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Abstract

Characterization of regrowing forests is vital for understanding forest dynamics

to assess the impacts on carbon stocks and to support sustainable forest man-

agement. Although remote sensing is a key tool for understanding and moni-

toring forest dynamics, the use of exclusively remotely sensed data to explore

the effects of different variables on regrowing forests across all biomes in Brazil

has rarely been investigated. Here, we analyzed how environmental and human

factors affect regrowing forests. Based on Brazil’s secondary forest age map,

3060 locations disturbed between 1984 and 2018 were sampled, interpreted and

analyzed in different biomes. We interpreted the time since disturbance for the

sampled pixels in Google Earth Engine. Elevation, slope, climatic water deficit

(CWD), the total Nitrogen of soil, cation exchange capacity (CEC) of soil, sur-

rounding tree cover, distance to roads, distance to settlements and fire fre-

quency were analyzed in their importance for predicting aboveground biomass

(AGB) and tree cover derived from global forest aboveground biomass map

and tree cover map, respectively. Results show that time since disturbance inter-

preted from satellite time series is the most important predictor for characteriz-

ing AGB and tree cover of regrowing forests. AGB increased with increasing

time since disturbance, surrounding tree cover, soil total N, slope, distance to

roads, distance to settlements and decreased with larger fire frequency, CWD

and CEC of soil. Tree cover increased with larger time since disturbance, soil

total N, surrounding tree cover, distance to roads, distance to settlements, slope

and decreased with increasing elevation and CWD. These results emphasize the

importance of remotely sensing products as key opportunities to improve the

characterization of forest regrowth and to reduce data gaps and uncertainties

related to forest carbon sink estimation. Our results provide a better under-

standing of regional forest dynamics, toward developing and assessing effective

forest-related restoration and climatic mitigation strategies.

Introduction

Forests cover about 30% of the earth’s land and provide

various services to human society and store approximately

45% of terrestrial carbon (Bonan, 2008; Rodrı́guez-veiga

et al., 2017; Valdés et al., 2020). While forest disturbances

affect the delivery of forest ecosystem services, regrowing

forests play important roles in global carbon sink dynam-

ics (Pugh et al., 2019; Silva Junior et al., 2020). Regrow-

ing forests here are defined as forests growing in areas

where nearly complete removal of forest cover occurred.

These forests are receiving growing attention as they usu-

ally have higher accumulation rates of aboveground

biomass (AGB) compared with old-regrowth forests
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(Oberleitner et al., 2021), and the ‘regrowth capacity of

the forest’ is an indicator of the resilience of forests that

is threatened by a mixture of human and climate stressors

(e.g. logging, droughts and fires). Characterizing regrow-

ing forests is essential for understanding forest dynamics

and is beneficial for developing forest management

strategies.

The spatial variability of AGB and tree cover of regrow-

ing forests is affected by environmental conditions and

degrees of human use. Understanding what drivers pro-

mote or hamper forest regrowth is essential for successful

ecosystem restoration initiatives (César et al., 2021).

However, the factors that influence regrowing forests vary

by spatial scale (Becknell et al., 2018). Time is an essential

driver of AGB and tree cover in regrowing forests and has

been widely used because time is vital for successional

processes (Becknell et al., 2018; Martin et al., 2013; Pugh

et al., 2019). A previous study has even estimated age

using AGB in Neotropical forests (Chazdon et al., 2016).

Topography also plays an essential role in regrowing for-

ests as the topography is related to temperature or other

abiotic factors (Sundqvist et al., 2013); for example, bio-

mass in regrowing forests tends to be larger at higher

elevations in tropical dry forests (Salinas-Melgoza

et al., 2018). Additionally, soil fertility affects tree growth

and survival (César et al., 2021). Variations in soil have

been shown to influence regrowing forests (e.g. AGB and

species richness) at many sites (Oberleitner et al., 2021;

Waring et al., 2015), for instance, the cation exchange

capacity (CEC) of soil has been positively related to rela-

tive biomass recovery in the Neotropics (Poorter

et al., 2016). Besides, the surrounding forest cover influ-

ences the seed composition and abundance (César

et al., 2021; Crk et al., 2009) and AGB in regrowing for-

ests has been shown to increase with surrounding tree

cover in a tropical dry forests landscape (Requena Suarez

et al., 2021). Climatic water deficit (CWD) has also been

widely examined in regrowing forests (Chazdon

et al., 2016; Heinrich et al., 2021; Poorter et al., 2016).

For example, literature suggests that higher AGB is

expected in areas of high water availability. Forest fire

influences the biomass of forests, and it is a significant

determinant for balancing forest carbon in tropical forests

(Martins et al., 2012). Finally, degrees of human use,

which can be evaluated through factors such as closeness

to roads and settlements, are also critical for regrowing

forests (Salinas-Melgoza et al., 2018). For instance, previ-

ous research has shown that distance to roads was posi-

tively related to regrowing forests (Crk et al., 2009).

Examining different factors’ effects on regrowing forests is

beneficial for understanding how regrowing forests

respond to different factors and provides information for

improving the estimation of biomass and tree cover.

Numerous approaches (e.g. biome average, ground-

based measurements and remote sensing approaches) can

be used to characterize regrowing forests in terms of AGB

or tree cover. The biome average method, which consists

of estimating a single representative value of forest carbon

for biomes, provides an important starting point but it is

very difficult to assess the uncertainty of source data

(Gibbs et al., 2007). Using ground data can improve the

quantification of AGB in regrowing forests, but it is

labor-intensive. On the contrary, remote sensing data and

products can provide spatially and temporally intensive

information for forest monitoring, especially in regions

with low accessibility and limited ground data. For

instance, in tropical and subtropical forests, because eco-

systems are complex and the national forest monitoring

capacities have limitations, most tropical countries still

report carbon pools at ‘Tier 1’ level (default method of

the 2006 IPCC) (Romijn et al., 2015). Remote sensing

approaches have the potential to refine the estimates of

forest carbon stocks (Gibbs et al., 2007). Recent studies

synthesize available field data and remote sensing data to

characterize forest carbon pools at a global scale (Cook-

Patton et al., 2020; Harris et al., 2021; Requena Suarez

et al., 2019). However, remote sensing products could be

further utilized to reduce uncertainties and fill regional

data gaps.

Remote sensing products offer further opportunities for

studying the effects of different factors on regrowing for-

ests in space and time. With the launch of the Landsat

program, satellite images have been collected for more

than 40 years (Wulder et al., 2019). Previous studies have

used Landsat imagery to monitor the spectral recovery of

regrowing forests directly (De Keersmaecker et al., 2022;

Hermosilla et al., 2019; Hislop et al., 2018). With the

assistance of satellite images, mapping forest age, tree

cover and forest AGB at a regional or global level has

become feasible (Santoro et al., 2021; Sexton et al., 2013;

Silva Junior et al., 2020).

Investigating the effects of different factors on regrow-

ing forests in Brazil is essential for reducing uncertainties

related to forest carbon sink estimation; these effects are

dynamic in space and time, and new or improved remote

sensing products provide a great opportunity for studying

them. Previous studies in regrowing forests have exam-

ined the relationship between AGB and drivers in the

Amazon biome in Brazil (Heinrich et al., 2021) or

the Neotropical region (Poorter et al., 2016). However,

the relationship between regrowing forests and different

factors using exclusively remote sensing data has not been

investigated across all biomes of Brazil at a national level.

This study focuses on evaluating the effects of different

factors on regrowing forests in Brazil using exclusively

remote sensing data and products. Here, we aim to
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analyze how these factors affect regrowing forests (using

aboveground biomass and tree cover as proxies) across all

biomes of Brazil. For this purpose, we have selected the

following factors: time since disturbance, elevation, slope,

CWD, soil CEC, soil total Nitrogen, surrounding tree

cover, fire frequency, distance to settlements and distance

to roads. We further focused on factors that can be

directly monitored using remote sensing data. Therefore,

we investigated the influence of time since disturbance and

surrounding tree cover to characterize AGB and tree cover

in regrowing forests. Specifically, we aim to (1) analyze

how the aforementioned spatial factors affect the biomass

and tree cover of regrowing forests in Brazil, and (2) study

the effect of ‘time since disturbance’ and ‘surrounding tree

cover’ as remote sensing variables on AGB and tree cover

in regrowing forest in particular. We selected the time

since disturbance and surrounding tree cover for model-

ling because time is a significant driver of AGB

(Anderson-Teixeira et al., 2016; Chazdon et al., 2007;

Requena Suarez et al., 2019) and surrounding tree cover

can be easily derived from earth observations with a rea-

sonable spatial resolution (30 m) and temporal resolution.

Materials and Methods

Study area

Brazil covers more than 8.5 million km2. Brazil is one of

the most biodiverse countries on earth and encompasses

six biomes, including the Amazon, Atlantic Forest, Caa-

tinga, Cerrado, Pampa and Pantanal (Souza et al., 2020;

Fig. 1). These six biomes cover distinct climatic and bio-

logical conditions. The Amazon biome is the largest

biome (covering about 4.19 million km2), which stores

about 10% of the world’s forest carbon (Heinrich

et al., 2021). The Amazon biome also contains half of the

world’s rainforest (Roesch et al., 2009), and its regrowing

forest accounts for about 20% of previously deforested

land (Heinrich et al., 2021). The Atlantic Forest biome (c.

1.11 million km2) stretches along the Brazilian coast and

is one of the hottest and most diverse biodiversity hot-

spots on earth (Siminski et al., 2021). This biome mainly

consists of tropical moist forests and tropical seasonal for-

ests. The Caatinga biome (0.84 million km2) consists of

thorn shrubs and seasonally dry forests (Leal et al., 2005).

The Cerrado (2.03 million km2) is the second-largest Bra-

zilian biome that is dominated by savanna formation

(Zimbres et al., 2020). The Pampa biome covers an area

of 0.17 million km2 and its dominant vegetation is grass-

lands, sparse shrubs and tree formation (Roesch

et al., 2009). Finally, the Pantanal biome encompasses an

area of 0.17 million km2 and comprises tropical wetlands,

savanna and grassland (Souza et al., 2020).

Estimation of time since disturbance

Based on the secondary forest age map of Brazil (with a

30 m spatial resolution) derived from Land Use and Land

Cover classification from Landsat images (Silva Junior

et al., 2020), 3060 pixels were sampled in the six biomes

of Brazil. To obtain a good quality of time since distur-

bance data, we visually interpreted the time since distur-

bance for the sampled pixels based on the normalized

difference vegetation index (NDVI) time series trajectories

and the true color composite of cloud-masked Landsat

imagery from 1984 to 2019 in Google Earth Engine

(GEE). Among these points, each biome consists of 510

points, and each time since disturbance (ranging from 1

to 34) consists of 15 points within each biome. We

repeated the sample selection procedure until the criteria

of 15 points for each time since disturbance within each

biome was met.

Selected factors for regrowing forests

To test the effects of different factors on AGB and tree

cover, we selected factors that provide spatially explicit

data in the region and have been utilized in previous

researches that mainly relied on ground data. Ten factors

were used to analyze their effects on the AGB and tree

cover of regrowing forests. To examine the effect of

topography, elevation and slope were selected. The eleva-

tion (30 m spatial resolution) of the year 2000 was

extracted from Shuttle Radar Topography Mission (Farr

et al., 2007). Based on the elevation, the slope (in

degrees) was calculated. CWD is the difference between

monthly reference evapotranspiration and actual evapo-

transpiration (Abatzoglou et al., 2017). The CWD data

(~4 km spatial resolution) were extracted from the ‘Terra-

Climate’ dataset (Abatzoglou et al., 2017). Then, we

selected all the monthly layers of CWD in the year 2019

and calculated the mean CWD. We extracted the soil total

Nitrogen and the soil CEC from the ‘Soil Grids 250m

v2.0’ product (De Sousa et al., 2020). The global soil

dataset was used because SoilGrids 2.0 used the best avail-

able shared soil profile data from the world (De Sousa

et al., 2020). Local soil datasets were unfortunately diffi-

cult to acquire. The mean values of soil total N and mean

Soil CEC at 0–5 cm, 5–15 cm and 15–30 cm depths from

De Sousa et al. (2020) were calculated. To evaluate the

effect of surrounding forests, we calculated surrounding

tree cover (ha). 500 m buffers were created for each sam-

pling point, and then, the area of stable forests within the

buffer zone of every point was calculated. To evaluate the

effect of fire, fire frequency provided by the MapBiomas

project (Mapbiomas Fire-Collection1; https://mapbiomas.

org/en/colecoes-mapbiomas-1) was used to acquire the
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fire frequency from the year 1985 to 2019. To examine

the effect of human use, we used distance to roads and

settlements as proxies. Distances from sampling points to

settlements and roads were obtained through the use of

vector data from OpenStreetMap (OpenStreetMap Con-

tributors 2021). Among all the selected factors, distance

to settlements and roads were calculated using the ‘Near’

function of ArcMap 10.6.1. and the values of other factors

of the sampled points were extracted in GEE. Table 1

shows the descriptive statistics of factors selected for char-

acterizing regrowing forests.

Aboveground biomass and tree cover of
regrowing forests

The values of aboveground biomass and tree cover were

extracted to the sampled points in regrowing forests and

stable forests, separately. Regrowing forest data include

tree cover and AGB. The ESA Biomass Climate Change

Initiative AGB map (100 m spatial resolution) (Santoro &

Cartus, 2021) for the year 2018 was downloaded, clipped

by the boundary of Brazil and uploaded to Google Earth

Engine (GEE). Tree cover data (30 m spatial resolution)

can be accessed through Global Forest Cover Change

products (Sexton et al., 2013), from which the

‘tree_canopy_cover’ layer was selected and the date was

filtered by the year 2015. Then, the tree cover and AGB

were extracted to the 3060 sampled points. Additionally,

we also sampled another 3060 pixels (510 for each biome)

within the extent of stable forests from the year 1985 to

2019 and extracted the AGB and tree cover values to

those sampled points. To acquire the stable forest extent,

land cover and land use (LUCC) maps were used from

the MapBiomas Project (MapBiomas Collection 6; https://

mapbiomas.org/en/colecoes-mapbiomas-1). Based on the

LUCC maps (1985–2019), we first reclassified land cover

and land use maps and assigned the forest pixels with

value ‘0’ and assigned ‘1’ for other land cover types; then,

we masked out the surface water in each year with the

max water surface extent data provided by the Joint

Research Centre (Pekel et al., 2016) to reduce commission

errors of forest classification. Then, we overlayed all the

Figure 1. Study area and the distribution of sampled 3060 regrowth points across different time since disturbance groups in Brazil.

4 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Characterizing regrowing forests in Brazil N. Chen et al.

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.328 by W

ageningen U
niversity and R

esearch B
ibliotheek, W

iley O
nline L

ibrary on [21/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://mapbiomas.org/en/colecoes-mapbiomas-1
https://mapbiomas.org/en/colecoes-mapbiomas-1


forest layers from 1984 to 2019 to obtain the stable forest

layer for this period.

Data analysis

To examine the effects of selected factors on AGB and

tree cover in regrowing forests, we chose a mixed-effects

modelling approach. This approach is suitable for highly

structured data and accounts for fixed effects and random

effects (Harrison et al., 2018). We applied mixed-effects

models to analyze how different factors influence the

AGB and tree cover of regrowing forests and study the

effects of time since disturbance and the presence of

nearby forests on regrowing forests. We fitted the models

using:

yij ¼ β0 þ∑p
h¼1βhxhij þ αj þ εij (1)

αj ∼ Gaussian 0, σ2α
� �

(2)

εij ∼ Gaussian 0, σ2ε
� �

(3)

where yij is the value of the response variable for the jth

groups, β0 is the intercept, βh represents the slope, xhij is

the ith value of the jth group for the hth predictor, αj
denotes random effects, εij is the error for observation j,

σ2α and σ2ε are within-group variances (Nakagawa &

Schielzeth, 2013).

For all mixed-effects models, the Biome ID was speci-

fied as random effects to constrain the effect of random

variability within biomes. For models using 10 selected

variables, to avoid complex random structure and singu-

lar fit problems, the random slope was not specified,

which means fitting models with fixed slopes and random

intercepts (Table 2). While, in the models that use only

two variables, both time since disturbance and Biome ID

are specified as random effects, meaning fitting models

with random slopes and random intercepts. This indicates

that the effect of time since disturbance on the response

variables was assumed to vary between Biome IDs

(Table 2).

Data have been transformed before modelling. To con-

sider the non-linear increase in AGB and tree cover over

time, we applied natural log transformation to the time

since disturbance. Then, to make the effects comparable

(Gelman & Hill, 2006), we scaled all the input variables

by subtracting the average and dividing the difference by

the standard deviations based on the ‘scale’ function in R.

The variance inflation factor (VIF) (Marquardt, 1970) for

all the explanatory variables was calculated, and all the

VIFs were less than 5; thus, no variable was excluded for

further analysis (Table S1). To fit the mixed-effects

model, the package ‘lme4’ developed by Bates

et al. (2015) was used. The model performance was

assessed with marginal R2 and conditional R2 (Nakagawa

& Schielzeth, 2013). The marginal R2 is the proportion of

variance explained by fixed factors, and the conditional

R2 is the proportion of variance explained by both fixed

and random factors (Nakagawa & Schielzeth, 2013). The

marginal R2 and conditional R2 were calculated by:

R2
m ¼ σ2f

σ2f þ∑μ
l¼1σ

2
l þ σ2e þ σ2d

(4)

R2
c ¼

σ2f þ∑μ
l¼1σ

2
l

σ2f þ∑μ
l¼1σ

2
l þ σ2e þ σ2d

(5)

where R2
m is the marginal R2, R2

c is the conditional R2, σ2f
represents the variance computed from the fixed effect

components, σ2l represents the variance component of

the random factor, σ2e denotes additive dispersion

Table 1. Descriptive statistics of variables selected for characterizing regrowing forests.

Variable Unit Range Mean SD Spatial resolution Time Source

AGB Mg ha−1 0–532.0 84.2 74.5 100 m 2018 Santoro et al. (2021)

Tree cover % 0–84.0 34.3 19.4 30 m 2015 Sexton et al. (2013)

Time since disturbance year 1–34.0 17.5 9.8 30 m 2019 Interpreted in this study

Elevation meter 1–1797.0 297.2 293.1 30 m 2000 SRTM

Slope degree 0–35.9 5.9 5.5 30 m 2000 Calculated

Climatic water deficit mm/year 0–1256.7 350.9 210.8 4638 m 2019 UC Merced

Soil cation exchange capacity mmol(c)/kg 0–285.0 133.6 44.9 250 m / De Sousa et al. (2021)

Soil total N (0–30 cm mean) cg/kg 0–5562.0 1868.0 637.6 250 m / De Sousa et al. (2021)

Surrounding tree cover ha 0–77.0 27.2 21.7 / 2019 Calculated from Mapbiomas

Distance to settlements km 0–149.0 15.7 16.0 / 2021 OpenStreetMap contributors. (2021)

Distance to roads km 0–88.8 1.9 4.9 / 2021 OpenStreetMap contributors. (2021)

Fire frequency (1985–2019) times 0–14.0 0.5 1.3 30 m 1985–2019 Mapbiomas

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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components, and σ2d is the distribution-specific variance

(Nakagawa & Schielzeth, 2013).

Results

Characteristics of the sampled regrowing
forests points

Across all biomes, AGB and tree cover increased with

time since disturbance (as shown in Figs. 2 and 3). Addi-

tionally, the average biomass and tree cover of regrowing

forests did not exceed those of stable forests.

Similarly, biome-specific average AGB and tree cover

increased with time since disturbance despite fluctuations

(as shown in Figs. 2 and 3). Additionally, the average

AGB and tree cover of regrowing forests were less than

those of stable forests. For the regrowing forest group

with 31–34 years after disturbance, the mean AGB of the

Amazon biome was the highest, followed by the Atlantic

Forest, Cerrado, Pampa, Pantanal and Caatinga. For the

same group, the mean tree cover (%) of the Amazon

biome was the highest, followed by the Atlantic Forest,

Cerrado, Pampa, Pantanal and Caatinga. Visually, the dif-

ference between the median values of AGB at 0–5 years

and at 6–10 years after disturbances in the Caatinga

biome was small. A similar trend can be found in tree

cover in regrowing forests at 21–25, 26–30 and 31–
34 years after disturbances in the Caatinga biome.

Effects of 10 selected factors on regrowing
forests

Results from the first model showed that AGB increased

with increasing time since disturbance, surrounding tree

cover, soil total N, slope, distance to roads and distance

to settlements (Fig. 4a). The effect of elevation was not

significant for modelling AGB in regrowing forests

(Table S2). The model statistics (e.g. estimates, standard

error, degrees of freedom, t-value and p-values) are

shown in Table S2. AGB decreased with increasing fire

frequency, CWD and CEC of soil. The marginal and con-

ditional R2 for the AGB model were 0.18 and 0.33,

respectively. Based on the predicted AGB and tree cover

from 1 to 34 years after disturbance, the biomass regrow-

ing rate for the first 34 years was 2.98 Mg ha−1 year−1.

Results from the second model showed that tree cover

increased with increasing time since disturbance, soil total

N, surrounding tree cover, distance to roads, distance to

settlements and slope (Fig. 4b). The effects of soil CEC

and fire frequency were not significant for modelling tree

cover (Table S3). Tree cover decreased with increasing

CWD and elevation. The marginal and conditional R2 for

the tree cover model were 0.22 and 0.33, respectively. The

overall tree cover recovery rate during the first 34 years

was 1.14% per year.

Effects of time since disturbance and
surrounding tree cover on regrowing
forests

We further focused on modelling AGB and tree cover on

regrowing forests using time since disturbance and sur-

rounding tree cover, which can be directly derived from

earth observations with a reasonable spatial resolution

(30 m) and temporal resolution. Results showed that both

time since disturbance and surrounding tree cover had

positive effects on AGB and tree cover (Fig. 5). AGB

increased with increasing time since disturbance and sur-

rounding tree cover (Fig. 5). Similarly, as the time since

disturbance and surrounding tree cover increases, tree

cover also increases (Fig. 5). Table 3 shows the various

intercepts and coefficients for the mixed-effects models.

Table 2. Overview of the specifications of fixed and random effects of each model.

Response

variables Fixed effects Random effects

Ten selected variables

AGB Time since disturbance + Elevation + Slope + Climatic water deficit + Soil CEC +
Soil total N + Surrounding tree cover + Distance to roads + Distance to

settlements + Fire frequency

Biome ID (random intercepts)

Tree

cover

Time since disturbance + Elevation + Slope + Climatic water deficit + Soil CEC +
Soil total N + Surrounding tree cover + Distance to roads + Distance to

settlements + Fire frequency

Biome ID (random intercepts)

Two selected variables

AGB Time since disturbance + Surrounding tree cover Time since disturbance per Biome ID

(random intercepts and slopes)

Tree

cover

Time since disturbance + Surrounding tree cover Time since disturbance per Biome ID

(random intercepts and slopes)
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The model statistics are shown in Tables S4 and S5. For

the AGB model, the slope coefficient of time since the

disturbance in the Amazon biome was the largest, fol-

lowed by the Atlantic Forest, Cerrado, Pantanal, Pampa

and Caatinga. For the tree cover model, the slope coeffi-

cient of time since disturbance in the Amazon biome was

the largest, followed by that of Atlantic Pantanal, Cerrado

or Pampa, Atlantic Forest and Caatinga. The marginal R2

for the AGB model was 0.11, and the conditional R2 for

the AGB model was 0.35. While the marginal R2 for the

tree cover model was 0.10, the conditional R2 for the tree

cover model was 0.34. The estimated AGB and tree cover

recovery rates during the first 34 years were

3.07 Mg ha−1 year−1 and 1.16% per year, respectively.

Discussion

We analyzed how selected factors (e.g. time since distur-

bance, CWD, fire frequency) affect the regrowing forests

in Brazil. Variations in different predictors affect the AGB

and tree cover of regrowing forests. We found that the

assessed factors had varying effects on the AGB and tree

cover of regrowing forests. AGB increased with increasing

time since disturbance, surrounding tree cover, soil total

Figure 2. Distribution of AGB (in Mg ha−1) in regrowing forests per category of time since disturbance (in years). The stable forest category is

presented to the right of the dashed blue vertical line.
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N, distance to roads and distance to settlements. It is log-

ical to expect a positive effect of time since disturbance

and surrounding tree cover on AGB recovery; our result

aligns with the previous study on regrowing forests in the

tropics that used field data (Poorter et al., 2016; Requena

Suarez et al., 2021). The outliers for younger forests with

time since disturbance from 0 to 5 in Figure 2. indicate

that those young forests have extremely high biomass

values, which could be explained by the mismatch

between time since disturbance and AGB maps or errors

in both. Soil nutrient content is known to influence forest

AGB (Hofhansl et al., 2020; Lewis et al., 2013; Oberleitner

et al., 2021). Fertilization experiments were applied to

evaluate the effects of Nitrogen and Phosphorus (P) on

the AGB of secondary forest growth and results show that

AGB increases significantly with N-only and N + P treat-

ments (Davidson et al., 2004). Hence, our result of soil

total Nitrogen’s effect on AGB agrees with previous stud-

ies. As expected, AGB and tree cover increased with dis-

tance to settlements and distance to roads, a similar effect

has been found in a previous study conducted in the

Brazilian Atlantic Forest (Becknell et al., 2018). AGB

decreased with larger fire frequency and increasing CWD.

Forest fires can decrease biomass significantly in tropical

Figure 3. Distribution of tree cover (in %) in regrowing forests per category of time since disturbance (in years). The stable forest category is

presented left of the dashed blue vertical line.
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forests (Martins et al., 2012; Slik et al., 2008). AGB was

shown to increase with decreasing CWD (Poorter

et al., 2016). A previous study in the Neotropics has

revealed a positive effect of CEC on relative AGB recovery

(Poorter et al., 2016). Our results show that AGB

decreases with increasing CEC of soil. Perhaps the effect

of CEC on AGB recovery could be explained by the

strong positive relationship between soil total N concen-

tration and AGB or the CEC obtained from a global data-

set and the small difference in soil may be overruled

by the larger difference in microclimate (Poorter

et al., 2016). It is hard to explain that slope is positively

correlated with the AGB. Perhaps the areas with higher

slopes could drain faster and have lower water tables

(Daskin et al., 2019).

As expected, in order of decreasing importance, tree

cover increased with time since disturbance, soil total N

concentration, surrounding tree cover, distance to roads,

distance to settlements and slope. Few recent studies have

examined the influence of different factors on tree cover

regrowth. It is logical that tree cover increased with

increasing time since disturbance of regrowing forests

because the surrounding tree cover affects seed availability

and natural regeneration (César et al., 2021), and it was

positively related to forest recovery (Jakovac et al., 2015;

Requena Suarez et al., 2021). Soil nutrients affect forest

growth; thus, it is reasonable that soil total N (as a proxy

of soil nutrition) is positively related to tree cover. Tree

cover increased with increasing distance to roads and set-

tlements, suggesting that tree cover tends to recover faster

Figure 4. Effects of factors on (a) AGB (Mg ha−1) and (b) Tree cover (%) of regrowing forests in Brazil. The vertical dashed line indicates no

significant effect. The Dot-and-Whisker plots demonstrate the standardized coefficients and 95% confidence intervals for the mixed-effects

model.
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in less accessible regions. Previous studies have shown

that frequent fires reduce tree cover in tropical flood-

plains (Daskin et al., 2019). Our results suggest that fire

frequency was not significantly related to tree cover,

which could be explained by the effect of fire on tree

cover depending on climatic conditions (Staver

et al., 2011) or perhaps the smaller difference in fire fre-

quency may be overruled by the larger difference in cli-

matic water deficit. Unexpectedly, the slope was positively

related to tree cover, a previous study also revealed a sim-

ilar relationship in the Brazilian Atlantic forest (Becknell

et al., 2018). Water availability limits tree growth and tree

cover increases with decreased CWD, which agrees with

previous research that shows increased water deficit

decreases tree growth (Restaino et al., 2016).

Our estimation of AGB recovery rates was smaller

compared with global estimated rates conducted by

Cook-Patton et al. (2020). To make results comparable,

based on the global AGB accumulation rates map of the

first 30 years of regrowing forests developed by Cook-

Patton et al. (2020), we clipped the global map to the

boundary of Brazil and calculated the average regrowing

forest rate of AGB change in Brazil for the first 30 years,

which was 8.45 Mg ha−1 year−1. To make our results

comparable with the global map, we predicted the AGB

accumulation rate at 30 years using the models with all

selected variables, time since disturbance and surrounding

tree cover models, and the predicted AGB rates are 3.30

and 3.38 Mg ha−1 year−1, respectively (Table S6). Our

estimated AGB change rates are lower than the above-

ground carbon rates estimated by Cook-Patton

et al. (2020), which integrated 13112 georeferenced field

data of carbon accumulation and 66 environmental vari-

ables to model the carbon accumulation globally. To

make our results comparable with previous studies, we

also computed the AGB change rate for the first 20 years,

the predicted recovery rate with all selected variables is

4.57 Mg ha−1 year−1 (Table S6). Similarly, our estimated

Figure 5. 3D scatter plots of all the 3060 sampled regrowing forest points and the regression planes of the fixed effects while modelling AGB

and tree cover with time since disturbance and surrounding tree cover. (A) AGB (non-scaled data), (B) tree cover (non-scaled data). 3D scatter

plots of 3060 sampled regrowing forest points and the regression planes of the fixed effects while modelling AGB and tree cover based on scaled

data can be found in Figure S1.

Table 3. Coefficients of mixed-effects models for modelling AGB sand tree cover in Brazil using time since disturbance and surrounding tree

cover.

AGB Tree cover

Intercept Time since disturbance Surrounding tree cover Intercept Time since disturbance Surrounding tree cover

Fixed <0.01 0.26 0.20 <0.01 0.26 0.18

Coefficients (Biome)

Amazon 0.75 0.52 0.20 0.63 0.50 0.18

Caatinga −0.66 0.11 0.20 −0.74 0.08 0.18

Cerrado −0.05 0.25 0.20 −0.31 0.19 0.18

Pampa −0.22 0.16 0.20 0.19 0.19 0.18

Pantanal −0.17 0.21 0.20 −0.03 0.41 0.18

Atlantic forest 0.35 0.29 0.20 0.25 0.17 0.18
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AGB accumulation rate is smaller compared with the bio-

mass recovery rate in Neotropical secondary forests

(6.1 Mg ha−1 year−1) estimated by Poorter et al. (2016).

The difference in estimating the recovery rates could be

attributed to the different extents of the study areas and

the use of only RS-derived data in our study. Regarding

the biomass recovery rates in each biome, the extents of

biomes in Brazil are different from the ecozones used in

previous research conducted by Requena Suarez

et al. (2019). Hence, we overlayed the ecozone map with

the biome map and identified the main ecozone for each

biome. The AGB recovery rate of the Amazon biome is

7.16 Mg ha−1, which is higher than that of the tropical

rainforest (5.9 Mg ha−1 year−1) in the Americas (Requena

Suarez et al., 2019). The AGB recovery rates of the Cer-

rado and Pantanal biomes are lower than that of tropical

moist forests (5.2 Mg ha−1 year−1) in the Americas

(Requena Suarez et al., 2019). The AGB recovery rate of

the Caatinga biome is lower than that of tropical dry for-

ests (3.9 Mg ha−1 year−1) in the Americas (Requena

Suarez et al., 2019). Similarly, the difference in the AGB

recovery rates could be attributed to the different study

extents. Atlantic Forest was not compared as it mainly

consists of three ecozones (tropical rainforest, tropical

moist forest and subtropical moist forest). The Pampa

biome is also not compared as it mainly overlays with the

subtropical humid forest.

In this study, the determinants of AGB and tree cover

in regrowing forests of Brazil were explored using exclu-

sively remote sensing data and products. Our results not

only show that remote sensing data and products are key

resources for characterizing the AGB and tree cover of

regrowing forests but also highlight the importance of

using time since disturbance and surrounding tree cover,

derived from remote sensing data, for characterizing

regrowing forests. Future research could also explore the

potential of using only time since disturbance for model-

ling AGB and surrounding tree cover in secondary forests

as time since disturbance is a significant predictor, and it

can be directly derived from the time series satellite

images based on change detection algorithms. Our analy-

sis provides a starting point for using exclusively remote

sensing products to characterize regrowing forests, which

could benefit the characterization of regrowing forests in

regions where forest inventory data are scarce or not

available. Further benefits also include regular monitoring

of biomass in regrowing forests with high spatial and

temporal resolution remote sensing data. Our analysis of

different factors’ impact on regrowing forests provides

important information on what factors are useful for

modelling AGB and tree cover of regrowing forests in

Brazil, which is important for understanding regrowing

forests dynamics as well as providing baseline information

for estimating carbon sinks and understanding the spatial

variations of regrowing forests in Brazil. Understanding

the carbon sinks in this region could benefit policymakers

in evaluating the progress of reforesting 12 Mha of land

proposed by the NDC of Brazil (‘REDD+ and Brazil’s

NDC’, 2019), thus providing critical information for cli-

mate mitigation initiatives. In addition, quantifying the

regrowth rates of AGB and tree cover could provide a

better understanding of the AGB and tree cover resilience

and support policymakers for forest management and res-

toration plans.

Integrating field data or airborne laser scanning data

into our analysis could potentially improve our modelling

of aboveground biomass and tree cover of regrowing for-

ests. For example, a previous study combined the field

data and ALS data to estimate the AGB in a tropical land-

scape of Thailand (Jha et al., 2020). The integration of

field data (e.g. aboveground biomass, time since distur-

bance) may potentially improve the performance of the

models thus refining these initial results. Despite that

using remote sensing data and products has disadvantages

(e.g. indirect measurement of AGB, the occurrence of

cloud and shadow in optical imagery), our analysis pro-

vides a starting point for understanding how different fac-

tors affect the AGB and tree cover of regrowing forests at

a country scale. This provides important information for

regions with low accessibility or scarce forest inventory,

or field data that have a low temporal resolution. Besides,

different remote sensing products not acquired in the

same year introduce uncertainty, especially for the tree

cover map, which is not available for the year 2019. Addi-

tionally, the different spatial resolutions of the remote

sensing products may affect the accuracy of modelling

regrowing forests. Future research could use data with less

discrepancy in terms of spatial resolution or apply resam-

ple approach to reduce the mismatch between different

remote sensing products. As the Landsat-based time since

disturbance factor is a significant predictor (with a spatial

resolution of 30 m) for regrowing forests, following stud-

ies could sample the regrowing forest patches that have

an area larger than 1 ha (≥1 pixel of the CCI biomass

map). Next, the input data sources of the predictors

should be considered as potential sources of circularity.

Tree cover and time since disturbance were derived from

Landsat imagery. To reduce the risk of circularity, a bio-

mass map mainly derived from Sentinel-1 Envisat’s ASAR

instrument and ALOS was chosen. However, the SoilGrids

2.0 data used more than 400 environmental covariates,

including raw bands and vegetation indices derived from

Landsat imagery (De Sousa et al., 2020). Products derived

from the same sensor suffer from the same artifacts. In

addition, factor such as soil total N is sometimes mod-

elled in function to vegetational succession. For example,
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soil total N is expected to increase during forest succes-

sion (Duan et al., 2020), and the prediction of soil total

N used the environmental covariates that include the veg-

etation status. This modelling could make the association

between regrowing forests and soil total N circular and

might cause inflation in the accuracy. Future studies

could investigate the potential of using other soil prod-

ucts to reduce the circularity risk. Furthermore, scaling

up our analysis from country scale to larger scales

requires reliable information on time since disturbance or

forest age, while the visual interpretation of time since

disturbance is time-consuming. Further research could

investigate the potential of using a global forest age map

(Besnard et al., 2021). To ensure the quality of the forest

age map, visual interpretation of satellite images could be

useful for improving the map’s accuracy. Finally, many

other known factors influence regrowing forests. For

example, the abundance of remnant forests (Zahawi

et al., 2013), average annual shortwave (SW) radiation

and the number of deforestations (Heinrich et al., 2021)

have been observed to be significant for regrowing forests.

While we attempted to examine the effects of several

selected factors on regrowing forests, future research

could integrate additional variables to refine the perfor-

mance of models. Also, model selection approaches such

as forward and backward stepwise selection could be

applied to determine whether a variable should be

included or removed for modelling AGB and tree cover.

Conclusions

Our study has assessed the effects of selected factors on

regrowing forests in Brazil, finding that time since distur-

bance is a significant predictor for characterizing AGB

and tree cover of regrowing forests in Brazil. We also

used the time since disturbance and surrounding tree

cover to model AGB and tree cover of regrowing forests.

The recovery rates of AGB and tree cover in regrowing

forests vary across different biomes. In addition, the AGB

of regrowing forest is mainly affected by time since dis-

turbance, surrounding tree cover, etc. and tree cover of

regrowing forest is mainly affected by time since distur-

bance and climatic water deficit, etc. These factors can be

extracted from remotely sensed data, and as such, our

results emphasize the potential of using earth observation

to characterize and monitor the AGB and tree cover of

regrowing forests. Our analysis not only provides baseline

information for understanding how these factors influ-

ence the AGB and tree cover but also reveals the climate

mitigation potential of regrowing forest at the country

scale since understanding the relative importance of dif-

ferent factors on regrowing forest provides information

for estimating the carbon stocks. Additionally, the

observed effects of distance to roads and distance to set-

tlements on the recovery of AGB and tree cover provide

important information for future forest restoration

initiatives.
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