery has led
secondary forests to become an important natural

climate solution (Griscom et al 2017, 2020) for
climate change mitigation, as studies suggest that
large amounts of carbon are sequestered during their
recovery towards mature forests (Martin et al 2013,
Chazdon et al 2016, Tyukavina et al 2017). Tropical
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secondary forests may take up CO2 at 11 times the
rate of old-growth forests (Poorter et al 2016), with
carbon stocks recovering within 40 years of forest
regeneration and aboveground carbon stocks possibly
increasing past 100 years (Jones et al 2019). Therefore,
tropical secondary forests seem to be generally very
productive and resilient, particularly those with older
successional tree species, and driven mainly by vari-
ation of water availability, including higher rainfall
and lower water deficits, which increases overall bio-
mass growth (Toledo et al 2011, Poorter et al 2016).
However, the opposite response has also been found,
where secondary forests seem vulnerable to climate
variations with relatively lower carbon balance and
growth rates compared to primary forests during dry
periods (Elias et al 2020, Aragón et al 2021).

While these associations are increasingly being
studied, knowledge gaps remain in the response of
different tropical secondary forest systems to changes
in water availability. The well documented Amazon
wide moderate and severe drought events occurring
in 2005, 2010 and 2015–2016 were linked to strong
El Niño Southern Oscillation and North Atlantic sea
surface temperature anomalies (Saatchi et al 2013,
Jiménez-Muñoz et al 2016). The 2005 and 2010
drought events were particularly significant, as large
areas of Amazonian forests seemed to experience per-
sistent negative effects on forest canopy cover (Saatchi
et al 2013, Yang et al 2018). However, these studies did
not focus on local drought anomalies, decouple forest
type or explore the impact to neighboring forest eco-
systems, which would be useful in understanding the
secondary forest’s sensitivity.

Satellite observations of a forest’s upper canopy
characteristics (e.g. greenness) have proven useful
to provide the data necessary to observe the long-
term impacts of drought (Nakagawa et al 2000), with
certain limitations due to atmospheric conditions
(Saatchi et al 2013). Nevertheless, optical indices, in
particular the normalized difference vegetation index
(NDVI) and the enhanced vegetation index (EVI), are
used extensively to estimate vegetation growth and
vigor (Wagner et al 2017, Potapov et al 2021). In par-
ticular, the seasonal dynamics of EVI show a sensit-
ive response to droughts throughout the breadth of
forest types in the Amazon biome including lowland
and montane forests (Costa et al 2022, Souza et al
2022). In addition, changes in land surface temperat-
ure (LST), derived fromMODIS and Landsat thermal
bands, have been used to predict tropical forest leaf
flush and, therefore onset of growth (Brando et al
2010). Evapotranspiration (ET) is also a frequent
remotely sensed variable, with a long record, used to
monitor the overall water cycle, seasonality, and the
resulting changes from deforestation in the Amazon
(Paca et al 2019).

In this study, we tested three hypotheses: (a) forest
canopy greenness is higher in younger, secondary

forests compared to older, primary or mature forests,
(b) canopy greenness in secondary forests is more
vulnerable to climatic pressures than primary forests
and (c) there are significant differences between
forest types regarding primary–secondary forest can-
opy greenness and their differential responses to
drought anomalies. To this end, we leveraged 20 years
of satellite derived data and analyzed spectral data,
namely EVI, to identify and understand the green-
ness response of secondary forests, from differ-
ent tropical forest ecosystems in Peru, to changes
in water availability. We explored the correlation
and predictive relationship between the seasonal
spectral greenness of secondary forests and nearby
primary or mature forests and environmental and
climate variables, including LST, ET, and the stand-
ard precipitation index (SPI) within the wet and dry
seasons.

2. Materials andmethods

2.1. Study area
Three different secondary forest types were used for
this study: tropical dry forest, tropical lowland rain-
forest and tropical montane forest (figure 1). One-
hectare plots were established in each of the second-
ary forest sites, all being 30 year old successions. The
secondary dry forest site is located in the depart-
ment of Piura in northern Peru (figure 1(b)), in the
protected communal reserve of Manga-Manguilla, in
an area known as Tumberos (Tum I, II) (−5.29 ◦S,
−79.85 ◦W and −5.30 ◦S, −79.85 ◦W, respectively).
At an elevation of 360–430 m, our sites have an
average annual rainfall of 421 mm, with a strong
rainfall seasonality from January to April (ca. 90%
of the total rainfall). Mean annual temperatures
range from 23.5 ◦C to 25 ◦C. The forest has been
protected since the 90s after intense selective log-
ging for timber occurred. The entire protected area
(3000 ha) is dominated by the deciduous tree spe-
cies Bursera graveolens (70% of abundance), with
minor contribution from other deciduous genera
(e.g. Loxopterygium, Eriotheca). As a primary con-
trol, we selected a one-hectare plot polygon through
the visual interpretation of very high spatial resol-
ution satellite imagery in a 5 km-radio area from
the secondary plot, at the same elevation and aspect
(see next section). While data for the primary
forest selected with remote sensing is not avail-
able, research under publication for secondary and
primary dry plots in the region showed that pre-
cipitation largely drives deciduousness with primary
dry forests under similar conditions showing decidu-
ousness, but poor species overlapping due to human
disturbance legacies (fire, fuel removal, logging) and
high levels of endemism. However, some genera from
the regional primary plots overlapped (e.g. Bursera,

2



Environ. Res. Lett. 18 (2023) 064004 B R Zutta et al

Figure 1. Secondary forest field sites in the (a) tropical dry forest, (b) lowland forest and (c) montane forest within Peru (d).

Loxopterygium, Handroanthus, Eriotheca) and phen-
ology remains comparable. Structurally, our second-
ary forests presented mean heights similar to regional
primary forests of 9 m, suggesting good phenological
and structural comparability among EVIs. No emer-
gent trees were present.

Two secondary lowland rainforest sites were
established: one in the Juanjui region, in the depart-
ment of San Martin in central Peru, in a com-
munal area known as Breo II at ca. 400 m.a.s.l.
(–7.15 ◦S, −77.10 ◦W; figure 1(b)). The rainy season
is from October to April with an annual average of
1650mmand amean annual temperature of 26.7 ◦C–
28.1 ◦C. An additional secondary site was established
in Los Amigos reserve (Ami-I) in the Madre de Dios
region of Southern Peru (–12.56 ◦S, −70.10 ◦W) at
250 m.a.s.l. with mean annual rainfall of 2648 mm,
andmoderate rainfall seasonality (Oct–May being the
rainiest months), with 23 ◦C of annual mean temper-
ature. Two primary forest plots were used for compar-
ison in nearby sites (Breo I, −77.16 ◦S, −70.10 ◦W,
in Juanjui, but at a higher location 700 masl) and
the Tambopata reserve (Tam-9), in Madre de Dios

(–12.83 ◦S,−69.28 ◦W), with similar rainfall. Tem-
perature being fresher in Breo I with mean annual
temperatures of 24.3 ◦C–26.8 ◦C.

Secondary sites in the lowlands have suffered from
selective logging (more intensively in Los Amigos
than in Juanjui, the latter being an area of harder
geographical access) (Salinas pers. com). Both sec-
ondary sites present mixed evergreen species with
remarkable diversity in Juanjui’s Breo II (ca. 60 gen-
era including palms), which is a hotspot of biod-
iversity and endemism. Most abundant genera in
Breo II included: Inga, Hyeronima, Apeiba, Iryan-
thera, Socratea, Otoba, Alchornea, Marila, Matisia,
Guarea accounting for 50% of the diversity (Salinas
pers. com). Forest diversity in the nearby primary
plot (Breo I) was slightly higher with ca. 65 tree
genera, and overlapping abundance: Inga, Guatteria,
Alchornea, Apeiba, Cecropia, Eschweilera, Dendro-
panax, Iryanthera, Neea. Structurally, both plots are
very similar, mean heights of about 13.7 m and ca.
6% of the trees with diameter at breast height (DBH)
>25 cm. Total stems per hectare of ca. 650 trees.
Emergent trees with heights >30 m were present in
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both plots from evergreen species such as Sterculia
sp., Dipteryx sp.,Myroxylum balsamum, Brosimum sp.,
Parkia sp., Caryocar sp., Clarisia sp., Tachigali sp.A few
species of deciduous emergent trees were also present
(Cavanillesia, Sterculia) in both sites but with negli-
gible abundance.

Los Amigos secondary plot hosts ca. 51 genera of
evergreen trees and palms with Pourouma, Inga, Cec-
ropia, Pouteria, Pseudolmedia, Tachigali, Brosimum,
Jacaranda, Meliosma representing 50% of the abund-
ance (Salinas pers. com). The primary forest of
Tambopata showed the highest diversity with 110
evergreen genera. Structurally both primary and
secondary were however similar, with mean heights
ca. 16 m and mean DBH of ca. 20 cm. Both sites
presented ca. 20% of the trees with large trees
DBH > 25 cm but Tambopata had more stems
(n= 663) than Los Amigos (n= 527). Emergent trees
were all evergreen with species overlap between Tam-
bopata: Terminalia Amazonia; Bertholletia excelsa;
Jacaranda copaia; Brosimum lactescens; Ficus indet;
Acacia indet; Sapium marmieri; Guatteria pteropus;
Pourouma minor and Los Amigos: Brosimum, Aca-
cia, Hevea, Pseudolmedia, Clarisia, Inga, Hymenaea,
Tachigali, Annona.

The secondary tropical montane forest was loc-
ated in the La Convención province, Cusco region,
in southern Peru (–12.99 ◦S,−72.53 ◦W; figure 1(c))
at an elevation of 1700 masl, in a site known as
Yanayaco. Annual rainfall averages 1060 mm, with
a rainy season from October to April, and a mean
annual temperature of 18.4 ◦C (Aragón et al 2021).
The one-hectare secondary plot was established on
a 30 year abandoned tea plantation and therefore
highly disturbed (Aragón et al 2021). All species were
evergreen at the secondary plot. Diversity was rel-
atively low (32 genera of trees) with an abundance
of agroforestry species (tea, Eriobotrya japonica) tea
shading genera: Inga and Ocotea and early succes-
sion soft-wood genera like Cecropia, Ficus and Urera.
Some primary genera were also present and over-
lapped with the selected montane control plot (e.g.
Clethra). Aragon et al (2021) presented a comparison
with primary montane plots at similar conditions
(1880m.a.s.l.) fromTrochaUnion, Cusco region. The
plots showed that while all species were evergreen,
there was poor genera overlapping due to hard access
and high endemism in the Trocha Union region (e.g.
Cyathea, Myrcia, Tapirira, Alzatea, Clethra). Structur-
ally, secondary Andean forest were similar to primary
ones with average heights around 10 m and similar
mean DBH (15.8 vs 17.3 cm), but lower basal area
(12.7 vs 28 m2 ha−1) and higher stems in the primary
site (1082 vs 866) (Aragon et al 2021).

While no field data exists for the selected 1 ha
plot polygon in this research, data above shows that
while species differ, all species were evergreen, no
emergent were present, and structural differences
were moderate. EVIs should be comparable.

In order to compare forest type response to
climate variables, we geospatially sampled primary
forests within 5 km of the secondary forest sites,
using the same polygon dimensions and similar topo-
graphy including elevation, slope and aspect, meas-
ured through the Shuttle Radar Topography Mission
Digital Elevation Model (SRTM DEM) at 30 m spa-
tial resolution. It is worth noting that the remain-
ing primary forests in San Martin are highly frag-
mented and, therefore, may have altered ecological
characteristics compared to similar montane forests
in southern Peru. Primary forest locationwas determ-
ined by using the dry forestmap for 2018, for the trop-
ical dry forest, and the Peruvian Amazon forest/non-
forest map for the year 2020, for the tropical lowland
and tropical montane forests, available through the
GeoBosques platform (geobosques.minam.gob.pe)
administered by the National Forest Conservation
Program to Mitigate Climate Change (PNCBMCC-
MINAM) of the Peruvian Ministry of the Environ-
ment. Primary forest locations were also visually con-
firmed using high resolution Sentinel-2 images for
the year 2020.

A total of 18 sites were used for this study with 3
secondary and 3 primary forest sites per forest type.
See supplementary material table S1 for additional
attributes for each plot.

2.2. Landsat data
The EVI has been used to monitor drought impacts
on forests (Anderson et al 2018) and is correlated
with photosynthetic capacity, leaf area index, can-
opy structure and morphology (Huete et al 2002).
We chose EVI rather than NDVI due to its sensit-
ivity in high biomass areas and NDVI’s character-
istic of saturating with tropical vegetation (Huete
et al 2002). EVI is calculated through the following
method:

EVI= 2.5
NIR − RED

NIR + RED− 7.5 BLUE + 1
(1)

where NIR is the near-infrared band, RED is the red
band, and BLUE is the blue band. Higher values of
EVI indicate higher biomass and greenness (Huete
et al 2002) and lower EVI values during or after
drought, compared to average, indicate a reduction in
productivity and greenness (Caccamo et al 2011). We
used Landsat image data from 2001 to 2020 to estim-
ate annual seasonal (i.e. wet and dry season) average
EVI from 2001 to 2020 over the secondary forest field
sites and primary forest areas of comparison. Landsat
imagery has a 30 m spatial resolution (i.e. pixel size),
which allows us to record several pixel values within
the 1 ha plot area.

LST was derived from top of atmosphere from
Landsat’s thermal infrared from the Landsat 4–8 col-
lections and available at 30 m spatial resolution. We
used Landsat native resolution data from 2001 to
2020 to estimate average wet and dry season LST
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from 2001 to 2020. Both EVI and LST data were
downloaded from the Climate Engine web applic-
ation where an automatic cloud and quality mask
are applied (app.climateengine.com,Huntington et al
2017).

2.3. MODIS data
We used the MODIS (MOD16A2) 8 d, 500 m spa-
tial resolution product to estimate seasonal average
ET and potential evapotranspiration (PET) over the
secondary forest field sites and primary forest areas of
comparison. The available time series included data
from 2001 to 2020. In addition, we used the ratio of
the MODIS derived ET and PET (ETn), which has
been used as a dimensionless indicator of plant water
use and is a function of plant water availability and
use rather than regional differences in net radiation
(Arantes et al 2016).

2.4. CHIRPS data
We used the Climate Hazards Group InfraRed Pre-
cipitation with Station (CHIRPS) dataset that incor-
porates weather station data with satellite imagery
to provide a more than 35 years of quasi-global,
moderate resolution and long temporal precipita-
tion estimates (Funk et al 2015). The gridded data
set was available at a 4800 m spatial resolution.
We used the standardized precipitation index (SPI),
derived from the CHIRPS dataset, to estimate local
drought anomaly intensity during the wet and dry
season of each forest type. The SPI is a widely used
drought index, based on accumulated precipitation,
to detect precipitation deficits at a specific time scale
(McKee et al 1993). The wet season is 4 months
and the dry season is 8 months for the tropical dry
forest. The wet season is 7 months and the dry sea-
son is 5 months for both the tropical lowland and
montane forests. The SPI scale for drought events
(figure 2) include mild dry (below 0 to−0.99), mod-
erately dry (–1.0 to −1.49), severely dry (–1.5 to
−1.99), and extremely dry (⩽−2.0) (Naresh et al
2009, Svoboda et al 2012). Therefore, we used the
SPI scale to determine drought conditions during
the wet and dry season for each forest type. The
average historical year range was chosen for 1981–
2020, which is the full record available from the
CHIRPS dataset. The CHIRPS, SPI, ET and PET data-
set were downloaded from the Climate Engine web
application.

All secondary and primary forest plots were loc-
ated towards the more intact centers of forested
area. Mean and standard deviation EVI values, using
the native 30 m spatial resolution, for each one
hectare plots was used for statistical comparisons
between primary and secondary forests and to estab-
lish greenness trends. We resampled all variables,
using nearest neighbor, to 500 m resolution to have
a consistent dataset for correlation and regression

analysis between variables. All data layers and maps
were projected in WGS84 UTM Zone 18S. We used
ArcGIS Pro 3.0.2 (ESRI) for all geospatial analysis and
JASP 0.16.1 (https://jasp-stats.org/) for all statistical
analysis of the extracted values.

2.5. Data analysis
In order to statistically compare forest canopy green-
ness in primary to secondary forests for the first hypo-
thesis, we performed a two-tailed Student’s t-tests,
with equal variance, to indicate statistically signific-
ant difference between annual and seasonalmean EVI
from secondary and primary forests (tables 1 and 2).

Our approach to compare secondary to primary
forest vulnerability to drought anomalies, and as a
test of the second hypothesis, included the use of one
sided Mann–Whitney nonparametric tests to indic-
ate whether there was a statistically significant pos-
itive or negative shift of EVI from primary forests
compared to secondary forests in response to anomal-
ous drought conditions. Furthermore, to explore the
changes in EVI with environmental and climatic vari-
ables, we used Pearson’s correlation coefficient (r) to
evaluate the relationship between seasonal mean EVI
from 2001 to 2020 and SPI, LST, ET, PET, ETn and
year (table 3). Seasonal mean EVI refers to the mean
value of EVI for the wet or dry season for each forest
type whose length was previously described above.
Similarly, we evaluated the relationship between wet
and dry season EVI, from 2001 to 2020, with the wet
and dry season values of the previous variables (see
supplementary material table S2). The normal distri-
bution of the dataset was verified by the Shapiro–Wilk
normality test.

Forest canopy greenness differences among the
forest types and their differential response to drought
anomalieswas explored using the two-tailed Student’s
t-tests, as above and as a test of the third hypo-
thesis. In addition, we used stepwise linear regression
to first explore the association between mean sea-
sonal EVI and the environmental and climatic vari-
ables throughout the length of the study period, from
2001 to 2020. The mean annual EVI was used as
the dependent variables, and the environmental and
climate factors were selected as independent pre-
dictor variables. The statistically significant predict-
ive models use one or multiple variables that best
explain the dependent variables. The adjusted R2

from model fitting indicates the percentage of all
factors that explain the pattern of the normally dis-
tributed dependent variable. The magnitude of the
standardized β indicates the influence of a particu-
lar variable in the predictive model. Collinearity dia-
gnostics, from the regression, were used to identify
model variables that were highly correlated. We also
performed a cross correlation with one to several sea-
son time lag intervals between seasonal EVI and the
variables.
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Figure 2. SPI for Peru during the Amazon biome wide drought events of (a) 2005, (b) 2010, (c) 2015–2016 and (d) 2020.
Secondary field sites include tropical dry forest (□), tropical lowland forest (△), and tropical montane forest (□).

3. Results

3.1. Forest canopy greenness in primary vs
secondary forests in Peru
We found a higher annual and seasonal EVI for
secondary forests compared to primary forests with

the 20 years of seasonal data (table 1). Signific-
ant differences in EVI were found for mean annual
and non-drought anomalies in dry and wet sea-
sons (p ⩽ 0.05). Secondary forests had higher
EVI values during seasons with non-drought anom-
alies compared to primary forests. Primary forests,
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Table 1.Mean EVI of secondary (SF) and primary (PF) of Peru
between 2001 and 2020. Data are mean (±SD) EVI.

SF PF

Ave annual 0.50 (0.16) 0.41 (0.16)a

Dry season
Drought 0.42 (0.21) 0.38 (0.17)
Non-drought 0.47 (0.14) 0.35 (0.14)a

Wet season
Drought 0.53 (0.15) 0.51 (0.13)
Non-drought 0.58 (0.10) 0.47 (0.14)a

a Indicates a statistically significant difference between secondary

and primary forest EVI value calculated by Student’s t-test

(p⩽ 0.05).

however, maintained relatively stable and lower EVI
levels during the wet season despite wet or drought
anomaly conditions. The difference in EVI levels
between secondary and primary forests were signi-
ficant only when water was not a limiting factor
(table 1).

3.2. Secondary vs primary forest vulnerability to
drought anomalies
EVI of primary lowland forests was higher during
anomalous drought events considered moderate to
extremely dry (p ⩽ 0.05). However, we also found
that EVI was higher in secondary forests compared
to primary forests, when precipitation was anomal-
ously high for dry (p ⩽ 0.05) and wet (p ⩽ 0.05)
seasons.

Considering these local rainfall deficits and sur-
plus, both secondary and primary forests experienced
annual fluctuations in greenness (figure 3), which
correlated with plant water use (i.e. ETn, r = 0.63,
p⩽ 0.001) and ET (r= 0.68, p⩽ 0.001). During non-
drought dry seasons, primary forest productivity was
correlated with ET (r = 0.86, p ⩽ 0.001), in addi-
tion to LST, PET, and ETn (p ⩽ 0.001), which was
very similar to secondary forest correlation. Correla-
tions during non-drought wet season was also differ-
ent, where primary forest productivity was signific-
antly correlated with ET (r = 0.64, p ⩽ 0.001), PET
(r = 0.53, p⩽ 0.001), and LST (r = 0.40, p⩽ 0.001).
Only PET was found to be significantly correlated
(r = 0.29, p ⩽ 0.01) with secondary forest for those
climate conditions.

3.3. Forest canopy greenness differences among
forest types and differential response to drought
anomalies
Decoupling the response of different forest types, we
found amore complex difference of greenness in rela-
tion to drought anomalies. Within dry and mont-
ane tropical forests, there no significant difference
between primary and secondary forest EVI for mild
and moderate drought anomalies occurring during

the dry season. In addition, the level of EVI was signi-
ficantly higher for lowland primary forests compared
to secondary forests for mild (p < 0.05) and moder-
ate (p ⩽ 0.05) drought anomalies across seasons. No
pattern could be found regarding extreme drought
anomalies since only a few of these events occurred
locally during the years of interest.

Mean seasonal EVI was statistically different for
secondary and primary forests, particularly in non-
drought wet seasons (table 2), and all seasons for
montane forests. In montane forests, mean EVI was
consistently higher in all seasonality, which includes
drought and non-drought anomalies for the wet and
dry seasons, with a low variability between condi-
tions and seasons. However, the montane primary
forest had a 62.5% increase in mean EVI value
from the average dry season with drought condi-
tions to the average wet season with non-drought
conditions. Mean EVI showed a more consistent
greening in secondary lowland forests from dry sea-
son droughts to normal wet seasons. Under this
same climatic condition, secondary dry forests had
a 136.0% increase in mean EVI value compared to
the relatively stable values in the primary dry forest
(table 2).

Correlation analysis between 20 years of sea-
sonal mean EVI indicates a strong positive correl-
ation between mean annual EVI and LST, ET and
ETn for both secondary and primary dry forests (see
supplementary material table S2). The secondary dry
forests had stronger correlation with LST PET and
SPI compared to its primary dry forest counterpart
(table 3). For montane forests, positive correlations
were found between seasonal mean EVI and ETn
for both secondary and primary forests (r > 0.25,
p⩽ 0.01), and a negative correlationwith ET and PET
(r>−0.25, p⩽ 0.001) in the primarymontane forest
(table 3). No cross correlations with different time lag
intervals were found between seasonal EVI and the
variables.

In stepwise linear regression model fitting for
mean seasonal EVI, ETn was the most important
parameter that most explained EVI levels for the sec-
ondary dry forest (β = 0.693) and secondary mont-
ane forest (β = 0.267). Secondary dry forests had
a negative correlation with LST, which indicates a
higher EVI with a lower LST (table 4). Parameter
importance and correlation changed with the low-
land forests, where a positive trend in mean sea-
sonal EVI over time, in the secondary lowland forest,
produced only one model, which contained a stat-
istical correlation with the year of EVI sampled
(β = 0.283, R2 = 0.10, p-value ⩽ 0.05) and ET
(β =−0.197).

Model fitting for mean wet season EVI across dry
and montane secondary forest sites were mixed with
mostly wet season parameters (table 5), with higher
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Figure 3. Seasonal SPI, based on data from 1981 to 2020, and average wet and dry season EVI, from 2001 to 2020, over the study
sites of (a) TUM I (tropical dry forest), (b) Breo II (tropical lowland forest), and (c) Yanayco (tropical montane forest).
Horizontal dashed lines indicate moderately dry (–1.0) and moderately wet (+1.0) lower limits of SPI. Gray bars indicate the
Amazon wide drought events of 2005, 2010, 2015–2016 and 2020.

adjusted R2 for the dry forest (R2 ⩾ 0.44), com-
pared to themontane (R2 ⩾ 0.29) and lowland forests
(R2 ⩾ 0.13), indicating that the models for dry forests
included at least 44% of the factors affecting wet sea-
son EVI values from 2001 to 2020.

4. Discussion

Our study found a clear difference in forest canopy
greenness between secondary and primary forests,

where secondary forests had a consistent higher
level of greening up, particularly when drought
anomalies remained within dry seasons. This level
of greenness and leaf growth follows Toledo et al
(2011) and Poorter et al (2016) where tropical
successional tree species appear to increase over-
all biomass growth compared to older successional
counterparts. Generally, primary forests maintained
the same level of productivity no matter if the
wet season experienced rainfall deficit from 2001
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Table 2.Mean seasonal EVI, during drought and non-drought anomalies, of secondary (SF) and primary forest (PF) of Peru between
2001 and 2020. Drought anomalies were defined by a negative SPI value. Data are mean (±SD). The percent (%) difference considers
the difference in mean EVI from drought to non-drought anomalies or as specified from a dry season drought to either a wet season
with non-drought or drought anomalous conditions.

Dry forest Montane forest Lowland forest

SF PF SF PF SF PF

Dry season
Drought 0.25 (0.05) 0.25 (0.06) 0.47 (0.10) 0.24 (0.05)a 0.62 (0.12) 0.57 (0.05)
Non-drought 0.28 (0.04) 0.30 (0.06) 0.53 (0.11) 0.26 (0.06)a 0.55 (0.09) 0.55 (0.05)
% diff 12.0 20.0 12.8 8.3 –11.3 –3.5

Wet season
Drought 0.41 (0.16) 0.36 (0.14) 0.58 (0.06) 0.39 (0.10)a 0.63 (0.11) 0.61 (0.06)
Non-drought 0.59 (0.12) 0.42 (0.17)a 0.54 (0.08) 0.39 (0.09)a 0.63 (0.09) 0.59 (0.05)a

% diff 43.9 16.7 –6.9 0.0 0.0 –3.3
Dry season
drought to wet
season
non-drought
(% diff)

136.0 68.0 14.9 62.5 1.6 3.5

Dry season
drought to wet
season drought
(% diff)

64.0 44.0 23.4 62.5 1.6 7.0

a Indicates a statistically significant difference between secondary and primary forest EVI value calculated by Student’s t-test (p⩽ 0.05).

Table 3. Pearson’s correlation coefficient between seasonal mean EVI of secondary (SF) and primary forests (PF) of Peru, between 2001
and 2020, and predictive variables. Seasonal mean EVI was separated by respective wet and dry seasons for each forest type. Only
statistically significant correlations are shown. There were no significant correlations found for year.

Temperature Water availability

Forest site LST ET PET ETn SPI

Dry forest
SF –0.32c 0.66c –0.39c 0.72c 0.32c

PF 0.61c 0.59c

Montane forest
SF –0.20a 0.25b

PF 0.69c –0.48c –0.53c 0.26b

Lowland forest
SF –0.18a

PF –0.21a

a p⩽ 0.05.
b p⩽ 0.01.
c p⩽ 0.001.

to 2020. It is important to note that during this
time interval, all forests monitored experience at
least mild drought for at least 25% of their rain-
fall seasons, which indicates an important level of
persistent water stress and may foreshadow their
response.

Despite the increase of canopy greenness of sec-
ondary forest after drought conditions, this relation-
ship does not hold when drought anomalies remain
during both the dry and wet season, where second-
ary forests of montane and lowland ecosystems have
a lower increase of greenness. This seems to follow
the observations of Elias et al (2020), which indic-
ates that secondary forests may be more vulner-
able to continuous and lengthy drought conditions

that extend beyond typical rainfall seasons. Although
prolonged time spans of water stress occurred for
no more than 15% of the transitions of dry to
wet season for these ecosystems, individual wet
and dry seasons with moderate to severe droughts
occur and may prevent any consistent increase in
productivity.

Decoupling forest type response through pre-
dictive modeling, our study found that predict-
ing the magnitude of seasonal greening through-
out the length of study period and specifically for
the wet season was very similar for both second-
ary and primary forests, particularly for dry and
montane forest types where SPI, LST and ETn were
the significant predictor variables. In tropical dry
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Table 4. Predictive models of the relationship of seasonal mean EVI of secondary (SF) and primary forests (PF) of Peru, between 2001
and 2020, and predictive variables. Seasonal EVI was separated by respective wet and dry seasons for each forest type.

Forest site Predictors Standardized β R2 Adj. R2 p-value

Dry forest
SF ETn 0.693 0.66 0.65 a

LST –0.323
SPI 0.152

PF ET 0.550 0.41 0.40 b

Year 0.245
Montane forest
SF ETn 0.267 0.10 0.10 b

PF LST 0.618 0.64 0.64 c

PET –0.439
Lowland forest
SF Year 0.283 0.10 0.10 a

ETn –0.197
PF Year 0.269 0.13 0.11 a

LST –0.210
PET 0.208

a p⩽ 0.05.
b p⩽ 0.01.
c p⩽ 0.001.

forest regions, the decrease in LST and the increase
of plant water availability would reflect cooler and
wetter conditions that would favor greening and,
not surprisingly, were strong predictors of EVI
changes.

It should be noted that the changes in rain-
fall seasonal greening in the secondary and primary
forests within the tropical forest biome were pre-
dicted by LST in the dry season more than the other
factors in our study. LST and EVI have recently been
used to improve tropical land cover change classi-
fication, as native forests are found to have higher
EVI (i.e. canopy cover) with lower LST through-
out the year due to the tropical evergreen pheno-
logy (Phompila et al 2015, Qin et al 2019). How-
ever, the explanatory factor of LST for lowland
secondary forests was not often a predictor as in the
primary forest equivalents (see tables 4 and 5). Nev-
ertheless, the extensive historical data of LST over
the Amazon biome may be a relatively good pre-
dictor of lowland forest greenness changes, offering
an unexpected role of temperature over precipitation
(Xu et al 2015).

Since no time lag correlation was found between
mean annual EVI and the predictor variables, the
greening response of the forest types apparently
occurs sub-seasonally. In other words, greening of
tropical dry and montane forests in the wet season
is dependent on temperature and water inputs dur-
ing the same season. In the absence of water limita-
tion, Amazonian forest leaf flush tends to be triggered
mainly by insolation increase and secondarily by
precipitation increase (Wagner et al 2017), which
would reflect our predictive models, particularly for

montane primary forests during the wet season,
where LST was a strong explanatory factor for sea-
sonal EVI response.

Another important item is that other forest and
accompanying ecological characteristics may effect
overall forest sensitivity to climate variability. In our
study areas, secondary forest sites had similar forest
characteristics, similar phenology and some forest
composition overlap, but primary forests often had
higher tree species diversity. Some secondary forest
sites may reach a mature functional diversity but
not species diversity, depending on the past logging
intensity and level of fragmentation. In addition,
shifting and maturing species composition may be
more sensitive to climate at different times and partic-
ularly to the effects of intense climate anomalies and
climate whiplash.

Finally, it is important to note the limitations of
using satellite derived data sets and climate models
with different spatial resolutions for analysis. The spa-
tial resolution is often quite different where several
pixels of data over a 1 ha plot can be extracted and res-
ampled from high resolution images, such as Landsat,
while only a very few number of pixels from a course
resolution climate models may be available, limiting
the variability of information, and resampling to a
higher resolution may not improve accuracy. Care
must be taken when interpreting these results since
the heterogeneous effects of drought on the local level
may not be represented broad indices such as SPI.
Nonetheless, climatic and environmental processes
often occur at larger landscapes scales and it is worth
attempting to find these correlations to direct future
research.
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Table 5. Predictive models of the relationship of mean wet and dry season mean EVI for each forest type of secondary (SF) and primary
forests (PF) of Peru, between 2001 and 2020, and predictive variables.

Season Forest site Predictors Standardized β R2 Adj. R2 p-value

Wet Dry forest
SF LSTw –0.394 0.48 0.44 b

ETnw 0.371
SPIW 0.31

PF SPID 0.451 0.35 0.31 a

ETW 0.363
Montane forest
SF SPID 0.327 0.33 0.29 a

SPIW –0.293
ETW –0.274
ETnD 0.221

PF LSTW 0.645 0.42 0.41 c

Lowland forest
SF Year 0.329 0.15 0.13 a

PETD 0.256
PF ETD 0.364 0.28 0.24 a

ETnw –0.338
Year 0.298

Dry Dry forest
SF ETnD 0.526 0.88 0.87 a

SPIW 0.44
LSTD –0.168
PETW –0.138

PF ETD 0.915 0.81 0.8 b

LSTD 0.486
LSTW –0.354

Montane forest
SF ETD 0.391 0.15 0.14 b

PF LSTD 0.784 0.82 0.8 a

SPIW –0.318
ETD 0.211
SPID –0.196
PETW 0.166

Lowland forest
SF PETD 0.298 0.2 0.17 b

SPID –0.283
PF LSTW –0.355 0.21 0.18 a

ETD 0.249
a p⩽ 0.05.
b p⩽ 0.01.
c p⩽ 0.001.

5. Conclusion

Our study found the overall support of our hypo-
theses where firstly, secondary forests had higher
forest canopy greening overall. Second, we found that
secondary forests are more vulnerable to drought
anomalies. Lastly, there are differential primary-
secondary forest canopy greening and responses to
drought anomalies between forest types. Primary
forest mostly retained the same level of greening des-
pite water deficits. Changes in LST was a better pre-
dictor of forest greening, although this was not always
significant in lowland forest sites. The role of tem-
perature as a higher stressor of plant productivity
than precipitation has already been mentioned by

other authors (Pechony and Shindell 2010) and rep-
resents and extra challenge in a planet where temper-
ature trends and heatwaves are unequivocally increas-
ing (Stevenson et al 2022). The use of more than
20 years of historic satellite-based data of optical
variables in cloud-based platforms can help identify
and forecast forest greening changes, which in turn
play key roles on land strategies that target mitiga-
tion and adaptation goals to climate change. Thus,
secondary forests do not only provide carbon stor-
age but a whole range of other invaluable ecosys-
tem services (Tito et al 2022). Additional research
is warranted to better understand the response
of secondary forests to rapidly changing climatic
conditions.
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