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Abstract 

Background  The advancements in unmanned aerial vehicle (UAV) technology have recently emerged as an effec-
tive, cost-efficient, and versatile solution for monitoring crop growth with high spatial and temporal precision. This 
monitoring is usually achieved through the computation of vegetation indices (VIs) from agricultural lands. The VIs are 
based on the incoming radiance to the camera, which is affected when there is a change in the scene illumination. 
Such a change will cause a change in the VIs and subsequent measures, e.g., the VI-based chlorophyll-content estima-
tion. In an ideal situation, the results from VIs should be free from the impact of scene illumination and should reflect 
the true state of the crop’s condition. In this paper, we evaluate the performance of various VIs computed on images 
taken under sunny, overcast and partially cloudy days. To improve the invariance to the scene illumination, we further-
more evaluated the use of the empirical line method (ELM), which calibrates the drone images using reference panels, 
and the multi-scale Retinex algorithm, which performs an online calibration based on color constancy. For the assess-
ment, we used the VIs to predict leaf chlorophyll content, which we then compared to field measurements.

Results  The results show that the ELM worked well when the imaging conditions during the flight were stable but its 
performance degraded under variable illumination on a partially cloudy day. For leaf chlorophyll content estimation, 
The r2 of the multivariant linear model built by VIs were 0.6 and 0.56 for sunny and overcast illumination conditions, 
respectively. The performance of the ELM-corrected model maintained stability and increased repeatability compared 
to non-corrected data. The Retinex algorithm effectively dealt with the variable illumination, outperforming the other 
methods in the estimation of chlorophyll content. The r2 of the multivariable linear model based on illumination-
corrected consistent VIs was 0.61 under the variable illumination condition.

Conclusions  Our work indicated the significance of illumination correction in improving the performance of VIs 
and VI-based estimation of chlorophyll content, particularly in the presence of fluctuating illumination conditions.
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Introduction
Rapid population growth increases global food demand, 
which could be one of the greatest challenges in the com-
ing decades. Accurate and timely crop monitoring is crit-
ical for farmers to make in-time decisions and optimize 
field management, increasing yield and thereby ensur-
ing food security [1]. Recent advances in high-resolu-
tion imaging and unmanned aerial vehicle technologies 
enable high-throughput high-resolution monitoring of 
crop parameters [2]. Color images containing abundant 
spatial and color information [3] are widely used in UAV 
monitoring tasks. Vegetation indices (VIs) derived from 
RGB color images are treated as important features to get 
information about the status of the plants, for instance, to 
estimate the leaf chlorophyll content of maize and wheat 
[4] and to estimate the above-ground biomass of soybean 
[5].

While crop monitoring with the UAV is rapidly 
expanding, one inevitable issue is the variable illumina-
tion caused by different solar irradiation and fluctuating 
levels of cloud cover. In certain high-latitude regions, 
such as the Netherlands, the weather changes rapidly, and 
partially cloudy days are common. Additionally, longer 
flight campaigns increase the probability of encounter-
ing changes in illumination. As the incoming spectral 
irradiance to the camera mounted on the UAV is a com-
bination of the characteristics of the plant and the solar 
spectral irradiance, UAV imagery obtained under vari-
able illumination may provide misleading information 
about the crop. Observed differences in the image may be 
caused by actual crop variability or by changing lighting 
conditions. While some VIs are invariant to brightness, 
this is not sufficient to deal with the variable solar illumi-
nation, as cloud cover does not only change the bright-
ness, but also the spectral properties of the illumination. 
Moreover, the solar spectral irradiance changes with the 
altitude angle of the sun, causing differences over the day. 
Therefore, UAV field investigations must consider illumi-
nation and compensate for it.

Existing approaches to compensate for the change 
in illumination for UAV color images can be classified 
as hardware or software methods [6–10]. Hardware 
methods require an additional sensor or reference tar-
gets. Mounting onboard upward-looking solar radiation 
sensors [11] is a common method for measuring solar 
irradiance and compensating for variations in lighting 
conditions. However, the UAV vibrations can affect the 
angle at which the sensor captures incoming light, lead-
ing to inaccurate measurement [12]. Moreover, mounting 

additional sensors increases the weight, costs, and com-
plexity of the system. The empirical line method (ELM) 
is another frequently used approach in the UAV remote 
sensing field, in which multiple reference panels with 
known reflectance are placed on the ground to build a 
relationship between the RGB values of the image and 
the true reflectance [13, 14]. In this way, the illumina-
tion condition can be calibrated. However, this method 
assumes stable illumination throughout the flight, or 
always needs to have the reference panels in the camera 
view. As the latter is very impractical, it means that the 
method cannot be used under changing illumination 
conditions, for instance, during a partially cloudy day.

Besides the aforementioned hardware methods, several 
image-based methods have been developed for illumina-
tion correction of UAV images [15, 16]. Honkavaara et al. 
[15] proposed a radiometric block-adjustment method in 
which build correction equations using the difference for 
the same tie points in different consecutive images. How-
ever, it has been noted that the technique is susceptible to 
geometric distortions, the presence of pixels with radio-
metric anomalies, and the accumulation of errors [17]. 
Wang et al. [9] developed a tensor-decomposition tech-
nique to eliminate cloud shadows in UAV remote sens-
ing images, considering their dynamic change over time. 
However, the method requires that illumination variabil-
ity can be captured within images, which does not always 
hold. Additionally, invariant color models such as Retinex 
have been proposed to estimate the illuminant compo-
nent in an image and to mitigate the impact of variable 
illumination on color images accordingly [18]. A multi-
scale Retinex method has been devised to address the 
issues of color distortion and low contrast in underwa-
ter images [19]. Retinex combined with gamma correc-
tion enhances non-uniform illumination in close-range 
images [20] due to its constant color consideration. The 
advantage of Retinex over hardware-based illumination 
adjustment methods is that the change in illumination 
can be estimated based on the images themselves, which 
is convenient and cheap for UAV images. It furthermore 
does not assume that the drone itself is experiencing the 
same illumination as the plants on the field. To the best of 
our knowledge, Retinex correction has not been applied 
and tested in UAV applications and the effectiveness for 
agricultural applications is unknown.

Despite the aforementioned illumination-correction 
methods have been gradually developed for UAV imagery 
to ensure color consistency and accuracy under vari-
able illumination conditions, there remains a knowledge 
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gap regarding the influence of changeable illumination 
on different VIs, the performance of these methods in 
mitigating the impact of variable illumination, and their 
applications in agriculture, such as leaf chlorophyll con-
tent estimation. The presented study aims to improve 
this understanding. The paper has three objectives: (1) 
to assess the potential impact of variable illumination 
on sixteen RGB-VIs which are commonly used in UAV 
applications, (2) to investigate the performance of the 
ELM correction for UAV images collected under dif-
ferent illumination conditions and the usage of the cor-
rected images to estimate the chlorophyll content of plant 
leaves, and (3) to evaluate the performance of Multi-scale 
Retinex correction under variable illumination condi-
tions and the usage of the corrected images to estimate 
the chlorophyll content.

In the following section, the flowchart of data acquisi-
tion, processing, the selection of VIs, and the methods 
used to analyze the results are presented in detail. After-
ward, in the section Result and Discussion, the experi-
ments show the impact of illumination on VIs and the 
performance of illumination correction methods. Based 
on these results we provide some guidelines for illumina-
tion correction in UAV RGB images.

Method
Field experiments
The field experiment was carried out in August, 2021 at 
the Quzhou Experiment Station of China Agricultural 

University situated in Quzhou County, Hebei Province, 
China (36◦51′45◦N , 115◦00′57◦E) (Fig.  1a). Different 
planting systems were tested on the experimental site, 
and the experiment was set up with three replicates, 
yielding a total of 18 plots. In this study, the monocul-
ture field of soybeans (Fig.  1b) was selected for analysis 
due to the uniform growth conditions of the soybean 
plants. Data was collected at the mature stage of soybean 
growth, when the plants had formed a dense canopy.

To guarantee precise geolocation of the UAV images 
on various dates, 12 ground control points (GCPs) were 
strategically placed in the field (Fig. 1c). The center point 
coordinates of 12 GCPs were measured with a geodetic-
dual frequency global navigation satellite system (GNSS) 
receiver with a precision of 0.02 ms in both the horizontal 
and vertical dimensions. Furthermore, two ethylene-vinyl 
acetate (EVA) greyscale reference panels with a reflec-
tance of 3.5%, two EVA panels with a reflectance of 20%, 
two panels with a reflectance of 80% and one panel with 
a reflectance of 84.5% were placed at the north corner of 
the field (Fig. 1c). These panels are used for the calibra-
tion of the images. The calibration method is discussed in 
Section Empirical Line Correction .

Data acquisition
Flight campaigns
In the study, aerial images were obtained using a Pro-
fessional Phantom 4 RTK quadcopter from DJI (Shen-
zhen, China). This UAV was equipped with a 1-inch 

Fig. 1     a Location of the study area in Hebei, China b An overview of the study site and three soybean plots and c an RGB map 
of the experimental field, and the setup of 12 GCPs and reference panels
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FC6310 CMOS sensor and an aerial-optimized f/2.8 
wide-angle lens with a 24  mm equivalent focal length 
and produces images of 5472× 3648 pixels [21]. Fur-
thermore, the RTK receiver installed on the quadcopter 
ensured flight stability and provided centimeter-level 
mapping accuracy on image metadata during flights at 
an altitude of 100 m. This allowed for a ground spatial 
resolution (GSD) of 2.7 cm to be achieved.

UAV images were obtained during varying illumina-
tion conditions, including sunny skies, complete cloud 
coverage, and partly cloudy skies, between August 14th 
and 18th, 2021. Each flight was conducted between 
11:30 and 13:00 when the solar elevation angle was 
almost at the peak. The camera was in manual mode, 
and setting parameters were adjusted manually to cap-
ture the illumination change and avoid saturated pix-
els. For each flight, the camera was configured with a 
normalized white balance, an aperture of F5.6, a shutter 
speed of 1/500, and an ISO value of 100. One hundred 
five images covering the entire experimental site were 
acquired at 25 m above ground level (0.68 cm GSD) for 
each flight mission with a 1.2 m/s flight speed. Details 
on these flights are shown in Table  1. Meanwhile, the 
flight route was planned with 80% heading overlaps and 
70% side overlaps to achieve high-quality image mosa-
ics [22].

Ground measurement
On the 14th of August, leaf chlorophyll content was 
measured on the same day after the UAV campaigns. 
Four plants were selected randomly from each of 
the three plots, and their geographic locations were 
recorded. The chlorophyll content was determined 
using a Soil Plant Analysis Development (SPAD) 
502Plus Chlorophyll Meter (Konica-Minolta, Japan). 
The SPAD value, which is a strong indicator of chlo-
rophyll content, was obtained through the measure-
ment of leaf absorbance at two wavelengths (650 and 
940 nm) [23, 24]. The SPAD readings for each soybean 
plant were determined by averaging the measurements 
obtained at three different positions on each of the top 
five leaves, yielding a single, representative SPAD value 

for each plant. No significant differences were observed 
in the chlorophyll content of soybean plants within the 
same plot. A low degree of variability is displayed in 
Table  2, indicated by the coefficient of variation (CV) 
and standard deviation (Std).

Data processing
Flowchart of data processing
The data processing pipeline is illustrated in Fig.  2. 
Firstly, the illumination correction of single raw aerial 
images was conducted by ELM and Retinex correction, 
separately. These methods are elaborated in sub-sections 
Empirical Line Method   and Automated Multi-scale 
Retinex correction,   respectively. Then, the corrected 
images, taking into account changes in illumination, were 
brought into Agisoft Metashape software (version 1.5.1, 
created by Agisoft LLC in St. Petersburg, Russia) for 
geometric correction using the Brown-Conrady method 
and pre-calibrated parameters. The software employed a 
structure-from-motion (SFM) method to stitch images 
together by estimating the position and orientation of the 
camera through the process of bundle adjustment, which 
is based on looking for matching features in overlapping 
images [25]. The process of aerial triangulation, dense 
point cloud construction, mesh building, digital surface 
model, and orthomosaics generation in Agisoft is shown 
in Fig. 2.

After generating orthomosaics, the orthomosaic were 
processed using Maximum likelihood classification 
(MLC) in Exelis Visual Information Solutions (ENVI, 5.3) 
to identify the vegetation areas on the UAV orthomosaic 
of all flights. Then, a square buffer with a length of 0.2 m 
for each sampling crop was generated in ArcMap (Envi-
ronment System Research Institute, ESRI, 10.0) and the 
leaf area of each sampling crop was derived by intersect-
ing those buffers with leaves masks. Afterward, the zonal 
statistics plugin in ArcMap was utilized to obtain the 
average values of each VIs within the leaf regions of each 
crop sample. The VIs are introduced in section. A total 
of 12 soybean plants were selected to extract VIs. Lastly, 
multivariate linear regression models using the top-five 
most relevant VIs were built to relate the VIs with the in-
site SPAD values, and statistical analysis was performed 
as described in Section Evaluation. 

Table 1  Information on the flight campaigns: date of image 
collection, the illumination condition, and the time-span of 
image acquisition

Date Illumination condition Collection time

14-August-2021 No cloud (sunny) 12:01–12:10

15-August-2021 Partly-cloudy (variable) 11:48–11:56

16-August-2021 Cloudy 12:15–12:23

Table 2  Statistical summary of the in-situ measured leaf 
chlorophyll content of soybeans in monoculture plots using a 
SPAD-502Plus

Date Min Mean Max Std CV%

14-August-2021 40.9 47.25 54.1 3.00 6.35
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RGB‑based vegetation indices
Vegetation indices, which are important features for 
remote sensing, are frequently used in satellite images 
for detecting changes in crops [26]. Besides, with the 
development of UAV technology, a range of RGB-based 
vegetation indices have also been developed for UAV 
images. [4, 27, 28]. According to the way of calculation, 
VIs are divided into ratio VIs and difference VIs. In this 
study, six difference VIs and ten ratio VIs are investi-
gated as shown in Table   3. The excess green index 
(EXG) was commonly used for automatically green 
crop extraction [29] and assessing the vigor of green 
vegetation [30]. To highlight and better take advantage 
of the greenness component which is considered as an 
indicator of crop status, excess green minus excess red 
(EXGR) was developed by subtracting the excess red 
index (EXR) from the green component. Similarly, the 
color indices of vegetation extraction (CIVE) accen-
tuate the green component of the images through the 
use of principal component analysis on the informa-
tion contained in RGB bands. Additionally, the green-
red ratio index (GRRI) was frequently employed to 

analyze the sensitivity of VIs to complex canopy struc-
tures. Normalized green-red difference index (NGRDI), 
normalized green-blue difference index (NGBDI), and 
modified green red vegetation index (MGRVI) were 
designed as a phenology indicator and have been used 
to estimate biomass [31] and assess drought tolerance 
[32]. Visible-band difference vegetation index (VDVI) 
was designed to extract green vegetation. Furthermore, 
vegetation index (VEG) was also used to identify green 
vegetation, and VEG was found to be less sensitive to 
complex illumination conditions [33]. Besides, the com-
bination of the green index (COM) was used to analyze 
plant characteristics by combining three indices that 
focus on the greenness aspect. Visible atmospherically 
resistant Index (VARI) provided good performance in 
vegetation fraction estimation while mitigating the 
influence of atmospheric effects [34]. The last two VIs, 
the Kawashima index (IKAW) and the RGB Vegetation 
Index (RGBVI), have also been employed to observe the 
growth of wheat and predict wheat yield, as reported 
in Woebbecke’s study [35]. The potential influence of 
illumination on each VI was assessed. Meanwhile, the 

Fig. 2  Flowchart for UAV image processing and analysis including illumination correction (ELM and Retinex correction), orthomosaic creation, 
leaves segmentation, VIs extraction, and linear regression modeling from VIs to SPAD. The workflow is o process aerial images collected under sunny, 
overcast and cloudy conditions with variable solar irradiance. The ELM correction was only performed in sunny and overcast conditions
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impact of illumination on the relationship between 
VIs and chlorophyll content was investigated using the 
Pearson correlation coefficient. In addition, the impact 
of variable illumination on VI-based leaf chlorophyll 
content estimation was also assessed and presented in 
the Results section.

In this study, r, g, and b values were normalized to the 
range from 0 to 1 based on the following two ways sepa-
rately denoted as scaling ( rs , gs , bs ) and normalization ( rn , 
gn , bn ). The calculation method of scaling represents raw 
data without any processing, while normalization repre-
sents a way of band normalization.

Scaling:

Where Rmax = Bmax = Gmax = 255 for 8-bit color 
images.

Normalization:

Empirical line correction (ELM)
The empirical line correction method is the most widely 
used method for UAV imagery. This is to convert the 
raw sensor data into relative reflectance and to correct 
for intensity in solar irradiance. In this study, the perfor-
mance of ELM on mitigating the impact of illumination 

(1)rs =
R

Rmax
, bs =

B

Bmax
, gs =

G

Gmax
,

(2)

rn =
R

R+ G + B
, bn =

B

R+ G + B
, gn =

G

R+ G + B
,

on VIs-based leaf chlorophyll content estimation was 
investigated.

In this study, the ethylene-vinyl acetate (EVA) greyscale 
reference panels were chosen for calibration comprehen-
sively considering their affordability and feasibility. In 
Jeong’s study [49], the feasibility of using EVA mats for 
UAV RGB imagery ELM correction was evaluated. Seven 
small gray-scale panels were utilized in the experiment 
to generate several spectral correction curves based on 
low-altitude UAV-RGB images captured before each 
flight on all dates except August 15th, due to the variable 
solar irradiance that day. The ELM method requires uni-
form illumination during the flight for proper correction, 
and abrupt changes in illumination can reduce its effec-
tiveness [50]. Therefore, the ELM correction was only 
applied to orthomosaics collected under fully sunny and 
overcast conditions to ensure optimal correction results. 
Figure 3 shows the correction curves that demonstrate an 
exponential relationship between digital numbers (DNs) 
and reflectance for each color channel [14]. The correc-
tion equations are exemplified in Table 4.

Automated multi‑scale retinex correction
The ELM method is not suitable for the scenes where there 
is a change in the illumination during the data acquisition 
because it typically takes place only once before or at the 
end of the flight, we investigated image-based methods 
to tackle this challenge. Inspired by the literature on color 
constancy, the Retinex Theory was chosen as a potential 
solution. It was proposed by Land and McCann [18]. After 

Table 3  Overview of RGB-based vegetation indices derived from UAV images in this study (r, g, and b are related to the scaling and 
normalized values)

Index Name Formulation References

E1 Excess Green (EXG) 2g− r − b [36]

E2 Excess Red (EXR) 1.4r − g [37]

E3 Excess Blue (EXB) 1.4b− g [38]

E4 Excess green minus excess red (EXGR) EXG − EXR [39]

E5 Green blue difference (GBDI) g− b [40]

E6 Color index of vegetation extraction (CIVE) 0.441r − 0.811g+ 0.385b+ 18.78745 [41]

E7 Green-red ratio index (GRRI) g/r [42]

E8 Normalized green red difference index (NGRDI) (g− r)/(g+ r) [43]

E9 Normalized green blue difference index (NGBDI) (g− b)/(g+ b) [44]

E10 Modified green red Vegetation Index (MGRVI) (g2 − r2)/(g2 + r2) [45]

E11 Visible-band difference vegetation index (VDVI) (2g− r − b)/(2g+ r + b) [46]

E12 Vegetative index (VEG) g/rαb(1− α) [33]

E13 Combination of green (COM) 0.36EXG + 0.47CIVE + 0.17VEG [47]

E14 Visible atmospherically resistant index (VARI) (g− r)/(g+ r − b) [34]

E15 Kawashima index (IKAW) (r − b)/(r + b) [48]

E16 RGB Vegetation Index (RGBVI) (g2 − b× r)/(b2 + b× r) [45]
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decades of development, Retinex correction has made a 
significant impact in adjusting uneven illuminated color 
images. The foundation of the Retinex theory is the con-
cept that the observed image ( S(x,y) ) is a combination of the 
reflectance component ( R(x,y) ) and the illumination com-
ponent ( L(x,y) ), which can be expressed as follows in Eq. (3). 
Through the implementation of a logarithmic transforma-
tion, the reflectance of the object can be computed using 
Eq. (4), effectively separating the influence of illumination 
on the image from the reflection of the surface. The benefit 
of using Retinex correction on UAV images is that it does 
not require any additional equipment, as the illumination 
component is estimated from the images themselves, pro-
viding a cost-effective solution.

(3)S(x,y) = L(x,y) × R(x,y)

The advancement of Retinex technology has progressed 
from Single-scale Retinex (SSR) to Multi-scale weighted 
average Retinex (MSR) and then to the Multi-scale 
Retinex with color restoration (MSRCR) algorithm. 
SSR, first proposed by Jobson [51], estimates the illumi-
nance component by convolving the original image with 
a Gaussian low-pass filter, as represented by Eq. (5). The 
scale parameter ( σ ) in the Gaussian filter is used to bal-
ance the preservation of color and texture details in the 
image. The MSR algorithm modulates the value of σ to 
achieve various illumination enhancement effects and 
prevent color distortion. In this study, the automated 
MSR algorithm developed by [52] was selected to cor-
rect the illumination component in a single UAV image. 
This algorithm adjusts σ automatically and performs well 
in producing an illuminant-invariant representation of 
images captured under variable illumination conditions. 
After adjusting all the images, they were imported into 
Agisoft to generate the illumination-corrected ortho-
mosaic. We analyzed the difference in the performance 
of normalization of images, scaling, ELM correction, 
and Retinex illumination correction on the estimation of 
chlorophyll content of leaves. The analysis methods are 
described in the following section.

(4)lg(R(x,y)) = lg(S(x,y))− lg(L(x, y))

(5)G(x,y) =
1

2πσ 2
exp

(

−
x2 + y2

2σ 2

)

Fig. 3  Empirical line method illumination correction curve based on reference panels. The left-hand figure is for a sunny day (14th, August) 
and the right-hand figure is for an overcast day (18th, August). The X-axis represents the image raw DNs of panels captured under each scenario, 
and the y-axis is the reflectance of reference panels

Table 4  Regression equations between DN values of panels and 
reflectance values

Date Camera 
waveband

Regression equation Goodness-
of-fit ( R2)

14th August-Sunny Red 1.35× e0.016x 0.959

Green 0.877× e0.017x 0.943

Blue 0.817× e0.018x 0.951

18th August-Overcast Red 1.947× e0.015x 0.998

Green 1.403× e0.016x 0.991

Blue 1.351× e0.016x 0.993
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Calculation of VIs for specific plants using four methods
As described above, the impact of illumination on images 
was corrected by two correction methods (ELM, Retinex) 
and the vegetation indices were normalized in two ways. 
In summary, VIs were calculated using four different 
methods: 

1.	 The raw images were normalized by scaling equa-
tions as described in Eq. (1) and the VIs were calcu-
lated on the orthomosiacs for the leaves of the target 
plants,

2.	 The raw images were normalized by the normaliza-
tion method described in Eq. (2), and VIs were calcu-
lated on the orthomosiacs for the target plants,

3.	 The raw images were corrected by the ELM, then 
normalized using Eq. (2) and the VIs were calculated,

4.	 The raw images were corrected by the automated 
multi-scale Retinex algorithm, then normalized using 
Eq. (2) and the VIs were calculated.

Evaluation
The methods are evaluated in three ways:

•	 To assess the impact of variable illumination on VIs, 
the standard deviation (std) over the twelve sample 
plants of each VIs under different illumination con-
ditions was calculated. If the influence of different 
illumination is mitigated well, the standard devia-
tions for a specific VI should be similar for the differ-
ent illumination conditions. If this is not the case, the 
std’s should differ and specially the std for the vari-
able-illumination condition is expected to be much 
larger.

•	 To investigate the correlation between each VI 
extracted from the plants and the associated manu-
ally measured SPAD value, the Pearson correlation 
coefficient was calculated according to Eq.  (6). The 
correlation coefficient were then compared for the 
four different methods and on the three different illu-
mination conditions.

•	 To evaluate how well the leaf chlorophyll content 
could be predicted from the VIs, multivariate linear 
regression models were built using the top-five most 
relevant (highest correlation) VIs [4, 28]. The number 
of VIs included in the models was restricted to five to 
prevent overfitting. The performance of the models 
was evaluated using the coefficient of determination, 
R2 and compared for the different methods and illu-
mination conditions.

Where x represents each vegetation index (VI) and y rep-
resents the SPAD values. x̄ and ȳ are the average of the 
respective measurements. The linear regression models 
were then evaluated using the coefficient of determina-
tion ( R2 ) as following Eq. (7).

In this equation, n represents the total number of sam-
ples, yi represents the true values, and ŷi represents 
the predicted values. ȳ and ¯̂y are the mean of y and ŷ , 
respectively.

Results
The impact of illumination on VIs
Figure  4 presents three orthomosaics collected under 
different illumination conditions on sunny, variable 
solar irradiance and overcast days. Figure 4a and Fig. 4c 
illustrate the RGB data captured under a clear sunny 
day and an overcast day with consistent cloud coverage, 

(6)P =

∑n=12
i=1 (x − x̄)× (y− ȳ)

√

∑n=12
i=1 (x − x̄)2

∑n=12
i=1 (y− ȳ)2

(7)R2
=

∑n
i=1 (yi − ȳ)× (ŷi − ¯̂y)

√

∑n
i=1 (yi − ȳ)2

√

∑n
i=1 (ŷi −

¯̂y)
2

Fig. 4  The RGB orthomosaics collected under three different 
illumination conditions: a the orthomosaic collected on the clear 
sunny sky with a stable solar irradiance, 14th August. b 
the orthomosaic collected on a semi-cloudy day with variable 
solar irradiance, 15th August, and c the orthomosaic collected 
under the totally overcast day, 18th August
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respectively. These consistent lighting conditions pro-
vide better color consistency and radiometric accuracy. 
Under such ideal conditions, the estimation of illumi-
nation and therefore, correction for its influence is not 
needed. However, such ideal conditions are not present 
all the time and there might be times when data collec-
tion is needed despite having varying illumination con-
ditions. Figure 4b shows the data captured on a partially 
cloudy day with sharp transitions from the sun to shadow 
during the flight. Such conditions result in inconsistent 
representation as some parts are acquired in sunny con-
ditions and some parts are in the shadow of clouds. This 
is a frequent phenomenon for low-altitude UAV imagery. 
Such inconsistencies negatively affect the composites and 
vegetation indices extracted from the dataset, thereby 
causing errors in the leaf chlorophyll content estimation.

Figure  5 illustrates the standard variation of 16 cho-
sen VIs under different illumination conditions. It can 
be observed that there is a noticeable increase in the 
standard deviation under variable illumination for all 
scaled and normalized VIs, in comparison to the consist-
ent lighting conditions (sunny and overcast). This result 
highlights the significant impact of illumination on VIs. 
For example, the scaling Excess Green (E1) index showed 
a range of 0.0164 and 0.0165 under sunny and overcast 

conditions, respectively, while the range increased to 
0.058 under variable illumination. This increase in dis-
persion of the E1 index indicates that the varying illu-
mination causes unexpected anomalies in the data, 
negatively impacting the estimation of crop traits using 
VIs. On the other hand, several VIs, such as scaling E2, 
E9, E11, and E16, demonstrate more robust performance 
in resisting the influence of variable illumination. Simi-
larly, normalized E3 and E9 exhibit a similar trend, with 
a limited increase in their range under variable solar irra-
diance. This result suggests that the robustness of VIs to 
variable illumination is index-dependent. Therefore, it is 
important to take the robustness of VIs into considera-
tion when estimating crop traits.

To further understand the impact of illumination on 
the use of VIs, Fig.  9 presents the Pearson correlation 
trends between VIs and SPAD values under different illu-
mination conditions including sunny, overcast, and vari-
able illumination. For scaling VIs, the maximum value of 
Pearson correlation under the sunny condition was 0.57 
(E1 and E6). The maximum value of Pearson correlation 
was 0.38 (E15) under the consistent low illumination 
condition. For E1 and E6, the Pearson correlation was 
0.37, which is close to the maximum value. However, a 
significant decrease was observed under the variable 
solar irradiance condition and the maximum value of 
Pearson correlation decreased to 0.26 (E2). This suggests 
that variable illumination has a negative effect on the cor-
relation between VIs and leaf chlorophyll content. The 
trend was similar for both normalized and scaling VIs, 
with the correlation being strongest under sunny condi-
tions, and weakest under variable illumination condi-
tions. Additionally, the performance of leaf chlorophyll 
content estimation using multivariant linear models built 
with the top-five most relevant VIs is shown in Table 5. 
It was observed that the R2 of the model built based on 
scaling VIs under the sunny condition is 0.68. How-
ever, there was a significant decrease in R2 under over-
cast and variable illumination conditions ( R2 is 0.33 and 
0.30, respectively). The R2 of the model built by normal-
ized VIs indicated an unpredictable variation. The R2 was 
0.53 under the sunny condition, while it increased to 0.74 
under the overcast condition. Nonetheless, the R2 of the 
model decreased to 0.12 under the variable illumination 
condition. The result indicates that changes in illumina-
tion conditions significantly impacted the performance of 
the leaf chlorophyll content estimation models and that 
the performance was unpredictable and inconsistent if 
illumination correction was not applied to UAV images. 
These results emphasize the importance of illumination 
correction for accurate and reliable crop traits estimation 
from UAV imagery.

Fig. 5  Standard deviation of all the vegetation indices for soybeans 
under three different illumination conditions (sunny, overcast, 
and variable solar irradiance conditions)
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The performance of ELM correction on VIs 
and chlorophyll‑content estimation
The ELM correction is commonly used in UAV appli-
cations to convert DN into surface reflectance [8] and 
correct the intensity of solar irradiance across different 
consistent illumination conditions. The performance 
of the ELM correction on VIs and estimation of leaf 
chlorophyll content were investigated under differ-
ent illumination conditions. As mentioned before, the 
ELM method is not able to deal with the variable illu-
mination during the flight because the panel calibration 
usually happens before or after the flight [8]. Thus, the 
following analysis of the ELM method was conducted 
using data collected under sunny and overcast condi-
tions only.

To illustrate the impact of the ELM correction on VIs, 
the VIs collected under sunny and overcast conditions 
were combined together and obtained their standard 
deviation comprehensively. The standard deviation 
values are illustrated in Fig.  6. There was an increase 
in Std for half of all the VIs (E2, E4, E8, E9, E10, E11, 
E14, E15, and E16). However, it showed a significant 
decrease in Std for E7 and E12 when a significant dif-
ference appears in uncorrected VIs. Furthermore, to 
assess the performance of the ELM correction on leaf 
chlorophyll content estimation, the Pearson correlation 
of each ELM corrected VI and SPAD value is observed 
in Fig. 9. The Pearson correlation of each VI and SPAD 
significantly improved after ELM correction under the 
sunny condition. The average value of Pearson correla-
tion was 0.28 for scaling VIs and 0.32 for normalized 
VIs under the sunny condition. However, the average 
value of correlation rose to 0.68 after ELM correction. 
Besides, the average value of Pearson correlation was 
0.3 for scaling VIs and 0.22 for normalized VIs under 
the overcast condition. After ELM correction, the aver-
age value of correlation increased to 0.35, but not as 

much as it did under sunny conditions. The ELM cor-
rection helps improve the correlation between VIs and 
SPAD, especially under sunny conditions. Moreover, it 
can be observed from Table 5 that the performance of 
the multivariant model built by the top-five most rele-
vant VIs became more stable after the ELM correction. 
The R2 of the model was 0.60 under sunny conditions 
and 0.56 for overcast conditions. The result demon-
strates that the ELM correction helps improve the 
repeatability of the leaf chlorophyll content estimation 
model across different dates.

In summary, the ELM correction improves the repeat-
ability of the crop traits estimation model when the imag-
ing conditions are uniform across the field. The result 
demonstrates the importance of factoring in the actual 
solar irradiance for the flight, especially when flights 
are conducted across dates under different illumination 
conditions.

The result of multi‑scale retinex correction
Aiming at the shortcomings of the ELM method, auto-
mated multi-scale Retinex correction was implemented 
on UAV images collected acquired during flights with 
varying solar irradiance. Figure  7 presents the result of 
Retinex correction. In the figure, two consecutive images 
taken on the same route, but with a significant change 
in solar irradiance from shadow to sunny, are shown in 
Fig. 7a and b. This change in illumination led to a notice-
able difference in the color of the crop canopy, making 
crop traits estimation based on color unreliable. Figure 7c 
and d show the illumination-corrected images using the 
automated multi-scale Retinex method. The reason for 
applying Retinex correction on both images was that 
they were both affected by the change in illuminations. 
As can be seen from the figure, the brightness of both 
images was corrected to almost the same level and the 
difference between the two images decreased. This cor-
rection results in obtaining consistent RGB values across 
the field and thus consistent VIs can be computed. It also 
helps in making sure that a change in VI values indicates 
a change in the crop’s condition and is not caused due 
to the change in illumination. In conclusion, the use of 
automated multi-scale Retinex correction helps to miti-
gate the impact of illumination on images and achieve 
color constancy across images during one flight.

By addressing the change of illumination, the con-
sistency of VIs is also assessed. Figure  8 illustrates the 
standard deviation of scaling VIs, normalized VIs and 
automated multi-scale Retinex corrected VIs extracted 
from the orthomosaic captured under the variable solar 
irradiance condition. Compared with scaling VIs and nor-
malized VIs which show an intense fluctuation together 

Fig. 6  Standard deviation of scaling, normalized and ELM corrected 
VIs combining sunny and overcast datasets
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with a change of illumination, the Retinex correction 
achieves good performance on consistent representation 
of VIs. All automated multi-scale Retinex-corrected VIs 
exhibit a decrease in Std, indicating a smaller discrete 
degree of corrected data. This demonstrates the effective-
ness of the Retinex correction in mitigating the influence 
of illumination on VIs and in achieving color consistency 

across images captured under variable solar irradiance 
conditions.

To further assess the importance of consistent color on 
leaf chlorophyll content estimation, the Pearson correla-
tion of corrected VIs and SPAD values was calculated. 
The results, as depicted in Fig. 9, show that the average 
Pearson correlation between scaling VIs, normalized VIs, 
and SPAD maintained at a low level under variable illu-
mination conditions. The average absolute value of cor-
relation for scaling VIs and normalized VIs were 0.09 
and 0.16, respectively. The result indicates the negative 
impact of varying illumination during the data acquisi-
tion on VIs, and thereby the crop leaf chlorophyll content 
estimation in the following stage. However, after apply-
ing Retinex correction, the correlation between cor-
rected VIs and SPAD values increased significantly, with 
an average correlation of 0.29 for all corrected VIs. This 
result highlights the positive impact of having consistent 
VIs when estimating crop leaf chlorophyll content under 
varying illumination conditions.

Moreover, the performance of Retinex-corrected 
images on leaf chlorophyll content estimation was also 
evaluated. As shown in Table 5, the model’s coefficient of 

Fig. 7  The result of automated multi-scale Retinex correction. a The image collected under clouds shadow, and b the bright image was collected 
consecutively after the dark image when solar irradiance suddenly increased, c the illumination corrected dark image, and d the bright image 
after the illumination correction

Fig. 8  Standard deviation of all the scaling VIs, normalized VIs, 
and Retinex corrected VIs under the variable solar irradiance 
condition
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determination ( R2 ) was 0.65 under the sunny condition 
and 0.61 for the variable illumination condition. The R2 of 
models built by scaling VIs or normalized VIs decreased 
significantly under such weather condition. The result 
indicates the importance of color correction under non-
uniform illumination conditions for RGB images. How-
ever, R2 of the Retinex-corrected model decreased to 0.31 
for the overcast condition. The result demonstrates the 
importance of having consistent illumination conditions 
during the image acquisition for crop trait estimation. 
When there is a change in illumination during the image 
acquisition, the use of illumination correction methods 
has the feasibility of improving the results and the varia-
tion caused due to such a non-uniform illumination con-
dition can be addressed.

Discussion
Influence of illumination on RGB‑derived vegetation 
indices
Figure  4 illustrates that illumination has an inevitable 
influence on image color. This causes, the values of the 
vegetation indices to change depending on the weather 
conditions, affecting the accuracy of crop-traits estima-
tion. Ideally, the VIs would provide a stable value irre-
spective of the illumination, but we observed differences 
in VI under sunny and overcast conditions. Moreover, 
on the partially cloudy day, providing variable illumina-
tion during the flight, exceptionally high standard devia-
tions were observed compared to the uniform conditions. 
This is caused by changes in solar radiation due to cloud 
movements.

Looking at the correlation between the scaled and 
normalized VIs with the SPAD measurements, variable 
results were obtained for the uniform conditions and a 
substantial decrease on the variable-illumination condi-
tion. Similar results were observed for the coefficient of 
determination of the multivariate linear model and the 
SPAD measurements.

VIs that use a ratio between color channels are theo-
retically more stable under variable illumination than VIs 
that are calculated based on a difference among chan-
nels [1, 46]. This, however, is not something that we can 
conclude from the results. Figure 5 does not show a clear 

Fig. 9  Boxplot of the absolute value of Pearson correlation of each VI (scaling VIs, normalized VIs, ELM corrected VIs and Retinex corrected 
VIs) and SPAD values. The VIs of soybean was extracted from the orthomosaic captured under three illumination conditions (sunny, overcast, 
and variable illumination condition)

Table 5  Coefficient of determination ( R2 ) of the multivariable 
linear model of soybeans between the top-five most relevant VIs 
and SPAD under different illumination conditions

Illumination Sunny Overcast Variable

Scaling 0.68 0.33 0.30

Normalization 0.53 0.74 0.12

ELM 0.60 0.56 –

Retinex 0.65 0.31 0.61
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difference between the ratio-based scaling VIs (E7-E16) 
and the difference-based scaling VIs (E1–E6). For both 
type of VIs, the standard deviation for the variable illu-
mination is much higher than for the uniform conditions. 
Also, normalizing the RGB channels does not yield more 
stability in the VI values for the variable-illumination 
condition. This difference between theory and practice 
might be explained by the assumption of a pure bright-
ness change, without spectral shifts. In reality, however, 
when cloud cover reduces the amount of direct sunlight, 
light is scattered more at shorter wavelengths than at 
longer wavelengths [10], causing different effects on dif-
ferent color channels, which propagates to the derived 
VIs. Similarly, the spectral sensitivity of the three color 
channels of an RGB camera is different, causing spectral 
shifts in the images when the intensity of illumination 
changes.

Thus, illumination conditions must be considered when 
analyzing crop physiology based on VIs using UAV-RGB 
imagery. In order to obtain accurate information on plant 
physiology throughout their growth stages using UAV 
imagery, it is important to mitigate the impact of illumi-
nation by algorithms and assess the sensitivity of VIs to 
illumination. One cannot rely simply on normalization or 
ratio-based VIs.

The importance of ELM correction on chlorophyll‑content 
estimation
As shown in Table 5, the result demonstrated the effec-
tiveness of the ELM in reducing the impact of illumi-
nation on leaf chlorophyll content estimation under 
different illumination conditions. Although the scaled 
VIs showed a higher coefficient of determination for the 
sunny condition and the normalized VIs showed better 
performance on the overcast condition, the ELM-cali-
brated VIs improved the repeatability of the measure-
ments in the sunny and overcast conditions combined. 
This shows the importance of illumination correction 
across different dates to allow comparisons over time.

Three issues must be addressed to improve the accu-
racy of ELM correction. The first issue is building cali-
bration equations. This study applied a simplified and 
relative procedure for UAV-RGB imagery presented by 
Wang et al. [14] due to its applicability. However, a stand-
ardized and thorough ELM calibration follows a strict 
procedure [53], where radiance should be measured in 
physical units. The second issue is the type of reference 
panels. A standard reference panel should be a Lamber-
tian surface, the apparent brightness remains the same 
regardless of the observer’s viewing angles. In this study, 
ethylene-vinyl acetate (EVA) gray-scale reference panels 
were used due to their low-cost and availability. Jeong’s 
study [49] has shown that EVA panels approximate a 

Lambertian surface and offer enough calibration preci-
sion to back UAV-RGB surveys. However, reference pan-
els with standard Lambertian properties are required 
if more accurate radiometric data is needed. Based on 
the experience of fieldwork, when panels are placed in 
the field for long-term observation, dust and insects can 
easily pollute their surface, leading to changes in sur-
face properties. Thus, keeping the panel surface as clean 
as possible is crucial for field investigation. Meanwhile, 
regular replacement of these panels is also necessary for 
UAV surveys. Finally, the drawback of the ELM is that 
it is sensitive to changing light during the flight, as cali-
bration is done only at the start or end of the flight [54]. 
Light variation during flights results in inconsistent color 
or radiometry, thereby adding experimental error.

The performance of retinex correction 
on chlorophyll‑content estimation
As discussed above, partially cloudy days with sudden 
transitions from sun to cloud cover are the most chal-
lenging lighting conditions to handle. Without a proper 
correction method, all VIs were shown to be sensitive to 
this condition and ELM, as expected, could not deal with 
it. The resulting additional variation in the VIs caused the 
inability to predict the chlorophyll content of the plant 
leaves. With the use of the Retinex correction, however, 
the R2 of the leaf chlorophyll-content estimation model 
and the correlation between corrected VIs and SPAD 
improved significantly. The result indicated that the use 
of a color-constancy method is helpful for crop-trait esti-
mation under variable illumination. Neither the standard 
and normalized VIs nor the ELM were able to handle 
the challenges posed by a partially cloudy day. However, 
Retinex was able to effectively account for differences in 
weather conditions between sunny and cloudy periods, 
enabling crop monitoring even in these changeable con-
ditions. Also for the sunny condition, the relationship 
with the SPAD measurements and the Retinex-corrected 
VIs was good. For the Overcast condition, however, the 
R2 was relatively low. Further research is needed to make 
sure that the method performs consistently.

Compared to traditional approaches such as the use 
of solar irradiance sensors [11] or the placement of 
multiple reference panels on the ground, automated 
multi-scale Retinex correction offers the advantage of 
leveraging image content to estimate illumination prop-
erties, resulting in increased flexibility and reduced cost. 
The difference between the Retinex methods and previ-
ously developed image-based illumination correction 
algorithms for UAV multispectral images, such as [e.g., 
9, 15], is that the Retinex method can estimate illumina-
tion based on images. Outside the agricultural domain, 
color-constancy methods are actively studied with many 
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promising available methods [e.g., 55, 56]. In future work, 
the performance of other color-constancy methods could 
be evaluated to further improve the mitigation of variable 
illumination in agricultural applications. Recent devel-
opments in deep learning-based illumination estimation 
techniques, such as RetinexNet [57], have demonstrated 
promising results for close-range RGB images. These 
techniques need to be explored to extend for use in UAV 
platforms, enabling the accurate estimation of illumina-
tion conditions in diverse environments. Such investiga-
tions would represent an important contribution to the 
field of remote sensing and enable more effective image 
analysis and interpretation in UAV-based applications. 
Future research could also aim to investigate more reli-
able and generalized techniques for image-based illumi-
nation estimation on UAV platforms. Additionally, the 
impact of bidirectional reflectance distribution function 
(BRDF) effects on such methods should be further exam-
ined, particularly in scenarios with strong sunlight condi-
tions. This will contribute to enhancing the applicability 
of illumination estimation in UAV-based remote sensing 
applications.

The results highlighted the importance of mitigating 
the influence of illumination on VI-based crop monitor-
ing. Although it is suggested to collect data under con-
sistent sunny lighting conditions to reduce the need for 
image post-processing, which may result in unexpected 
anomalies, there may be instances where data collection 
is necessary under variable lighting conditions. In such 
scenarios, the application of Retinex correction tech-
niques can make the image data more suitable for crop 
monitoring, thereby increasing the time window for data 
collection and enabling more effective and efficient mon-
itoring of crops.

Conclusions
From the presented work, it can be concluded that RGB-
derived vegetation indices are substantially affected by 
variable illumination conditions, making it difficult to 
compare plant traits over time when illumination condi-
tions during data acquisition differ over time. Further-
more, the use of reference panels to correct the image 
with ELM correction improved the consistency of images 
gathered during a sunny and overcast day, improving the 
precision and repeatability of the estimation of chloro-
phyll content, compared to using non-corrected data. It 
should be noted that the ELM correction can not help 
mitigate the impact of changeable illumination during a 
flight as the calibration procedure usually happens only 
once before or at the end of the flight. At last, for UAV 
color images, automated multi-scale Retinex correc-
tion can help reduce the impact of variable illumination 

during a flight on a partially cloudy day, improving the 
performance of the multivariate linear model built by the 
top-five most relevant VIs to predict chlorophyll content. 
Overall, this study highlights the critical role of illumina-
tion correction and color consistency in utilizing UAV-
RGB imagery for crop monitoring under diverse and 
variable illumination conditions. These findings empha-
size the importance of accurate image analysis and inter-
pretation in agricultural applications and underscore 
the potential of remote sensing technologies to support 
sustainable agriculture practices. Future work will focus 
more on exploring image-based illumination estima-
tion and adjustment algorithms and making a compari-
son with sensor-based illumination correction methods. 
Furthermore, with the rapid development of UAV in the 
agricultural domain, there is a growing need to investi-
gate the performance of image-based and sensor-based 
illumination correction methods in agricultural applica-
tions, including but not limited to drought monitoring 
and nitrogen content estimation.
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