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Summary 

This report discusses the importance of precision agriculture in achieving sustainability goals and the need 
for a basis that considers different perspectives of a data space such as interoperability, scalability, security, 
transparency, and data ownership. The Towards Precision Agriculture 4.0 project aims to address these 
perspectives to provide better-informed management decisions for farmers and the ecosystem. The current 
study focuses on determining minimum interoperability mechanisms concerning the standardization of image 
data and deep learning algorithms for vision-based applications in weed management by robots. The study 
adopts a metadata-oriented approach to make data and algorithms semantically interoperable and reuses 
existing knowledge from the Reference Model Agro (rmAgro). The results indicate the need for a balance 
between established standardization and agile standardization for supporting semantic interoperability, and 
the interoperability of preferred standards like Robot Operating System (ROS) and Open Neural Network 
Exchange (ONNX) is insufficient. The study results are useful for professionals and academia who work in the 
design and development of software for the farming business. 
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Summary 

To support achieving sustainability goals with precision agriculture, there is an urgent need for a basis that 
takes different perspectives of a data space into account, such as interoperability, scalability, security, 
transparency, and data ownership. The project Towards Precision Agriculture 4.0 aims to address these 
perspectives to arrive at a basis that forms new knowledge to design data-sharing principles and to provide 
better-informed management decisions for the farmer and the ecosystem around the farmer. The main issue 
that is addressed within this study is to map all the data that is generated on the farm and design pathways 
that could potentially add value for the farmer with these data for his operational, tactical, and strategic 
decisions. The proposition is that data harmonization is an essential condition to achieve this. 

The current study's purpose was to determine minimum interoperability mechanisms concerning the 
standardization of image data and deep learning algorithms for vision-based applications. 
This study builds further upon earlier work in the same context, which suggests an architecture for data 
exchange within a FAIR data ecosystem. The architecture supports publishing interoperable algorithms and 
data and describes the playing level of actors in such an ecosystem (Booij, et al. 2022). In specific, this 
study further describes, analyses, and models the various data streams and relevant metadata that are part 
of the domain of weeding robots. Legal regulations, such as the General Data Protection Regulation (GDPR), 
are considered when performing these activities to safeguard the rights of a user, especially where data can 
be linked to a person, such as a farmer. 

A metadata-oriented approach around the case is adopted in this study to make data and algorithms 
semantically interoperable and the approach resulted in relevant models using different modelling techniques 
such as process models with Business Process Modelling Notation (BPMN) and class diagrams with Unified 
Modelling Language (UML). For the modelling part, existing knowledge is reused from the Reference Model 
Agro (rmAgro), which is a well-known normative standard in the agricultural domain since the 1970s. 
Although the reference model is rich in explicit knowledge, this study suggests adopting approaches and 
standards for semantic interoperability following the Web 3.0 paradigm, using web technologies like 
Resource Definition Framework (RDF), Web Ontology Language (OWL) and SPARQL Protocol and Query 
Language (SPARQL).  

The most obvious finding from this study is that the specification of metadata is insufficient for some 
standards for weed management by robots. The candidate processes, messages, dataflows, and classes that 
are identified and modelled in this study could facilitate data sharing between actors in the proposed 
ecosystem. The results indicate an increased potential between established standardization and agile 
standardization for supporting semantic interoperability. 

This report is especially useful for professionals and academia who work in the design and development of 
software for the farming business. Several standards were analyzed, and the most important finding was 
that each standard covered part of the domain of interest and that the creators of these standards use 
different methods. In the domain of interest, the interoperability of preferred standards like Robot Operating 
System (ROS) and Open Neural Network Exchange (ONNX) is insufficient.  
Our analysis and review of existing standards have resulted in four new process models and a sub-reference 
model containing multiple class diagrams that specify the domain of computer vision and robotics, 
considering rmAgro and preferred communication protocols like ROS and ISOBUS. The processes, messages, 
dataflows, and classes that are identified and modelled in this study indicate a first attempt of specifying the 
domain and could facilitate data sharing between actors in the proposed ecosystem. 
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1 Towards Precision Agriculture 4.0: data-
driven agriculture 

The project ‘Towards Precision Agriculture 4.0’ is a public-private partnership which focuses on a basis for 
large-scale, smart, secure, transparent and in-control use of data with which (1) new knowledge is obtained 
from the data-sharing principle, and (2) arrive at better-informed management decisions on primary 
production farms of field crops and secondary supply and processing chains, especially also on tactical and 
strategic issues. The project is co-funded by the Dutch Topsector Agri & Food.  
 
Figure 1 shows a schematic overview of the data space of the farmer and the ecosystem connecting to the 
farmers' data. The figure shows an overview of connections between farmers in farmers' groups (green, left) 
and external connections with parties in the agri-food chain (right). In a transition to data-driven agriculture, 
the major bottleneck is bringing together all the data generated on a farm in an easy-to-use platform to 
convert the data into added value for the farmer. Underlying causes are a multitude of unstructured ICT tools 
and the lack of wide-supported architecture principles and standards in communication protocols in the data 
infrastructure.  

 
In the project the partners work on smart use of data in several use cases with a focus on developing 
architectural principles and achieving interoperability of data for field robots.  

  

Figure 1  Schematic overview data space PL 4.0. 
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1.1 Scope and goal 

Robot technology within the agricultural domain is making increasing developments in the last few years. 
Fresh players, such as start-ups, but also well-known machine manufacturers are required to cope with these 
developments and find a role for themselves. Recent technologies, such as computer vision, algorithms and 
robots bring many new possibilities. For example, computer vision promises to support users to understand 
and interpret the content of digital images and videos. This is done with computational methods, that use 
data coming from cameras and sensors1. Animal husbandry is a subsector within the agricultural domain 
dealing increasingly with computer vision, while other subsectors might potentially lack benefits, such as 
arable, dairy, fruit, and aquaculture. 
 
Additionally, the need and use for standardization are becoming even more critical alongside the 
technological developments to achieve horizontal (cross-domain) and vertical (sub-sectoral) interoperability. 
Wageningen University & Research could play a significant role in this within the national and European 
context. However, the application of standards in data model development seems to be a non-easy task. This 
causes the lack of capabilities, capacity and efficient approaches to address the challenge of interoperable 
data and algorithms for images derived from agricultural robots. The case of autonomous weeding is selected 
to identify gaps in standardisation derived from functional requirements.  
 
Following Bratton’s Datastack, as mentioned in the feasibility study of PL4.0 (Kempenaar, et al. 2020), the 
main bottleneck in the adoption of field robots is the lack of ability to deploy in multiple contexts, meaning 
most current field robots focus on a few use cases or crops. The number of available algorithms is limited, 
due to the needed investments in time and costs to gather large data sets under a wide variety of conditions 
and in a wide range of crops. Exchanging image data could accelerate these developments, but a lack of data 
standardisations and communication protocols between farmers, robot service providers, robot 
manufacturers and algorithm providers hamper these developments. Also, the lack of infrastructure to 
process images in real-time with algorithms in the cloud (5G connectivity, GPU servers) and to store and 
exchange image datasets in a structured way are a bottleneck.  
 
This report is an addition to an earlier study on the ecosystem of data exchange with agricultural robots for 
weed management (Booij, et al. 2022). The study aimed to identify the different actors for the use case of 
weed control with robots and map a preferred data ecosystem between those different actors. In the use 
case, the field equipment consists of a robot carrier, a camera (data acquisition system), an algorithm which 
detects crops and weeds on the images and a spot spray device which can spray individual plants. The actors 
are the farmer, the provider of the algorithm, the provider of the robot service and the manufacturer(s) of 
the equipment. Furthermore, there are different data sources like a FAIR Data Ecosystem itself, a Farm 
Management Information System, an OEM platform, the field equipment, additional weather data services, 
etc. In the study, the first step was made to identify necessary data streams between the actors, with a 
focus to provide enough context about image data and algorithms. Preferable context is for example where, 
how and under which circumstances images of crops and weeds are acquired. But also, which and how 
objects are annotated, which algorithm architecture is used, under which circumstances an algorithm is 
usable and ownership of data and algorithms. The study presented an initial list of definitions, data streams, 
business processes, description messages and a proposed architecture for federated data space. This data 
space should support principles according to Findable, Accessible, Interoperable and Reusable (FAIR) with 
published interoperable algorithms and annotated image data and support the workflow of image processing 
with neural networks.  
 
The present study is a follow-up to this and aims to provide a basis for the standardization of data exchange 
of image datasets from agricultural field robots and a basis for the interoperability of algorithms. Therefore, 
we developed a sub-model containing multiple class models, considering rmAgro and preferred 
communication protocols like Robot Operating Systems (ROS) and ISOBUS. The focus is again on the use 
case of weed control. It is assumed that the autonomous weeding application should provide tangible results 
to generalize the results also to other autonomous applications.  

 
1 https://viso.ai/computer-vision/what-is-computer-vision/ 

https://viso.ai/computer-vision/what-is-computer-vision/
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Therefore, the starting point for this study is that the class model for the autonomous weeding application is 
merely one of the modules within rmAgro for the agricultural sector. 
 
Reading guide:  
Chapter 2 presents existing standards that are relevant for the use case of weed management by robots.  
Chapter 3 describes the general approach of the study.  
Chapter 4 describes the processes between the actors in detail and is modelled in Business Process Model 
and Notation (BPMN).  
Chapter 5 presents a sub model containing multiple class models that are identified in the processes and 
existing standards. The class models are modelled in Unified Modelling Language (UML) and rmAgro is 
reused as much as possible. 
Chapter 6 discusses the outcomes and gives recommendations for future work.  
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1.2 Relevant initiatives 

In this paragraph, relevant work is presented in the domain of agriculture, standardisation, robotics, image 
data and algorithms. Since the primary focus of the domain is agriculture and the case involves robotic 
applications, the most relevant standards, such as ISO XML and ROS 2, are analysed thoroughly about 
computer vision and standards for agricultural machines to plan and execute tasks. 
 
Within the IoF2020 project, an analysis is conducted on information models with their impact on algorithms 
and IoT (Internet of Things) (Cantera 2019). Different generic requirements derived from this study are 
listed below.  
 
Table 1 Generic requirements for information models supporting algorithms (adopted from Cantera 
2019). 

Requirement Description 

Acting on confidence 
levels 

When receiving predictions from an algorithm, a device may decide whether to act on them or not based 
on up-front knowledge of the quality of the algorithms or individual predictions. 

Evaluation in the field A device may store the predictions of an object and the actual measurement to facilitate model 
validation and evaluation of model performance. 

Training and (local) 
retraining 

A device may use a static, pre-trained model for daily operations, deployed as part of the solution. This 
solution may continue training on the job, so that it adapts to changes and local circumstances. 

 
In the case of weed control, the algorithm YOLOv5 2, is based on detecting objects in images. It predicts the 
classes of objects in the images with certain confidence levels. To train model, thousands of images with 
(hand)labelled objects are required to train, test, and validate the model. Moreover, the performance of a 
weed robot is not only validated by the accuracy of the model, but also the by accuracy of its application 
(removing weeds). We see a trend that a second sensor is installed behind the implement to gather 
evaluation data and processes it with another algorithm, increasing the number of images gathered by a 
single robot. It shows that image data can be used to develop new algorithms to improve existing algorithms 
by retraining them with local data and to validate the application and algorithm itself.  
 
Furthermore, the project agROBOfood aims to build an ecosystem for the effective adoption of robotic 
technologies in the agricultural and food sector, while this should support the sector in becoming more 
effective and competitive 3. One of the deliverables details the overview of the existing standardization 
landscape in agricultural and food robotics by considering six different areas of standardization for the 
analysis. These areas are communication protocols, robots, robot safety, food safety, security, and energy 
management. It is indicated that standardization in robotics is sparse in most of these areas and most of the 
standards derive from large agricultural machinery or industrial automation. Finally, consortium experts are 
identified on different standards who are available for support in interpreting and complying with these 
standards (Christoph Hellmann Santos 2020). 
 
The Dutch government publishes base registries for crop fields 4. The publication contains metadata including 
a reference ID to the dataset itself but also information on the publisher, data reuse, licences, and 
restrictions. The resource metadata set is also available in Extensible Markup Language (XML) / Resource 
Definition Framework (RDF), which makes it easier for computers to interpret data. 
From an international perspective, collaborative effort is put into the “Data Sharing Coalition” which is an 
open and growing initiative to unlock the value of cross-domain data sharing (Data Sharing Coalition Expert 
Group 2021). In this work the authors present an overview of data standards, semantics, structure, and 
format of data that is to be exchanged. A small limitation of the study could be the distinguishment between 
semantics and structure on the one side and the format on the other side, since semantics and structure can 

 
2 https://github.com/ultralytics/YOLOv5  
3 https://agrobofood.eu/project/  
4 https://data.overheid.nl/dataset/10674-basisregistratie-gewaspercelen--brp-  

https://github.com/ultralytics/yolov5
https://agrobofood.eu/project/
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be serialized following different formats. It is detected that there exist many standards among and within 
domains. A data service therefore must specify which standards are used in its Service Discovery (chapter 
9.3.1) and requires a machine-readable way of specifying metadata (chapter 14). Moreover, the authors 
suggest a standard agnostic Trust Framework that will facilitate the possibility to harmonize the semantics of 
data standards across domains. 

1.3 General Data Protection Regulation (GDPR) 

The General Data Protection Regulation (GDPR) has been in effect for the European Union since 25 May 
2018. GDPR gives protection to data subjects in case of misuse of personal data. In the table below, you see 
a summary of the GDPR requirements translated from table 6-1 from the feasibility study of PL4.0 
(Kempenaar, et al. 2020).  
Some, but not all farm data is personal data. However, in 2023, the EU (European Union) Data Act is likely to 
become effective, protecting the position of the enterprise where the data is generated.  
The Netherlands and EU have translated GDPR and other regulations in Code of Conducts for agricultural 
data use. The CoCs state that third parties cannot use farm data unless they have consent (data 
sovereignty), digital services should be compliant with software standards in Agrifood (interoperability) and 
users of tools should be able to take their data to other providers (portability). This all means that the farm 
is in control of data generated on the farm. It is up to the farm owner with whom to share the data. These 
principles will become the bases in the future, and it is highly recommended to consider this in building new 
digital infrastructures.  
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Table 2  GDPR requirements for handling personal data5 

 

 
5 https://gdpr-info.eu/issues/personal-data/ 

The GDPR prescribes rules that data subjects can use to defend their rights if their personal data is 
misused. So this is specifically about personal data, which is directly identifiable.  
- Informed consent 

In order for personal data to be used, the person (the data subject) about whom that data is 
concerned must give consent. Consent is required for the processing of personal data, unless 
there is a legal obligation to share certain data. 

- Right to access data 
According to Article 15 of the GDPR, a data subject may have access to their personal data 
and the following information: the purposes for which the data are processed, the categories 
of personal data used, the people with whom that data has been shared, and how long the 
data will be stored  

- Right to data portability.  
Article 20 of the GDPR is closely related to the right to access data, but also differs from it. It 
states that data subjects have the right to receive personal data they have provided to a 
data controller, in a structured, common and machine-readable form. He also has the right 
to transfer that data to another data controller, without being interfered with by the 
controller to whom the personal data had been provided. 

- Right to be forgotten (right to forget) 
The right to be forgotten (Article 17) is the right to demand that personal data be deleted 
and prevent further dissemination. A person's personal data must be forgotten if: 
• Personal data are no longer needed for the purposes for which they were originally 

collected or processed; 
• The data subject withdraws his or her consent to the organization processing the data; 
• If the data subject disagrees with the data processing organization; 
• If the organization processing the data does not comply with the law; 
• If the period in which the data was allowed to be stored has expired.  

- Right to rectification 
People have the right to have inaccurate personal data corrected, and incomplete personal 
data completed, if they request this in writing or verbally. 

- Right to restriction of processing 
People have the right to request a restriction on the processing of their personal data. This 
right is only applicable if the processing of data was unlawful, where personal data has been 
processed improperly or when people challenge the legal basis of the processing of the data 

- Right to object to automatic decision-making, including profiling  
People have this right if the decision-making has legal effects, or otherwise affects them. 
Therefore, data controllers, data subjects must provide short, transparent, clear and easily 
accessible information about how their personal data is processed. To prevent organizations 
from collecting more personal data than they actually need, data controllers must ensure 
that they comply with the "data minimization principle," and the requirements set forth by 
the principles of "purpose limitation" and "storage limitation.  

- Right to refuse data processing 
According to Article 21 of the GDPR, people have the right to refuse processing of their personal 
data. 
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2 Interoperable data and algorithms: a 
landscape of standards 

An overview of relevant standards is presented in this chapter to give insights into reusable candidate 
concepts and classes. This understanding supports the respective process and data modelling phases as 
proposed in the following chapters of this paper.  
 
In this study, the rmAgro standard is used to model the domain. It is a well-known normative standard in the 
agricultural domain and despite the rich explicit knowledge that resides in the model, there is more reason to 
adopt standards that are based on the Web 3.0 paradigm. There is a growing body of knowledge that 
recognizes the importance of Web 3.0 for publishing data on the web to make lives easier for humans and 
data understandable for machines (Hendler 2009; Lassila and Hendler 2007; Rudman and Bruwer 2016). 
These benefits could range from autonomous data integration (a world wide web data warehouse) to the 
enablement of AI technologies with the support of the Web Ontology Language (OWL) and its extension with 
Description Logic (DL) (Sirin, et al. 2007). Whereas Web 1.0 is characterized by static information retrieval, 
Web 2.0 is more interactive, and Web 3.0 supports the integration of data and applications with semantic 
web technologies, including the use of RDF and SPARQL Protocol and RDF Query Language (SPARQL). 
Despite promising advantages of the Web 3.0, there are disadvantages that should be considered, such as 
development of harmful scripts and languages, autonomous initiation of actions, unauthorised access, and 
manipulation of data. 
 
This chapter is structured according to relevancy of the standards that were identified during the analysis. An 
overview of all standards is presented in Annex 2 Table of standards for data and algorithms. Commonly, it is 
found that there are useful standards that generically specify the exchange of interoperable robotics 
algorithms, such as Open Neural Network Exchange Format (ONNX), Robot Operating System (ROS2), 
SensorML and Common objects in Context (COCO). Alternatively, there are multiple initiatives that map 
existing standards that specify data objects for the agricultural domain, such as ISO standards. There are no 
specific standards for the agricultural domain that harmonise these both two domains, agricultural and 
robotics. In chapter 4 we present some proposals with harmonisation efforts. Interestingly, there is 
increasingly more standards that are based on the Web 3.0 paradigm, such as the Agricultural Information 
Model (AIM), Saref4Agri and FoodOn.  

2.1 Reference Model Agro (rmAgro) 

The rmAgro model is used in the Netherlands as a reference for the definition of data which is exchanged 
between parties in the agricultural sector. It is initiated and maintained by Wageningen University & 
Research by following as much as design principles in information technology and continuously adapting to 
new and changing functional requirements. The main purpose of the domain reference model part, 
rmAgro/drmAgro, is a clear description and definition of classes of objects recognised in agriculture and how 
they can be characterised. One of the ways to populate the domain model part is by mapping drmAgro to 
other models used for data exchange in agriculture like ISO11783 and UNCEFACT. The model is used as a 
reference when standard messages are formulated by the Dutch standardisation organisation for agriculture 
data, AgroConnect. 
 
The reference model specifies the whole agricultural production domain, with a focus on crop production. 
This involves for example parties, fields, activities on the farm, data processing, crop recording, sampling 
and analyses, handling of products, machinery, etc. rmAgro comprises also specifications for the 
subdomaisns greenhouse production, animal husbandry and aqua culture (Goense 2021). The very first steps 
in the reference model dates already from 1984 when the Dutch government stimulated the development of 
information models to improve the use of information technology in the agriculture and horticulture (Aarts 
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1987a; Aarts 1987b; Goense 2017a; Goense 2017b). Following the UML language and Platform Independent 
Modelling (PIM) paradigm, the model is built with the reuse of knowledge of existing standards such as ISO 
11783-10, AgroXML, Edaplos, Inspire and ADAPT. More recently, the reference model is elaborated as part of 
research activities on the domains of animal husbandry and plant protection products (Breemer 2021; 
Cantera 2019; Urdu, et al. 2022). Since most of the standards are focused on a specific data exchange 
process, rmAgro aims to cover a wider scope. For example, ISO11783-10 is focused in specific for data 
exchange between implements and Farm Management Information Systems (FMIS). With the introduction of 
tracking and tracing, IoT, cloud, etc., the lack of reference model for a wider scope is becoming more 
evident. Therefore, this study has selected the rmAgro to further model the domain of metadata standards 
for robot images. 

2.2 Open Neural Network Exchange Format (ONNX) 

The ONNX format aims to enable AI tools to work together by allowing them to share AI models6. The format 
is designed to represent any type of Machine Learning and Deep Learning model and therefore the need of 
interoperability is fulfilled to exchange algorithms and their parameters, assumingly also for weed detection. 
ONNX format is developed and supported by a community of partners, such as, Alibaba Group, Microsoft, 
AMD, Intel, etc., who have adopted the format in their frameworks and tools. Although a generic 
specification of the ONNX could not be found in a generic format such as UML, XML, RDF, there are many 
scripts for different platforms that are accessible through the GitHub ecosystem of repositories7. An 
appropriate example is the Proto buffers. For the YOLO algorithm, as it is commonly used for agricultural 
robots' imagery and object detection, further analysis is needed to indicate the effort that is needed to make 
the algorithm ONNX compliant. 

2.3 Robot Operating System (ROS) 

In the domain of robotics, ROS is a well-known software development kit that supports building robot 
applications. The standard is currently published as open source and maintained by Open Robotics8. 
Although ROS contains protocols and communication messages, it is lacking on recommendations from a 
domain modelling perspective. However, the implementation of ROS 2 contains an updated version of the 
standard that comprises the concept of the so-called Data Distribution Service (DDS) for allowing messages 
to be structured.  
DDS is a middleware protocol and standard for API in which data connectivity has a significant role. By 
integrating the components of a system together, it aims to improve connectivity of low-latency data, 
reliability, and architectural scalability for IoT applications9. For the proposed data space, this could imply 
that the DDS function between the weed robot (operating system) and FMIS (application). The mechanism to 
share date between these nodes (either human or machines) are elaborated in the Data-CentricPublish-
Subscribe (DCPS). The DCPS10  defines the functionality used by applications which needs to publish and 
subscribe the values of data objects. The Object Management Group (OMG) develops enterprise integrations 
standards. An example is the Interface Definition Language (OMG IDL), which is a descriptive language used 
to define data types and interfaces. The specification provides a description into two sub parts: a Platform 
Independent Model (PIM) and a Platform Specific Model (PSM). In Figure 2 a conceptual model is presented 
for the DCPS. 

 
6 https://onnx.ai/get-started.html   
7 https://github.com/onnx/onnx/tree/main/onnx  
8 https://www.openrobotics.org/  
9 https://www.dds-foundation.org/what-is-dds-3/ 
10 https://www.omg.org/spec/DDS/1.4/PDF 

https://onnx.ai/get-started.html
https://github.com/onnx/onnx/tree/main/onnx
https://www.openrobotics.org/
https://www.dds-foundation.org/what-is-dds-3/
https://www.omg.org/spec/DDS/1.4/PDF
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In this study we found many resources for the use of DDS in ROS11 and possibilities for common and custom 
messages 12 13 14. Summarized, DDS is a middleware that provide relevant features to the ROS system, such 
as distributed discovery and possibilities to control options for transportation of Quality of Service (QoS)15 16 
17. Knowledge on diverse types of implementations can be found elsewhere 18 19 20 21.  
Recent developments show the possibilities to enrich the existing ROS standard with a multi-layer localisation 
and mapping procedure for agricultural sites, adding semantic maps as part of the VineSLAM (dos Santos, et 
al. 2016). This initiative proposes a certain ROS structure with definition of messages22, such as vision 
messages23 and sensor messages 24.  

2.4 Common Objects in Context (COCO)  

The COCO dataset format is a large-scale object detection, segmentation, and captioning dataset with the 
goal to advance state-of-the-art object recognition by broadening the context of image recognition to scene 

 
11 https://design.ros2.org/articles/ros_on_dds.html  
12 https://docs.ros.org/en/foxy/Tutorials/Custom-ROS2-Interfaces.html 
13 https://roboticsbackend.com/ros2-create-custom-message/ 
14 https://github.com/ros2/common_interfaces  
15 https://docs.ros.org/en/ros2_documentation/galactic/Concepts/About-Different-Middleware-Vendors.html  
16 https://www.dds-foundation.org/omg-dds-standard/  
17 https://www.omg.org/spec/DDS/  
18 https://opendds.org/  
19 https://cyclonedds.io/index.html  
20 https://zenoh.io/  
21 https://www.eprosima.com/  
22 https://gitlab.inesctec.pt/agrob/vineslam_stack/vineslam/-/blob/master/docs/interfaces.md  
23 http://docs.ros.org/en/api/vision_msgs/html/msg/Detection2DArray.html  
24 http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/PointCloud2.html  

Figure 2  Conceptual Data Centric Publish and Subscribe adopted from OMG DDS standard. 

https://design.ros2.org/articles/ros_on_dds.html
https://docs.ros.org/en/foxy/Tutorials/Custom-ROS2-Interfaces.html
https://roboticsbackend.com/ros2-create-custom-message/
https://github.com/ros2/common_interfaces
https://docs.ros.org/en/ros2_documentation/galactic/Concepts/About-Different-Middleware-Vendors.html
https://www.dds-foundation.org/omg-dds-standard/
https://www.omg.org/spec/DDS/
https://opendds.org/
https://cyclonedds.io/index.html
https://zenoh.io/
https://www.eprosima.com/
https://gitlab.inesctec.pt/agrob/vineslam_stack/vineslam/-/blob/master/docs/interfaces.md
http://docs.ros.org/en/api/vision_msgs/html/msg/Detection2DArray.html
http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/PointCloud2.html
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understanding (Lin, et al. 2014). The large dataset is publicly available to use for training of algorithms and 
contain richly annotated images that are translate from complex everyday scenes. 
The dataset has a well described format which can be considered as basis for a standard to exchange images 
and annotated images. The format covers: info, images, annotations, categories, and licenses. Info describes 
the information of a dataset, which contains the images and the annotations for the images. Image describes 
the main characteristics of an image, and under which license it is made available. An annotation describes 
objects distinguished within an image and belongs to a particular category. The COCO dataset includes a list 
of 90 categories and is seen as fundamental for metadata for images. A class model of the COCO dataset 
format is given in Figure 3. 
 

 
Figure 3  Class model of the COCO dataset format. 

2.5 Minimal Information About a Plant Phenotyping 
Experiment (MIAPPE) 

Looking from the plant phenotyping domain, the Minimal Information About a Plant Phenotyping Experiment 
(MIAPPE) has developed a data model to allow conducting field experiments25. It describes the minimal 
information needed to give context for a field experiment. The data model describes classes, attributes and 

 
25 https://www.miappe.org/  

https://www.miappe.org/
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coding lists that are relevant to specify conditions for learning and testing images during the execution of 
field operations. In the same line of direction, the Netherlands Plant Eco-phenotyping Centre (NPEC) 
emphasize data harmonization with a pilot in the EMPHASIS project 26. The data model provides context for 
researchers to interpret the data from the experiment. Some classes, attributes and coding lists could be 
useful for our study; however, the scope of our study is on data from farming practice and to give context of 
image data and algorithms to the developers, providers, and users of algorithms. Furthermore, our data-
model should be more generic to cover other agricultural domains potentially also.  

2.6 Data Expression, Exchange, and Processing in Smart 
Agriculture IEEE standard P2992 

More recently, attention has focused on the provision of recommended practices for designing smart 
agriculture data, specifically on the data format, data tags, their naming rules, and data transfers to propose 
unified practices of data sharing, processing, and expression in the IEEE standard P299227. Limitations of this 
development may be the unclarity of addressing the control of data for robots, collection of images, 
classification of objects in those images and description and development of algorithms. Moreover, it is still 
imprecise what the exact relation is of this standard with other agricultural standards. 

2.7 International Organization for Standards (ISO) based 
standards 

2.7.1 ISOXML / ISO 11873 - 10 

The well-known standard ISOXML is often used as the expression for ISO11783 part 10, which includes the 
use of DDI’s defined in part 11. ISO11783 stands for “Tractors and machinery for agriculture and forestry—
Serial control and communications data network”. It covers all communication layers for data exchange on 
farm machinery using the CAN communication protocol, and the communication between task controllers and 
FMIS by means of XML files.  
The use of robots in agriculture can be seen as a specific type of agricultural machinery and that makes it 
relevant to consider ISO XML as a standard for data exchange between FMIS and robots. However, 
ISO11783-10&11 does not cover images and as it is still based on the use of XML files, it is also not suited 
for real time communication that is necessary for alarms generated by a robot. ISO11783-10&11 also have 
characteristics inherited from the technical limitations that were present during its development in the 1980s 
of the last centuries.  
The Agricultural Industry Electronic Foundation (AEF) takes the initiative for additions to ISO11783 which will 
allow for real time communication, and these developments should be monitored.  
ISO11783-10 describes the underlying data model as an entity relationship diagram which is further 
specified as elements of XML schemas. This data model covers parts of the agricultural domain relevant for 
the execution of farm work through mobile machinery.  

2.7.2 Infrastructure for Spatial Information in Europe (INSPIRE) 

The INSPIRE Directive addresses 34 spatial data themes with an impact on the environment and need for 
environmental applications. The Directive seeks to create a European Union Spatial Data Infrastructure which 
should (1) enable public sector organizations to share environmental spatial information among each other, 
(2) facilitate public access to spatial information and (3) support policy making28.

26 https://emphasis.plant-phenotyping.eu/services/emphasis-pilots/harmonisation-
pilot#:~:text=The%20harmonisation%20pilot%20service%20will,of-the-art%20procedures 

27 https://standards.ieee.org/ieee/2992/10614/  
28 https://inspire.ec.europa.eu/about-inspire/563 

https://emphasis.plant-phenotyping.eu/services/emphasis-pilots/harmonisation-pilot#:%7E:text=The%20harmonisation%20pilot%20service%20will,of-the-art%20procedures
https://emphasis.plant-phenotyping.eu/services/emphasis-pilots/harmonisation-pilot#:%7E:text=The%20harmonisation%20pilot%20service%20will,of-the-art%20procedures
https://standards.ieee.org/ieee/2992/10614/
https://inspire.ec.europa.eu/about-inspire/563
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This encoding of the INSPIRE metadata in this technical specification is based on the ISO Standards ISO 
191152930, ISO 191193132 and ISO 1913933. The abstract standards 19115 and 19119 provide a structural 
model and specify the content of the set of metadata elements used in this specification, but they do not 
specify the encodings of those elements. The ISO 19139 specifies an XML encoding of ISO 19115 elements, 
but not for the service-specific metadata elements contained in ISO 19119. To provide an XML encoding also 
for the INSPIRE service metadata, XML Schemas implementing the ISO 19119 model have been published by 
the Open Geospatial Consortium (OGC). These XML Schemas, though not officially endorsed by ISO, are 
widely used within the metadata community, and have been chosen to be used also in INSPIRE since version 
1.0 of this specification. 

2.7.3 Training Samples Markup Language (TSML) 

For geospatial and remote sensing data, the diversity of formats makes it difficult to share data. This is 
especially the case when there is a desire to design advanced applications, such as knowledge discovery, 
pattern recognition, data analysis and data integration. The TSML effort proposes a structure based on XML 
to store training data sets for specifically supervised classification algorithms (Soares, et al. 2011). The main 
advantage is the ability to share examples among classifiers from different applications to analyse and 
compare results. This characteristic aligns with the initial goal of this study.  

29 https://www.iso.org/standard/53798.html  
30 https://inspire.ec.europa.eu/documents/Metadata/INSPIRE_MD_IR_and_ISO_v1_2_20100616.pdf 
31 https://www.iso.org/standard/59221.html  
32 https://docs.geostandaarden.nl/md/mdprofiel-iso19119/  
33 https://www.iso.org/standard/67253.html  

https://www.iso.org/standard/53798.html
https://inspire.ec.europa.eu/documents/Metadata/INSPIRE_MD_IR_and_ISO_v1_2_20100616.pdf
https://www.iso.org/standard/59221.html
https://docs.geostandaarden.nl/md/mdprofiel-iso19119/
https://www.iso.org/standard/67253.html
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2.8 Landscape of standards  

 
The most important standards are presented in previous paragraph, while there are several other standards 
that specifies the domain of agricultural robot vision from different perspectives. As seen in Figure 4, all 
these standards are graphically illustrated into five Venn-diagrams. Each diagram represents a specific topic 
and consists of the standards that are found within this study, respectively, generic standards, machine 
communications, agricultural domain, standards based on Web 3.0 and vision & algorithms standards. The 
standards that are part of the diagram “Generic standards” are further sliced into three main standardization 
organisations, namely ISO, OGC and GS1. There might be also other relevant standardisation organisations, 
such as UNCEFACT, that are not part of the scope of this landscape. These generic standards are usually 
applied in rmAgro. For example, the Geography Markup Language (GML) is used to specify fields and field 
boundaries that is usually derived from an XML-based dataset. 
 

 

Figure 4 Landscape of standards for interoperable robot vision data. The standards are 
potted in diagrams, which represent a specific domain of interest as starting point.  
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3 Methodology 

3.1 Use case Weeding Robot: FAIR Data Ecosystem – 
Published Interoperable Algorithms and Data 

As mentioned, the previous study of Booij, et al. (2022) presented an initial list of definitions, data streams, 
business processes, description messages and the proposed architecture for a federated data space that 
should support FAIR principles. The aim to publish interoperable algorithms and annotated image data 
required this study to develop a class model with the definitions of the reference model rmAgro. Such a class 
model can be used to generate specification and sample code for different communication protocols like XML 
or JSON messages. After a thorough desk and literature study on existing standards, the followings steps 
were taken carefully: 

1. Describe different business processes in the data space of weed management with robots and the 
development of algorithms from annotated images, using Business Process Model and Notation 
(BPMN); 

2. Develop Unified Modelling Language (UML) based class diagrams for the different message flows and 
data associations that are presented in the business process models; 

3. Use as much as possible already existing classes from the domain reference model Agro (drmAgro) 
and extend it with data elements identified in the BPMN message flows and data associations not 
already present in drmAgro; 

4. Provide an example of XML code for one of the message flows.  
 
A BPMN model describes the executions of process thinking and activities from a customer’s perspective. The 
process modelling paradigm is especially useful to visualise the different actors in a use case and their 
relationship and communication between them. BPMN makes a clear difference between message flows and 
data associations. Message flows is the data exchanged between partners, represented by a pool in the 
BPMN diagram. Following the FAIR based architecture, they need a common semantic and format, a 
standard, to make interchangeability possible. The data associations represent internal data communication 
of the partners and do not, in principle, need no standard. Though a standard can be extremely helpful, a 
clear example is the ISO11783 standard for data exchange between implements of a partner. The data 
associations are in this study used to identify data that is required to realize the business process.  
The UML Class Diagram is a graphical notation used to visualize object-oriented systems and which describe 
the structure of a system using the systems classes, their attributes, operations, and the relationships 
among objects. The classes identified for a message flow are for a common semantic for communication 
between partners through a FAIRDataEcosystem. The drmAgro reference model is, as described below, a 
platform independent data model. From this independent data model, platform specific models can be 
generated which have a common semantic, but different format like for example XML, JSON, or RDF.  
For this study, a sub model “RobotVision” is generated which holds only those classes, attributes and 
associations which are relevant for robot and vision-based weeding and development of the algorithms for 
weed detection. Throughout the document, as a modelling convention, camelCase is used to denote certain 
model objects, such as processes, messages, classes, attributes, or class diagrams. 

3.2 Processes to elicit relevant messages and data flows 

As mentioned in the introduction, the process models in this study should support the FAIRDataEcosystem. 
The system described in the BPMN’s does not store the data itself. The service part of the eco system is 
responsible for authentication of the partners and it is the platform where can be specified who has access to 
which data, the authorization. These two sub processes are shown as one activity “check_Authorisation” in 
chapter 4 Business processes. There is the possibility to add more resources in terms of CPU and data 
storage in case there are partners and users that have this wish.  
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The FAIRDataEcosystem could also have an APP_Store functionality, where applications, software, algorithms 
can be placed and downloaded, and which also keeps track of the financial aspects of the use of those apps. 
This can also include licenses for data services like for example weather data. 
Several details required for secure data transfer between organizations, are not specified in the BPMN’s and 
the messages themselves. Message transfer is for now specified in the BPMN’s as a push by the platform, 
while a mechanism to inform a receiving partner where data is available for download and providing that 
partner with a token which can be checked by the sending partner. 
The most important aspect of the FAIRDataEcosystem as facilitator for interoperability is that it specifies the 
data semantics and the data formats for well-defined messages. 

3.3 Schema generation and reuse of standards 

3.3.1 Sub model RobotImages 

The first step is selecting the classes, attributes and associations which are relevant for the domain of robot 
vision. This is done by using the Schema Generator in Enterprise Architect. This is described in 
rmAgroDocumentation.docx34, chapter 5. 

3.3.2 Platform specific models 

The second step is creating a platform specific model. This is described in chapter 6 of the documentation of 
rmAgro. DrmAgro itself is subdivided in packages as described in chapter 3.6.1 of the documentation. When 
the schema generator is used to create the sub model, all classes, datatypes, and enumerations are placed in 
one single package. On itself that is not a problem for the use case specific model, but as the intention is to 
use as much as possible existing standards, like for example GML and UNCEFACT, those classes and 
datatypes which are specified by those standards should be placed in a package representing these 
standards, with their appropriate name spaces. This becomes relevant when generating (xml) schemas.  

3.3.3 XML schema generation 

As explained in the documentation of rmAgro, chapter 7, it is required for GML based geometries to make a 
GML sub package with target namespace and prefix gml 35.  
There is no need to generate the schemas for those standards, but by giving those packages, the sub model 
specific schema will include and refer to the correct standard schemas and namespaces. 
In this study on robot images only an XML model is generated from the sub model RobotVision, which can be 
found on the website of AgroConnect36.  

3.3.4 Standards to model the domain 

The model rmAgro is a model used in the Netherland as a reference for the definition of data which is 
exchanged between parties in the agricultural sector. It is initiated and maintained by Wageningen University 
by following as much as design principles in information technology and continuously adapting to new and 
changing functional requirements. The main purpose of the platform independent domain data model part, 
rmAgro/drmAgro, is a clear description and definition of classes of objects recognised in agriculture and how 
they can be characterised. One of the ways to populate the domain model part is by mapping 
rmAgro/drmAgro to other models used for data exchange in agriculture like ISO11783 and UNCEFACT. 
rmAgro is used as a reference when standard messages are formulated by the Dutch standardisation 
organisation for agriculture data, AgroConnect. 

 
34 https://www.agroconnect.nl/Portals/10/documenten/rmAgro/rmAgroDocumentation_oct_2020.docx 
35 http://www.opengis.net/gml/3.2  
36 https://www.agroconnect.nl/Portals/10/documenten/RobotImages/rmAgro_RobotImages_XMLandXSDs.zip  

http://www.opengis.net/gml/3.2
https://www.agroconnect.nl/Portals/10/documenten/RobotImages/rmAgro_RobotImages_XMLandXSDs.zip
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3.3.1 Domain reference model Agro (drmAgro) 

There are a number of standards for data exchange in Agriculture and domains used in agriculture. A 
characteristic of most of those standards is that they are defined in a technology which was most common at 
the time of development. A clear example is ISO11783-10 based on an XML schema. Another characteristic 
of most of those standards is that they cover a limited domain within agriculture.  
The reference model rmAgro/drmAgro tries to cover all use cases encountered by Wageningen UR in its own 
projects and in projects with partners like those from AgroConnect and the EU. It follows naming conventions 
and other design principles established at its start and adapted during further development.  
The consequence is that expressions used in other standards are not always followed. The change in 
technology over the last decades led to the decision to make drmAgro a platform independent model. As it 
covers all encountered use cases it has the advantage that standards based on this model can reuse 
components developed for different use cases. A disadvantage is that covering many use cases leads to more 
complex data structures then is required when dealing with only one use-case or a limited domain. Another 
disadvantage is that the reference model is not hindered by upward compatibility and can therefore deviate 
from already existing messages. The reference model can be seen as a model like it ideally should be, as far 
as it ever can, and used as a basis when new versions of standard messages are developed. 
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4 Business processes 

The business processes for this study are modelled with BPMN language. One business process is already 
modelled as a BPMN in Booij, et al. (2022) and includes the development and improvement of algorithms; 
the first mentioned process as presented in this chapter.  
One of the basic principles of a business process is that an organisation can initiate and interfere with 
business processes of other organizations. The development or improvement of algorithms could be initiated 
by an algorithm service provider, while the use of algorithms is part of executing operations which are 
initiated by farmers. As the initiative comes from two different organizations, we should see them as two 
different business processes. 
 
There are four different business processes to distinguish in respect of robot images: 

1. The development and improvement of algorithms; 
2. Ordering Robot weed control. The selection of an appropriate algorithm for vision-based applications 

and ordering an operation. In this use case selecting weed detection and ordering weed control; 
3. Robot Weed Control Execution. The use of an algorithm during the execution of field operations; 
4. Retrain an Algorithm from Images made during Weeding. 

 
The processes are published as part of this study in HTML and are publicly accessible in a more readable and 
comprehensive way 37. The transfer of data between organizations, and sometimes between entities within 
an organisation such as a ManMachineSystem and a Farm- or ContractorManagementInformationSystem, is 
following the proposed architecture, controlled by a service part of the FAIRDataEcosystem. This is not 
shown in the BPMN train_CollectedImages and in the other BPMN’s this is left away for some of the 
messages. The reason is that focus is on the data content of the messages and specifying the mechanisms of 
this communication architecture will result in complex BPMN’s. See also the architectural representation of 
the data ecosystem in Booij, et al. (2022). 

4.1 Process “Developing and improving algorithms” 

An algorithm service company can decide at a certain stage to develop or improve an algorithm to detect 
weeds or diseases in crops, which are based on images made in the field. This requires that one or more 
fields are selected and agreed on by the farmer to collect images and to classify objects in those images as 
identified weeds or diseases. It is assumed in this BPMN that the latter will be done manually in the field by a 
person. An alternative for easy to recognize objects this can be done manually at a desk on hand of the 
images themselves. This scenario is described in the BPMN train_CollectedImages and an HTML resource is 
accessible through an URL38. 
During image collection relevant properties of field, crop, weeds, weather, and eventual other properties that 
can influence the image should be captured. Also, relevant properties of the camera system must be known. 
When classified images are available a “learning” process can be started to train algorithms, in most cases 
NeuralNetwork’s, with their parameters. A trained algorithm will be tested and validated with independent 
sub datasets. When trained algorithms have sufficient accuracy, they can be published for use by others. 
 

1. The business process is started by an algorithm service provider when there is a need for a new or 
improved algorithm. The service provider will collect a list of ParticipatingFarms and chooses a farm 
for a request. (It is now specified such that the algorithm service provider has such a list of 
participating farms, but such a list could also be available in the FAIRDataEcosystem). 

2. An investigation is made for suitable fields for which a request is made to the farm. This request 
implies the request for field data. 

 
37 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/BPMNRobotImages/index.html  
38 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/BPMNRobotImages/EARoot/EA7.html  

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/BPMNRobotImages/index.html
https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/BPMNRobotImages/EARoot/EA7.html
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a. The request “TrainingFieldRequest” contains at least the PlantSpecies and period of planting 
or a GrowthStage. It might also contain a list of “required” WeedSpecies. 

3. The farmer accepts or rejects the request by a TrainingFieldResponse message and in case of 
acceptance sends required field data.  

a. TrainingFieldData will contain at least: The CropField with its identifier, Designator of the 
field and its PlotSurface, such that area and location are known. It will specify the planting 
Operation such that planting date, row distance and plant distance in the row is known. 
When available, also quantitative data on weeds, pests and/or diseases can be provided. 
Eventually also the driving pattern during planting can be provided, such that a robot that 
will be used for image collection can generate its driving pattern. 

4. The algorithm server provider evaluates TrainingFieldData and when suited, this will be stored. In 
case a request is rejected, or TrainingFieldData is not suited, a new request will be done. 

5. A next process is started when the RobotServiceProvider will start image collection. This could be the 
farmer, contractor, other party, or the algorithm service provider itself. It will transfer the 
Georeferenced, AnnotatedImages, and Conditions to the algorithm service provider. Conditions 
include FieldConditions and EnvironmentalConditions. Eventually this can be done through the 
platform of the device manufacturer and the FAIRDataEcosystem, which is not specified in this 
BPMN. It is assumed here that collecting images for training purposes is an activity without a 
weeding or crop protection operation. Using images collected during such operations is described in 
the BPMN retrain_WeedingImages. 

6. When arrived in the field, the ManMachineSystem will start image collection. Based on the 
FieldSurface (and eventually the planting pattern) a Zone will be selected for image collection. 

7. An image will be taken in the selected zone and based on the PositionAndOrientation of the device 
and CameraPositionAndOrientation of the camera on the device, the image will be georeferenced and 
stored as GeoReferencedImage. 

8. During image collection also relevant conditions like EnvironmentalConditions, CropConditions and 
FieldConditions can be collected and stored. Environmental conditions will include weather conditions 
like solar radiation, cloudiness, and wind speed. FieldConditions will, as far as not already part of the 
TrainingFieldData, include soil surface wetness, visible objects like shelves, stones, and leaves on 
the soil. CropConditions will include canopy wetness and growth stage when the latter differs from 
the data provided by the farmer or differs in the field. 

9. The zone will be inspected for weeds, diseases or pests and its specific species will be classified. In 
the Image, the classified objects will be indicated either by drafting polygons (like bounding boxes), 
lines, or points. This can be either done by drafting the relevant objects on the image manually and 
classify them, but it is also possible that an algorithm is used to identify objects, which still must be 
checked. This results in an Image with an Annotation an Image is a result of an Observation which 
can also result in one or more PropertyValue’s describing other characteristics observed during that 
observation. These PropertyValues describe the EnvironmentalConditions, CropConditions and 
FieldConditions. Observation is part of an Operation which refers to the CropField on which it is 
carried out. 

10. When the number of required images is reached, the collected images, Annotations, georeference 
data and Conditions will be send as Georeferenced, AnnotatedImages, AssociatedData and these will 
be stored by the service provider. 

11. When sufficient images are available for training, a selection (subset) will be made from the 
available classified images that will be used for training. Another independent subset will be reserved 
for test or validation.  

12. The ClassifiedImages will be synchronized with OtherData, which includes the FieldConditions, 
CropConditions and the EnvironmentalConditions. Furthermore, specifications of the used camera 
and other sensors can be attached. This results in TrainingImagesWithData 

13. An algorithm for weed/disease/pest recognition will be selected and this will be trained on the 
selected ClassifiedImages. The result is the AlgorithmAndParameters. 

14. When training is finished, the algorithm with the derived parameters will be validated on the images 
selected for validation, which will be ValidatingImagesWithData. 

15. When validation is successful, the AlgorithmPlusSpecification will be published. 
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4.2 Process “Ordering robot weed control with algorithms” 

This business process starts when there is a need for weed (or disease) control and assumes that a choice is 
made on the forehand for robotic weeding. When modelling this BPMN, the assumption is made that there is 
a platform (FAIRDataEcosystem) available which manages data exchange between organisations, eventually 
a data store and an app store can forward requests to service providers. 39 
 

1. The BPMN starts when there is a need for weeds control. 
2. The farmer asks for weather data by a WeatherDataRequest to a platform.  
3. The platform checks whether the farmer has a data license for weather data, DataLicenses, and 

when that is the case, the farmer forwards the request to the data provider. 
4. The data provider collects the requested weather data and sends it as a WeatherDataResponse. 
5. The farmer asks for available algorithms by an AlgorithmsRequest and gets a AlgorithmsResponse 

with available algorithms. Based on WeatherData, CropData and FieldData, suited Algorithms are 
selected. 

6. With an AvailableRobotServicesRequest is investigated who is able to deliver robot services that uses 
the selected Algorithms. The response, AvailableRobotServicesResponse, is a list of robot services 
providing the suited Algorithms. 

7. One of the RobotServices is selected and a ServiceOrder is placed at the service part of the 
FAIRDataEcosystem. After a check whether the farmer is authorised to place orders, this is 
forwarded to the RobotServiceProvider. 

8. When a OrderReject message is received, a new robot service will be selected, and a new order will 
be placed. When there is an OrderResponse which indicates acceptance. This AcceptedOrder will be 
stored as a planned operation. 

Execution of the placed, and accepted order is described in the BPMN execute_RobotWeeding. 

4.3 Process “Executing robot weed control” 

This BPMN model describes the execution of weed control with a robot by a robot service provider40. There is 
already an order placed for the weed control operation and as soon as the operation is planned for a 
particular farm, the farm is informed. It is assumed that the robot is travelled to the field by means of 
another vehicle. This requires that during travel time other equipment and men are available. After finishing 
the operation, the farm is informed. 
 

1. At regular time intervals, one or two times a day, a request for weather data is placed by the robot 
service provider, e.g., a contractor operating weeding robots on behalf of farmers which is the 
message WeatherDataRequest. This request is placed at the FAIRDataEcosystem, which checks 
whether the contractor is authorised to request for weather data. 

2. The weather service provider collects the weather data from a forecast for the requested location. 
3. When the WeatherDataResponse is received by the robot service provider all planned Operations are 

collected as well as all Resources (men and machinery) with their status (available or not) during 
periods. With this data Jobs and Tasks are scheduled. 

4. The PlannedJobsAndTasks are distributed to the machinery of the service provider. In this case, that 
means one Task to the ManMachineSystem which is responsible for the travel and another Task for 
the weeding to the robot itself. As both Tasks depend on each other they form together a Job. The 
ManMachineSystem responsible for travel knows by the information in the Job which robot to travel. 
Data exchange is managed by the FAIRDataEcosystem. Also, the farmer is informed of the planned 
Task for the weeding operation. Jobs and Tasks for the farm machinery (Robot and tractor pulling a 
trailer) are send to the original end manufacturer’s, OEM, platform, which takes care that the data is 
send to the machinery itself.  

 
39 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/BPMNRobotImages/EARoot/EA3.html  
40 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/BPMNRobotImages/EARoot/EA1.html  

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/BPMNRobotImages/EARoot/EA3.html
https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/BPMNRobotImages/EARoot/EA1.html
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5. At the time a Job starts, the ManMachineSystem collects the data of the Job and the TaskData that
belongs to that Job, called JobAndTaskData. The ManMachineSystem for travel is proposed as the
JobController.

6. When arrived on the field, the robot will be unloaded and the RobotTaskData collected to start three
main activities: navigation, weeding and real time evaluation of the weeding.

7. For weeding the AlgorithmAndParameters must be loaded. A camera takes a picture, the
AlgorithmAndParameters detects the objects on the picture, then the ObjectPosition on the image is
translated to real world positions and an actuator is controlled to remove or kill te weed.

8. To evaluate if the system of detection and actuator has done its job, a second camera and another
AlgorithmAndParameters is used which generate WeedingEvaluationData .

9. The WeedingEvaluationData will also be used to control the weeding process. When the evaluation
data don’t pass the WeedingCriteria, which must be part of the specification of the Operation, a
WeedingAlarm is generated and send to the server providers home base by using the robot OEM
platform and the FAIRDataEcosystem. When the WeedingAlarm is received at the home base, it will
be evaluated and when seen as appropriate, a message to abort the task, called TaskAbortMsg, will
be send to the robot. When this message is received, the task will be stopped.

10. The task will also be stopped when the navigation function of the robot has covered the whole field
surface. A message will be sent by the robot to the ManMachineSystem (MMS) responsible for travel
of the robot and the TaskData will be send to the RobotServiceProvider.

11. The travel MMS will travel with the robot to the next field or to the home base and send also
TaskData to the robot server provider.

12. When the OEM platform receives TaskData from the machinery it will inform the contractor (or
farmer) that new Taskdata is available. The information management system, IMS, of the contractor
can collect this TaskData from the OEM platform and send the relevant data of the executed (or
aborted) Task to the farmer.

4.4 Process “Retraining algorithm from images during 
weeding” 

This business process starts with the start of a robot weeding operation shown in the lowest pool in the 
BPMN model41. It stops after publishing a new algorithm with parameters on the FAIRDataEcosystem. 
This Business process is not complete. The focus is on the data flows which are relevant for training 
algorithms from images made during a weeding operation, so some details shown in other BPMN's are not 
shown in this one. 
This business process shows two pools FAIR_DataEcosystem and FAIR_DataEcosystem2. They represent the 
same pool, but it is split in two to prevent too much message lines crossing other pools. 

1. The BPMN starts with the start of the weeding operation in the field. The navigation function and the
weeding function are specified here. (For the real time evaluation function see the BPMN
execute_RobotWeeding).

2. During object detection with the chosen algorithm from the images, also a ProbabilityPercentage is
calculated and stored.

3. At the end of the Task, which is described more in detail in BPMN execute_RobotWeeding, the home
base will be informed that the Task is ready and new TaskData is available. This TaskData also
includes the images itself and all associated data which includes the ProbabilityPercentage, proposed
as TaskWithImages&AssociatedData.

4. The Task, with images and its associated data, will be collected by the RobotServiceProvider.
5. After evaluation of the data a warning will be sent to the provider of the Algorithm when the

probability percentages during object detection are (too) low.

41 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/BPMNRobotImages/EARoot/EA5.html 

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/BPMNRobotImages/EARoot/EA5.html
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5 Messages and dataflows 

The business processes show which physical parts and actors in a federated data space for weed detection 
interact with each other. The dataflows between the parts and actors could be defined in messages. Many 
elements to build up these messages are available in the reference model rmAgro. However, the domain of 
vision techniques and deep learning with neural networks is new and not described in rmAgro yet. This 
chapter focusses on the exchange of algorithms and image datasets following from the business processes 
and provides a mapping from the minimal list of metadata described in Booij, et al. (2022) to rmAgro. Most 
of the class diagrams described in this chapter are published and accessible by AgroConnect 42. 

5.1 Algorithms 

5.1.1 Algorithms and parameters 

Algorithm is an existing class in drmAgro and was introduced for crop growth simulation models. It is proved 
to be useful for model interpolation of spatial data based on parameters derived from semi-variograms. 
Another example on the use of the algorithm class is for sensors to calculate for example weight from 
voltage level. An algorithm has one or more variables as input and one or more variables as output. Voltage 
level is, in the example of the sensor, the input, weight is the output. A neural network, which is often used 
for object detection from images, can also be seen as an algorithm. 
 
In this use case convolutional neural networks are used to detect objects (weeds) on images. Much of the 
existing literature on neural network plays particular attention to object detection and image recognition 
(Bianco, et al. 2018; Ren and Wang 2022) . A common way to exchange these deep learning models is with 
the use of the standard ONNX 43. This standard is a serialized representation of the model in a protocol buffer 
and is designed to allow framework interoperability between various tool stacks like PyTorch, CNTK, MXNet, 
Caffe2, TensorFlow, CoreML, etc.  
 
The model description of a Neural Network is incorporated in the class model AlgorithmAndParameters44 and 
is based on the description of ONNX. A neural network is an algorithm with fitted parameters and its 
specification in respect of requirements, validity and where it is derived from. Some limitations of the 
adoption of the ONNX standard could be the ambiguity of the term's parameters, that is interchangeably 
used when variables are intended.  
A neural network is a special type of algorithm which is described as a graph with nodes. The Weights and 
Bias Parameters in a NeuralNetwork are fitted during the learning process. These ParameterValues form a 
ParameterSet, which is a Resource. To exchange these parameters an URL could be used, defined in 
ParameterSet  Resource.ResourceLocator. 
The same applies for an URL reference to a Github repository of a neural network architecture Algorithm  
Resource.ResourceLocator. 
 
The accuracy is an output of the training and validation of a neural network. During a ParameterFit, which 
includes the learning of a NeuralNetwork, various categories of error estimates can be calculated45. 
ParameterFit.CrosEntropyError is the most appropriate for classification algorithms. 
An Algorithm can also be validated. ClassificationValidation gives several errors which can be specified. 
For the case of weeding robot, input variables for a neural network are the pixel values in an image and 
other characteristics like physical soil variables. Output is the predicted plant species and its location. 

 
42 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/index.html  
43 https://github.com/onnx/onnx/blob/main/docs/IR.md  
44 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA1.html  
45 https://www.neuraldesigner.com/learning/tutorials/testing-analysis  

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/index.html
https://github.com/onnx/onnx/blob/main/docs/IR.md
https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA1.html
https://www.neuraldesigner.com/learning/tutorials/testing-analysis
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Objects, in this case weeds, should be labelled and specified by their BotanicalName. When Weeds are only 
detected as weed, and not on species level, then a reference to PlantGroup should be made.  
Based on the class diagram of Algorithm and Parameters, in Table 3 an overview is presented of the 
minimum metadata that should be included with the exchange of an algorithm.  

Table 3 Minimal metadata fields that should specify an algorithm. 

What class rmAgro attributes Example 
Title of algorithm Algorithm AlgorithmDesignator (String) Volunteer potato detection in sugar 

beet 
ID of algorithm Algorithm 

Resource 

AlgorithmIdentifier 
(IdentifierType) 
ResourceIdentifier (IdentifierType) 

global identifier 

global identifier 
Description of 
algorithm 

Algorithm AlgorithmDescription (String) The algorithm detects volunteer 
potatoes in sugar beets on clay and 
peat soils in the North-East 
Netherlands. 

Version of 
algorithm 

Algorithm Version (String) v5.2 

Classification 
categories 

NeuralNetwork 
 PropertyVariable

Plant 
 PlantSpecies

ValueEnumerator 

BotanicalName 

0, 1 

Solanum tuberosum, Beta vulgaris 
Altissima Group 

DatasetID’s used 
for training 

Dataset DataSetIdentifier (IdentifierType) global identifier 

Name 
architecture 

NeuralNetwork Architecture (String) YOLOv3 

URL of model Algorithm  Resource ResourceLocatorURL (anyURL) https://github.com/ultralytics/YOLOv5 
URL of weights 
and biases 

ParameterSet Resource ResourceLocatorURL (anyURL) 

Settings 
algorithm 

ObjectDetectionAlgorithm ConfidenceThreshold (Real) 
MaximumObjects (Integer) 
MaximumObjectSize (Integer) 
MinimumObjectSize (Integer) 

Accuracy Algorithm 
 ParameterFit
 ClassificationValidation CrosEntropyError (Real) 

ClassificationAccuracy (Real) 
ConfusionMatrixValues (integer) 
ErrorRate (Real) 
... 

Ownership Party Designator (String 
PartyIdentifier (IdentifierType) 
... 

Name company 
KVK nr 

Licensing License LicenseDesignator (String) 
LicenseIdentifier (Identifiertype) 
LicenseURL: (anyURL) 
ValidFrom (Datetype) 
ValidTo (Datetype) 
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5.1.2 Licensing and ownership of resources 

As presented in Table 3, during the exchange of algorithms ownership and licensing of digital resources 
become important. The published class diagram46 shows a class diagram that represents this importance. 
Based on the Inspire standard, it is decided that DataSet and Algorithm are a subclass of Resource. Resource 
has a responsible party as defined by Inspire and a PartyRole. To eliminate redundancy there is only an 
association to PartyRole, which on its turn is associated with the Party.  

5.1.3 Specifications of an algorithm 

The algorithm architecture plus its weights makes the algorithm useful. However, the trained neural network 
will only be valid for certain conditions under which the training data are collected. For the case of weed 
detection in crops, it will only be valid for certain plant species occurring in the dataset. Crops and weeds can 
look different (phenotype) between fields and regions due to variation in field and crop characteristics, like 
row width, plant distances, and environmental conditions. Furthermore, the camera setup, such as type of 
camera and lens, angle and field of view will also determine how objects are projected in the images. So, to 
exchange suitable fitted (trained) algorithms for a farmer's local situation and available equipment, these 
kinds of metadata should be known.  

An algorithm is trained on a dataset with training data, which is compiled from images derived from one or 
more original datasets. It is assumed that an original dataset of images is gathered on one specific field and 
its conditions on crop, field, and environment. To have a robust algorithm which works under a wide 
variation of conditions, the training data should contain a balanced set of images derived under a wide 
variation of conditions, which is often the case with existing algorithms. The specifications of an algorithm 
should therefore include a range for conditions, preferably a list per variable, rather than a specific condition 
which is preferable for image datasets. In rmAgro the conditions are specified for the ParameterFit by the 
associations “is_valid +from” and “is_valid +until” to one or more PropertyValues, as can be seen in the class 
diagram TrainedNeuralNetwork47. It is assumed that environmental conditions, characteristics on field and 
crop and process variables, such as row width and plant distances, can be covered by PropertyValue’s of 
PropertyVariable’s.  

The phenotype of plants or weeds could look different from year to year depending on environmental 
conditions like the weather, climate, and soil properties. But also, the perception of objects on images can be 
influenced by the weather conditions due to changing light conditions (cloudy vs bright sky). Algorithms are 

46 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA33.html 
47 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA43.html 

Some objects like PlantSpecies, which is specified by an association to Crop, can have two roles in 
the context of Neural Networks. 

• One is that it is a characteristic of a (trained) Neural Network. A user who selects a Neural 
Network wants to know for which Crops, and under which conditions it is appropriate to use. 
This can be specified by associating an Algorithm, or its subclass NeuralNetwork to 
appropriate classes representing these specifications, like in in the class diagram 
TrainedNeuralNetwork47.

• A second role is that as input or output variable (input or output parameter by ONNX) for a 
Neural Network. In that case the specifications should be a PropertyValue of a 
PropertyVariable as seen in in the class diagram AlgorithmAndParameters44.

The consequence of these two roles is that there might be some redundancy in the reference model 
drmAgro by using classes with attributes for some cases and by using members of code lists for 
PropertyVariables in other cases. This suggest to use a CropVariable code list, which includes 
CropSpecies and WeedSpecies. WeedSpecies will be an output PropertyVariable for robot weeding. 
Both, CropSpecies and WeedSpecies have a CodedValue, which is in a Botanical code list. 

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA33.html
https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA43.html
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ideally trained and published with image datasets gathered in divers environmental conditions to work 
robustly. Therefore, it is assumed that only specifying the region and soil types is sufficient. Soil type could 
be modelled as a PropertyVariable as can be seen in the class diagram CropFieldSpecification48. The 
assumption for soil types is that there is a national coding list for soil types. The PropertyValue has in that 
case a CodedValue. The PropertyVariableCode includes an ListIdentifier for the coding list which is used. 

As stated, before the algorithm is assumed to be valid for a range of crop, field, and environmental 
conditions. Besides metadata describing the algorithm itself also metadata about these conditions should be 
included, which is presented in Table 4. In the column example sometimes a list of examples is given rather 
than one specific example as an algorithm could be used in more than one condition.   

Table 4 Minimal metadata included in specifications algorithm. 

What class rmAgro attributes Example 
Crop Crop 

PlantSpecies 

CropDesignator (String) 

CropIdentifier (IdentifierType) 

BotanicalName (IdentifierType) 

PlantSpeciesDesignator (String) 

[Sugar beet, Onion] 

[Beta vulgaris, Allium cepa] 

Variety Variety VarietyDesignator (String) 

VarietyIdentifier (IdentifierType) 

[BTS115N, Jewel, Queena KWS, ...; 
Hybound, Sharon, Red Baron, ...] 

Weeds PlantSpecies BotanicalName (IdentifierType) 
PlantSpeciesDesignator (String) 

[Solanum tuberosum, Rumex obtusifolius, ...] 
[Potato, broad-leaved dock, ...] 

Region Crop  Region  Polygon Boundary (SurfaceBoundary) Polygon ((6.418889 52.985346, 6.415462 
52.641085, 6.995595 52.644569, 6.947328 
52.990952, 6.418889 52.985346)) 

Soil type Cropfield  PropertyZone 
 PropertyVariable
 PropertyValue

SoilPhysicalVariable 
QuantityType 
SoilPhysicalVariable 
QuantityType 
SoilPhysicalVariable 
QuantityType 
SoilPhysicalVariable 
QuantityType 

ClayFraction 
2% 
LoamFraction 
7% 
SandFraction 
83% 
OrganicMatterContent 
9.2% 

Suitable for 
which 
Machine(s) / 
implement(s)? 

Implement ImplementDesignator (String) 
ImplementIdentifier (IdentifierType) 

BBleap Spotsprayer 

Suitable for 
which data-
acquisition 
system(s) 

Component Designator (String) BBleap LeapEye 

48 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA19.html 

The assumption is that NeuralNetworks for robot weeding are developed for a Crop with a particular 
PlantSpecies. This can be specified by an association to Crop, which has an association to 
PlantSpecies. Eventually other aspects of a Crop like ProductionPurpose can be specified also.  

An alternative for specifying the soil type with a national coding list is the specification of sand, loam 
and clay fraction as PropertyValue of SoilPhysicalVariable’s.  

It is assumed that an Algorithm is trained on datasets acquired by a specific data acquisition system, 
consisting of a Camera, Lens and ElectronicControlUnit and therefore only suitable for the same 
type of system. These parts could be seen as Components of an Implement and is further detailed 
in paragraph 5.1.3.1. Furthermore the orientation of the data acquisition system on the Implement is 
of importance and further specified in paragraph 5.1.3.2. 

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA19.html
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5.1.3.1 Used equipment 
 
Algorithms are suitable for specific Data Acquisition Systems and Equipment. Data Acquisition Systems 
consists of a Camera, Lens and ElectronicControlUnit. All these parts could also be seen as Components of an 
Implement, as can be seen in the class diagram UsedEquipment49.  
If applicable, CameraLight is also one of the components of a data acquisition system. So, whether the Robot 
(Implement) uses artificial lightning, it possible to specify this with CameraLight.  
The class diagram describes the equipment which is used during execution of a Task and the relevant 
components of that equipment. A robot for weed control is an Implement which belongs to an 
ImplementAssembly. This construct is used to model assembled implements which always work together and 
are seen as one unit of operation. An example of the latter is a drill permanently mounted on a rotary 
harrow. But in the case of robot weeding the Assembly can consists of a robot platform, a Data Acquisition 
System and an actuator removing the weeds (e.g., a spot sprayer or hoeing device). 
 
For algorithm providers and robot service providers it is necessary to know the details of the data acquisition 
system, like the type and settings of the camera(‘s), and the used equipment to know if the algorithm will 
work. Table 5 shows the minimum metadata about the data acquisition system which should be included.  
 
Table 5 Minimum metadata that specifies the image data acquisition system. 

What class rmAgro attributes Example 
Specs 
camera light 

CameraLight Lightmodel (IdentifierType) 
LightCategory (CameraLightCategoryEnumeration) 
ColorTemperature (Integer) 
Lumen (Integer) 
Shielded (Boolean) 
LightWavelength (Integer) 
LightMaterial  
PowerRequirement (Real) 

 

Camera Camera  Component  Equipment  
 EquipmentIdentifier 
 
 
 
 
 
 
Lens  Component  Equipment  
 EquipmentIdentifier 
 

Designator (String) 
SerialNumber (String) 
Model 
ModelYear (Int) 
Series 
PartNumber (String) 
 
 
Designator (String) 
SerialNumber (String) 
 

Stereolabs Zed 2i Stereo Camera 
SerialNumber 
Zed 2i Stereo 
2022 
ZED 
ZED 2I (or EAN 0096718605293?) 
 
Integrated 
N.A. 

Specs 
Camera 

Camera 
 
 
 
Lens 

Height (Int) 
Width (Int) 
NumberOfBands (Integer) 
SpectralRange (SpectralRangeType) 
MinimumPhocalLength 
MaximumPhocalLength 

1080 
3840 
3 
RGB 
2.1mm 
2.1mm 

 
  

 
 
49 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA49.html  

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA49.html
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A data acquisition system is conform ISO11783 an ElectronicControlUnit, which is in drmAgro a subclass of 
Component.  
 
drmAgro uses the term Equipment for machinery. Equipment has an EquipmentIdentifier for use in 
management systems. Equipment, Implements and Components are more in detail identified by 
EquipmentIdentification, as can be seen in the class diagram CameraIdentification50. Equipment can be a 
stationary Installation, a Tractor, an ImplementAssembly, etc. ImplemenstAssembly exists of one or more 
Implements. A clear example is a planter combined with a rotary harrow. This is seen as one piece of 
equipment, but existing of two implements which perform different OperationTechniques for different 
CulturalPractises 
 
SensorML has an extensive description of Camera, by using the Community Sensor Model, CSM, which is 
developed for remote sensing purposes. A simpler description is given in ROS2, as presented in chapter 
“Related Work”. For now, only the Height and Width of the sensor array are used in the drmAgro 
specification. 
 

5.1.3.2 Camera position and orientation 
 
The position and orientation of the camera determines how objects are perceived on images and therefore 
essential information when using algorithms for computer vision. The published class model 51 shows how 
this is modelled in rmAgro.  
The camera has a position and orientation in the EngineeringCoordinateSystem of the Equipment it is 
mounted on. Sensors can also be mounted on movable sections of a boom on the equipment, for example a 
movable spraying boom. In that case, the camera has a position in the EngineeringCoordinateSystem of the 
section, which has on its turn a position and rotation in the engineering coordinate system of the equipment 
itself. The equipment has a position in a (world) coordinate reference system. It might require several 
transformations to determine the position and rotation of the camera in the (world) coordinate reference 
system. It is suggested to give the ActivityField, where the operation is performed, an engineering coordinate 
reference system itself to improve performance for passing the position of weeds to the actuator for removal.  
 
The attributes of Camera in the SensorML show lack of normalization to correct the image distortion. These 
should be attributed to the Lens, modelled in rmAgro as a separate class. Furthermore, platform and timing 
of images should be modelled as separate classes. A more extensive modelling of Sensor is available in 
ISO19130 Geographic Information – Imagery sensor models for geopositioning, consisting of three parts52.   
 

Table 6 Minimum metadata required for camera settings. 

What class rmAgro attributes 
Camera position Point in EngineeringCRS Equipment Position (DirectPositionType)  
Camera orientation EulerRotation in EngineeringCRS Equipment Alpha (Real) 

Beta (Real) 
Gamma (Real) 

 
50 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA11.html 
51 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA13.html  
52 https://committee.iso.org/sites/tc211/home/projects/projects---complete-list/iso-19130-1.html 

A decision must be made whether Roll, Pitch and Jaw should be used or the Euler angles Alpha Beta 
and Gamma. For now the Euler angles are used in drmAgro, as they are also applicable for 
ISO11783. 
 
A Camera as being a Sensor has a Position and an EulerRotation in an Implement’s 
EngineeringCRS. The Implement itself has also a Position and an EulerRotation but now in a 
CoordinateReferenceSystem. From this specification the distance to the object can be calculated, 
but also other data required to georeference the image on the soil surface.  

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA13.html
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5.2 Image training datasets 

Algorithms are trained on image datasets that consists of images and annotations of objects in those images. 
For AlgorithmProviders the context of how and where those images are acquired is of importance for 
adequate selection of the right datasets for development of new algorithms or retraining existing algorithms. 
Therefore, the specifications of the used equipment, crop, field, and environmental conditions are important. 
Furthermore, an AlgorithmProvider could also provide services like weed maps to farmers to support decision 
making. Therefore, the images should be georeferenced.  
 
This chapter describes the structure of message flows containing images, annotations, and its associated 
data. The class Image is part of the class Dataset, which can be seen in the published diagram53. Dataset 
itself results in an instantiation of the class Resource.  
 
Some metadata is extremely specific for each image (such as CameraSetting, cameraID during image 
capturing), whereas other metadata is applicable to the complete set of images in a Dataset (like the used 
equipment). The metadata specific for each image is described in paragraph 5.2.1, the metadata that 
concerns the annotations of images is presented in paragraph 5.2.2 and the information applicable to the 
dataset is described in paragraph 5.2.3.  

5.2.1 Images 

The class model Image53 is modelled by reusing the following standards: TSML, ROS2, and OpenCV. TSML is 
considered as it is up to now the only model description which specifies classified images. ROS2 is a logical 
choice as in our applications a combination is made of image taking with the use of robots. OpenCV is not 
considered yet, as the documentation is difficult. 
 
As can be seen from the class model an image is an Observation of a ObservationSurface measured at a 
ObservationTime. Each image is made with a camera with a specific camera setting to compensate for e.g., 
light conditions, as can be seen in the published diagram CameraSettings54.  
 
Intrinsic and extrinsic parameters are transformation matrices that convert points from one coordinate 
system to the other55. The Datum describes the projection which is used and is modelled in GML3.2. More 
information on datums can be found on the web as published by OpenGIS56.  
Intrinsic parameters are internal parameters of the camera and lens, also known as camera to image and 
image to pixel transformation, whereas extrinsic parameters are parameters describing the positions and 
orientations of the camera and sensors, also known as the world to camera transformation, which measures 
positions on the vehicle coordinate system and translated to a world coordinate system. It is assumed that 
during an agricultural task the intrinsic and extrinsic parameters remains the same and could therefore be 
part as Associated Data as described in 5.2.3.   
 
For the intrinsic parameters there are several coordinate systems specified for images, and sometimes 
different expressions are used for the same coordinate system. We could not identify a standard identifier list 
of image coordinate systems. In paragraph 5.2.4 we elaborate more on this topic and give an overview of 
several image coordinate systems. Our proposal is to follow OGC’s structure as much as possible specifying 
geometries.  
 
To measure the position often GNSS (Global Navigation Satellite System) receivers or wheel encoders are 
used. The measured GNSS positions or encoder values are ‘unique’ to each image and should therefore be 
included with each image.  

 
53 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA31.html  
54 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA15.html 
55 https://towardsdatascience.com/what-are-intrinsic-and-extrinsic-camera-parameters-in-computer-vision-7071b72fb8ec  
56 http://schemas.opengis.net/gml/3.2.1/datums.xsd  

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA31.html
https://towardsdatascience.com/what-are-intrinsic-and-extrinsic-camera-parameters-in-computer-vision-7071b72fb8ec
http://schemas.opengis.net/gml/3.2.1/datums.xsd
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In rmAgro a GNSS receiver or encoder is a Sensor which measures the PropertyValue as value of the 
PropertyVariable. This proposes to use VariableCodeList for GNSS, as can be seen in the published diagram 
GNSS_Receiver57.  
If encoders are used instead of GNSS receivers to describe the real-world position of images, the value and 
datetime of acquisition are important. Those PropertyValues can have a TimeInterval. By the optional 
attributes of TimeInterval it is also possible to specify only one time moment. The ProcessVariable identifier 
list should contain a variable which could be called PulseFrequency, which is of the RateType. 

Table 7 Minimal metadata included with images. 

What Class rmAgro Attributes Example 
Imagefile Image ImageFileFormat (ImageFileFormatEnumeration) 

ImageFileDesignator (String) 
ImageIdentifier (IdentifierType) 
Height (Int) 
Width (Int) 
ImageURL (AnyURL) 

PNG 

1080 
3840 

Date and time of 
acquisition 

Observation ObservationTime (DateTimeType) 

CameraID Component ComponentIdentifier (SerialNr) 

Camera settings Image  CameraSetting Shutterspeed (Real) 
Aperture (Real) 
ISO (Integer) 
FocalLength (Real) 
WhiteBalance (integer) 

GNSS position & 
heading 

GNSS_Variable  
PropertyVariable 

PositionStatus 
PositionNorth (will be in decimal degrees) 
PositionEast (will be in decimal degrees) 
PositionUp 
Heading 

(Optional) Encoder 
datetime and value 

Sensor  PropertyValue 
 TimeIntervalType

 PropertyVariable

 PropertyValue

Duration (DurationType) 
StartTime (DateTimeType) 
Status (Status Enumeration) 
StopTime (DateTimeType) 
PulseFrequency (RateType) 
MaximumRate 
MinimumRate 
PulseFrequency 

License License LicenseIdentifier (Identifiertype) 

57 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA29.html 

It is assumed that in most field applications the camera lens has a fixed focal length (or manually 
adjusted), as to keep the intrinsic parameters the same. FocalLength could then be included as 
AssociatedData. However sometimes equipment also has autofocus properties which adjusts the 
FocalLength for each image taken. Then FocalLength should be included as metadata in each image. 

In drmAgro there was a class Position, which is deprecated in actual GML specifications. This has to 
be replaced by Point in a number of diagrams. There is in drmAgro still a class GNSS_Position, which 
holds a number of GNSS_variable’s, which is equivalent to an entity in ISO11783. This 
GNSS_Position is a subclass of Point. The proposal is to deprecate the class GNSS_Position. 

ObservationTime is of DateTimeType. The proposed format like GMT format depends on the 
exchange format chosen (XML, JSON, etc) 

The ProcessVariable identifier list for Encoders should contain a variable which could be called 
PulseFrequency, which is of the RateType. This would require additional attributes MaximumRate and 
MinimumRate to Propertyvariable. 
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5.2.2 Annotations of images 

The published class model58 shows the class model of AnnotatedImages, which is an Image in which objects 
are identified (boxed, segmented) as Annotations. Annotations refer to certain ImageSegments in the Image 
which are spatially described either as ImageRaster or as ImageVector. The expression Image is used here 
to indicate that it is a raster, or a vector described by the pixels of the image.  
A deep learning algorithm converts an image to a numeric matrix in n dimensions. For example, a coloured 
image of 640x640 pixels will be converted to a 3D matrix with 3 layers (red, green, blue values between 0-
255) x 640x640. This matrix is then processed along the neural network and results in an output which is a 
2D matrix of identified objects with the classification and positions of pixels or objects. Different expressions 
are used to define the positions of objects59,60

 on the images. There is not a standard list of image coordinate 
systems used. In Annex 4 we elaborate more on image coordinate systems.  
The Annotation is classified in a class hierarchy. In COCO dataset format the classifications are ordered in 
main categories (supercategories) and sub-categories. In our use case for weed detection this will be a 
PlantGroup respectively a PlantSpecies.  
An ImageRaster and ImageVector could be specified in more detail using the TSML standard, as described in 
overview standards in chapter 2.7.3.  
 
Table 8  Minimum metadata provided with annotations. 

What class rmAgro attributes Example 
ID Annotation 

 
AnnotationIdentifier (IdentifierType) 450 

ImageID  Image ImageIdentifier (IdentifierType) 
 

 
 

Classification 
categories 

PlantGroup 
 
PlantSpecies 

GroupDesignator (String) 
TaxonomicClass (Enumeration) 
BotanicName (IdentifierType) 
PlantSpeciesDesignator (String 

Plants 
 
 
Solanum tuberosum,  
Beta vulgaris Altissima Group, ... 

CategoryID Annotation AnnotationIdentifier (IdentifierType) (0, 1,...)  
Method Annotation 

 ImageSegment 
AnnotationMethod (CodeType) 
ImageSegmentEnumeration (Enumeration) 

Segmentation 
Polygon 

Segmentation Annotation 
 
 ImageSegment 
 ImageVector 

SegmentationArea (Real) 
IsCrowded (Boolean) 
ImageSegmentEnumeration (Enumeration) 
ImageBoundingBox (x,y,width, height) 

600.4 
1 
BoundingBox 
[473.05, 395.45, 38.65, 28.92] 

 

5.2.3 Associated image data and annotations 

The message AssociatedData, as identified in the process models, specifies the data associated to images 
which are annotated and is relevant for an algorithm developer to select appropriate datasets for a 
training/learning process of algorithms. This kind of metadata is part of the class Dataset rather than part of 
each individual instantiation of the class Image. In a typical business processes a dataset can be generated 
after each task, in that case the dataset represents data gathered on one field. However, a new dataset 
could also be compiled from images from different datasets, so that it entangles data gathered on several 
fields in a region under different circumstances. In the description below a dataset for one field is described.  
  
AssociatedData can include: 

• General info about dataset as described under 5.2.3.1. 
• Data from the farm management information system to identify the farm, field, crop, and purpose of 

the cultivation as described under 5.2.3.2.  
• Crop conditions which are described under 5.2.3.3. 
• Field Conditions which are described under 5.2.3.4. 
• Environmental conditions which are described under 5.2.3.5. 
• Specification of other sensors like GNSS receiver or encoders under 5.2.3.6. 

 
58 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA9.html  
59 https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/ 
60 https://albumentations.ai/docs/getting_started/keypoints_augmentation/ 

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA9.html
https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/
https://albumentations.ai/docs/getting_started/keypoints_augmentation/
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• Specification of the used camera(s), lens(es) and lightning. This is like Used equipment as described 
in paragraph 5.1.3.1.  

• The position and orientation of the camera(s). This is like Camera position and orientation as 
described in paragraph 5.1.3.2. 

5.2.3.1 General metadata 
 
Table 9 shows which general info should be included with a dataset.  
 
Table 9 Minimum metadata of a dataset with images and annotations 

What class rmAgro attributes Example 
Title Dataset DataSetDesignator VolunteerPotatoField1 
Description Dataset Description Images of volunteer 

potato in sugar beet 
derived under rainy 
conditions on field 
[position] with 
equipment Y... 

URL Dataset  Resource ResourceLocatorURL (anyURL)  
Year Dataset BeginDateTime 

EndDateTime 
CreationDateTime 

 
 
 

Version Dataset, DataProcess, DataAggregation Version (String) 
DataSetIdentifier 
Data 

v5.2 

Geometric 
Extent 

Dataset  Resource  from 
 Region 

 
RegionCode (CodeType) 
RegionDesignator (String) 
Boundary (SurfaceBoundary) 

 
 
 
MultiPolygon  
(((6.932773 52.876038, 
6.926804 52. 880459, 
6.933228 52.876261, 
6.932773 52.876038))) 

Contributors Dataset  Resource  
 PartyRole 
 Party 

 
Role (PartyRoleEnumeration) 
Designator (String) 
(Third)PartyIdentifier (IdentifierType) 
... 

 
Resource_Provider 
 
KVK nr 

Owner Party Designator (String 
PartyIdentifier (IdentifierType) 
... 

Name company 
KVK nr 

Licensing License LicenseDesignator (String) 
LicenseIdentifier (Identifiertype) 
LicenseURL: (anyURL) 
ValidFrom (Datetype) 
ValidTo (Datetype) 

 

Classification 
categories 

Plant  PlantSpecies BotanicalName Solanum tuberosum, 
Beta vulgaris 

A data acquisition system is conform ISO11783 an ElectronicControlUnit, which is in drmAgro a 
subclass of Component.  
 
drmAgro uses the term Equipment for machinery. Equipment has an EquipmentIdentifier for use in 
management systems. Equipment, Implements and Components are more in detail identified by 
EquipmentIdentification, as can be seen in the class diagram CameraIdentification. Equipment can be 
a stationary Installation, a Tractor, an ImplementAssembly, etc. ImplemenstAssembly exists of one 
or more Implements. A clear example is a planter combined with a rotary harrow. This is seen as one 
piece of equipment, but existing of two implements which perform different OperationTechniques for 
different CulturalPractises 
 
SensorML has an extensive description of Camera, by using the Community Sensor Model, CSM, 
which is developed for remote sensing purposes. A simpler description is given in ROS2, as 
presented in chapter “Related Work” . For now only the Height and Width of the sensor array are 
used in the drmAgro specification. 
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5.2.3.2 Info from FMIS 
From the business processes as elaborated in Chapter 4.1, it can be derived that AlgorithmProviders do a 
TrainingFieldRequest to acquire a dataset for developing or improving algorithms. The class diagram 
TrainingFieldResponse61 shows the specifications of information that can be found in a Farm Management 
Information System.  
The diagram TrainingFieldResponse should contain the CropField with the required Crop, PropertyValues 
describing the soil type by PhysicalSoilVariables, but should also specify the Operation for the 
CulturalPractice which has the code for planting. For the operation, the planting time is given by 
AbsoluteTiming and the values for the ProcessVariable’s that have the codes for row distance and plant 
distance in the row, or plant density. Table 10 shows the minimum metadata preferred for including with a 
dataset. 
 
Table 10 Minimum metadata from FMIS preferred for including with a dataset. 

What class rmAgro attributes Example 
FarmID Party  Organization  Farm PartIdentifier AGRONL09098104FRMAVCRPV1995794 
FieldID Cropfield PlotIdentifier bc37a8bd0253478db4ede4b019842420 
Crop Crop 

 
PlantSpecies 

CropDesignator (String) 
CropIdentifier (IdentifierType) 
BotanicalName (IdentifierType)  
PlantSpeciesDesignator (String) 

Sugar beet 
1010201 
 
Beta vulgaris 

Variety Variety 
 

VarietyDesignator (String) 
VarietyIdentifier (IdentifierType) 

BTS 6740  
20231 

Cultivation 
Purpose 

CropField  Crop  
CropProductionPurpose 

CropProductionPurposeDesignator 
(String) 
 

Sugar 

Operation 
Type 

OperationTechnique OperationTechniqueDesignator 
(String) 

Weeding 

 

5.2.3.3 Crop conditions 
In respect of the crop, the growth stage can be specified, but also Leaf Area Index (LAI), height of the 
canopy, pest, diseases, etc, are of importance. These are PropertyVariables, as these conditions might vary 
within a Field. They are specified for PropertyZone’s within a CropField or ActivityField while for the growth 
stage the BBCH index is proposed (Jki 2010). Table 11 shows the metadata about the crop conditions, while 
Table 12 shows a list with suggested variables for the crop. The published diagram that specifies crop field 
and crop conditions can be found via the following reference62. 
 
 
  

 
61 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA47.html   
62 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA17.html   

It is questionable whether DataSet’s can have a version. They are generated once, either by direct 
Observation, or by a DataProcess which can process DataSet’s and create new ones. These are new 
DataSet’s with a new Identifier. The source is always tracable by providing the DataProcess 
information, or the information of sensors and equipment which originated them. 
 
The geometric extent of the dataset could be one field, but also several fields in a certain region. 
Both can be specified using the class Boundary.  
 
Based on Inspire it is decided that DataSet and Algorithm are a subclass of Resource. Resource has a 
responsible party as defined by Inspire and a PartyRole. To eliminate redundancy there is only an 
association to PartyRole, which on its turn is associated with the Party. See paragraph 5.1.2 
Licencing and Ownership. 

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA47.html
https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA17.html
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Table 11  Metadata describing crop conditions. 

What Class rmAgro Attributes Example 

Area / region Crop  Region  Polygon Boundary (SurfaceBoundary) Polygon ((6.418889 

52.985346, ..., 6.418889 

52.985346)) 

Crop conditions PropertyVariable GrowthStage (CodedValueType) 

LeafAreaIndex (Real) 

PlantHeight (Real) 

... 

16 

0.8 

10 

Table 12  Proposal for a CropVariable code list. 

Designator Definition Unit of Measure 

CropSpecies A PlantSpecies which can be grown as Crop CodedValue (BotanicalName) 

WeedSpecies A PlantSpecies growing where it is not wanted CodedValue (BotanicalName) 

Pest CodedValue 

PlantDisease CodedValue 

PlantDamage 

Logging 

GrowthStage CodedValue 

Region The geographical region in which the Crop is grown 

5.2.3.4 Field conditions 
The class diagram FieldConditions can be specified similar as class diagram CropConditions, but with a list for 
PhysicalSoilProperties as can be seen in the diagram CropFieldSpecification63 64. Those variables describe a 
wide spectrum of properties, such as clay, sand and loam fraction, soil moisture content, the size distribution 
of aggregates, etc. Table 132 shows a list with suggested variables for the field conditions. It is proposed 
that the code list, including its definitions and units of measures should be elaborated in more detail with 
AgroConnect and developers. 

Table 13  Proposal for a code list of physical soil variables. 

Designator 
ClayFraction 
LoamFraction 
SandFraction 
OrganicMatterContent 
BulkDensity 
HydraulicConductivity 
FallingLeavesCovered 
SurfacedStones 
WindErodedSoilSurface 
WaterErodedSoilSurface 
VisibleSoilSurfaceMoisture 

63 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA25.html 
64 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA19.html 

We might lack of a set of coded values for the soil surface like: Dry, Wet, Mixed wet and dry, 
Flooded, Snow covered, partly snow covered, etc. For weed removal on roads and parking lots: brick 
pavement, gravel, etc. 

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA25.html
https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA19.html
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5.2.3.5 Environmental data 
 
The appearance of a plant is influenced by the environmental conditions like climate (which is the weather 
over a longer period) and the local weather conditions. Weather conditions describe the conditions of the 
weather at a certain time or time interval. For the conditions, during capturing of images the information on 
the location of the camera is relevant. In theory it is possible to instrument the robot with a weather station, 
but in practice the conditions of a nearby weather station will be used, or an interpolation will be made from 
several weather stations. The published class diagram shows specifications for weather data and its 
conditions65 66.  
In all cases the weather conditions will be measured by the class Sensor as component of the class 
SensorSystem. A sensor has a location in the coordinate system of the class SensorSystem. However, in 
some cases the details of the individual sensors are not specified. The class WeatherStation enables to 
specify where the location of the complete system is provided. Measured values are seen as the result of the 
complete system that are measured during a time or time interval. 
 
To obtain estimates of the weather near the robot at a particular time, from different weather stations, a new 
dataset must be generated by an algorithm which interpolates the data from the different weather stations in 
respect of location and time. It is however more likely that weather conditions are measured by a nearby 
weather station. In that case there is no link from the class Task, but in the present design of drmAgro there 
is a link from a sensor, which is part of the class SensorSystem which subsequently has, as subclass from 
Equipment, a position. 
 
In practice the property values of meteorological variables will be linked to a weather station, which has an 
identifier, a designator, and a geographical position. Details on the used sensors are not specified since the 
weather station should be seen as equipment in drmAgro. Table 144 shows the minimal metadata of 
environmental conditions.  
 
Table 14  Minimal metadata of environmental conditions. 

What class rmAgro attributes Example 
Weather 
conditions 

MeteorologicalVariable PropertyVariableDesignator 
QuantityType 
PropertyVariableDesignator 
RateType 
PropertyVariableDesignator 
DoubleRate 
PropertyVariableDesignator 
QuantityType 
PropertyVariableDesignator 
DoubleRate 

Average Daily Temperature 
25 °C 
Average Daily Windspeed 
1.5 m/s 
Total Daily Rainfall 
10 mm 
Avarage Daily Cloudness 
75% 
Global radiation 
1000 J/cm2 

 TimeIntervalType Duration (DurationType) 
StartTime (DateTimeType) 
StopTime (DateTimeType) 
Status (StatusEnumeration) 

24h 
2022-05-
07T00:00:00.00000000 
2022-05-
08T00:00:00.00000000 
 

 
  

 
65 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA53.html  
66 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA51.html 

The assumption is here that weather conditions are provided for the class CropField on which the 
images are made or the weeding operation is performed. A value of a class MeteorologicalVariable 
can be of the type QuantityType (for example temperature), the rate type (for example windspeed in 
m/sec) and DoubleRate (required for evaporation, which is liter per square meter per time unit). 
 

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA53.html


 

41 | Report WPR-OT-1019 
 

5.2.3.6 Used sensors 
 
Typically weed robots make use of sensors to define their position on the field. This could be for instance a 
GNSS receiver or wheel encoder. Weed robots use these sensors to time the action of an actuator after the 
detection of objects with an algorithm. Furthermore, an image can be geotagged using a GNSS receiver. 
With the intrinsic and extrinsic parameters of the camera(s) and the coordinates derived from the GNSS 
receiver, the objects on images can be translated to real world positions. For this the extrinsic parameters 
(position in engineering coordinate system of vehicle) of the GNSS receiver or wheel encoder must be 
known. Table 15 shows the minimal metadata required for sensors.  
 
Table 15  Minimal metadata on sensors. 

What class rmAgro attributes Example 
Model and 
serialnr 

Sensor  Component   EquipmentIdentifier Designator (String) 
SerialNumber (String) 
Model 
ModelYear (Int) 
Series 
PartNumber (String) 

 

Position sensor 
on vehicle 

NavigationReferencePoint  Point  in  
EngineeringCRS 

Position (DirectPositionType)  

Sensor 
orientation 

EulerRotation in EngineeringCRS Equipment Alpha (Real) 
Beta (Real) 
Gamma (Real) 

 

Used 
coordinate 
system GNSS 
receiver 

Point  Primitive  Geometry.srsName 
 

srsName WGS84 

(Optinal) 
Projection / 
Datum 

GeodeticDatum  AbstractDatum  WGS 84 UTM Zone 32N 

GNSS-date and 
time 
 

PropertyVariable & PropertyValue GpsUtcDate 
GpsUtcTime 

 

Accuracy GNSS PropertyVariable & PropertyValue HDOP 
PDOP 

 

 

 
 

The output of National Marine Electronics Association (NMEA) messages from GNSS receivers is 
WGS84 by default. At certain stages in processes, the lat long in NMEA messages coming from a 
GNNS receiver has to be converted to a Point in a coordinate system with transformation matrices. 
Point is subclass of the classess Primitive and Geometry. Furthermore, the class Geometry has the 
attribute srsName which indicates the coordinate system. 

Sometimes the geodetic coordinate system is projected with a certain datum (e.g. WGS 84 UTM 
Zone 32N). Datum’s are described in GML, as can be seen in Figure 5. An addition of GeodeticDatum 
and ImageDatum in drmAgro is required. 

A GNNS receiver has no rotation in a coordinate system. It is a “point” which receive radio signals 
which are used to determine length to satellites. It might be that the GNNS receiver belongs to a 
sensor system with an additional gyroscope or compass like sensors, but then it will always be 
mounted such that it has no rotation in the vehicle it is mounted on. 
 
A specification of encoders are the Ticks per mm. This requires calibration of a sensor. This requires 
an algorithm with parameters, which in this example can be very simple (Distance = parameter x 
tics). This is processed on the equipment and in most cases will not be relevant for exchange of 
image data. 
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Figure 5 Three Datum's as specified in GML3.2 (GeodeticDatum, EngineeringDatum and ImageDatum). 

5.2.4 Image coordinate systems 

There are several coordinate systems specified for images, and sometimes different expressions are used for 
the same coordinate system. For example, there are multiple formats of bounding box annotations where 
each format uses its specific representation of the bounding box coordinates in the image coordinate system. 
These differ for example between Pascal VOC, COCO, albumentation and YOLO67 .  

We could not identify a standard identifier list of image coordinate systems. Several image coordinate 
systems were found after conducting a query on the internet from existing software such as Wolfram, Open 
eVision, Matlab and Polarmask 68 69 70 71 : 

• Fractional: The origin is the top/left corner of the image and has value 0.0,0.0 . The bottom/right
corner of the image has 1.0,1.0. The coordinate values in the image are the fractional numbers
between 0.0 and 1.0.

• Image or graphics coordinates. The origin is bottom, left corner of the image. It has a real value
starting with 0.0,0.0 on the left bottom corner.

• Integer coordinates indicates each pixel by row number and column number, starting left on top,
with 0,0 (Zero counting)

• Matrix or Index coordinates. indicates each pixel by row number and column number, starting left on
top, with 1,1 (So no zero counting is used following Wolfram). Is identical to Pixel indices.

• Pixel indices indicates each pixel by row number and column number, starting left on top, with 1,1
(So no zero counting is used following MatLab). Is identical to Matrix or Index coordinates.

• Real coordinates references to the image itself and corresponds with the pixel indices. The integer
values correspond with the left top of the pixel. As counting starts with 0,0 the centre of the first
pixel is 0.5,0.5. The boundaries of the image are therefore 0,0 and numCols,numRows.

• Spatial coordinates are positions on a continuous plane. It is a cartesian coordinate system which
can be intrinsic or world coordinate.

o Intrinsic references to the image itself and corresponds with the pixel indices. Be aware
however that the sequence of the indices is reversed! The integer values correspond with
the center of the pixel. The boundaries of the image are therefore 0.5,0.5 and numCols
+0.5, numRows+0.5.

o World coordinate can be any other coordinate system.

67 https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/  
68 https://support.wolfram.com/25330?src=mathematica  
69 https://downloads.euresys.com/PackageFiles/OPENEVISION/22.12.0.1176WIN/375403288/open_evision-release-notes-

22.12.0.1176.pdf  
70 https://www.mathworks.com/help/images/image-coordinate-systems.html 
71 https://www.programmersought.com/article/53473033654/  

https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/
https://support.wolfram.com/25330?src=mathematica
https://downloads.euresys.com/PackageFiles/OPENEVISION/22.12.0.1176WIN/375403288/open_evision-release-notes-22.12.0.1176.pdf
https://downloads.euresys.com/PackageFiles/OPENEVISION/22.12.0.1176WIN/375403288/open_evision-release-notes-22.12.0.1176.pdf
https://www.mathworks.com/help/images/image-coordinate-systems.html
https://www.programmersought.com/article/53473033654/
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• Polar coordinates are represented by the angle and distance of points relative to the center of mass 
of an object, describing a contour of an object in the image72.  
 

When looking at the examples for the COCO dataset format, one sees in some example's integer values, 
indicating either pixel indices and matrix or index coordinates, or integer coordinates (which have zero 
counting). In another example real values are used, indicating intrinsic spatial coordinates or real 
coordinates. COCO does, as far as we could find, not specify which image coordinate system to use.  
 
Within ROS the tf-package takes care of keeping track of multiple coordinate frames within a system73. A 
camera system with its image coordinate system could be part of the tf-tree structure. In case of a camera 
often a second coordinate system is used where the z-axis faces forward, x-axis right and y-axis down. 
However, for outdoor purposes the North-East-Down convention is sometimes used, where the X faces 
North, Y faces East and Z faces down. For geographic locations ROS works standard with a (local) coordinate 
frame where the X-axis faces east and the Y-axis faces (true) north and the Z-axis faces Up. This system is 
called East-North-Up74.  
 
The overview of used Image Coordinate Systems shows that coordinates can have both integer and real 
values. Therefore, it is not required to define a specific image geography object like ImagePolygon, 
ImagePoint or ImageBoundingBox. (This was proposed in an earlier stage when the impression was that 
ImageCoordinates would have only integer values, while OGC defined geometries have real values). In case 
pixel or image coordinate systems are intended, only the whole number fraction of the real should be used. 
 
The proposal is to follow OGC’s structure for the geometries. DrmAgro has its own platform independent 
specification of geometries, but in case of transformation to a platform specific model, these will be replaced 
by the platform specific ones. In case of an XML based platform this is GML, in case of generating java 
interface model, this is based on the GeoTools library. 
OGC defines an ImageCRS as a specific category of engineering coordinate system to indicate which 
coordinate system is used for images. As all geometries in GML (and in ISO19111 and in GeoTools) inherit 
from the Class Geometry, the geometries Envelope and Polygon inherit the attribute srsName, which is the 
reference to the coordinate system used. The attribute srsName is of type anyURI, so an appropriate URI 
must be determined by, for example, AgroConnect. It is proposed to use the expressions Image, Integer, 
Pixel, Real and Spatial as the name for the image coordinate system used. 

5.3 Other relevant class diagrams 

5.3.1 Evaluation data 

During vision-based weed control there are two aspects which determine performance. The first is the quality 
of object detection based on the images including the algorithm and its parameters. With a validation dataset 
a theoretical average performance of the algorithm can be evaluated and expressed in several accuracy 
parameters as described in the class ClassificationValidation under Algorithms. However, when the algorithm 
is used in a practical situation the algorithm performance can be evaluated by monitoring the 
DetectionProbability’s of objects on the image, which is calculated by the algorithm itself.  
 
The second is the successful removal of identified weeds without removal of crop plants (field evaluation). 
This can be controlled by comparing images of the detection camera with images made by a second camera 
behind the actuator. This requires that an algorithm must be able to make the difference between “standing 
plants” and plants which are cut or uprooted and lying on the soil surface. The result is the 
WeedingPerformanceData. WeedingCriteria are used to determine whether the vision-based robot weeding 
operation can be continued or should be stopped. 
 

 
72 https://towardsdatascience.com/object-localization-segmentation-with-polar-coordinates-62be64da0097  
73 http://wiki.ros.org/tf 
74 https://www.ros.org/reps/rep-0103.html 

https://towardsdatascience.com/object-localization-segmentation-with-polar-coordinates-62be64da0097
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1. When the probabilities for correct recognition of weeds as determined by the algorithm for vision-
based weed detection, DetectionProbability, is below a certain critical level during a period it might 
not make sense to continue weed removal based on these input data.  

2. A second criteria is the fraction of weeds which are successfully removed. This WeedRemovalFraction 
wil be a ProcessVariable. It should not be lower than the set criteria. 

3. A third criteria will be the CropPlantRemovalFraction, also to be a member in the identifier list of 
ProcessVariables. This fraction should not be higher than the set criteria.  

4. If the weed robot removes to much crop plants, the algorithm misidentifies the crop as a weed, 
meaning that the algorithm gives the crop plant a higher DetectionProbabilty for the class weed than 
the class crop. An identification for this is to monitor the probabilities for the crop plants as well. If 
they are below a certain critical level during a period is also make no sense to continue weed 
removal.  

WeedRemovalFraction and CropPlantRemovalFraction are ProcessVariables, of which values should not be 
exceeded during an Operation following a particular OperationTechnique. These values are specified by 
WarningCriteria, as shown in the published class diagram EvaluationData 75. 
 
Another specification could be to use PropertyValues of the PropertyVariable’s “Weed density” and “Plant 
density”, which are measured by the camera which is used for weeding detection, and that of a second 
camera which is used for control/validation/evaluation. A difference of more than a certain percentage could 
be used as criteria. The warning criteria must in that case refer to PropertyVariables, which includes 
Cropvariables and PhysicalSoilvariables. For now, it is decided to limit it to ProcessVariables supported by the 
OperationTechnique.  
 
When the WeedingCriteria are met, a WeedingAlarm is send and received at the home base, it will be 
evaluated and when seen as appropriate, a message is sent to the RobotServiceProvider to abort the task. 
Furthermore, the Process “Retraining algorithm from images during weeding” could start by generating a 
dataset with images which has low DetectionProbability’s.  

5.3.2 Ordering services 

5.3.2.1 Operation technique as a robot service 
A robot service for weed disease or pest control is in fact the ability to perform a specific Operation following 
an OperationTechnique as specified in a coding list. This suggest expanding the existing coding lists in 
rmAgro with the technique of weeding itself, but also indicate that it is vision based and performed by an 
autonomous device. A choice must be made whether this is all specified in one flat coding list, or that more 
normalization is required, and multiple coding lists will be needed. RobotServices specify which Operations 
can be performed to realize a CulturalPractise following a specified OperationTechniques, as shown in the 
published class diagram Operations 76.  

5.3.2.2 Robotic task weed control 
For executing the robotic task weed control, a message RobotTaskData must be send to the 
RobotServiceProvider. The published class diagram Task shows how in rmAgro the different classes are 
connected to assemble this message77. The following paragraphs shows the attributes of the message flows 
to request and respond on algorithms. 

5.3.2.3 Request an algorithm 
A request for a specific algorithm is done after a judgement is made on which one to choose78. The 
expression is however a little misleading. An Algorithm is only suited for conditions with the ParameterSet 
which is established after training under comparable conditions. The same algorithm can be used with 
different parameter sets for different conditions under which it is trained and for which it is useful. It is 

 
75 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA23.html    
76 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA37.html  
77 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA41.html  
78 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA3.html  

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA23.html
https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA37.html
https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA41.html
https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA3.html
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therefore that the ParamerSet holds the required information on the conditions and plant species it is valid 
for.  

5.3.2.4 AlgorithmResponse 
The message AlgorithmResponse delivers the Algorithm and the parameter set which is required to apply the 
algorithm for the specified conditions79. In the use case of weed detection this algorithm will be a neural 
network.  

5.3.2.5 AlgorithmsResponse 
In the message AlgorithmsResponse all available Algorithms are send, with all additional data which is 
required to select on which algorithm to use80. The message provides one or more algorithms and for each 
algorithm one or more ParameterFits. The ParameterFit describes for which PlantSpecies the Algorithm is 
suited. 

5.3.3 Licensing of datasets and services 

What is called DataLicenses  are in fact the delivery of Orders. When the attribute IsBlanket is set to TRUE, 
this means that the order allows multiply deliveries which can be at certain intervals of time. Orders can be 
covered by a Contract.  
The delivery of data is seen as a Service as shown in the class diagram DataLicenses 81.  
When developing and improving algorithms a AlgorithmServiceProvider could contact ParticipatingFarms, 
which can be specified using the class diagram LicensingAndOwnership46. Farm is specified as a subclass of 
Organisation, which on its turn is a subclass of Party. The specification that a Farm is participating with 
another Organisation must be seen as a role of an Organisation, which can be Partner. The activity in which 
it is a Partner can be specified by a string.  

5.4 Real-world example of a dataset with annotated images 

The real-world example is one image given as example as presented in Figure 17. It shows in the text file 
that six objects of interest are detected, which in the text file are coded as 1 or 0. Most obviously stands 1 
for (volunteer) potato and 0 for sugar beet. They should be coded with their botanical name as “Solanum 
Tuberosum” and “Beta Vulgaris” respectively. 
Several characteristics of the image are not shown in this example, so they are in the XML example file filled 
with data which will, not correspond with the real data of the image. 

The figures on the bounding boxes suggest that a fractional image coordinate system is used and that the 
bounding box definition of COCO is used, since it indicates one coordinate point and the width and height. 
Though it must be remarked that the 6th annotation would show a lower corner which is larger than 1.0.  

79 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA5.html  
80 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA7.html  
81 https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA21.html 

Figure 6 Real-world example of annotated image. 

https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA5.html
https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA7.html
https://www.agroconnect.nl/Portals/10/EnterpriseArchitect/rmAgro_SubModelRobotImages/EARoot/EA21.html
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The example as XML file is shown in AnnotatedImages.xml, as part of the .zip file which is elaborated in the 
next section. 

5.5 Steps to construct the XML file 

In this section the steps are presented that are performed to construct the example XML and XSD files. 
These files are compressed and published in as a .zip file 82.  

1. With the schema generator of Enterprise Architect, a sub model for RobotVision is generated from
the drmAgro domain model for agriculture. This is done by selecting all classes, attributes of those
classes, datatypes, and enumerations, which are required as data in the messages that are indicated
in the BPMN’s and specified in Chapter 4.

2. From the sub-model for Robot Vision, a transformation is made towards an XML model as described
in paragraph 6.1.1 of rmAgroDocumentation.docx34.

3. All classes and datatypes which correspond with GML entities or those of the CoreComponents from
UNCEFACT are moved to a GML or UNCEFACT sub-package.

4. From the drmAgro specific XML model a RobotVision schema is generated, which imports the original
schemas for GML and UNCEFACT respectively 83 84.

5. The example XML file is realized by using the RobotVision.xsd as the schema constraining the XML
document and DataSet as the root entity. (The disadvantage of using the xsd of the complete sub
model RobotVision, is that an XML document composer will include all hierarchical related elements
of the root element. For a specific message not all depending on elements are relevant, so the not
relevant elements must be manually deleted in the composed xml document. For this reason, it
might be valuable to evaluate the EA (Enterprise Architect) Message Composer from Bellekens85.

82 https://www.agroconnect.nl/Portals/10/documenten/RobotImages/rmAgro_RobotImages_XMLandXSDs.zip 
83 http://www.opengis.net/gml/3.2  
84 https://unece.org/trade/uncefact/xml-schemas  
85 https://bellekens.com/product/bellekens-enterprise-architect-toolpack/  

PropertyVariables and Parameters 

In drmAgro a clear distinction is made between PropertyVariables and Parameters.  
Variable is defined by the Concise Oxford Dictionary as “that can be varied or adapted”, while 
Parameter is defined as “quantity constant in case considered but varying in different cases”. 
Consequently, the expression PropertyVariable is used for all characteristics which vary, like for example 
soil moisture content, ambient temperature, nitrogen content, working depth, etc. 
Parameters are the constants which are used in algorithms or in calibration tables and are obtained after 
parameter fitting or calibration. 
An example is the gas law: P x V = R x T. In this case P, V and T are the PropertyValues of 
PropertyVariables, while T is the Parameter value of the Parameter. This is called the “gas constant”. 
This example shows also the second part of the Oxford definition, “… varying in different cases”. The gas 
constant changes when the composition of the air changes. 
In agriculture there can be some situations where the distinction between variable and parameter is not 
always that clear. An example is the saturated hydraulic conductivity. In soil moisture simulation models 
this could be seen as a constant, sometimes even obtained by parameter fitting instead of measurement 
in the field. On the other hand, the values can vary over locations within a field, and over time by tillage 
activities and soil compaction. Then it must be seen as a variable. 

https://www.agroconnect.nl/Portals/10/documenten/RobotImages/rmAgro_RobotImages_XMLandXSDs.zip
http://www.opengis.net/gml/3.2
https://unece.org/trade/uncefact/xml-schemas
https://bellekens.com/product/bellekens-enterprise-architect-toolpack/
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6 Discussion & Recommendations 

An initial objective of the study was to identify gaps and provide a basis in standardization for data and 
algorithms concerning the domain of interest, namely image data derived from agricultural robots. Several 
standards were analysed, and the most important finding was that each standard covered part of the domain 
of interest. It is interesting to note that in most of the preferred standards for algorithms, such as ONNX and 
ROS2, the metadata is insufficiently specified. Therefore, in this report, we presented a class model as a 
basis for data sharing in the domain of interest based on the process models. It is expected that the class 
model will foster data sharing that support advanced analysis and facilitate a sustainable level playing field 
for existing and new actors. 
 
One unexpected finding was that characteristics of standards are difficult to map with functional 
requirements. It is debatable which parts of standards are relevant. For example, standards that contain 
data dictionaries, such as the ISOXML DDI’s, might not be as flexible as a standards user want to further 
develop the metadata that that needs to be exchanged. This finding, while preliminary, suggests that 
flexibility and semantic specifications could be an answer. 
 
The relevance of abiding the GDPR compliance is clearly supported by the current findings. Each EU member 
state translates the GDPR regulations into a Code of Conduct for agricultural data which should give a fair 
level playing field for the farmer, among other things. This is ensured by requiring third parties to consider 
data sovereignty (consent should be given by data owners), data interoperability (apply standards for 
software services) and data portability (users are able to easily switch from provider). There is, therefore, a 
definite need for considering these principles when designing new data infrastructures. 
 
Another important finding was that governance conditions needs to be developed further. Especially for the 
use of identifiers it is important that the roles and responsibilities are clear for all the value chain actors. This 
would facilitate image data sharing on an inter- and intra-organisational level. These results provide further 
support for the hypothesis that diverse types of databases, such as triple stores, and different data sharing 
concepts, such as federated learning, could provide a solution for governance and the use of identifiers when 
exchanging data.  
For example, data sharing platforms such as JoinData process administrative data while it remains unclear 
what the exact governance guidelines should be for the proposed FAIRDataEcosystem platform (Booij, et al. 
2022). Furthermore, there are ongoing initiatives and projects that address concepts like x-as-a-service and 
a data economy including its characteristics for an agricultural dataspace 86 87 88. A further study with more 
focus on data governance aspects, such as roles and responsibilities, within the broader ecosystem for image 
data is therefore suggested.  
 
This study aimed to assess the importance of semantic interoperability in image data and algorithms derived 
from agricultural robots. It is interesting to note that in all the standards that are analyzed in this study, 
different methods were used by the creators of these standards. It is questionable whether the established 
standardization methods with standards like ISOBUS, provide support for sharing image data. There is a 
growing body of evidence that indicates the dynamics of parties using API’s, such as the MIAPPE initiative, 
and ontologies with a standardization method which is more agile. There are different syntaxes, such as XML, 
JSON, etc., while it is important to understand the practical specifications, such as binary, of image data. 
Additionally, it is important to clarify how this data is exchanged and referred to in messages and its 
relationship with protocols such as S2 buckets and MQTT. For example, response messages following request 
could be covered by HTTP messages. Further studies, which consider these implications, will be undertaken. 
 

 
86 https://www.atlas-h2020.eu/  
87 https://agridataspace-csa.eu/  
88 https://data4food2030.eu/  

https://www.atlas-h2020.eu/
https://agridataspace-csa.eu/
https://data4food2030.eu/
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The results of this study indicate a first attempt of specification for the domain of interest, while a note of 
caution is due here since the completeness of the domain model is debatable. Many reference data and code 
lists are reused, and many things exist in rmAgro, while these findings raise intriguing questions regarding 
the nature and extent of the relation with other standards from an international perspective (Cantera 2019). 
Despite an extensive elaboration of relevant standards in chapter 2, these questions remain unanswered at 
present. Currently, AgroConnect publishes code lists for the Dutch sector, while more standardized code lists 
are preferred89. Although organizations such as EPPO do publish such lists, there are implications with regard 
to denormalization90. An example is the specification of winter and summer wheat, which indicates another 
crop meaning than season plants.  
An example for the completeness of the model as mentioned is the class WeatherConditions that describes 
the conditions of the weather at a certain time or time interval. For the conditions during capturing of images 
the conditions on the location of the camera are relevant. In theory it is possible to instrument the robot with 
a weather station, but in practise the conditions of a nearby weather station will be used, or an interpolation 
will be made from several weather stations. In all cases the weather conditions will be measured by the class 
Sensor as component of the class SensorSystem. A sensor has a location in the coordinate system of the 
class SensorSystem. However, in some cases the details of the individual sensors are not specified. The class 
WeatherStation is a clear example, where the location of the complete system is provided. Measured values 
are seen as the result of the complete system and these values are measured during a time or time interval. 
To obtain estimates of the weather near the robot at a particular time, from different weather stations, a new 
dataset must be generated by an algorithm which interpolates the data from the different weather stations in 
respect of location and time. Further research should be undertaken to investigate ways to attach weather 
conditions to individual images. 
 
Further, an example of considering the reuse of existing standards in the proposed class model is the 
extensive description of Camera in the SensorML, for remote sensing purposes. One of the questions is how 
much detailed additional information is needed about the correction of image distortion. For example, D, K, R 
and P should be attributed to a separate class Lens. The attributes Camera in SensorML do show lack of 
normalization. It can thus be suggested that we might model Lens, Platform, Timing of images as separate 
classes.  
In this report we assumed that intrinsic and extrinsic parameters of the camera and lens remain the same 
during an operation. Therefore, these specifications could be attached once to a dataset of images. However, 
there are also many cases where the intrinsic and extrinsic parameters of the camera and lens vary during 
data collection. For example, when the camera and lens are attached to a spraying boom and the user of the 
sprayer decides to lower or raise the boom, then the extrinsic parameters of the camera are changed. Or if 
the camera has an autofocus option which varies the focus point of the lens, then the intrinsic parameters of 
the lens vary. In those cases, the intrinsic and extrinsic parameters should be attached to each individual 
image.  
 
Another important finding was that interoperable algorithms and data for images could lack of certain quality 
characteristics. For example, metadata concerning used equipment, field conditions and environmental 
conditions needs to be made available. Although the structure of the message is similar, the content can 
differ since the algorithm could be trained with multiple datasets that are collected under different conditions.  
By adding these metadata, datasets will be retrievable for participants of the ecosystem. This allows 
algorithm developers to quickly assess datasets on added value for improving algorithms or developing new 
ones.  
 
The results of this study do not explain the specific information need that might be there for algorithm 
developers in other subdomains of agriculture. Further work is required to establish the viability of the 
proposed minimum metadata with the determination of the information need. It can thus be suggested to 
conduct, for example, an analysis based on a survey that is set out for researchers in the domains of 
greenhouse horticulture and remote sensing.  

 
89 https://www.agroconnect.nl/en-us/aboutagroconnect.aspx  
90 https://gd.eppo.int/  

https://www.agroconnect.nl/en-us/aboutagroconnect.aspx
https://gd.eppo.int/
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For this study early findings were discussed with a group representing a broad expertise of developers and 
users of image data, algorithms, and innovative platforms. From the discussion it was found that the 
development of new algorithms could be speed up if algorithm providers have an overview and access of 
available resources and repositories. It is important to note that the pictures are of high quality, trusted and 
well labelled (well tagged) with the most important characteristics (type of camera used, lightning systems 
used, angle, etc.). One issue algorithm providers encounter is that datasets acquired by different camera 
systems are not easy interoperable when training algorithms. This shows that it is important to include 
metadata about the type of camera and data-acquisition and field- and light conditions in datasets, so 
developers can interpret if a dataset is useful or not to train their algorithm. In the paragraph   

Used equipment the focus is on the specifications of the camera (how are images taken). However, 
when exchanging algorithms or image datasets it would be more interesting to point the unique selling points 
of the dataset with the focus on how images are perceived. Examples are the ground resolution in mm/pixel, 
accuracy of positioning (centimetre level, millimetre level), spectral range (RGB, Multispec, Hyperspec, etc.), 
used bands and bandwidth per band and output size (number of megapixels). We will include this in the 
model in a follow-up of the study.  

Furthermore robot service providers emphasize the importance of monitoring the quality of executed jobs 
and flag a warning when the system detects anomalies. The client or service provider should also be able to 
give feedback about the quality. Also, the robot service provider needs information about regulations, 
weather and soil conditions and take that into account when controlling the robot. We tried to incorporate 
most of these considerations in the BPMN models and the class diagrams. However, we did not incorporate 
any data sources about local regulations of fields regarding the use of robots. This is still something which 
could be explored in further research.  

In future investigations, it might be possible to elaborate on the process models and domain models. Due to 
limited time within this study, the following additions are proposed.  
As part of the ecosystem, the process that describes the evaluation of weed control might be of importance. 
It is assumed that a farmer will in general evaluate the result when weed is controlled by a robot with a 
vision system that uses algorithms and actuators. 
As part of the class models, the message that contains the available robot services that can be requested 
might need a coding list. These services could consist of available workers and equipment. The weeding 
robot should be covered in a coding list that contain the techniques of weeding itself, such as vision based 
and autonomous features. It is required to determine whether this list should be flat or normalised with 
multiple coding list. Furthermore, some addition in the message which specifies the availability is required. 
For camera position and orientation, actors in the ecosystem should determine the required additional 
information on a camera. The ISO19130 contains an extensive model for the class sensor dealing this aspect. 
However, the mapping and modelling of this standard is expected to be intensive and complex. For example, 
the class DetectionArray is separately modelled which could imply as the camera in other models. Also, the 
classes ImageRaster and ImageVector could be described in more detail that has the TSML standard as a 
source (Soares, et al. 2011). For weeding criteria and weeding evaluation data a specification could be to use 
the attributes PropertyValues  and  PropertyVariable’s as “Weed density” and “Plant density,” which could be 
calculated from the image data measured from the camera used for detection and from the camera used for 
evaluation. The difference between weed or plant density before and after the weeding action could be used 
for evaluation. A difference of more than a certain percentage could be used as criteria. 
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7 Conclusions 

The current study's purpose was to determine minimum interoperability mechanisms concerning 
standardization of image data and deep learning algorithms for vision-based applications. For this study, the 
focus was on a robot equipped with a spot sprayer which takes images of the crop, recognizes individual 
weed plants, and then sprays them.  

We described four different business processes in this domain: 
1. The development and improvement of algorithms;
2. Ordering Robot weed control. The selection of an appropriate algorithm for vision-based applications

and ordering an operation.
3. Robot Weed Control Execution. The use of an algorithm during the execution of field operations;
4. Retrain an Algorithm from Images made during Weeding.

Following these processes, we identified relevant messages and data flows and described the preferred 
metadata in the exchange of image data and algorithms. Considering the definitions from the normative 
reference model Agro (rmAgro) and preferred communication protocols like ROS and ISOBUS this resulted in 
a semantic sub model in Unified Modelling Language containing multiple class diagrams.  

The processes, messages, dataflows, and classes that are identified and modelled in this study indicate a first 
attempt of specification and could facilitate data sharing between actors in the proposed ecosystem. 
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Annex 1 Mapping ONNX based specification 
of neural network models on 
drmAgro 

This appendix copies parts of the specification by ONNX and proposes a mapping on drmAgro 91. 
Where italics are used, it is additional text from the author(s) of this appendix. Cursive text indicates some 
issues or question that were found during the analysis and needs follow-up actions. The analyses of the 
ONNX specification is not complete yet and requires at least a thorough review. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
91 https://github.com/onnx/onnx/blob/main/docs/IR.md  

https://github.com/onnx/onnx/blob/main/docs/IR.md
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Model92 

Name Type Description drmAgro 

ir_version int64 The ONNX version assumed by the 
model. 

Not relevant for drmAgro 

opset_import OperatorSetId A collection of operator set 
identifiers made available to the 
model. An implementation must 
support all operators in the set or 
reject the model. 

OperatorSet 

producer_name string The name of the tool used to 
generate the model. 

Not relevant 

producer_version string The version of the generating tool. Not relevant 

domain string A reverse-DNS name to indicate the 
model namespace or domain, for 
example, 'org.onnx' 

Algorithm.AlgorithmIdentifier 

model_version int64 The version of the model itself, 
encoded in an integer. 

Algorithm.Version 

doc_string string Human-readable documentation for 
this model. Markdown is allowed. 

Algorithm.Description 

graph Graph The parameterized graph that is 
evaluated to execute the model. 

Algorithm  Graph 

metadata_props map<string,string> Named metadata values; keys 
should be distinct. 

 

training_info TrainingInfoProto[] An optional extension that contains 
information for training. 

Nnn.TrainingInformation 

functions FunctionProto[] An optional list of functions local to 
the model. 

Function [0..*] 

model_author string A comma-separated list of names. [0..1] 

model_license string Name or URL. Algorithm  [0..1] License  

 

OperatorSet93 

Name Type Description drmAgro 

magic string The value ‘ONNXOPSET’ Not relevant 

ir_version int32 The ONNX version corresponding to 
the operators. 

Not relevant 

ir_version_prerelease string The prerelease component of the 
SemVer of the IR. 

 

ir_build_metadata string The build metadata of this version 
of the operator set. 

 

domain string The domain of the operator set. 
Must be unique among all sets. 

OperatorSet.OperatorSetIdentifier 

opset_version int64 The version of the operator set. OpersatorSet.Version 

doc_string string Human-readable documentation for 
this operator set. Markdown is 
allowed. 

OpersatorSet.Description 

operator Operator[] The operators contained in this 
operator set. 

Operator [1..*] 

 
  

 
92 https://github.com/onnx/onnx/blob/main/docs/IR.md#models  
93 https://github.com/onnx/onnx/blob/main/docs/IR.md#operator-sets  

https://github.com/onnx/onnx/blob/main/docs/IR.md#models
https://github.com/onnx/onnx/blob/main/docs/IR.md#operator-sets
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Operators94 

Name Type Description drmAgro 

op_type string The name of the operator (case 
sensitive), as used in graph nodes. 
MUST be unique within the operator 
set’s domain. 

 

since_version int64 The version of the operator set 
when this operator was introduced. 

 

status OperatorStatus One of ‘EXPERIMENTAL’ or ‘STABLE.’  

doc_string string A human-readable documentation 
string for this operator. Markdown is 
allowed. 

 

 

Functions95 

Name  Type Description drmAgro 

name  string The name of the function Function.FunctionDesignator 

domain  string The domain to which this function 
belongs 

 

doc_string  string Human-readable documentation 
for this function. Markdown is 
allowed. 

Function.FunctionDescription 

attribute  string[] The attribute parameters of the 
function 

Function  Attribute 

input  string[] The input parameters of the 
function 

?? Function  PropertyVariable 

output  string[] The output parameters of the 
function. 

?? Function  PropertyVariable 

node  Node[] A list of nodes, forming a partially 
ordered computation graph. It 
must be in topological order. 

Function  Node 

opset_import  OperatorSetId A collection of operator set 
identifiers used by the function 
implementation. 

Function  OperatorSet  

 
  

 
94 https://github.com/onnx/onnx/blob/main/docs/IR.md#operators  
95 https://github.com/onnx/onnx/blob/main/docs/IR.md#operators  

https://github.com/onnx/onnx/blob/main/docs/IR.md#operators
https://github.com/onnx/onnx/blob/main/docs/IR.md#operators
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Graphs96 

Name Type Description drmAgro 
name string An optional name of the node, used for 

diagnostic purposes only. 
Some attributes of Graph are defined as 
attributes of other classes. 
Graph.GraphDesignator 

input string[] Names of the values used by the node to 
propagate input values to the node 
operator. It must refer to either a graph 
input, a graph initializer or a node output. 

Graph  <input> PropertyVariable 
Or 
Graph  PropertyValue (in case of 
initialization) 
 

output string[] Names of the outputs used by the node to 
capture data from the operator invoked 
by the node. It either introduces a value 
in the graph or refers to a graph output. 

Graph  <output> PropertyVariable 
 

op_type string The symbolic identifier of the operator to 
invoke. 

Graph  Operator 

domain string The domain of the operator set that 
contains the operator named by the 
op_type. 

Graph  Operator.OperatorIdentifier 

attribute Attribute[] Named attributes, another form of 
operator parameterization, used for 
constant values rather than propagated 
values. 

Graph  Parameter 
 

doc_string string Human-readable documentation for this 
value. Markdown is allowed. 

Graph.Description 

 

Names Within a Graph 97 

Namespace Description drmAgro 
Attribute The names of attributes of an operator. Unique for each 

operator. 
Operator  [1..*] Attribute 

 

Value The names of values – node inputs & outputs, tensor values (if 
named), graph inputs, outputs.  

Text is confusing; “Value” is used for input and 
output, while earlier in the document 
“Parameter” is used. 

Node The names of graph nodes.  
Graph The names of graphs within a domain, unique within the model 

domain. 
 

Operator The names of operators within a domain.  
Shape The names of tensor shape variables – scoped to the value 

information records of a graph, which is where shape variables 
occur. 

 

 
  

 
96 https://github.com/onnx/onnx/blob/main/docs/IR.md#graphs  
97 https://github.com/onnx/onnx/blob/main/docs/IR.md#names-within-a-graph  

https://github.com/onnx/onnx/blob/main/docs/IR.md#graphs
https://github.com/onnx/onnx/blob/main/docs/IR.md#names-within-a-graph
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Nodes 98 

Name Type Description drmAgro 

name string An optional name of the node, used for 
diagnostic purposes only. 

Node.NodeDesignator 

input string[] Names of the values used by the node to 
propagate input values to the node 
operator. It must refer to either a graph 
input, a graph initializer or a node output. 

Node  <input> PropertyVariable 
 

output string[] Names of the outputs used by the node to 
capture data from the operator invoked by 
the node. It either introduces a value in 
the graph or refers to a graph output. 

Node  <output> 
PropertyVariable 
 

op_type string The symbolic identifier of the operator to 
invoke. 

Node  Operator 

domain string The domain of the operator set that 
contains the operator named by the 
op_type. 

OperatorSet.Identifier  [1..*] 
Operator. 

attribute Attribute[] Named attributes, another form of 
operator parameterization, used for 
constant values rather than propagated 
values. 

Node  [1..*] Parameter 

doc_string string Human-readable documentation for this 
value. Markdown is allowed. 

Node.Description 

 

Attributes 99 

Name Type Description drmAgro 
name string An optional name of the node, used for 

diagnostic purposes only. 
Node.NodeDesignator 

input string[] Names of the values used by the node to 
propagate input values to the node operator. 
It must refer to either a graph input, a graph 
initializer or a node output. 

Node  <input> PropertyVariable 
 

name String The name of the attribute. Must be unique 
among attributes, inputs, and outputs for any 
given operator and node. 

Parameter.Designator 

doc_string String Human-readable documentation for this value. 
Markdown is allowed. 

Parameter.Description 

type AttributeType The type of the attribute, determining which 
of the remaining fields is used to hold the 
value of the attribute. 

Parameter.ValueTypeCode 

f Float A 32-bit floating-point value. ValueTypeCodeList.Real 
i int64 A 64-bit integer value. ValueTypeCodeList.Integer 
s byte[] UTF-8 string. ValueTypeCodeList.String 
t Tensor A tensor value. ValueTypeCodeList.Tensor 
g Graph A graph. ValueTypeCodeList.Graph 
floats float[] A list of 32-bit floating-point values. ValueTypeCodeList.Real 
ints int64[] A list of 64-bit integer values. ValueTypeCodeList.Integer 
strings byte[][] A list of UTF-8 strings. ValueTypeCodeList.String 
tensors Tensor[] A list of tensor values. ValueTypeCodeList.Tensor 
graphs Graph[] A list of graphs. ValueTypeCodeList.Graph 
ref_attr_name String The name of a parent function's attribute.  

 

 
98 https://github.com/onnx/onnx/blob/main/docs/IR.md#nodes  
99 https://github.com/onnx/onnx/blob/main/docs/IR.md#attributes  

https://github.com/onnx/onnx/blob/main/docs/IR.md#nodes
https://github.com/onnx/onnx/blob/main/docs/IR.md#attributes
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Annex 2  Table of standards for data and 
algorithms 

Table 16  Standards for data and algorithms. 

Standard name Short description Relevance Source 
ADAPT Agricultural Data Application Programming 

Toolkit (ADAPT) aims to enable interoperability 
between software anad hardware applications 
and eliminate obstacles to use of precision 
agriculture data. 

The standard includes a data model that is largely 
based on ISOBUS standard.  

https://adaptfram
ework.org/  

Agricultural 
Information Model 

The AIM is an ontology that reuses many 
agricultural standards and ontologies to ensure 
semantic interoperability. 
The standards that are considered are NGSI-LD, 
Saref4Agri, ADAPT, FOODIE, AGOVOC, INSPIRE. 
 

Although the ontology is still in development and 
relatively new, it is a promising development for 
interoperability between systems in the food and 
agricultural domain.  
 

http://agroportal.l
irmm.fr/ontologie
s/DEMETER-
AIM/?p=summary  

AGROVOC A long-term initiative of the FAO as a valuable 
tool and database for the classification of data 
that facilitate reuse and interoperability. 

The concepts and terms in AGROVOC could 
contain relevant concepts and terms that could be 
reused for the case of this study.  

https://www.fao.o
rg/agrovoc/about  
 

AgroRDF A RDF based publication of the AgroXML. Assumably, increased semantic interoperability 
compared to AgroXML. 

http://data.igreen
-
services.com/agro
rdf  

AgroXML A standardized language, based on XML, for data 
sharing in agriculture between farm 
management information systems and other 
value chain actors. 

Although the language seems to have potential, it 
is outdated and not easily findable and accessible.  

https://link.spring
er.com/chapter/1
0.1007/978-0-
387-77745-0_45  
 

COCO The COCO dataset is developed with the aim to 
advance the state-of-the-art in object 
recognition broadening the context of object 
recognition and the understanding of it. 

Since object recognition is one of the key 
functionalities of an agricultural robot that deals 
with weed management, the COCO standard is 
considered as an important existing initiative.  

https://arxiv.org/
abs/1405.0312  

E-Crop UNCEFACT based standard for specifying plant 
products for the scope of farm management 
systems. The standard should support a wide 
range of actors in the food supply chain, such as 
grower, advisor, contractor, etc.  

While a broad range of use cases are covered in 
this standard, the adoption of the standard is 
seemingly high. At least the Dutch paying agency 
(RVO) is one of the key-users of the standard. 
The standard uses many normative specifications 
of the rmAgro.  

https://www.wur.
nl/upload_mm/6/f
/9/0e55dbbc-
4874-4e6c-9399-
cfee01a1c27a_Pre
sentatie%20Webi
nar%20FarmDigit
al%20Frans%20v
an%20Diepen.pdf  

FOAF Friend of a Friend (FOAF) is a machine readable 
ontology to describe persons, their activities and 
their relationships to other people and objects. 

FOAF describes an element Image. Though it is in 
FOAF only intended for images representing a 
Person, as Person is the central element in FOAF. 

http://xmlns.com/
foaf/0.1/  

FOODIE Farm-Oriented Open Data in Europe (FOODIE) 
was a co-funded research project within the 
Competitiveness and Innovation Framework 
Programme (CIP) in 2017. The main purpose is 
to facilitate the use and promotion of open data 
for agricultural applications. The project  aimed 
to enable the (re)use of open data and provide 
added value to stakeholders in the agricultural 
domain100.  

Reuse of data is one of the main pillars of FAIR. 
Therefore, it is assumed that this project 
contributed and is relevant to some extent to 
interoperability developments of images data.  

https://www.rese
archgate.net/profi
le/Karel-
Charvat/publicatio
n/305851288_FO
ODIE_DATA_MOD
ELS_FOR_PRECIS
ION_AGRICULTUR
E/links/57a3af9d0
8ae3f4529247b39
/FOODIE-DATA-
MODELS-FOR-
PRECISION-
AGRICULTURE.pdf  

 
100 https://ec.europa.eu/eip/agriculture/en/find-connect/projects/foodie-farm-oriented-open-data-europe  
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https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://www.wur.nl/upload_mm/6/f/9/0e55dbbc-4874-4e6c-9399-cfee01a1c27a_Presentatie%20Webinar%20FarmDigital%20Frans%20van%20Diepen.pdf
https://www.wur.nl/upload_mm/6/f/9/0e55dbbc-4874-4e6c-9399-cfee01a1c27a_Presentatie%20Webinar%20FarmDigital%20Frans%20van%20Diepen.pdf
https://www.wur.nl/upload_mm/6/f/9/0e55dbbc-4874-4e6c-9399-cfee01a1c27a_Presentatie%20Webinar%20FarmDigital%20Frans%20van%20Diepen.pdf
https://www.wur.nl/upload_mm/6/f/9/0e55dbbc-4874-4e6c-9399-cfee01a1c27a_Presentatie%20Webinar%20FarmDigital%20Frans%20van%20Diepen.pdf
https://www.wur.nl/upload_mm/6/f/9/0e55dbbc-4874-4e6c-9399-cfee01a1c27a_Presentatie%20Webinar%20FarmDigital%20Frans%20van%20Diepen.pdf
https://www.wur.nl/upload_mm/6/f/9/0e55dbbc-4874-4e6c-9399-cfee01a1c27a_Presentatie%20Webinar%20FarmDigital%20Frans%20van%20Diepen.pdf
https://www.wur.nl/upload_mm/6/f/9/0e55dbbc-4874-4e6c-9399-cfee01a1c27a_Presentatie%20Webinar%20FarmDigital%20Frans%20van%20Diepen.pdf
https://www.wur.nl/upload_mm/6/f/9/0e55dbbc-4874-4e6c-9399-cfee01a1c27a_Presentatie%20Webinar%20FarmDigital%20Frans%20van%20Diepen.pdf
https://www.wur.nl/upload_mm/6/f/9/0e55dbbc-4874-4e6c-9399-cfee01a1c27a_Presentatie%20Webinar%20FarmDigital%20Frans%20van%20Diepen.pdf
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://www.researchgate.net/profile/Karel-Charvat/publication/305851288_FOODIE_DATA_MODELS_FOR_PRECISION_AGRICULTURE/links/57a3af9d08ae3f4529247b39/FOODIE-DATA-MODELS-FOR-PRECISION-AGRICULTURE.pdf
https://ec.europa.eu/eip/agriculture/en/find-connect/projects/foodie-farm-oriented-open-data-europe


 

Report WPR-OT-1019 | 62 
 

FoodOn The FoodOn ontology can be used by both 
computers and people as a controlled 
vocabulary. It can be used to name all parts of 
animals, plants, and fungi, as well as derived 
food products and the processes used to make 
them. 

While reusing interoperable technologies to model 
the food domain, FoodOn is well-known especially 
academia in Canada and is part of the Open 
Biological and Biomedical Ontology (OBO) 
Foundry. 

https://foodon.or
g/  

GS1 EPCIS The EPCIS standard as published by GS1 aims to 
enable disparate applications to create and share 
visibility event data, both inter-and intra-
organizational. 

Event-based data modelling is increasingly import 
for the agricultural domain. Especially different 
common operations, such as harvesting, contains 
different events that are more suitable to capture 
with a standard such as EPCIS.  

https://ref.gs1.or
g/standards/epcis
/  

Inspire This encoding of the INSPIRE metadata in this 
technical specification is based on the ISO 
Standards ISO 19115, ISO 19119 and ISO 
19139. See paragraph 2.3.2 for more 
information. 
 

Inspire is relevant as it describes the use of meta 
data to facilitate an infrastructure for spatial 
information.  
 

https://inspire.ec.
europa.eu/  

ISO Standards by ISO/IEC JTC 1/SC 42 Artificial 
intelligence  
Agricultural machinery and tractors — Safety of 
highly automated agricultural machines — 
Principles for design 
Artificial intelligence — Data quality for analytics 
and machine learning (ML) — Part 1: Overview, 
terminology, and examples 
Information technology — Artificial intelligence 
— Assessment of machine learning classification 
performance 
Information technology — Big data reference 
architecture — Part 3: Reference architecture 
ISO19130 Geographic Information 

These ISO standards were found as relevant 
besides the standards that are elaborated in 
paragraph 2.3. The ISO standards on AI and 
standards on automated agricultural machines are 
assumed to be ahead in development with regard 
to the common (mid-size and small size) 
organisations in practice.  

https://www.iso.o
rg/committee/679
4475/x/catalogue
/p/1/u/1/w/0/d/0  
 
https://www.iso.o
rg/standard/6265
9.html 
 
https://www.iso.o
rg/standard/8108
8.html?browse=tc 
 
https://www.iso.o
rg/standard/7979
9.html?browse=tc 
 
https://www.iso.o
rg/standard/7127
7.html?browse=tc 
 
https://committee
.iso.org/sites/tc21
1/home/projects/
projects---
complete-list/iso-
19130-1.html  
 

ISO 11783 
(ISOBUS) 

An official standard for data exchange between 
farm machinery and farm Management 
Information Systems. This standard is supported 
by all large farm machinery manufacturers. 

Highly relevant as farm robots can be considered 
as farm machinery. The standard covers 
information on the machinery itself, the use of 
those machinery, the specifications on how to 
execute the field work and eventual sensor 
observations made during fieldwork. 
 

ISO 
 
https://www.isob
us.net/isobus/  

Mozilla WebThings 
API  

WebThings is an open  platform that makes the 
user able to monitor and control devices over 
the web.  
 

The API is an open source implementation of the 
W3C’s Web of Things standard.  

https://webthings
.io/docs/  

NGSI-LD The Smart Data Models, published and 
maintained by the FiWare Foundataion, is the 
most well-known data models that reuses NGSI-
LD in the food and agricultural domain.  

As NGSI-LD is a standard which claims to use 
generic ontologies, it is worthwhile to investigate 
how it covers the requirements of the robot 
images business processes. Demeter AIM uses 
NGSI-LD. 

https://github.co
m/smart-data-
models/SmartAgri
food  

OGC Observations 
and measurements 

An XML implementation of the ISO Observation 
and Measurements conceptual model.  

The schema for Sampling Features is included 
which is essential when using the OGC Sensor 
Observation Service (SOS) Interface Standard. 

https://www.ogc.
org/standards/om 

OGC SensorThings 
API 

The API provides two main functionalities to 
make the user able to interconnect in an open, 
geospatial-enables and unified way. These 
functionalities are Sensing and Tasking.  

Since robotisation concerns mainly sensors and 
actuators. The OGC SensorThings API covers both 
of the essential elements for context of this study. 

https://www.ogc.
org/standards/sen
sorthings  

https://foodon.org/
https://foodon.org/
https://ref.gs1.org/standards/epcis/
https://ref.gs1.org/standards/epcis/
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https://www.iso.org/standard/62659.html
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https://www.iso.org/standard/81088.html?browse=tc
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https://www.iso.org/standard/79799.html?browse=tc
https://www.iso.org/standard/79799.html?browse=tc
https://www.iso.org/standard/79799.html?browse=tc
https://www.iso.org/standard/71277.html?browse=tc
https://www.iso.org/standard/71277.html?browse=tc
https://www.iso.org/standard/71277.html?browse=tc
https://committee.iso.org/sites/tc211/home/projects/projects---complete-list/iso-19130-1.html
https://committee.iso.org/sites/tc211/home/projects/projects---complete-list/iso-19130-1.html
https://committee.iso.org/sites/tc211/home/projects/projects---complete-list/iso-19130-1.html
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ONNX As described in Chapter 2.2,  the ONNX standard 
aims to enable an ecosystem that facilitates 
interoperability between AI models.  

A promising and community-based standard that 
is supported with partners that represent big tech 
organisations, such as Alibaba, AMD, Baidu, HP, 
IBM, Microsoft, Oracle, Siemens, Sony, etc.  

https://onnx.ai/ab
out.html  

RDF Resource Description Framework (RDF) is one 
the most common standard models for data 
interchange on the Web.  

As one of the generic schema’s, RDF has features 
that facilitate data integration and flexible schema 
development. Therefore, it could be one of the 
core component of the FAIRDataEcosystem. 
Although the RDF might be invaluable for 
describing images, an example of the the 
ImageDescription given in Source column. 

https://www.w3.o
rg/RDF/  
 
https://www.w3.o
rg/wiki/ImageDes
criptionRdfExampl
es  

rmAgro Reference Model Agro, covers a wide range of 
the agricultural domain.  

rmAgro will contain all required data for the 
business processes around robot images. Mapping 
to (parts of) other relevant standards will be 
shown. 

https://rmagro.or
g/  

Saref4Agri With the extension of SAREF, the SAREF4AGRI is 
an ontology that is developed with a list of use 
cases, standards and requirements for the food 
and agricultural domain. The standard is 
published by ETSI in the TS 103 410-6 and more 
description is is provided in the TR 103 511. 

The cross domain interoperability, namely the 
food and agricultural  domain and IoT domain, 
makes the SAREF4AGRI relevant.  

https://mariapove
da.github.io/saref
-
ext/OnToology/SA
REF4AGRI/ontolog
y/saref4agri.ttl/do
cumentation/inde
x-en.html  

Semantic Sensory 
Network Ontology 

An ontology published by the OGC as an W3C 
recommendation. The model describes sensors 
and their observation, the involved procedures, 
the studied feature of interest, the samples to do 
so, and the observed properties as well as 
actuators.  

Since robotisation concerns sensors and 
actuators. The SSN ontology covers both essential 
elements for context of this study.  

https://www.w3.o
rg/TR/vocab-ssn/  

SensorML The Sensor Model Language (SensorML) has the 
primary aim to provide specifications for the 
semantics of the processes and processing 
components that concern the measurement and 
post-measurement transformation of 
observations. 

Sensor ML describes and models sensors in a 
generic way with special attention to remote 
sensing recording from satellites.  

https://www.ogc.
org/standards/sen
sorml  

TSML The TSML effort proposes a structure based on 
eXtensible Markup Language (XML) to store 
training data sets for specifically supervised 
classification algorithms (Soares, et al. 2011). 
The main advantage is the ability to share 
examples among classifiers from different 
applications to analyse and compare results. 
This characteristic aligns with the initial goal of 
this study. 

TSML is one of standards which covers the image 
part of the business processes. 
For geospatial and remote sensing data, the 
diversity of formats makes it difficult to share 
data. This is especially the case when there is a 
desire to design advanced applications, such as 
robot vision, knowledge discovery, pattern 
recognition, data analysis and data integration. 

https://seer.ufrgs
.br/rita/article/vie
w/rita_v17_n1_p1
3  

W3C Web of Things The W3C’s Web of Things (WoT) standard aims 
to prevent the fragmentation of the IoT by using 
and extending standardized web technologies, 
metadata and other re-usable technological 
building blocks.  

Since W3C WoT enables easy integration across 
application domains and IoT platforms, it could 
potential support the operationalization the 
FAIRDataEcosystem. 

https://www.w3.o
rg/WoT/  
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