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Abstract
As a reaction to ongoing environmental change, many local land restoration projects have emerged
that aim to prevent or reverse land degradation, combat climate change through carbon
sequestration or improve the local climate. However, the contribution of these projects to the
greening of Africa at larger scales is still unknown due to the absence of a (public) complete
database of land restoration projects, the lack of monitoring and the low survival rate of planted
vegetation. Here, we use climate independent greening time series to detect local greening hotspots
in Africa. We find that 2.1% of Africa, an area of roughly 400 000 km2, experiences local greening,
especially in semi-arid environments. We show that various forms of sustainable land management
(SLM) lead to significant local greening and demonstrate that some forms, e.g. active revegetation,
are more effective than others, e.g. natural regeneration. This study, therefore, provides a first
continental-scale insight in the greening potential of land restoration, which is needed for a
thorough understanding of the effectiveness of SLM.

1. Introduction

Despite the increasing efforts to halt environmental
change [1], land degradation continues to affect an
estimated 1.3–3.2 billion people worldwide [2, 3],
of which the majority lives in developing countries
[4]. African drylands such as the Sahel are partic-
ularly vulnerable to the effects of land degradation
and climate change due water scarcity and population
growth [5–7]. Recognizing these pressures we put on
key ecosystems, the United Nations declared 2021–
2030 to be the Decade of Ecosystem Restoration to
support efforts preventing global ecosystem degrad-
ation and increase awareness of the importance of
restoration [8]. In addition, several organisations
have taken the ambitious plan to restore millions of
hectares of land in the coming decades by planting bil-
lions of trees in African drylands as well as other parts
of the world (e.g. the Bonn Challenge, the African
Forest Landscape Restoration initiative (AFR100) or
the African Great Green Wall initiative [6]). Further-
more, land restoration and tree planting projects have
also become a widely recognized approach to combat

climate change through carbon sequestration [9–11]
or by changing the biophysical properties of the land
surface [12–15]. Some researchers even argue that
land restoration may be one of the most effective
methods for climate change mitigation [16].

As a result, the number of land restoration pro-
jects in Africa has rapidly increased over the years [1].
Monitoring these projects is often done with remote
sensing products such as the Normalized Differ-
ence Vegetation Index (NDVI) [17] or the Enhanced
Vegetation Index (EVI), as field measurements are
often time-intensive, costly and, in case of remote or
large areas, practically impossible. Using these veget-
ation indices in combination with, for example, a
before/after control/impact type of designs [18, 19]
has been used to estimate the changes in greenness
and vegetation productivity of projects with a known
location. However, the lack of a complete and pub-
licly accessible database of land restoration projects
in Africa, the considerable number of organizations
that work on this [1] and the reported low survival
rates of planted vegetation [20–23],make thesemeth-
ods less suitable to evaluate the greening of land
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restoration projects and their climate change mit-
igation and adaptation potential on a continental
scale.

On top of that, the African continent is not
only affected by greening due to small-scale pro-
cesses such as land restoration, but also by large-
scale and long-term greening and browning trends.
In the 1970s and 1980s Africa has experienced severe
large-scale droughts, which are now attributed to the
El Niño-Southern Oscillation and changes in sea sur-
face temperature [24, 25]. Contrarily, observations
over the last decades have shown an overall increas-
ing trend in vegetation cover across Africa [14, 26],
which is likely caused by an increase in global CO2

concentration [26] and an increase in precipitation
due to changes in sea surface temperature [27–30].

Due to the co-existence of small-scale green-
ing caused by land restoration, and this large-scale
‘background’ greening, simply monitoring changes
in vegetation indices does not tell us the effective-
ness of land restoration projects or its contribution
to the greening of Africa, but rather shows the com-
bined effect of land management and natural cli-
mate variability. To compensate for this effect, pre-
vious studies have used vegetation-rainfall relations
[31], which can partly account for background trends
because it provides an indicator of vegetation or eco-
system functioning. Yet, vegetation-rainfall relation-
ships are complex and often differ over biomes, mak-
ing it less suitable to study vegetation productivity
over large scales [32, 33]. In addition, vegetation-
rainfall relations do not consider background trends
other than rainfall variability, while literature sug-
gests that CO2 fertilization causes roughly 70% of the
observed greening [26].

Alternatively, we can use spatial-context to separ-
ate the small-scale or ‘local’ greening from large-scale
background trends. In this approach, it is assumed
that background trends due to natural climate vari-
ability act on a much larger scale than a land restor-
ation project [34]. For example, if the greening at a
land restoration project is the result of natural climate
variability rather than the project itself, surround-
ing areas will likely show a similar amount of green-
ing as the project area. Contrastingly, if the green-
ing is caused by the project, it is expected that the
project area shows a larger amount of greening than
surrounding areas. For this reason, the background
trends can be removed from vegetation index time
series by comparing observed greening trends with
surrounding areas.

Here, we apply this spatial-context method to
NDVI and EVI time series in Google Earth Engine
[35] to (1) create a map of local greening hot-
spots for Africa, (2) compare the spatial distri-
bution of local greening to background green-
ing, and (3) compare local greening to a publicly
available database of sustainable land management
(SLM) projects to determine the effectiveness of land

restoration. Although spatial-context methods have
been used before to detect deforestation [34, 36], land
degradation [37, 38] or burned areas [39] in forested
aswell as grassland areas, this is, to our knowledge, the
first time that such a spatial-contextmethod is used to
detect local greening hotspots on a continental scale
in Africa.

2. Materials andmethods

2.1. Input data and study area
We used four different input variables (table 1). The
main input data consists of NDVI [40] and EVI [41]
time series data (extended data figure 1), which we
used as an indicator for vegetation productivity. The
main analysis is performed using NDVI and EVI
data from the Moderate-Resolution Imaging Spec-
troradiometer (MODIS) [40] because it is a good
compromise between spatial and temporal resolu-
tion and the readily availability of quality controlled
vegetation index composites. We used Landsat-7 data
on a small sample area to explore the effects of a
higher spatial resolution on our results (extended
data figure 10). Furthermore, we used land cover (45)
and aridity index (AI) data to provide some insight
into potential causes of local greening. The AI is a
measure of dryness and can be defined as a 30-year
average fraction between precipitation and potential
evapotranspiration [42], which we used to divide the
study area into hyper-arid, semi-arid, dry subhumid
and humid regions [43]. To evaluate the effect of land
restoration practices on the amount of local green-
ing, we used 434 SLM projects from the World Over-
view of Conservation Approaches and Technologies
(WOCAT) database [44] within the study area. This
database contains often-used land restoration tech-
niques, such as tree planting or assisted natural regen-
eration, but also techniques like sustainable agricul-
ture and water harvesting. Here, the whole database
of SLM projects is used to study the process of land
restoration, meaning we used a broader definition
of the term land restoration than other studies (e.g.
UNCCD [7] or IUCN [45]). If a single SLM project
containedmultiple locations, we considered it asmul-
tiple projects, resulting in 628 project locations. We
categorized these projects into 11 categories and 55
subcategories based on their description, where the
categories of ‘revegetation’ and ‘natural regeneration’
are highlighted in the results. We refer to the combin-
ation of all categories simply as ‘sustainable landman-
agement’ (SLM) (table 2). The study area consists of
areas on the African continent with a median NDVI
higher than 0.15 or EVI higher than 0.11, which res-
ults in similar case study boundaries for the NDVI
and EVI. This way, areas with a too low vegetation
cover are not considered in the calculations to prevent
noisy results. The masked areas mainly consist of the
Sahara Desert and constitute 36% of the African con-
tinent (extended data figure 1).
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Table 1. Overview of input data.

Name Source Spatial resolution Temporal resolution Time period Reference

NDVI Terra MODIS Vegetation Indices
(MOD13Q1.006)

250 m 16-day composites 2001-01-01 to
2022-01-01

[40]

USGS Landsat-7 ETM+ Level2,
Collection 2, Tier 1

30 m 16-day land surface
reflectance images

2001-01-01 to
2022-01-01

USGS

EVI Terra MODIS Vegetation Indices
(MOD13Q1.006)

250 m 16-day composites 2001-01-01 to
2022-01-01

[40]

Land cover MODIS Land Cover Type
(MCD12Q1)

1 km Yearly 2001 [46]

Aridity index CRU TS4.04 0.5˚ Yearly 1991 to 2029 [47, 48]
SLM projects WOCAT SLM technologies Point coordinates — — [44]

Table 2. Description of categories of WOCAT sustainable land management projects highlighted in this study. An overview of all
categories is given in extended data figure 10.

Category Description Project categories included

Sustainable land
management

‘The use of land resources, including soils, water, animals and
plants, for the production of goods to meet changing human
needs, while simultaneously ensuring the long-term
productive potential of these resources and the maintenance
of their environmental functions’ [44]. WOCAT mainly
focusses on preventing and reducing land degradation

All WOCAT SLM projects,
e.g. runoff harvesting, alternative
cooking methods, riverbank
restoration, planting trees, area
closure, fire management, cover
crops, agroforestry and conservation
agriculture.

Revegetation Active planting of vegetation species to accelerate vegetation
regrowth.

Planting (fruit) trees, shrubs and
grasses, implementing vegetation
strips, and projects described as
restoration.

Natural
regeneration

A passive method of regreening, where vegetation cover is
increased through natural regrowth by using, for example,
area closure, grazing management or management of invasive
species.

Assisted natural regeneration,
combating invaders, farmer
managed natural regeneration, area
closure, grazing management and
bush thinning.

2.2. Spatial-context approach
To separate background trends from the NDVI and
EVI time series, we used a spatial-context approach.
For each pixel, we determined the vegetation index
time series over the 2001–2021 period, after which we
calculated neighbourhood averaged time series over
a square-shaped neighbourhood around the pixel. A
square centre with a radius of 1 km, corresponding to
a square of 2× 2 km, was not included in the mean to
reduce the influence of the original time series on the
mean neighbourhood time series. Next, we subtrac-
ted the neighbourhood time series form the centre
pixel time series to create ‘spatially corrected’ time
series. Creating this spatially corrected time series for
theNDVI and EVI allows us to evaluate the changes in
greenness compared to surrounding areas, thus separ-
ating greening trends resulting from small-scale pro-
cesses and land management from those caused by
natural climate variability.

In this study, we applied the spatial-context
method to three neighbourhood radiuses of 25 km,
10 km and 5 km, corresponding to squares of
50× 50 km, 20× 20 km and 10× 10 km, respectively.
We highlight the results of the 25 km radius, which
captures the effect of large land restoration efforts
without crossing multiple AI classes. The results for

10 km and 5 km radiuses are included in the supple-
mentary data.

2.3. Definition of local greening
We applied the Breaks For Additive Seasonal and
Trend (BFAST) algorithm [49–51] for Google Earth
Engine [52] to the spatially corrected NDVI and EVI
time series. BFAST decomposes the time series into a
trend, seasonal and remainder component, by fitting
a linear/harmonic model to the time series. Unlike
other decomposition algorithms, BFAST can detect
significant changes, called breakpoints, in the com-
ponents, resulting in a piecewise linear harmonic
model. We applied BFAST using a seasonal har-
monicmodel order of 3, aminimum spacing between
two breakpoints of 0.15 (fraction of total time series
length, i.e. 3 year) and a maximum of one break-
point. Here, we use BFAST instead of linear regression
because we expect land restoration to show a sudden
change in greenness compared to surrounding areas
rather than a gradual change, which BFAST can cap-
ture in the form of a breakpoint. We therefore expect
the breakpoint to represent the moment a project, or
another process, will start to affect vegetation cover.

We defined local NDVI/EVI greening as pixels
where: (1) the BFAST algorithm detects a breakpoint
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in the trend of the spatially corrected NDVI/EVI time
series, (2) the computed BFAST trend after the break-
point is positive, significantly different from zero
(p = 0.05) and larger than before the breakpoint,
and (3) the original (centre pixel) NDVI/EVI time
series shows a positive linear trend after the break-
point (figure 1(A)).We included this last condition, as
pixels could theoretically show a greening trend com-
pared to its surroundings, even though the pixel itself
is browning. Next, we defined local greening hotspots
in Africa as areas that simultaneously experience local
NDVI greening and local EVI greening. By combin-
ing the NDVI and EVI, we aim to reduce noise and
therefore improve the accuracy of this spatial context
method.

2.4. Calculation of background trends
To calculate the background trends, we applied lin-
ear least squares regression to the original NDVI and
EVI data between 2001 and 2021within the study area
(figure 1(B)). We then assigned background greening
to pixels that show a significant positive trend for both
the NDVI and EVI (p = 0.05). Similarly, browning
trends show a significant negative trend. Areas that
have a positive NDVI trend and a negative EVI trend
or vice versa, and areas without a significant trend are
considered not to have a background trend.

2.5. Local greening of SLM
Next, we used the WOCAT project database to evalu-
ate the regreening effects of SLM projects. Therefore,
we used local greening instead of the often-used back-
ground greening, to reduce the effects of large-scale
processes such as natural climate variability, which
makes it more likely that observed greening is due to
the changes in land management. Because WOCAT
only contains point coordinates of projects instead of
boundaries, we cannot directly calculate the amount
of local greening inside the project. Instead, we com-
puted the percentage of local greening pixels in a circle
around the project’s geo-tag multiple times, using a
radius of 5000, 4000, 3000, 2000, 1000 and 500 m.
Next, we computed for each project the percentage
of greening pixels over the locations in the study area
within the same country, AI class and land cover
class as the project (extended data figure 2). We then
determined whether SLM projects cause a signific-
ant increase in local greening using the two-sided t-
test for independent samples, assuming unequal vari-
ances and a significance level of 5%.

3. Results

3.1. Spatial distribution of local greening in Africa
Applying the spatial-context method (figure 1(A))
to the African continent with a neighbourhood
radius of 25 km, 2.1% of the study area (roughly
400 000 km2) shows local greening over the last two
decades (figure 1(C)). Most of these areas have a

breakpoint towards the end of the study period, with
peaks around 2015 and 2018, suggesting that many
areas start to show an increase in greenness compared
to its surroundings around these years (figure 1(E)),
although it should be noted that the used settings of
the BFAST algorithm do not allow for the detection
of breakpoints after 2018. We can also observe that
the local greening is not evenly distributed across the
continent, as a large part of the local greening can be
found in the Sahel, Kenya, Tanzania, and regions in
southern Africa (extended data figure 2). Similar spa-
tial distributions can be found for a neighbourhood
radius of 10 km and 5 km, although the total area clas-
sified as local greening as well as the number of adja-
cent local greening pixels is smaller (extended data
figure 8). For a 10 km and 5 km radius, respectively
1.9% and 1.8% of the study area shows local green-
ing, compared to 2.1% for a 25 km radius.

We also compared the local greening hotspots
to NDVI and EVI background trends (figure 1(B))
to provide more insight into the contributions of
local greening to the greening of the African contin-
ent. Overall, a larger area shows background green-
ing (32.4% of the study area) than local greening
(2.1% of the study area), especially in more humid
areas such as the Congo Basin in central Africa
(figure 1(D); extended data figure 7). These areas do
usually not show a breakpoint when BFAST is applied
to the spatially corrected NDVI time series, suggest-
ing that a large part of the background trends, espe-
cially in humid areas, is not caused by small scale or
abrupt processes, but by longer large-scale processes.
In other, dryer areas such as in Botswana and Nam-
ibia, we observe strong background greening com-
bined with a large amount of local greening pixels,
suggesting a combination of large-scale and small-
scale processes. Although most local greening in the
study area is located in areas that also show a back-
ground greening trend (45.1%) or no background
trend (41.6%), also a considerable amount of local
greening is present in areas that show a long-term
browning trend (13.3%) (figure 1(F)). The combina-
tion of local greening and background browning sug-
gests a long term linear browning trend, with a sud-
den increase in greenness, compared to surrounding
areas, at the end of the time-series. A similar spatial-
context method can of course be used to detect local
browning, which occurs at 1.9% of the study area
(extended data figure 9).

3.2. Drivers and properties of local greening
hotspots
We compared local greening to an aridity and land
cover classification and find that 39.1% of the local
greening can be found in semi-arid regions, while
these regions only cover 26% of the study area
(figure 2(H); extended data table 1). Here, 3.0%of the
area is found to be greening compared to its neigh-
bourhood. Humid areas, on the other hand, account

4



Environ. Res. Lett. 18 (2023) 064020 J Ruijsch et al

Figure 1. Spatial distribution of local greening and background trends. (A) Illustration of the spatial-context method and (B) the
background trends with NDVI time series (a more detailed description of these methods can be found in the methodology
section and extended data figure 3). (C) Spatial distribution of the combined NDVI and EVI local greening pixels. Point A shows
the location of the time series in figure (A). A larger map of the spatial distribution of local greening of NDVI, EVI and combined
pixels is included in extended data figures 4–6. (D) Spatial distribution of the combined NDVI and EVI background trends,
calculated with a linear least squares regression. Negative trends are shown as browning, positive trends as greening and
non-significant trends as no trend (p= 0.05). Point B shows the location of the time series in figure (B). A larger map of the
spatial distribution of EVI and NDVI background greening is included in extended data figure 7. (E) Histogram of breakpoint
year of the EVI and NDVI local greening pixels. The breakpoint window indicates the years where a breakpoint can be detected by
the BFAST algorithm. (F) Distribution of background trends at the location of the combined local greening pixels.

for only 32.0% of the local greening, while covering
more than half of the study area. This pattern is also
visible in the distribution of the local greening over
the land cover types, as most local greening occurs
in shrublands, grasslands and savannas, but also areas
classified as cropland sometimes show local greening
(figure 2(H); extended data table 1).

By visually interpreting high resolution satellite
imagery, we also aim to provide some more insight
into potential drivers of local greening. Land res-
toration practices such as in Kenya, show greening
between 2014 (figure 2(A) and 2019 (figure 2(B)),
while surrounding areas are untreated. Similar

results can be found in South-Africa, where local
greening pixels are located roughly inside protec-
ted areas [53] (figure 2(F)). However, also reduction
in open-water surface area, such as in Lake Chad,
can cause unwanted classification of local green-
ing (figures 2(C) and (D)). This is caused by the
low NDVI value of water and, consequently, a local
increase in NDVI when the water retreats. In addi-
tion, we observed a reasonably large amount of local
greening in agricultural areas such as in the north of
Nigeria (figure 3(C)), which is also visible in the his-
togram (figure 3(H)) andmay result from intentional
greening efforts.

5



Environ. Res. Lett. 18 (2023) 064020 J Ruijsch et al

Figure 2. Examples and surface properties of local greening pixels. (A) and (B) Local greening pixels in Kenya where land
restoration is implemented. The background contains Landsat 8 imagery [54] from November 2014 (A) and November 2019
(B), which visually shows greening over time. For visualization purposes, the local greening pixels are made lighter compared to
the background. (C) and (D) Local greening pixels in Chad along the borders of Lake Chad, showing greening due to changes in
water level between 2013 (C) and 2019 (D). (E) Agriculture along riverbanks in Nigeria. (F) Local greening pixels in South-Africa,
located in WDPA protected areas [53]. (G) Locations of above examples. The background shows the local greening pixels.
(H) Percentage of greening pixels per land use class, aridity class and the combined land use and aridity classes (extended data
figure 2). For readability, we did not include the land use and aridity classes that contained less than 5% of the greening pixels.
The complete histogram is attached in extended data table 1.

3.3. SLM as driver of local greening
As most of the local greening can be found in
semi-arid environments, most SLM projects in these
regions also show generally a high percentage of local
greening (figure 3(A)). Furthermore, even though
projects in more hyper-arid or humid regions show
less local greening, SLM projects show an overall sig-
nificant increase in local greening compared to the

areas with similar aridity and land cover for all dis-
tances around the project we included in this study
(figure 3(B)). Revegetation projects, including the
planting of (fruit) trees, shrubs and grasses, have a sig-
nificant higher percentage of local greening in an area
of 500 and 1000m around the project’s geo-tag, while
the other radiuses show an increased, yet not signific-
ant, local greening. Especially planting trees and fruit
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Figure 3. Evaluation of local greening due to sustainable land management (SLM). (A) Location of WOCAT sustainable land
management projects. The shade of the colour indicates the percentage of greening pixels inside an area of 2000 m around the
point and (B) mean and standard error of the percentage of local greening pixels in areas with different sizes around all
sustainable land management projects, revegetation projects and natural regeneration projects. Significant differences with areas
with the same land use type, aridity class and countries are marked with a star (p= 0.05). The sustainable land management
column consists of all projects in the database. The revegetation and natural regeneration columns contain a subset. Projects in
Cape Verde and areas with a median NDVI lower than 0.15 are not shown, because they fall outside the study area. Local greening
effects of the other subcategories of sustainable land management are visualized in extended data figure 11.

trees seems to have a large effect (extended data figure
11). Natural regeneration projects, such as farmer
managed natural regeneration, assisted natural regen-
eration or area closure, appears to have a lower effect
on the amount of local greening than revegetation
projects for all area sizes around the project. Yet, there
is a significant increase in local greening around 5000,
4000 and 3000m around the project. Other categories
of SLM, such as water harvesting, erosion prevention
or agriculture management have a more mixed effect
on local greening (extended data figure 11).

4. Discussion and conclusions

In this study, we used a spatial-context approach in
Google Earth Engine, to separate small scale green-
ing caused by land restoration and SLM, from back-
ground trends due to natural climate variability.With
this method, we showed that that 2.1% of the African
continent experienced local greening over the 2001–
2021 period, especially in semi-arid environments.
In more humid regions, we saw less local greening,
even though these regions showed significant back-
ground greening. This matches with our expectations
from the spatial-context method, because changes in
land management may result in a larger vegetation
cover increase in sparsely vegetated semi-arid regions
than in regions that are already densely vegetated. In
humid areas it is less likely that small scale processes
result in such a large increase in vegetation cover that
it would be detected as a breakpoint in the NDVI and
EVI time series.

In addition, our results also suggests that even
though SLM as a whole has a positive effect on the
amount of local greening, revegetation and tree plant-
ing appears to be more effective than natural regener-
ation over smaller areas. Natural regeneration does,
however, show a significant increase in local green-
ing pixels around a larger area than active revegeta-
tion. This coincides with other studies, that found a
faster recovery of highly degraded land due to act-
ive restoration practices such as tree planting com-
pared to more passive methods [55, 56]. On the other
hand, natural regeneration is, although slower, often
much cheaper [57] and can therefore result in the res-
toration of much larger areas, with a more natural
species composition [58] if enough time is available.
Therefore, natural regeneration projects may prove to
be more effective once a longer study period is avail-
able. In addition, we want to emphasize that greening
is often not the only goal of SLM and land restora-
tion projects [1], as people also implement land res-
toration for biodiversity conservation, income gener-
ation, legislations or cultural reasons [59]. A lack of
local greening found for some projects in this study
does therefore not necessarilymean that the SLMpro-
ject is not at all effective or failed, as greeningmay not
have been the main goal of the project.

Yet, several uncertainties that should be kept in
mindwhen interpreting the spatial-context approach.
As we defined local greening as a sudden increase in
greenness compared to surrounding areas, it does not
only show changes in land restoration, but every type
of small-scale greening, including changes in water
level or agriculture. This calls for further development
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of the spatial-context method such that these differ-
ent causes can be split, allowing for the evaluation
of land restoration only. In addition, we evaluated
the SLM projects based on a circle around a point
coordinate. An exact size and boundary of each pro-
ject would result in a more accurate evaluation. Fur-
thermore, the moderate spatial resolution (250 m)
of MODIS limits the detection of small SLM pro-
jects and spatial heterogeneity within these projects.
Because 7% of the projects within the WOCAT data-
base reported a size smaller than the spatial resol-
ution of MODIS, there lies great potential in high-
resolution satellite imagery or microwave and LiDAR
observations, which can detect vegetation optical
depth, forest structure or even individual trees and
shrubs outside forested areas [60–62]. Unfortunately,
higher-resolution imagery usually comes with a lower
temporal resolution or shorter data range, which lim-
ited their use in this study. In addition, applying the
spatial-context method to higher-resolution Landsat-
7 data showed similar patterns, but smaller areas of
local greening, probably caused by the lower tem-
poral resolution of Landsat-7. This suggests that this
data will not result in a more sensitive detection of
local greening. Similarly, the spatial-context method
is unable to detect greening over areas larger than the
used neighbourhood (approximately 2500 km2), due
to uniform greening of the neighbourhood. Fortu-
nately, only 4% of the SLMprojects reported to have a
size larger than 2500 km2, although it should be noted
that 38% of the projects did not report any project
size and oftentimes it is not clear whether this is the
actual size of the project or of the region in which it
is implemented. Finally, studying seasonal changes of
greenness due to land restoration more in depth may
provide useful information for policy makers when
implementing land restoration projects.

These days, tree planting and land restoration
projects are seen as an effective method for cli-
mate change mitigation, and are therefore widely
included in climate change policy proposals, resulting
in ambitions tree planting projects across the world
[16, 63]. However, if not implemented correctly,
land restoration can also have severe negative con-
sequences on the environment [64], such as a decrease
in biodiversity through monocultures or non-native
vegetation [65, 66], changes in water availability
through increased evapotranspiration [67–69], or the
destruction of native ecosystems through displace-
ment of land use [70]. The increasing interests in land
restoration thus asks for more research on the cost
and benefits of land restoration [71, 72]. However,
due the co-existence of small-scale greening andback-
ground trends, in combination with the lack of an
available (complete) dataset of land restoration pro-
jects, it is not known to what extend land restoration
actually causes greening. In this study, we provided
insight into the hotspots of local greening, as well
as an objective meta-evaluation of different types of

SLM. We show that implementing SLM projects in
semi-arid areas can indeed result in local greening.
If the goal of projects is to increase vegetation cover,
active revegetationmay provide good results on smal-
ler scales, while natural regeneration has the poten-
tial to regreen larger areas. Policymakers should there-
fore carefully match the project approach to its goals,
keeping all positive as well as negative consequences
of vegetation changes in mind. Yet, even though this
research provided a useful monitoring and evaluation
tool for land restoration projects, we want to stress
the importance of documenting and monitoring the
projects its implementation, which would improve
the accuracy of the evaluation. We therefore argue
that more research should focus on the creation of a
complete and open-access database of land restora-
tion projects, before large-scale implementation does
more harm than good.
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The data that support the findings of this study are
openly available.
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Explore data in the Google Earth Engine application:
https://jessicaruijsch-wur.users.earthengine.app/
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