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EDITOR'S NOTE:
This article is part of the special series from the SETAC workshop “Wildlife Risk Assessment in the 21st Century: Integrating

Advancements in Ecology, Toxicology, and Conservation.” The series presents contributions from a multidisciplinary, multi-
stakeholder team providing examples of applications of emerging science focused on improving processes and estimates of
risk for assessments of chemical exposures for terrestrial wildlife. Examples are considered relative to applications within an
expanding risk assessment paradigm where improvements are suggested in decision‐making and bridging various levels of
biological organization.

Abstract
The exposure assessment component of a Wildlife Ecological Risk Assessment aims to estimate the magnitude, frequency,

and duration of exposure to a chemical or environmental contaminant, along with characteristics of the exposed population.
This can be challenging in wildlife as there is often high uncertainty and error caused by broad‐based, interspecific ex-
trapolation and assumptions often because of a lack of data. Both the US Environmental Protection Agency (USEPA) and
European Food Safety Authority (EFSA) have broadly directed exposure assessments to include estimates of the quantity
(dose or concentration), frequency, and duration of exposure to a contaminant of interest while considering “all relevant
factors.” This ambiguity in the inclusion or exclusion of specific factors (e.g., individual and species‐specific biology,
diet, or proportion time in treated or contaminated area) can significantly influence the overall risk characterization. In this
review, we identify four discrete categories of complexity that should be considered in an exposure assessment—chemical,
environmental, organismal, and ecological. These may require more data, but a degree of inclusion at all stages of the risk
assessment is critical to moving beyond screening‐level methods that have a high degree of uncertainty and suffer from
conservatism and a lack of realism. We demonstrate that there are many existing and emerging scientific tools and cross‐
cutting solutions for tackling exposure complexity. To foster greater application of these methods in wildlife exposure
assessments, we present a new framework for risk assessors to construct an “exposure matrix.” Using three case studies, we
illustrate how the matrix can better inform, integrate, and more transparently communicate the important elements of
complexity and realism in exposure assessments for wildlife. Modernizing wildlife exposure assessments is long overdue and
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will require improved collaboration, data sharing, application of standardized exposure scenarios, better communication of
assumptions and uncertainty, and postregulatory tracking. Integr Environ Assess Manag 2023;00:1–25. © 2023 SETAC
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INTRODUCTION
Several authors have noted the lack of environmental

realism in ecological risk assessments (Brühl & Zaller, 2019;
Hill et al., 2000; Hope, 2009). For Wildlife Ecological Risk
Assessment (WERA), data are often lacking, estimates of
wildlife exposure tend to err on the conservative side, there
is an overreliance on point estimates for toxicity reference
values to determine if effect thresholds are met, and there
is a lack of capacity to provide uncertainty metrics resulting
in categorical or otherwise subjective use of hazard quo-
tients. Current WERAs, therefore, have been structured to
initially use simple conservative screening‐level (lower tier)
assessments which, if a hazard is identified, proceed to a
more detailed, higher tier assessment. The use of con-
servatism, including application of arbitrary assessment or
safety factors (10×, 100×), is frequently criticized as un-
scientific (Raimondo & Forbes, 2022), leading to regulatory
and legal challenges. Regulatory, jurisdictional, and re-
source constraints can be a barrier to change (Topping
et al., 2020). Critics for reform of ERA have advocated for a
more integrated and holistic approach such as an “eco-
system reality check” (Burton et al., 2012; Topping et al.,
2020) that aims to better harmonize and communicate
multiple stages of the process throughout the life cycle of
the risk assessment.
Exposure assessments are a critical component of the

wildlife risk assessment process, with the aim of accurately
estimating the quantity (dose or concentration), frequency,
and duration of all exposure sources and pathways and any
potential confounding sources of uncertainty. However, most
prospective (lower tier) risk assessments used for screening
chemicals and sites necessarily rely on vague species‐ and
site‐specific assumptions resulting in high uncertainty about
true exposure conditions. More detailed site‐specific retro-
spective assessments can better fill these gaps in ecotoxico-
logical and environmental interactions but are more data
intensive and are not generalizable. This often means that
relatively few assessments proceed to more refined and re-
alistic assessments (higher tier) when screening‐level assess-
ments indicate potential hazard issues and there is a general
lack of transparency and standardization in decision‐making
for inclusion or exclusion of key factors that drive the exposure
assessment. Overall, there is a considerable lag by regulatory
bodies in incorporating and adapting recent scientific ad-
vances into exposure assessments for wildlife to address these
concerns.
The overall aim of this review is to identify how exposure

assessments for contaminants of environmental concern to
wildlife may be improved and better incorporate the best

available science. To accomplish this aim, our interdiscipli-
nary team of scientists and risk assessment practitioners
collectively (1) identified important shortcomings in current
exposure assessment practices that prioritize simplicity over
realism; (2) critically reviewed and evaluated promising ap-
proaches and solutions to address these shortcomings; (3)
provided a new matrix framework and example case studies
that illustrate better data integration, standardization, and
transparency across tiered exposure assessments; and (4)
provided recommendations for prioritization and modern-
ization of wildlife exposure assessments to incorporate the
latest science.

The simplicity paradox in wildlife exposure assessment

Because of resource and data limitations, most screening‐
level wildlife risk assessments rely on simplistic exposure
scenarios involving one or a few model wildlife receptors to
compare with toxicity point estimate thresholds derived with
standard test species in the laboratory. Such lower tier as-
sessments may, for example, rely on single upper bound
concentrations in food items or other media, and ignore
other exposure pathways, environmental degradation, an-
imal movement, animal metabolism and elimination, and so
on. Although unrealistic, screening‐level exposure assess-
ments can be useful in conservatively estimating upper
bound exposures to wildlife for single chemicals or groups
of chemicals sharing a common mode of action. If such
screening‐level exposure estimates are well below corre-
sponding toxicity thresholds, current guidance suggests no
further assessments are required and chemicals of lowest
concern can be screened out.

In reality, many wildlife species range widely across variable
habitats and are exposed to contaminants via multiple ex-
posure routes (e.g., diet, drinking water, soil and/or sediment,
dermal contact, inhalation; Figure 1). Although diet is gen-
erally assumed to be the major exposure pathway for wildlife,
this assumption has rarely been tested. The relationship be-
tween dietary exposure estimates and internal concentrations
suggests other exposure routes are important, for example,
atmospheric inhalation sources from landfills (Sorais et al.,
2020) and dermal exposure to pesticide sprays (Hernández‐
Jerez et al., 2019; Mineau, 2011). Moreover, assessing and
regulating one chemical at a time often ignores the reality that
wildlife are exposed to dynamic chemical mixtures over their
lifetime and that contaminant concentrations and exposure
conditions vary spatially and temporally across diverse hab-
itats and across an organism's life cycle. The result is over‐ or
underestimation of true exposure.
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The simplistic approach to exposure assessment has do-
minated WERAs and remains attractive for its low cost and
rapid completion. However, if chemicals are inappropriately
screened out at a lower tier, there is no opportunity to revisit
the assessment using more comprehensive and realistic
methods. Given high environmental variation in con-
taminant distribution coupled with large individual and in-
terspecific variation in species' life histories, behavior, diet,
habitats, exposure routes, and community interactions that
underpin natural ecosystems, the use of overly simplistic
approaches is insufficient and often criticized as unscientific.
Wildlife exposure assessments require modernization of the
current approaches that use the best available science along
with qualifiers to transparently communicate the uncertainty
and risk.
In this article, we have identified four major categories

of complexity in wildlife exposure assessments.

• Chemical complexity—Wildlife exposures are rarely lim-
ited to a single parent compound. They are typically
exposed to contaminant mixtures as well as metabolites
and transformation products.

• Environmental complexity—There is a high degree of
spatial and temporal variation in contaminant concen-
trations and environmental conditions across diverse
wildlife habitats and ecosystems.

• Organismal complexity—Estimating external exposure
(e.g., daily dietary dose) does not account for species‐
or stage‐specific differences in the dynamic uptake,
bioaccumulation, biomagnification, biotransformation,
and elimination processes occurring within the individual
organism.

• Ecological complexity—Restricting assessments to a
narrow set of “model” receptor species commonly
overlooks the ecological and functional diversity among
species and their life‐history traits as well as indirect and

community‐level effects (e.g., loss of food or changes in
habitat suitability).

Although not an exhaustive review, these critical issues
must be addressed. Here we present and discuss these four
categories of complexity in wildlife exposure assessments
along with several promising proposals that incorporate the
latest science (Table 1).

CHEMICAL COMPLEXITY

Complex mixtures

Wildlife risk assessments traditionally focus on a single
compound or a narrow chemical group, although organisms
are often exposed to complex mixtures from multiple nat-
ural and anthropogenic compounds, transformation prod-
ucts, and formulated products over their life span (Scholz
et al., 2022; Topping et al., 2020). The co‐occurrence of
multiple compounds in a single source and the co‐exposure
to multiple sources leads to dynamic patterns of exposure to
complex mixtures over time and space. For example, data
on pesticide applications and monitoring of movements of
amphibians, mammals, and birds in an agricultural land-
scape mosaic have revealed sequential exposures to dif-
ferent pesticide‐active ingredients in the course of a year
(Bro et al., 2015; Leeb et al., 2020; Lenhardt et al., 2015;
Mayer et al., 2020). This phenomenon has prompted more
experimental studies that include measuring wildlife re-
sponses to coexposures (e.g., Glinski et al., 2019).
There are no simple or easy solutions available to meet

the challenge of estimating the magnitude of wildlife ex-
posure to mixtures, but several complementary approaches
have emerged. The “exposome” concept, originally devel-
oped in human health research, may be a promising way to
refine exposure assessment to multiple compounds. The
eco‐exposome approach was defined by Scholz et al. (2022)
as an extension of exposure science that “…represents the
totality of internal exposure over a lifetime to individuals
of a given species … including exposure to anthropogenic
chemicals, their biotransformation products, and/or ad-
ducts.” Several of the scientific and technical obstacles to
applying the exposome concept to identify mixture com-
ponents have been overcome by advances in analytical
chemistry.
Sensitive analytical methods to determine the concen-

trations of a broad array of metals and metalloids
have become the norm (e.g., ICP‐MS), and similar methods
are now available for many organic chemicals to measure
multi‐residues and metabolites with high resolution
(e.g., mass spectrometry). Although targeted analytical
chemistry is the approach most used to detect and
quantify a set of predefined compound residues, non-
target analytical screening methods to identify chromato-
graphic peaks from multi‐residues for unknown
compounds and metabolites are rapidly developing
(Scholz et al., 2022). Other advances in methods to extract,
clean up, and concentrate chemicals in wildlife tissue and

Integr Environ Assess Manag 2023:1–25 © 2023 SETACDOI: 10.1002/ieam.4743

FIGURE 1 Contaminant exposure pathways for wildlife. Exposures have
traditionally focused on diet‐based estimates based on rates of uptake (k) and
environmental concentrations (C). However, exposure is known to vary across
individuals, species, and life stages and is driven by multiple pathways from
diet, inhalation, dermal, and ingestion of water, soil, and sediment.
Complementary measurements of internal concentrations are thus essential
to understanding actual exposures and can be confirmed through analysis of
tissue residues.

ADVANCING EXPOSURE ASSESSMENT FOR WILDLIFE—Integr Environ Assess Manag 00, 2023 3
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environmental samples now enable the measurement of
complex biological matrices, low mass or volumes, and
with low detection limits.
Using advances in analytical chemistry, molecular biology,

ecology, computational sciences, and statistics, mixture‐
related tools have been increasingly applied to wildlife. For
instance, the DEBtox approach is a modeling framework
based on the dynamic energy budget theory (Jager et al.,
2010). The EuroMix methodology has been developed to
provide methods and statistical tools (EuroMix toolbox) to
perform mixture‐risk assessment based on dietary exposure
or a combination of dietary and nondietary sources
(Beronius et al., 2020). Advances in assessment of mixture
exposures have benefited from the adverse outcome
pathway (AOP) concept to classify multiple compounds by
mode of action and address toxicity outcomes based on
exposure source. Within the framework of the eco‐
exposome approach, an Aggregate Exposure Pathway
(AEP) is designed to characterize pathways from source to
environmental media as well as external to internal con-
centrations, through linking individual and networks of
AOPs (Scholz et al., 2022).
Surveys of known or suspected environmental releases of

compounds concurrently with modeling can better capture
the patterns of co‐occurrence or sequential occurrence of
compounds, thus allowing the identification of the mixtures
of concern for wildlife exposure. For instance, the occur-
rence and frequency of exposure to multiple compounds
can be characterized when dealing with released pulses of
compounds (dynamics of pulses, features of mixtures in such
pulses, time lapses that separate the pulses). Ultimately,
such approaches can identify scenarios representing dif-
ferent magnitude, frequency, and duration of the exposure
to multiple compounds to predict coexposure, sequential
exposure, or ecological recovery (Weisner et al., 2021).

Chemical properties affecting exposure: Recalcitrance,
lipid and water solubility, protein association

The environmental fate and behavior of contaminants in
wildlife is controlled largely by the chemical properties af-
fecting persistence, bioaccumulation potential, and inherent
ability to partition between air, water, and organic phases
(e.g., soil, sediment, lipid, protein, organic matter, etc.),
often defined by partition coefficients. The current regu-
latory criteria and endpoints used in North America to
classify a substance as bioaccumulative include a log
octanol–water partition coefficient (log KOW)> 5 or a bio-
concentration factor (BCF) or bioaccumulation factor
(BAF)> 5000. This approach is useful for water‐breathing
aquatic organisms but not for air‐breathing organisms (Gobas
et al., 2009). For air breathers, the European Union considers
chemicals to have significant bioaccumulation potential if the
chemical has logKOW> 5 and log octanol–air partition co-
efficient logKOA> 2. Two of the inherent assumptions in the
partition coefficient approach is that bioaccumulation of or-
ganic substances occurs predominantly in the lipids of or-
ganisms and that octanol is a good surrogate phase to
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represent the solubility of chemicals in lipids. Consideration
of chemicals with differing solubilities or sorptive capacities in
lipids and octanol may be better represented by the lipid–
octanol partition coefficient (KLO; Seston et al., 2014). KLO

values of substances often vary with different types of lipids,
specifically neutral (i.e., storage) and polar lipids (i.e., mem-
brane or phospholipids; Seston et al., 2014).
When the lipid content in organisms is low, other organic

matrices may become the main site of chemical bio-
accumulation. Proteins, particularly albumin and structural
proteins, can contribute substantially to the internal ex-
posure and sorptive capacity for the chemical in the or-
ganism (Allendorf et al., 2021). For example, for ionogenic
surfactants (e.g., PFAS), the sorptive capacity of proteins is
much greater than that of lipids and should be assessed
using distribution coefficients (Allendorf et al., 2021). de-
Bruyn and Gobas (2007) found the sorptive capacity of an-
imal protein can range from 1% to 10% that of lipid for a
range of hydrophobic chemicals with a logKOW> 2, but is
substantially greater than 10% for chemicals with a lower log
KOW. For bioaccumulation assessments, a recommended
nonspecific sorptive capacity of proteins for neutral
hydrophobic organic chemicals is 5% that of lipid (deBruyn &
Gobas, 2007). This illustrates the importance of considering
the range of chemical properties (e.g., lipid and water sol-
ubility, protein sorption) and their propensity for tissue ac-
cumulation in exposure assessments.
Assimilation efficiency is a convenient multiplier, often

used for metals and some organic compounds, to adjust
contaminant concentrations based on their relative avail-
ability to an organism reflecting chemical hydrophobicity
and physicochemical properties. For example, assimilation
efficiency of chlorinated organic chemicals in many or-
ganisms often declines with increasing chemical hydro-
phobicity. However, many vertebrates, such as birds and
mammals, express similar degrees of assimilation effi-
ciency of neutral hydrophobic chemicals as they both
possess cytochrome P450 monooxygenases (Drouillard &
Norstrom, 2000). Uptake may also vary with the exposure
route and its duration or in combination with the phys-
icochemical properties of the contaminant. For instance,
absorption of highly volatile chemicals like deca-
methylcyclopentasiloxane (D5) in rats was approximately
10% after oral exposure but less than 3% after inhalation
exposure (Dekant & Klaunig, 2016).
Complex mechanistic models are available that account

for organic contaminant uptake in plants (Hyland et al.,
2015), fish (Arnot & Gobas, 2004), and small mammals
(Armitage & Gobas, 2007) or for entire terrestrial food webs
(Gobas et al., 2015). They can be used subsequently to
estimate bioavailability and internal organic contaminant
concentrations in wildlife. These complex models are often
taxon‐ and location‐specific and may not be widely appli-
cable to contaminants other than commercial organic
chemicals. Thus, variations in food intake and absorption
efficiency via diverse routes of exposure are key parameters
in uptake assessment.

ENVIRONMENTAL COMPLEXITY

Spatial heterogeneity

By design, screening‐level exposure assessments focus on
representative or generic wildlife receptors, address only
worst‐case exposure scenarios, and are limited in ac-
counting for environmental variation and habitat suitability
for the selected receptors. The resulting wildlife exposure
assessment is not designed to provide outputs that can be
used to design appropriate remediation or mitigation
strategies. Historically, assessors have tried to improve ex-
posure assessments using simplistic exposure adjustment
factors or probabilistic approaches to account for variability
in contaminant concentrations and time spent by receptors
on or off contaminated areas. Such improvements require
more intensive characterization of wildlife habitats, their use
by each species, and measures of chemical concentrations
across the site. There are readily available tools that can
improve the realism of wildlife exposure assessment by in-
corporating both habitat use and environmental variation in
exposure calculations. There has been resistance to the use
of spatial models due to regulatory inertia, lack of data and
resources, and a limited history of application (Hope et al.,
2011; Topping et al., 2020). The fact that the models are
only partially validated also hampers regulatory acceptance.
The use of spatially explicit sampling or modeling designs,
biomonitoring, and habitat assessments can greatly improve
the realism of and specificity to the receptors of interest.
Geostatistical tools allow the characterization and prediction
of spatial patterns of environmental contamination to assess
exposure at the site investigation scale and over broader
landscapes (Rate, 2021). Predictions about contaminant fate
and spatial distribution over small and large scales are in-
creasingly becoming a reality (Gassmann, 2021), even where
detailed biomonitoring data are limited, such as pesticide
use in developing countries (Tang et al., 2021).

The traditional single sampling event method has been
improved using systematic and longer‐term monitoring ap-
proaches, often over broad areas and incorporating sam-
pling of multimedia and biota. Monitoring allows the
identification of contaminant spatial spread such as drift and
leaching. Further, field monitoring data are essential to
developing and validating modeling tools. Monitoring of
environmental contamination, such as sources and sinks of
terrestrial or aquatic contamination and presence in wildlife
tissues, further provides data essential to assessing spatial
and temporal variation in wildlife exposure and to identi-
fying areas or habitats of primary concern (Fritsch et al.,
2011, 2012; Marcot et al., 2015). In a recent review of
monitoring of current‐use pesticides in agricultural soils
worldwide over the past five decades (Sabzevari & Hofman,
2022), the resulting integrated data set emphasizes the
value of establishing long‐term monitoring programs that
can better predict fate and accumulation of contaminants in
realistic contexts and at various scales.

Species differ in the way they exploit their local resources
in space and time driven in part by habitat suitability. Areas
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that do not have habitat or where species distributions do
not overlap can be mapped and excluded. The accessibility
to numerical and digital spatial data has greatly improved
due to open‐source databases, software, and numerical
tools. Land cover and land use spatial data that use satellite,
aerial drone, and LiDAR remote sensing imagery are now
widely available and at high resolution (e.g., integrative in-
itiatives such as CORINE land cover monitoring; https://land.
copernicus.eu/pan-european/corine-land-cover). Spatial da-
tabases already exist that can map the degree of overlap
between species ranges and areas where contaminants can
occur (e.g., Environmental Conservation Online System for
threatened and endangered species; https://ecos.fws.gov/
ecp/). Habitat surveys and species range maps are now
widely available to apply habitat suitability indexing tools
(e.g., ArcHSI by Rumble, 2006). At smaller scales, habitat
surveys can also provide time‐series site use by wildlife.
These databases can be used to develop more scientifically
defensible area use factors including probabilistic exposure
adjustment factors, which account for interindividual varia-
bility in time spent foraging in different areas. Although such
simple adjustments may improve exposure estimates in
some cases, they may also misrepresent important species–
habitat–diet interactions or over‐ or underrepresent actual
exposures caused by individual variation in movement pat-
terns as well as patchy local contaminant distributions. Dif-
ferences in habitat selection and spatial habitat use may
significantly affect exposure magnitude. Schipper et al.
(2012) modeled exposure of little owls to cadmium and
found that habitat‐specific occurrences of prey items
strongly influenced exposure patterns. Although the pres-
ence or absence of available habitat is an important first
consideration in determining whether a site confers a risk, a
more refined habitat survey will more efficiently and effec-
tively assess which vulnerable wildlife use a site, the suit-
ability for different species, and where exposures are most
likely to occur. Geographic information systems (GIS) pro-
vide the framework for compiling and analyzing habitat and
contaminant distribution data.
Spatially explicit exposure models integrate higher reso-

lution habitat data with species behaviors (e.g., foraging
area, habitat preferences, ingestion rates, diet). By using
probabilistic methods, such models can apply decision‐
based “movements” to determine exposure at different
time steps as each individual moves around a complex en-
vironment. Ultimately, there is a higher probability of ex-
posure where the habitat is most suitable and these areas
may overlap with the highest chemical concentrations
(Schipper et al., 2012). Moore et al. (2018) used a spatially
explicit, probabilistic random walk model to estimate ex-
posure of individual Kirtland's warblers whose foraging
habitats may be contaminated by downwind spray drift
deposition of malathion and chlorpyrifos (see case study
below). Agent‐based risk assessment modeling tools such
as the Animal, Landscape and Man Simulation System
(ALMaSS; https://projects.au.dk/almass) can better predict
multiple exposures and the spatiotemporal heterogeneity of

landscape use by animals and their interactions with pesti-
cide applications (Mayer et al., 2020; Topping et al., 2020).
Several retrospective risk assessments have demonstrated
the benefits of using detailed habitat data and spatially
explicit chemical data for wide‐ranging wildlife species
(Fritsch et al., 2013; Johnson et al., 2021). Simple to more
complex spatial exposure models can incorporate multiple
scenarios based on the species‐specific and individual var-
iation in diet, trophic position, and foraging ecology.
Whether full, spatially explicit models are applied in ex-
posure assessments or smaller, incremental improvements
are included through habitat‐use assumptions, diet, or for-
aging scenarios, there is strong evidence exposure esti-
mates can be improved by incorporating spatial variability.

Climate change

Climate change is increasingly influencing both the dis-
tribution of environmental contaminants and the distribution
of wildlife populations. Direct and indirect impacts of cli-
mate change are altering phenotypic and ecological attrib-
utes that influence contaminant exposure in wildlife,
particularly in Arctic ecosystems (Borgå et al., 2022;
McKinney et al., 2022). Noyes et al. (2009) identified
changes in exposure and risks from increased levels and
redistribution of persistent organic pollutants (POPs) caused
by alterations in temperature and precipitation patterns, ice
and snow melt, stream runoff, and organic carbon cycling. In
the Arctic, where climate change is occurring faster and with
greater amplitude than elsewhere, there is increased long‐
range transport of contaminants, resulting in elevated ex-
posure at the base of the food web, and increased levels of
biomagnifying contaminants in both resident and migrant
fish and wildlife (Borgå et al., 2022). Ecological shifts in
species distributions, food webs, lipid dynamics, and bio-
transformation rates are also expected under a warming
climate, with unknown cumulative effects on wildlife ex-
posure and accumulation. Range shifts (northward shift of
southern species) can also lead to elevated contaminant
exposure to wildlife, for example, migrating prey fish such as
capelin had higher levels than the Arctic resident polar cod
of both legacy PCBs, DDTs, and emerging contaminants
(Pedro et al., 2017).
Recent development of climate models and access to

high resolution satellite imagery (e.g., Sentinel and Landsat
imagery) and freely available data processing cloud‐based
analytics (e.g., Google Earth Engine; https://earthengine.
google.com/) mean risk assessors can more accurately
identify land use and climate stressors, predict species oc-
currences or distributions, and model the probability of
contaminant release (Beketov & Liess, 2012). For example,
macroscale GIS‐based models have been applied to predict
pesticide use, runoff potential, and fate in Canada's prairie
wetlands that are important wildlife habitats (Malaj et al.,
2020; Malaj & Morrissey, 2022). Macroecotoxicological ap-
proaches suggest promise for predicting the effects of cli-
mate change and for addressing the issues of multiple
stressors from processes that occur at local and large scales.
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Causal analysis frameworks can also identify which combi-
nations of stressors may be driving risk observed in climate
and other stressors (Salatas et al., 2013; Wickwire & Menzie,
2010). Similarly, object‐oriented models or food‐chain
models have been developed to assess the risk of multiple
environmental stressors (e.g., flooding, starvation, pre-
dation, contamination) on terrestrial vertebrate populations
(Baudrot et al., 2018; Loos et al., 2010).

ORGANISMAL COMPLEXITY

External versus internal exposure

Extrapolating between internal concentrations in organ-
isms and external concentrations in environmental media
(i.e., diet, water, soil, or air) requires a mechanistic under-
standing of the relationships between these (Scholz et al.,
2022). When this relationship is understood, simple proxies,
such as chemical or biological measurements, can be de-
veloped to infer internal exposure concentrations when it is
difficult to measure or obtain data directly from wildlife
sampling. Chemicals that disrupt cellular or endocrine
functions only do so once they are absorbed, emphasizing
the importance of internal exposure for interpreting toxicity
(Escher & Hermens, 2004).
Nonlethal or minimally invasive collection methods may

be used as proxies for internal tissue residues in wildlife
matrices such as blood, hair, feathers, feces, muscle or fat bi-
opsies, and eggs. Contaminant concentrations measured in
these matrices are extrapolated to whole body concen-
trations or doses to match the units of available toxicity data
to enable risk predictions. However, because species differ
in physiology, dietary ecology, and reproductive strategies,
conclusions regarding exposure risks vary depending on the
matrix sampled and physicochemical properties of the
contaminant (Thorstensen et al., 2021). Therefore, it is im-
portant to consider multiple proxies of contaminant ex-
posure.
Beyond collecting samples or proxies from wildlife to de-

duce internal concentrations, toxicokinetic (TK) and tox-
icodynamic (TD) models can provide a link between realistic
exposure scenarios and relevant patterns of toxicity effects for
vertebrates and are a promising tool to refine wildlife risk
assessment. Reverse‐dosimetry based on physiologically
based kinetic (PBK) models describe internal kinetics by in-
tegrating various internal processes, such as absorption, dis-
tribution, metabolism, and excretion, also known as ADME
processes (Louisse et al., 2017). This approach is often
chemical‐ and species‐specific and may be data‐demanding,
but meta‐analyses and reviews can help support PBK model
development (Scanes et al., 2022), and user‐friendly interfaces
have been made available (Charles et al., 2022; see https://
mosaic.univ-lyon1.fr/guts). For example, modeled risk sce-
narios of pesticides in birds (e.g., skylark) and mammals (e.g.,
wood mouse) demonstrated the advantage of TK–TD mod-
eling as it not only incorporates information about internal
exposure but also accounts for the biological processes that
influence those internal exposures, such as feeding patterns

and seasonality (Ducrot et al., 2016). Model‐based ap-
proaches also have the advantage of incorporating proba-
bilistic methods to assess uncertainty, variation, and
probability to meet protection goals.

Multiple exposure routes

Beyond dietary exposure, wildlife are exposed to con-
taminants through dermal uptake, drinking water, preening,
and inhalation as well as maternal transfer. These pathways
have been largely overlooked or ignored because of a lack
of data or for the sake of simplicity (Mineau, 2011). Oral
exposure may occur through ingestion of contaminants
deposited on fur or feathers during grooming behaviors.
Eggs and chicks in nests or small mammals that rely on
camouflage may be exposed from pesticide overspray. The
risk of dermal exposure from pesticides has been identified
as an important route to consider for bats, reptiles, and
amphibians, as their biology and ecology make them sus-
ceptible to this exposure route, particularly for amphibians,
which have highly permeable skin (EFSA, 2008; EFSA et al.,
2020). Maternal transfer is also an important source of ex-
posure for offspring as well as an elimination pathway for
the mother with placental transfer of protein‐associated
chemicals and lactational or egg transfer of lipid soluble
chemicals.

Several practical solutions have been developed to eval-
uate potential wildlife risk from alternative routes of exposure.
For example, Mayer et al. (2020) used an agent‐based model
to demonstrate that uptake via oral grooming after overspray
of hares could be sevenfold higher than uptake via foraging.
Maternal transfer has been estimated with mechanistic phys-
iologically based toxicokinetic (PBTK) models (Hickie et al.,
1999; Norstrom et al., 2007). Such scenario‐based simulations
are a promising tool to address exposure pathways beyond
a diet‐only approach. In addition, experimental approaches
that allow multimedia exposure or exposure via spraying (e.g.,
indoor trial or in situ caging) represent another way to assess
exposure pathways beyond the diet (Mineau, 2011). The use
of passive sampling devices and methods can predict and
compare the risk of exposure to wildlife from nondietary
routes. Chemical concentrations collected via passive sam-
pling can be evaluated with environmental fate modeling for
chemical flux or the mass transport rate of the chemical into
wildlife (Fremlin et al., 2021).

Uptake and bioavailability

Given the vast numbers of synthetic chemicals, metals,
and transformation products in the environment, their dif-
ferential availability is key to understanding uptake. Con-
taminant bioavailability is a concept that is defined as “the
fraction of the total concentration that is, or can be made,
available for uptake, accumulation, and induce an effect in
the organism” (Peijnenburg & Jager, 2003). The assessment
of bioavailability depends on the physicochemical charac-
teristics of the contaminant, which are usually referred to as
environmental availability and the biological characteristics
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of the organisms (sometimes referred to as host factors;
Peakall & Burger, 2003).
Several methods have been developed to assess bio-

availability, such as chemical extractions that enable meas-
uring the available fraction of a contaminant in a given
medium; approaches based on equilibrium partitioning,
speciation, or assessment in pore waters; and considering
water, soil, or sediment physicochemical characteristics such
as pH and organic matter content (Baker et al., 2003;
Harmsen, 2007; Peijnenburg & Jager, 2003; V. W. van den
Brink et al., 2010). However, the relevance of such methods
for estimating bioavailability and uptake may be limited for
some wildlife taxa occupying complex environments that
often do not reflect local physicochemical conditions of a
single medium (e.g., diversified diet and trophic food web
accumulation, high mobility and home‐range size, and
patchy spatial distribution of contamination; Fritsch et al.,
2011; P. J. van den Brink, Alexander, et al., 2011; van
Gestel, 2008). Further, the default assumption for WERA is
that the dose ingested by wildlife in natural environments
has the same bioavailability as that in laboratory studies
conducted on laboratory species, although this simplifying
assumption is likely incorrect.
Assessment of contaminant bioavailability in different

environmental matrices and across different species and
food webs is therefore needed to improve the reliability of
exposure predictions (Baker et al., 2003; Peakall & Burger,
2003; Peijnenburg & Jager, 2003; van Gestel, 2008). The
bioaccessible fraction should estimate the maximal pro-
portion of a chemical present in ingested food, water, soil,
or sediment that can be released or made available after
digestion (Peijnenburg & Jager, 2003). Given that the bio-
accessible fraction is related to estimates of uptake, bio-
transformation, compartmentalization, and excretion within
the organisms and is the fraction that interacts with internal
biological targets, it is highly relevant to both exposure and
toxicity assessments.
A promising method involves physiologically based ex-

traction tests (PBET). A physiologically based extraction test
is an in vitro chemical extraction method first designed to
measure the bioavailability of lead‐contaminated mine
wastes in a simulated human gastrointestinal tract (Ruby
et al., 1993). A standard test method to measure the bio-
accessibility of lead and arsenic from soils was developed
(USEPA, 2017c) and is routinely used to provide a site‐
specific adjustment for lead and arsenic for the soil ingestion
pathway in human health risk assessment. Physiologically
based extraction test data are equally valuable in ecological
risk assessments for wildlife. Although a standard method
has not yet been recognized internationally, the basic PBET
methods have been modified to reflect differences in the
gastrointestinal tracts of mammals (Kaufman et al., 2007),
or birds (Beyer et al., 2016; Furman et al., 2006; Kaufman
et al., 2007). PBET data have successfully been used to
measure the bioaccessibility in soil and dietary items to
improve the dose calculations in food‐chain models for
several species including shrews (Bennett et al., 2007;

Moriarty et al., 2012), rabbits (Bennett et al., 2007), mice
(Ollson et al., 2009), quail (Beyer et al., 2016), and bats
(Hernout et al., 2015). The PBET approach better charac-
terize bioavailability and improve food‐chain models, as
demonstrated for metals and organics (Armstrong et al.,
2007; Dean & Ma, 2007), and have even been effective for
estimating bioaccessibility of plants exposed to mine waste
(Brumbaugh et al., 2011). Further development may be re-
quired to adapt the current available methods to
other wildlife exhibiting physiological differences such as
ruminants and hindgut fermenters.

Biotransformation and elimination

In screening‐level risk assessments, chemicals are often
considered recalcitrant to metabolism, thus, elimination
through biotransformation is assumed negligible. This as-
sumption may result in an overestimated accumulation of
chemicals in organisms particularly for rapidly metabolized
chemicals. However, biotransformation may concurrently
produce recalcitrant products that accumulate in the or-
ganism and are more toxic than the parent compound, such
as p,p′‐DDE, which is a transformation product of DDT.
Furthermore, some pesticides require biotransformation to
become active. Differences in available enzyme systems in
species often result in different toxicity profiles. To avoid an
overly conservative estimation of bioaccumulation, bio-
transformation can be included as an elimination pathway in
accumulation assessments through mechanistic models
such as the Bioaccumulation Assessment Tool (BAT; Arnot
et al., 2022) or PBK models. The ability of a species to bi-
otransform a chemical can be determined with in vitro bio-
transformation assays based on methods using hepatocytes
or liver subcellular fractions, which have recently been
standardized for fish (OECD, 2018a, 2018b) and adapted to
wildlife risk assessments (Lee et al., 2012).

Biomagnification and trophic magnification

Bioaccumulation of a chemical is typically assessed using
water‐based metrics, specifically the laboratory‐based BCFs,
which is a ratio between the chemical concentration in an
organism and the ambient water (e.g., OECD, 2012). How-
ever, BCFs do not account for dietary exposure and only re-
flect branchial exposure from water and thus are not
applicable to air‐breathing organisms. Likewise, the BAF,
which is the ratio between the chemical concentration in an
organism and the surrounding media, such as water, sedi-
ment, or soil, can consider both respiratory and dietary ex-
posure, but is only appropriate to aquatic organisms or soil‐
and sediment‐dwelling invertebrates (e.g., OECD, 2008,
2010). Bioaccumulation metrics that consider dietary ex-
posure and are appropriate to both water‐ and air‐breathing
organisms include the biomagnification factor (BMF) and
trophic magnification factor (TMF). BMFs represent a species‐
or organism‐specific ratio between the chemical concen-
tration in the organism and its diet, whereas TMFs represent a
BMF averaged across an entire food web (Borgå et al., 2012).
When determining BMFs and TMFs of organic chemicals, it is
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often important to lipid normalize the chemical concentrations
in the organisms to remove the effect of differences in lipid
content across species and to allow a direct comparison of
concentrations on a common basis (Borgå et al., 2012; Bur-
khard et al., 2012; Fremlin et al., 2020).

ECOLOGICAL COMPLEXITY

Species selection versus trait selection

Exposure assessment has long been dominated by the
selection of single model species and phylogenetic and al-
lometric extrapolation. Several approaches have been used
for species selection including selecting sentinels for a
specific ecosystem, compartment, or trophic level; studying
taxonomic groups related to different trophic levels of the
food web; or using multiple indicator species with con-
trasting biological traits of interest (Badry et al., 2020;
Fremlin et al., 2020; Gómez‐Ramírez et al., 2014). The major
criticism of the model species approach is that it lacks
standardization and fails to account for the observed varia-
bility in exposure and toxicity risk within and among in-
dividuals and species. For example, in birds, there is at least
a 1000‐fold difference in sensitivity to dioxin‐like com-
pounds, although the aryl hydrocarbon (AhR) signaling
pathway is highly conserved among evolutionary lineages
(Farmahin et al., 2013). Extrapolation and generalization of
exposure between phylogenetically related or ecologically
similar species may still lead to oversimplification and
overlooking of important biotic variation in exposure, sen-
sitivity, and interpretation of toxicity risk (Moore et al., 2020).
Receptor species selection should still be based on eco-

logical, morphological, and physiological traits, along with
chemical‐related exposure concerns (Gómez‐Ramírez et al.,
2014). Intraspecies variation should not be ignored and can
be bracketed by estimating upper and lower quartiles within
the population and identifying which traits contribute dis-
proportionately to exposure variance under different sce-
narios. Although community responses have been
embraced in the regulatory world using Species Sensitivity
Distribution approaches to extrapolation of toxicity end-
points (Maltby et al., 2005), there has been little effort to
incorporate the same community approaches to multi-
species assessments when characterizing species vulner-
ability to contaminant exposure.
Systematic understanding of the role of biological traits,

that is, morphometric, ecological, and physiological char-
acters of an individual or species, on intra‐ and interspecies
variability in exposure is critical to better reconstruct and
predict exposure patterns across species and their life his-
tories. There is evidence that much of the variation in spe-
cies sensitivity can be explained more by ecological and
physiological trait characteristics than by phylogenetic re-
latedness (Bianchini & Morrissey, 2020; Hwang et al., 2016).
Similarly, trait‐based ecological risk assessment (TERA) is a
promising avenue to advance wildlife exposure risk assess-
ment as it provides mechanistic and diagnostic under-
standing of causal linkages between intra‐ and interspecific

biotic variation and chemical stress (Spurgeon et al., 2020;
P. J. van den Brink, Rubach, et al., 2011). Variability in
species and individual exposure are influenced by life‐
history traits such as longevity, reproductive strategy and
investment, developmental rates, and maturity; ecological
traits such as dietary, spatial foraging, and movement
ecology; and ecophysiological traits such as thermoreg-
ulatory strategy, body condition, lipid content, and meta-
bolic capacity. Accounting for such biological traits will allow
for better species read‐across of external exposure, intrinsic
risk, and population vulnerability (P. J. van den Brink,
Alexander, et al., 2011).

Adoption of TERA to advance ecological risk assessment
requires published trait data for a wide range of taxonomies
(P. J. van den Brink, Alexander, et al., 2011). There has been
a rapid increase in the development and publication of
open‐access trait databases that cover both ecological and
toxicological traits for a wide range of species (e.g., http://
animaltraits.org; Herberstein et al., 2022). Many distributed
trait data sets have been aggregated and harmonized into
greater collections with a taxonomic or regional focus.
Progress is underway to increase our understanding of trait‐
based responses for wildlife to determine which traits re-
spond to chemical stress, and compare TERA with current
ERA approaches (P. J. van den Brink, Rubach, et al., 2011).

Ecological traits: Trophic position, diet and foraging
ecology

Trophic position, foraging guild, diet composition, and
foraging strategy are major drivers of dietary exposure.
These are neither static nor uniform across species or
populations—reflecting different needs based on the in-
dividual and life stage (growth, breeding, and migration;
Peakall & Burger, 2003). There is large variation in trophic
status among individuals of a population and thus general-
izations by foraging guild may be inaccurate. Previously,
researchers assumed that killer whales (Orcinus orca) in the
North Atlantic only fed on herring and thus occupied a
midtrophic level. However, recent studies demonstrated
that some individuals feed higher in the food web, including
on seabirds and other marine mammals, leading to elevated
exposure to bioaccumulative chemicals (Andvik et al., 2020;
Jourdain et al., 2020; Remili et al., 2021).

Modern analytical approaches are now widely used in
wildlife ecotoxicology studies and risk assessments to
characterize diet and link it to contaminant exposure. For
example, stable isotope analysis (SIA; e.g., δ13C, δ15N, δ34S,
δ2H) is a powerful technique, and stable isotopes are rou-
tinely analyzed with tissue contaminant residues to link in-
dividual diet composition to contaminant sources. The use
of SIA has identified exposure sources in food web bio-
magnification studies across a wide range of wildlife species
in diverse habitats from Arctic seabirds (Renedo et al., 2020)
to Canadian grizzly bears (Christensen et al., 2007) to urban
raccoons (Gaines et al., 2002). Stable isotopes in tissues
reflect diet during the period when the tissue is produced
providing useful quantitative data on trophic level,

Integr Environ Assess Manag 2023:1–25 © 2023 SETACwileyonlinelibrary.com/journal/ieam

10 Integr Environ Assess Manag 00, 2023—MORRISSEY ET AL.

 15513793, 0, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/ieam

.4743 by W
ageningen U

niversity and R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [05/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://animaltraits.org
http://animaltraits.org


food‐chain length, biomagnification potential, and major
exposure pathways particularly for contaminants that readily
bioaccumulate (Borgå et al., 2012; Jardine et al., 2006).
Stable isotope analysis data can be incorporated into food
web models as a powerful tool to estimate trophic linkages,
daily ingested dose for birds, and other wildlife receptors.
They can also account for unexpected exposure patterns
resulting from indirect effects on species at the top (pred-
ators) or bottom of the food web (primary producers and
primary consumers). Other complementary emerging tech-
niques such as environmental DNA (eDNA; ter Schure et al.,
2021) and quantitative fatty acid analysis (Remili et al., 2022)
also show promise in understanding the frequency of spe-
cific items or lipid sources and their relative contribution to
the diet (Ozaki et al., 2019).

Ecological traits: Migration and movement ecology

Many wildlife species undergo short‐ and long‐distance
migration or seasonal movement, most prominently between
breeding and nonbreeding habitats, which complicates ex-
posure assessments. Resident wildlife species are frequently
selected in risk assessment as they are assumed to be a
simplified worst‐case scenario of local site‐level exposure.
However, migratory species may be differentially exposed to
chemicals and experience high concentrations particularly for
hyperphagic migrants when rapidly refueling at stopping
points during migration (Bianchini & Morrissey, 2018; Cola-
buono et al., 2016) or on the breeding and nonbreeding
grounds (Elliott et al., 2007; Lavoie et al., 2014; Pratte et al.,
2020). For example, exposure during bird migration was im-
plicated as the source of elevated contaminant levels in spe-
cies breeding in the Arctic (Baert et al., 2013; Leat et al., 2013)
and the Antarctic regions (Corsolini et al., 2011). Comparisons
between migratory and nonmigratory species (Knutsen &
Varian‐Ramos, 2020; Roscales et al., 2019; Wild et al., 2022) or
partial migrant populations (Morrissey et al., 2004) has further
revealed distinct exposure profiles suggesting that migratory
movements can predict exposure source and intensity.
Open‐source data on migration routes and migration

timing are now widely available for birds (e.g., eBird; https://
ebird.org) that can inform exposure models. Moore et al.
(2018) developed a comprehensive migration model that
simulates exposure of Kirtland's warblers to chlorpyrifos and
malathion during the 12‐ to 23‐day migration between their
breeding area in Michigan and Wisconsin and the Bahamas
using over a century of observations of when, where, and for
how long Kirtland's warblers forage in different habitats
during their migration. The data revealed that most
Kirtland's warblers are not exposed to chlorpyrifos or
malathion during migration, primarily because of the
infrequency of stopping over in treated orchards.
From traditional radio beeper tags to Motus nanotags, light

level loggers, GPS, cellular, solar‐powered satellite tags, and
remote sensing radar data, researchers can now accu-
rately track wildlife to gather detailed information on local
movements and larger scale migrations (Katzner & Arlettaz,
2020; Kays et al., 2015). Tags have become smaller and

lighter allowing for detailed information on the movement
ecology of small animals that can provide more accurate es-
timates of habitat use, home‐range size, contaminant sources,
foraging range, migration timing, and connectivity between
breeding and wintering areas with high levels of precision
(Wilson et al., 2015). GPS sensors or accelerometry functions
enable characterization of complex animal behaviors that can
then be modeled as a function of energy expenditure or re-
sponse to exposure or other disturbances (Elliott et al., 2007).
Monitoring wildlife movements and spatial behavior using
receiver “fence trapping” or telemetry can indicate when an-
imals move in and out of a contaminated area and permit a
more accurate area use factor adjustment to exposure esti-
mates. Some recent studies of amphibians, mammals, and
birds (Bro et al., 2015; Leeb et al., 2020; Lenhardt et al., 2015;
Mayer et al., 2020) have successfully characterized habitat use
and its variation between seasons, providing useful in-
formation on both individual and population‐level exposure to
pesticides across multiple seasons, and identify critical pe-
riods of vulnerability.

Life‐history traits: Demography, longevity, life stage,
and reproductive strategies

Windows of differential exposure can occur during key life
stages—such as during incubation, fasting, migration, and
hibernation when remobilization of chemicals stored in tissues
to the bloodstream occurs (Bustnes et al., 2012; Christensen
et al., 2007). For reproductive females, energetic and nutri-
tional demands can result in a necessary shift in diet to pro-
duce eggs or young which can enhance female exposure to
contaminants as revealed for mercury, PCBs, and organo-
chlorines in populations of American and Eurasian dippers
(Morrissey et al., 2010). Both age and longevity will affect
exposure in periods of potentially elevated levels of con-
taminants (Mauritsson et al., 2022), with chronic exposure and
bioaccumulation resulting in elevated levels with age. The
alteration of body condition of wildlife caused by migration,
breeding, or aging renders necessary consideration of dy-
namic lipid or protein use and metabolism associated with life
stage when addressing exposure to circulating toxicants. Al-
though there are demographic patterns that have been ob-
served across many species, differences between sexes or life
stages caused by depuration or foraging patterns may not
always be predictable as demonstrated in a review of mercury
body burden in birds (Robinson et al., 2012).
Several solutions exist to tackle the issue of differential

exposure over time or during life stage or critical time win-
dows of sensitivity. Surveying individuals over their life span
or by cohort can be done using nonlethal sampling. Trans‐
sectional monitoring studies involving subsampling of sev-
eral life stages within populations are relatively easy to
perform (Scholz et al., 2022; Zemanova, 2020). Longitudinal
time‐trend studies can be achieved using tissues from
growth layers, such as teeth of mammals (Dietz et al., 2021)
or ear plugs for baleen whales (Trumble et al., 2013). Tar-
geted sampling of tissues that have distinct turnover times
can pinpoint timing and location‐specific exposure. For
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example, by knowing the molting and regrowth pattern of
inert feathers or claws of birds, strategic sampling can be
used to represent mercury or other metal exposures at a
specific time in history, for example, after breeding or in
the wintering area (Leat et al., 2013). The application of the
DEBtox modeling approach holds promise to address the
complexity of time‐varying exposure caused by varying en-
ergetic demands (Jager et al., 2010, 2014). Currently,
guidance by OECD and ISO includes this method (OECD,
2006) as a tool to address ecotoxicity data, but oppor-
tunities are available for broader application and model
developments (see https://github.com/add-my-pet).

Morphometric and physiological traits: Body size,
lipid content, and metabolic capacity

Several organismal traits affect exposure and bio-
accumulation through differences in uptake, bio-
transformation, and elimination, for example, body size, lipid
content, body temperature, and metabolism. For example,
metabolism during fasting may result in lowering burdens of
chemicals in organisms; however, this depends on the
metabolic capacity of organisms and chemical properties
(Polischuk et al., 2002). Allometric scaling based on body size
is often used to predict food intake rates, metabolism,
and elimination (Nagy, 2001), although this may be overly
simplistic.
Recently, powerful new global databases have started

to emerge that provide data on relevant organismal traits
(Tobias et al., 2022). AVONET has individual bird measure-
ments for bill, wing, and leg, and mass from 11 000 species
compiled from 90 000 records. Such data provide much more
detailed information on species trophic position, metabolic
capacity, how they move, and how far they travel. Similarly,
the new AnimalTraits database (https://animaltraits.org/)
demonstrates that body mass is a strong predictor of meta-
bolic rate and brain size based on records from almost 2000
species (Herberstein et al., 2022). Combinations of these
morphological traits and inclusion of key species traits such as
temperature, body mass, and lipid content can predict func-
tional characteristics of species, such as their diet, food intake,
metabolism, foraging behavior, and internal body burdens
with much greater accuracy than body mass alone.

CROSS‐CUTTING SOLUTIONS
Although solutions to specific challenges in wildlife ex-

posure assessment have been described above, there are also
cross‐cutting solutions that can address multiple challenges.
We highlight some promising integrative solutions below.

Spatially explicit modeling and explicit scenario‐based
simulations

We have already described above several readily available
GIS tools and models that integrate contaminant and envi-
ronmental variation using spatially explicit exposure assess-
ment (Topping et al., 2020). Agent‐based models are a
powerful tool to simulate exposure and assess risk related to
pesticides at the landscape level, with examples of use on

various taxa such as birds (Johnson et al., 2007; Topping
et al., 2020) and mammals (Dalkvist et al., 2013; Topping
et al., 2016; Topping & Weyman, 2018). Spatially based
models have the capability to not only aid in the assessment
of exposure and risk but also help in designing sampling
plans, evaluation of management alternatives, and scenario
building through the simulation of landscape patterns and
contamination maps (Fritsch et al., 2013; Topping et al.,
2020). Figure 2 presents a comparison of two evaluation
approaches—one a screening approach and the other an
example of integrating contamination heterogeneity with
habitat variation using the Breaking Ecotoxicological Re-
straints in Spatial Planning (BERISP) model (N. W. van den
Brink et al., 2007). The screening approach uses generic food‐
chain models with a single diet item and area use factor of 1.
BERISP modeling captures spatial variability (e.g., spatial for-
aging model, distribution of soil parameters that determine
contaminant availability such as organic matter and pH), land
use considering habitat‐specific preferences for foraging and
habitat‐specific relative abundance, and availability of prey
and functional responses (multiple prey functional response
equation).

Biomonitoring and environmental monitoring

Biomonitoring and environmental monitoring range from
surveys of environmental releases and site‐level con-
tamination to tissue biomonitoring and monitoring of be-
havior and population dynamics. In addition to characterizing
real‐world exposure and spatiotemporal patterns and dy-
namics, monitoring data are critical to validating modeling
tools and identifying unexpected events (Gómez‐Ramírez
et al., 2014). Monitoring data are also used to investigate the
effects of regulation and mitigation actions and are consid-
ered indispensable in postregistration procedures (Ankley
et al., 2021; Vijver et al., 2017).

Long‐term monitoring of contaminants in the environment
or biota has been proven a valuable tool to track temporal
and spatial trends in exposure that are crucial to evaluate
the recovery or resilience of ecosystems (Eeva & Lehikoinen,
2000), changes in bioavailability (Ozaki et al., 2022), or the
effectiveness of regulatory amendments (Bustnes et al.,
2013). Large‐scale monitoring has been applied successfully
even at a global scale (N. W. van den Brink, Bervoets, et al.,
2011) and in identifying threats to wildlife (Hallmann et al.,
2014; Millot et al., 2017). Environmental specimen banks
with standardized sampling and storage of tissue provide
valuable repositories allowing for retrospective analysis of
temporal trends of known and unknown chemicals. Other
biological archives have included nanoparticles in growth
layers of trees (Ballikaya et al., 2022) and mercury in marine
mammal teeth (Dietz et al., 2021).

Careful consideration of the design and planning of sample
collections regarding timing, season, and frequency of sam-
pling can inform a spatially and temporally integrated as-
sessment of exposure to single contaminants or mixtures
(Espín et al., 2016; Scholz et al., 2022). For example, under the
Arctic Monitoring and Assessment Programme (AMAP) for
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POPs and metals (see https://www.amap.no/), biomonitoring
surveys have been conducted regularly to understand the
importance of long‐range transport for exposure in wildlife.
The program has demonstrated that dozens of POPs are
present in environmental matrices and biota, even far from
their site of production, use, and emission. Legacy and
current‐use compounds as well as their metabolites are de-
tectable in wildlife sentinels (Brodeur et al., 2022; Kuzukiran
et al., 2021; Rial‐Berriel et al., 2021).
Long‐term and large‐scale biomonitoring data hold tre-

mendous value and are needed to detect changes in ex-
posure conditions. Investments such as the Long‐Term
Ecological Research network (LTER Network) are an excellent
example of this. Created by the National Science Foundation
in 1980, the LTER aims to understand ecological processes at
individual sites, coupled with integrative studies to reveal
broader patterns that operate at a global scale. The LTER

benefits from interdisciplinary and multidisciplinary research
that “could help unravel the principles and processes of
ecological science, which frequently involves long‐lived spe-
cies, legacy influences, and rare events.” By providing reliable
and accessible scientific information, scientists, risk assessors,
resource managers, and policymakers can more readily detect
environmental contamination and the effects on wildlife over
longer timescales. Other similar initiatives are still emergent in
ecotoxicological sciences, such as AMAP or surveillance
schemes that monitor diseases and contaminants in verte-
brate wildlife (e.g., WILDCOMS in the UK or the SAGIR net-
work in France).

Optimization and improvement of experimental designs
in applied research

By assessing TKs and TDs simultaneously during experi-
ments, controlled designs allow making direct links

Integr Environ Assess Manag 2023:1–25 © 2023 SETACDOI: 10.1002/ieam.4743

FIGURE 2 Maps of contaminant distributions, habitats, and risk in a smelter‐affected area. The first map (A) shows the study area (9× 6 km), soil sampling locations,
and concentrations of cadmium (Cd). The contamination distribution maps were obtained by spatial interpolation statistics using kriging, with total Cd
concentrations in soil on (B) and available Cd concentrations in soil assessed through chemical extraction (CaCl2) on (C). The maps of risk related to Cd
contamination for a predatory bird were estimated using Ecological Soil Screening Levels (ECO‐SSL; USEPA, 2005) for carnivorous birds in (D) and for insectivorous
birds in (E) or using the spatially explicit tool BERISP Decision Support System (BERISP‐DSS; N. W. van den Brink et al., 2007) for the little owl Athene noctua in (F)
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between external exposure, internal exposure, potential for
bioaccumulation and biomagnification, and toxicological re-
sponses of organisms (Glinski et al., 2019; Peakall & Burger,
2003; Scholz et al., 2022). Moreover, the measurement of
bioaccumulation during toxicological experiments would
allow the establishment of critical body residues or toxico-
logical reference values usable in the field for wildlife surveys.
Tritrophic experimental designs in laboratory testing would
allow assessing exposure, bioaccumulation, and transfer in
food webs under more realistic contexts without involving the
multiplication of several dedicated experiments. Running ex-
periments with only one single batch of test animals to
assess different endpoints on accumulation and toxicity is a
way to use a reduced number of individuals promoting the 3R
principles.
There is a need for more mixture and multimedia ex-

periments in wildlife ecotoxicology (Glinski et al., 2019).
Semifield experiments using enclosures have been used to
quantify multimedia exposure under controlled but realistic
conditions (Cusaac et al., 2015, 2017; Vyas et al., 2007). Use
of complex effluents or contaminated soils in laboratory and
field testing provides an opportunity to assess both bio-
availability and uptake of weathered mixtures (Panico et al.,
2022). Multimedia tests using tritrophic designs allow si-
multaneous assessment of direct alternative exposure
routes via respiratory uptake, dermal contact, and dietary
exposure (Z. Wang et al., 2021). Developments of tests
conducted following the recommendation of good prac-
tices, as listed in ARRIVE guidelines, will ensure both quality
and reproducibility of data collection and reporting as well
as accessibility and usability (Ankley et al., 2021).

Use of available and open‐source data

Large amounts of data are being incorporated in unified
databases. For example, the European Food Safety Au-
thority (EFSA) has sponsored open access ecological and
residue databases (Lahr et al., 2018). The databases include
data on diets and foraging behavior of approximately 150
bird and 70 mammal species and residues of approximately
190 pesticides and metabolites in Europe. A parallel data-
base is available in the USA, the Wildlife Scenario Builder
(USEPA, 2013), which contains data on life history (e.g.,
distribution, habitat, diet), physiology (e.g., body weight,
intake requirements for air, water, and food/energy) for 49
North American species of wildlife. The application has
been developed with the aim of “making wildlife exposure
estimates more consistent, transparent and efficient.” Sim-
ilarly, in Canada, ecological risk assessment guidance has
been released by the Federal Contaminated Sites Action
Plan (FCSAP) to enhance the standardization of wildlife re-
ceptor characteristics with detailed information about life
history and diet features for 27 common wildlife receptor
species used in Canadian ERAs (https://www.canada.ca/en/
environment-climate-change/services/federal-contaminated-
sites/publications.html). Other promising initiatives involve
the public release of open‐source ecotoxicological

databases such as the Ecotoxicology Database (ECOTOX
Knowledgebase; USEPA, 2022).

Current open science policies are now routinely promoted
by granting agencies, journals, universities, research in-
stitutions, and governments to increase data accessibility.
Tools to harvest data on the internet have been diversified
and improved in recent decades, with the development of
existing and new platforms. These advances have removed
the common barrier to risk assessors to search and access
repositories containing vast scientific data and metadata.

Chemical activity and fugacity‐based approaches
to exposure and risk assessment

A common issue in exposure and effects risk assessment
is that exposure and toxicity information is expressed in
different quantities with different units. This means that, al-
though there is often a considerable amount of information,
only a small fraction of the available information is in the
right form. Given the current trend toward in vitro toxicity
testing and passive sampling of exposure media, the dis-
connect between the metrics used for exposure and toxicity
characterization will likely further increase.

A practical solution includes the application of the fugacity
or chemical activity approach (Gobas et al., 2018). First de-
veloped by Lewis (1901) and applied to environmental
problems (Mackay, 2001; Mackay & Arnot, 2011; Mackay
et al., 2011), the concept is to express exposure and toxicity
measures in a common metric with a common unit, so
that they can be compared (Gobas et al., 2018). For example,
D5 risk assessment required expressing a wide range of ob-
served concentrations and reported no‐observed‐effect‐
concentrations (NOECs) in various environmental media and
wildlife species in their corresponding fugacities and chemical
activities (Gobas et al., 2015). This resulted in probability
distributions of the chemical activities, which corresponded to
the concentrations of D5 in environmental media and NOECs
for D5 in wildlife species. The extent of risk could be sub-
sequently estimated by the overlap between the probability
distributions for exposure and NOEC. A key finding was that
chemical activities corresponding to the NOECs from toxicity
tests were typically greater than 1, indicating that concen-
trations of the substance in toxicity test media (i.e., water,
sediments, and soil) were above the solubilities, which cannot
normally occur in the environment. Therefore, chemical ac-
tivities of D5 in a range of wildlife species were orders of
magnitude lower than the corresponding NOECs.

There are also several examples of the application of a
chemical activity and fugacity‐based analysis for determining
whether chemical substances can biomagnify in food chains
(Connolly & Pedersen, 1988; Fremlin et al., 2021; Kelly &
Gobas, 2001; Mackintosh et al., 2004). A statistically positive
relationship between the chemical activity or fugacity of the
substance within organisms and their relative trophic posi-
tions indicates biomagnification occurs. Burkhard et al. (2012)
confirmed the fugacity approach successfully predicted bio-
accumulation or biodilution of 15 nonionic organic chemicals
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using 2393 measured data points from 171 reports and is
therefore useful for predicting bioaccumulation.
This thermodynamic‐based fugacity relationship is pre-

ferred over an increase in the wet weight concentrations of
the substance in organisms because organisms often differ
in their biochemical composition (e.g., lipid content and
body temperature) making it difficult to compare concen-
trations between organisms. Fremlin et al. (2021) found that
TMFs in a terrestrial food web based on total lipid‐
normalized concentrations were lower than fugacity‐based
TMFs primarily because of differences in body temperature
between endothermic and poikilothermic organisms in the
food web. Although lipid‐normalized concentrations are
often used to overcome some of these challenges, both
lipid content and temperature are better captured in the
chemical activity or fugacity‐based analysis approach.

Uncertainty estimation

Uncertainty analyses are infrequently conducted in regu-
latory wildlife exposure assessments despite the known
uncertainty and the readily available quantitative methods.
Deterministic estimates of exposure and risk require a
comprehensive description of sources of uncertainty and, in
higher tier assessments, quantifying the uncertainty to the
extent possible. Presented with a risk quotient of 2.37,
which clearly exceeds 1, a risk manager might make a dif-
ferent decision if the quotient was biased by numerous
conservative assumptions requiring further data collection
and analysis than if the quotient was estimated to be the
50th percentile of the risk quotient distribution that may be
justification for implementing risk mitigation measures.
There are two fundamental types of uncertainty that should

be communicated, epistemic and linguistic (Regan, Colyvan,
et al., 2002; Regan, Hope, et al., 2002; Sahlin et al., 2021).
Epistemic uncertainty is most widely understood and ad-
dresses variation from experimental or model simulation and
includes measurement error, systemic error, natural variation,
inherent stochasticity, model error, and subjective judgment.
In contrast, linguistic uncertainty is less often explicitly de-
scribed and evaluated in wildlife risk assessment but includes
numeric vagueness, context dependence, and ambiguity
(Regan, Colyvan, et al., 2002; Regan, Hope, et al., 2002).
Quantification of uncertainty can range from a simple

cataloging of uncertainty sources in an exposure assessment
to semiquantitative or fully quantitative methods. A properly
conducted exposure and risk analysis results in both a
quantitative and qualitative set of information from which
the severity, validity, robustness, and usefulness of the ex-
posure and risk estimates can be judged (National Research
Council, 2009). There are many approaches to quantitative
uncertainty analysis, and the choice of which method to use
depends on a variety of factors including data availability,
intended use, and preferences of the analyst, risk manager,
and stakeholders. In data‐rich situations, first‐order Monte
Carlo analysis is typically the method of choice (e.g., Luo
et al., 2011; Moore et al., 2016; B. Wang et al., 2009). Where
incertitude is prevalent because of limited data, second‐

order methods that separate variability and incertitude (e.g.,
second‐order Monte Carlo analysis, probability bounds
analysis) can be used to determine the potential influence
that the incertitude may have on estimated risks (Ferson
et al., 2004; Moore et al., 2010, 2016). Bayesian methods
may be used for a wide variety of data‐rich and data‐poor
situations. Such methods encompass a wide variety of un-
certainty analysis techniques (Warren‐Hicks & Hart, 2010). In
recent years, Bayesian networks have been used in wildlife
risk assessments, particularly those involving multiple stres-
sors (Moe et al., 2021). One important advancement in ad-
dressing uncertainties in ecology and ecotoxicology in
recent years has been multimodel inference and model
averaging. The use of Akaike's Information Criterion allows
one to compare and rank competing models to better es-
timate the true relationship between two or more variables
without needing to nullify any single hypothesis (Burnham &
Anderson, 2002).
To achieve the routine use of uncertainty analysis in wildlife

risk assessment in the future, particularly in regulatory set-
tings, the limitations of point estimates and a movement away
from simple hazard quotients must be emphasized. This re-
quires a shift in regulatory practices, training and professional
development programs, and development of appropriate
guidance for standardization of practice. Agencies need to
develop decision criteria and specific guidelines to help risk
managers and stakeholders know how to proceed given the
outputs of an uncertainty analysis. With deterministic risk es-
timates, agencies are given clear decision criteria (e.g., no
action when risk quotients are less than 1). Such decision
criteria are also needed for probabilistic outputs for both the
exposure and effects components to mainstream im-
plementation of risk curves (Moore et al., 2014).

Reducing animal use

Many of the methods applied in wildlife risk assessment
today rely on invasive or destructive methods on live ani-
mals. At the same time, animal use in research is becoming
less and less accepted because of ethical considerations.
Thus, various jurisdictions that mandate chemical safety as-
sessments, such as the US Toxic Substance Control Act (with
amendments) and the European Registration, Evaluation,
Authorization and Restriction of Chemicals (REACH) regu-
lation, have encouraged the use of alternatives to animal
experiments (Taylor, 2018).
The concept of New Approach Methodologies (NAMs) has

emerged as a catch‐all for any nonlive‐animal‐based ap-
proaches that can provide information in support of chemical
hazard and risk assessment. Emerging NAMs include in silico,
in chemico, and in vitro methods to fill existing information
gaps (e.g., Arck, 2019). Several approaches falling into these
categories have been outlined and recommended above,
such as improved prediction and read‐across tools, passive
sampling, and other minimally invasive approaches, as well as
in vitro biotransformation assays in combination with in silico
extrapolation models. Recent attention to and improvements
in analytical chemistry allow for exposure characterization

Integr Environ Assess Manag 2023:1–25 © 2023 SETACDOI: 10.1002/ieam.4743
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through non‐ (or less) invasive or nondestructive sampling
through analysis of body fluids, fat biopsies, feces, and hair or
feathers, and through the best use of toxicovigilance net-
works (Espín et al., 2016; Zemanova, 2020). Environmental
passive sampling techniques have emerged and largely de-
veloped within the past decade, providing useful tools that
are applicable to risk assessment based on contamination in
air, soil, or water (Lévy et al., 2020; Li et al., 2019; Taylor et al.,
2021). Coupled with multiresidue target and nontarget
screenings of contaminants, integrated passive samplers
represent an option to address multimedia and multi-
compound external exposures for wildlife, even without
sampling any animals and can be more easily deployed and
retrieved at sites of interest.

MATRIX EXPOSURE MODEL: FRAMEWORK FOR
IMPROVING WILDLIFE EXPOSURE ASSESSMENT
To advance exposure assessment for wildlife, we recom-

mend that risk assessors move away from reliance on
screening‐level assessments that are overly simplistic, con-
servatively biased, and lack ecological relevance and more
transparently adopt a system that documents what factors
were included at each stage. Key to understanding true
exposure means inclusion of the many chemical, environ-
mental, organismal, and ecological factors (Table 2). With
the advent of new tools in recent decades such as those

discussed in the preceding sections, many of the factors
listed in Table 2 can be readily incorporated into screening
exposure assessments for wildlife from the outset and iter-
atively populated throughout the risk assessment life cycle
as data become available. In general, the more factors from
each of the four categories from Table 2 that are included in
a wildlife exposure assessment, the more realistic the re-
sulting wildlife exposure assessments will be and the greater
confidence in the conclusions. In some cases, it may not be
necessary or relevant to incorporate all factors (e.g., bio-
accumulation potential need not be considered for lip-
ophobic chemicals that are rapidly metabolized), but the
inclusion or exclusion and provision of a rationale can
greatly increase transparency.

Application of the exposure assessment matrix:
Three case studies

To illustrate how to use the matrix in Table 2, we present
three diverse risk assessment case studies that have been
comprehensively completed for wildlife involving a
pesticide, PCB mixture, and a metal across varying
scales of contamination from local (wetlands) to con-
tinental (migration range in the USA) to transboundary
(Arctic). Each case study provides an example of how to
apply the matrix approach and demonstrates the value of
including and transparently communicating the multiple
components of complexity and realism in an exposure
assessment. Although these completed multiyear cases
exhibit a high level of detail, the matrix approach can be
adopted from the outset for even small and data‐deficient
exposure assessments to encourage, where possible, in-
clusion of factors in each of the four categories and pro-
vide greater visibility on the degree of confidence in the
assessment's depth and weight of evidence when forming
conclusions.

Case Study 1: Insecticides and Kirtland's warblers. The first
case study involved an assessment of exposure of Kirt-
land's warbler (Setophaga kirtlandii) to the organo-
phosphate insecticides chlorpyrifos and malathion. Until
recently delisted because of recovery and development of
a long‐term management plan, the Kirtland's warbler was
an endangered migratory species in the USA. Kirtland's
warblers nest exclusively in young jack pine stands in the
Upper Peninsula of Michigan and nearby Wisconsin, and
winter in the Bahamas in similar habitats. The USEPA
(2017a, 2017b) conducted probabilistic risk analyses for 13
listed bird species exposed to flowable chlorpyrifos and
malathion, including the Kirtland's warbler. The USEPA
analyses, however, did not incorporate chemical‐specific
monitoring data for these pesticides, species‐specific for-
aging behavior, and proximity of warbler territories to
pesticide use sites. The USEPA (2017a, 2017b) estimated
exposure during the breeding season but not during mi-
gration. Therefore, Moore et al. (2018) developed proba-
bilistic, species‐specific exposure and risk models to assess
risks of the organophosphates to Kirtland's warblers during

Integr Environ Assess Manag 2023:1–25 © 2023 SETACwileyonlinelibrary.com/journal/ieam

TABLE 2 A matrix checklist for improving wildlife exposure
assessment

1. Chemical
□ Sources (past, present,

and future)
□ Parent compounds
□ Metabolites
□ Mixtures
□ Persistence
□ Environmental

partitioning and transport
□ Dissipation and

degradation pathways
□ Bioaccumulation

potential

2. Environmental
□ Types of habitats
□ Spatial extent of habitats
□ Connectivity of habitats
□ Temporal variation in

chemical concentrations
□ Spatial variation in

chemical concentrations
□ Environmental conditions
□ Climate change
□ Other stressors

4. Ecological
□ Diet
□ Foraging behavior and

range
□ Habitat and area use
□ Prey availability
□ Seasonal phenology
□ Migration and movement
□ Demography and

reproductive strategy
□ Trophic position
□ Species interactions
□ Environmental

interactions

3. Organismal
□ Exposure routes
□ Uptake and

bioavailability
□ Biotransformation
□ Internal distribution
□ Whole body and tissue

concentrations
□ Elimination
□ Internal interactions with

other chemicals
□ Life stage

Note: As wildlife exposure assessments proceed from screening level to more
refined tiers, additional factors from each of the four categories of complexity
(chemical, environmental, organismal, ecological) should be considered and
described.
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the full life cycle (breeding and migration). The breeding
area model quantitatively incorporated species‐specific
foraging behavior, proximity of breeding territories to
treated areas, and pesticide‐specific data on prey con-
centrations. Similarly, the migration model took advantage
of over a century of observations of when, where, and for
how long Kirtland's warblers forage in different habitats
during migration. The models found that chlorpyrifos and
malathion pose negligible risk to Kirtland's warblers because
of limited exposure. Figure 3A summarizes the exposure
factors in the four assessment categories that were in-
corporated in the Kirtland's warbler assessment, either qual-
itatively or quantitatively, and those that were not. Although
the Moore et al. (2018) assessment did not ultimately affect
decision‐making with regard to chlorpyrifos andmalathion use
in the species range, this was because the Kirtland's warbler
was delisted before completion of the national endangered
species assessments for these pesticides and not from an in-
herent flaw in design or implementation.

Case Study 2: PCBs in Arctic wildlife. In the second case
study, a 2010 assessment investigated exposure of Arctic
marine wildlife to PCBs. Although regulated for more than
40 years regionally and on the Stockholm Convention list
since 2004, Arctic wildlife are still exposed to PCBs, pre-
dominantly through their diet because of their high KOW and
lipid solubility. Wildlife occupy high trophic levels and are at
risk of accumulating high levels of recalcitrant lipid soluble
PCBs. The risk assessment of Arctic wildlife is a moving target
and has been through several phases, from the mere as-
sessment of the presence of PCBs and comparison with
wildlife threshold values for effects (AMAP, 1998, 2004), to
more detailed studies of biomarker endpoints of exposure
and effects correlating with tissue residue levels of PCBs
(AMAP, 2009, 2018; Dietz et al., 2019; Letcher et al., 2010).
These assessments reviewed ongoing Arctic monitoring
campaigns across species, regions, habitats, and chemicals

within the POPs and chemicals of emerging concern
(AMAP, 2018).
The assessment concluded that the glaucous gull (Larus

hyperboreus) and polar bear (Ursus maritimus) were at risk
due to high accumulation of PCBs combined with rapid cli-
mate change effects, especially in the East Greenland and
Svalbard region (Letcher et al., 2010). This is a region of ele-
vated PCB levels in the wildlife populations that is also under
the pressure of other stressors, such as climate change, in-
creased human activity, shipping, and petroleum activity. The
true effects of POPs such as PCBs in Arctic wildlife must be
interpreted in the context of other stressors (both anthro-
pogenic and natural, environmental, ecological, and physio-
logical). Of the species at highest risk, little is known of the
Svalbard glaucous gull population, but the local colonies at
the islands Hopen and Bjørnøya have been declining since
1986 (www.npolar.no). The polar bear population on Svalbard
has recovered since hunting was banned in 1973; however,
the overall population development under the current chal-
lenges with pollution, climate change, and increased activity is
not known. Figure 3B summarizes the factors that were ad-
dressed fully or partially that contributed to the Arctic wildlife
POPs (PCB) exposure assessment.

Case Study 3: Selenium in waterbirds from the Great Salt
Lake wetlands. Releases of metals from mining operations
in the Great Salt Lake (GSL) Valley in Utah over the past
150 years have resulted in metal accumulation in a wetland
complex along the south shore of the GSL. The GSL is a
major flyway and stopover for millions of birds including
waterfowl and especially shorebirds (American avocets,
black‐necked stilts, snowy plovers, grebes, etc.). The po-
tential for metals to affect birds along the south shore of the
GSL was investigated as part of a remedial investigation and
feasibility study for the Kennecott Mining Corporation. A
preliminary investigation was performed across the entire
mining area and the results identified arsenic, lead, zinc, and

Integr Environ Assess Manag 2023:1–25 © 2023 SETACDOI: 10.1002/ieam.4743

FIGURE 3 Three case studies illustrating application of the matrix approach to assessing and communicating exposure risk factors for different wildlife: (A)
chlorpyrifos and malathion to the Kirtland's warbler (Moore et al., 2018), (B) PCBs in the Arctic glaucous gulls and polar bears (AMAP, 2009; Letcher et al., 2010),
and (C) selenium in waterbird species nesting in Great Salt Lake wetlands (Parametrix, 2000). The matrix shows which exposure factors were included (light),
partially included (orange), or missing (red) in the wildlife exposure assessment case
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especially selenium (Se) as a key focus for further study in
the wetlands. Interactions with stakeholders identified
charismatic shorebirds as the receptor of interest for addi-
tional assessment.
The detailed assessment focused on monitoring of water,

macroinvertebrates, and bird eggs for selenium, and less for
other metals (Parametrix, 2000). For birds, fish, and am-
phibians, the target receptor is the avian embryo as sele-
nium is incorporated in amino acids with sulfur (e.g.,
selenomethionine, selenocysteine) within eggs. Surveys of
macroinvertebrates (bird diet) and bird populations were
conducted, and selenium concentrations were measured. A
diet‐to‐bird‐egg trophic transfer model built from the re-
gional study data was applied to these site‐specific macro-
invertebrate Se concentrations to predict spatially variable
egg Se concentrations at the site. Probability distribution
functions for shorebird exposures were then derived based
on nest location data and limited site‐specific egg Se data to
calibrate the predicted distribution of egg Se concen-
trations. Concentration–response relationships for both
embryo teratogenesis and cumulative mortality (i.e., egg
fertilization through posthatch) were developed and in-
tegrated with the spatially explicit exposure estimates to
provide population risk estimates. Se‐induced teratogenic
risks to stilt embryos ranged from approximately 3% to 11%
depending on the concentration–response relationship
used and was 0.3% for avocet embryos. In addition, the
assessment concluded that 13% and 3% of stilt and avocet
eggs, respectively, would either fail to hatch or result in
hatchling mortality in an area of 1100 acres where maximum
exposure occurred. Figure 3C summarizes the factors used
in the exposure assessment that contributed to the decision
to require remediation.

CONCLUSIONS AND RECOMMENDATIONS
There is a long‐standing disconnect between the dis-

ciplines of ecological risk assessment and wildlife ecotox-
icology that has severely hindered progress in the field and
led to oversimplification of exposure assessments for wild-
life. This paradox of simplification, despite known chemical,
environmental, organismal, and ecological complexity, has
led to a common criticism of over‐ or underestimating
wildlife risk. Greater standardization of exposure assessment
methods and integration of the best available science and
approaches described above can address this complexity
more accurately and capture variability and realism asso-
ciated with wildlife exposure—the goal for wildlife con-
servation and environmental protection. Although this
article cannot fully review the ever‐growing literature on
wildlife exposure for various taxa and contaminants, we
identified the major challenges in wildlife exposure assess-
ment and provided available solutions to improve, rather
than overhaul, wildlife risk assessments, which are largely
under restrictive jurisdictional control. By introducing a new
framework using the exposure assessment matrix, our aim is
to encourage risk assessors to consider four discrete ele-
ments of complexity—the chemical, environmental,

organismal, and ecological realities—and more explicitly,
incorporate and communicate these in wildlife exposure
assessments.

There are four general recommendations that our team
believes need to be prioritized to further modernize and
transform the field.

1. Improve data acquisition, accessibility, and collaboration
among scientists and risk assessors. Scientists working
with wildlife and environmental contaminants of concern
need to make their field‐collected data more accessible
to risk assessors through open‐source data repositories
and public databases, particularly raw contaminant field
data and trait data that capture region‐ and species‐
specific variation in individual morphological traits, diets,
foraging patterns, body masses, population demo-
graphics, and movement patterns. There must also be
greater consideration and cross‐institutional collabo-
ration to flag both the common and specific data gaps in
exposure assessments (e.g., improve and validate food
intake rates across species using equation‐based allo-
metric scaling).

2. Move from a tier‐based to standardized scenario‐based
assessment framework. Given the challenges of cap-
turing all possible real‐world variation in exposure and
the well‐identified problems of reliance on conservative
screening‐level assessments, the tier‐based system has
proven limited. An upfront system that better charac-
terizes a standardized set of commonly accepted real‐
world scenarios may offer a better balance between re-
alism and practicality. The screening‐level WERA is, by
design, built as a nonstandardized conservative worst‐
case scenario. We propose to move toward establishing
a series of increasingly ecologically relevant scenarios
that include the four matrix categories of complexity—
chemical, environmental, organismal, and ecological.
Through development and adoption of standard ex-
posure assessment scenarios, risk assessors can param-
eterize and characterize a set of real‐word exposures
based on standardized receptor species at key life
stages, habitats, and environmental conditions. Using
such an approach, wildlife exposure and risk could be
identified earlier, and each scenario could be further
used to both identify what information is missing and
provide clear lines of evidence of mitigation and research
needs along the way. The benefit of such a design also
lies in the possibility to implement more consistent, re-
liable, transparent, and less resource‐demanding risk
communication to stakeholders.

3. Quantify variation, provide transparency in assumptions,
and communicate the uncertainty. Throughout this re-
view, we have identified that many exposure estimates
are inappropriately communicated as absolute, fixed,
and certain. Equally, there is inconsistency in the treat-
ment of identified risk based on overly conservative
worst‐case scenarios. We recommend inclusion of details
about how specific exposure parameters affect the risk

Integr Environ Assess Manag 2023:1–25 © 2023 SETACwileyonlinelibrary.com/journal/ieam
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outcomes by explicitly measuring and disclosing un-
certainty estimates (both epistemic and linguistic). This
will demonstrate the effect of assumptions on the overall
exposure estimates more transparently. It also opens the
door to embracing conditional probability statistics (e.g.,
Bayesian approaches) that better reveal the confidence
and likelihood of calculated exposure estimates.

4. Track postregulatory signals for unexpected exposure
events and population trends. After screening‐level or
higher tier assessments, there is still a need to monitor
environmental conditions and wildlife populations for
temporal and spatial trends that may signal that con-
taminant exposure duration, magnitude, and/or sources
were missed. An established process for postregulatory
surveys and biomonitoring programs may aid in de-
termining the effectiveness and accuracy of the overall
risk assessment, while also informing management
practices and mitigation strategies to conserve wildlife.
This will promote an adaptive learning loop to improve
future exposure assessments and species conservation.
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