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Abstract  
Plant cell walls of Poaceae and eudicots differ substantially, both in the content and composition of their components. 
However, the genomic and genetic basis underlying these differences is not fully resolved. In this research, we analyzed multiple 
genomic properties of 150 cell wall gene families across 169 angiosperm genomes. The properties analyzed include gene pres-
ence/absence, copy number, synteny, occurrence of tandem gene clusters, and phylogenetic gene diversity. Results revealed a 
profound genomic differentiation of cell wall genes between Poaceae and eudicots, often associated with the cell wall diversity 
between these plant groups. For example, overall patterns of gene copy number variation and synteny were clearly divergent 
between Poaceae and eudicot species. Moreover, differential Poaceae–eudicot copy number and genomic contexts were ob-
served for all the genes within the BEL1-like HOMEODOMAIN 6 regulatory pathway, which respectively induces and represses 
secondary cell wall synthesis in Poaceae and eudicots. Similarly, divergent synteny, copy number, and phylogenetic gene diver-
sification were observed for the major biosynthetic genes of xyloglucans, mannans, and xylans, potentially contributing to the 
differences in content and types of hemicellulosic polysaccharides differences in Poaceae and eudicot cell walls. Additionally, 
the Poaceae-specific tandem clusters and/or higher copy number of PHENYLALANINE AMMONIA-LYASE, CAFFEIC ACID O- 
METHYLTRANSFERASE, or PEROXIDASE genes may underly the higher content and larger variety of phenylpropanoid com-
pounds observed in Poaceae cell walls. All these patterns are discussed in detail in this study, along with their evolutionary 
and biological relevance for cell wall (genomic) diversification between Poaceae and eudicots. 

Introduction 
All plant cells are surrounded by a cell wall, which mechan-
ically supports plant growth and mediates plant–environ-
ment interactions (Somerville et al. 2004). The general 
plant cell wall architecture is conserved across angiosperms. 
Typically, primary cell walls are formed during plant cell ex-
pansion and are composed of cellulose, different hemicellu-
losic polysaccharides, pectins, and structural proteins 
(Somerville et al. 2004; Sarkar et al. 2009). When cell growth 
ceases, secondary cell walls can be synthesized, in which 

pectins are absent or present at very low levels, while lignin 
is a major component (Zhong et al. 2019). 

Despite the general cell wall patterns, extensive cell wall 
compositional and structural variation exists between plant 
taxa (Vogel 2008; Sarkar et al. 2009). A major differentiation 
is between type I cell walls, which are specific to eudicots and 
noncommelinoid monocots, and type II cell walls, which are 
found in grasses (Poaceae) (Vogel 2008). Type I cell walls con-
tain xyloglucan (XyG) as the major hemicellulose, along with 
relatively large amounts of (gluco)mannans. Moreover, they 
display large quantities of pectins and structural proteins 
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(Vogel 2008; Penning et al. 2019), while the total amount of 
phenylpropanoids in type I (secondary) cell walls is typically 
lower than that in the type II ones (Vogel 2008; Guerriero 
et al. 2016). Conversely, type II cell walls contain xylans as 
the major hemicellulose, while XyGs and (gluco)mannans 
are only found in trace amounts. Additionally, type II cell 
walls contain large quantities of (1,3; 1,4)-β-glucans (also 
termed mixed linkage glucans—MLGs), a hemicellulose poly-
saccharide mainly restricted to grasses (Fincher and Stone 
1986; Vogel 2008). Regarding nonhemicellulosic polysacchar-
ides, type II cell walls contain much lower amounts of pectins 
and structural proteins than type I cell walls (Vogel 2008;  
Penning et al. 2019). Finally, the total content of phenylpro-
panoid compounds of type II (secondary) cell walls is usually 
higher than that of type I cell walls (Vogel 2008; Guerriero 
et al. 2016). These phenylpropanoid molecules include lignin, 
ferulic acid, p-coumaric acid, and tricin, which overall provide 
rigidity and mechanical strength to cell walls, cross-link cell 
wall polysaccharides, and mediate plant defense to (a)biotic 
stresses (Ralph 2010; De Oliveira et al. 2015; Hatfield et al. 
2017; Chandrakanth et al. 2023). 

The differences between type I and type II cell walls are not 
absolute, and cell wall compositional variation exists within 
both Poaceae and eudicots (Vogel 2008; Burton and 
Fincher 2014). Nevertheless, type I and type II cell walls re-
present established valuable models to describe the marked 
differentiation of cell walls observed between these plant 
groups (Carpita and Gibeaut 1993; Vogel 2008; Carpita and 
McCann 2020). This aspect, along with the agricultural rele-
vance of Poaceae species and the importance of cell wall 
composition for the industrial utilization of plant biomass, 
makes the understanding of the genetics underlying type I 
and type II cell wall differences a valuable research target 
(Burton and Fincher 2012; Pancaldi and Trindade 2020). 
This latter aspect is however far from being resolved. For 
MLGs, it was possible to associate their mostly 
Poaceae-specific occurrence with the grass-specific presence 
of Cellulose synthase-like F (CslF) genes (Burton et al. 2006). 
Notwithstanding, the complexity of cell wall biosynthesis, 
which relies on a multitude of genes with pleiotropic effects, 
hampers the elucidation of the genetic basis of type I and 
type II cell wall differentiation (Burton and Fincher 2012;  
Yokoyama 2020). In this context, Penning et al. (2019) ana-
lyzed the occurrence of different carbohydrate-active en-
zymes in the genomes of Arabidopsis (Arabidopsis 
thaliana), maize (Zea mays), and rice (Oryza sativa), showing 
their ubiquitous presence in all the genomes, irrespectively of 
the species’ cell wall type. This result indicates that, with few 
exceptions such as CslF, gene presence–absence variation is 
not sufficient to explain type I and type II cell wall differenti-
ation (Penning et al. 2019). Other researchers studied the 
regulatory differences between Poaceae and eudicot cell 
walls, showing that the cell wall regulatory machinery is over-
all conserved across these clades, even if few but relevant dif-
ferences were observed [see Rao and Dixon (2018) for a 
review on this topic]. For example, the master transcription 

factor BEL1-like HOMEODOMAIN 6 (BLH6) has opposite func-
tion in eudicots and Poaceae, by repressing and inducing sec-
ondary cell wall deposition, respectively (Hirano et al. 2013;  
Liu et al. 2014; Rao and Dixon 2018). This observation high-
lights the importance of comparative genetic research to 
understand the cell wall differentiation between Poaceae 
and eudicots. However, these types of studies are scarce, 
and the question of what is the genetic–evolutionary basis 
of type I and type II cell walls is currently largely unresolved 
(Yokoyama 2020). 

In this research, the study of the genetics underlying type I 
and type II cell walls was tackled from the perspective of the 
genomic properties of cell wall genes across Poaceae and eu-
dicots. This was performed by analyzing patterns of gene 
copy number, synteny, tandem gene clusters, and phylogen-
etic relatedness of 150 different cell wall gene families across 
169 angiosperm genomes representing plant cell wall diver-
sity. This approach is on purpose large-scale and 
genomic-oriented, since recent research showed that such 
methodologies are very powerful to investigate complex gen-
etic patterns at the basis of plant diversity (Zhao et al. 2017;  
Kerstens et al. 2020). To conclude, the data produced were 
on purpose analyzed in comparisons between grasses and eu-
dicots, as they are the taxonomic groups representing type I– 
type II cell wall differences. 

Results 
Extensive copy number variation within the cell wall 
gene families of Poaceae and eudicots cell walls 
Gene copy number was quantified across the 150 target cell 
wall gene families in each of the 169 angiosperm genomes 
(Supplemental Tables S1 and S2 list the genes and genomes 
used). The data obtained were plotted onto a heatmap 
(Fig. 1A) and analyzed by principal component analysis 
(PCA; Figs. 1, B and C). Results revealed extensive copy num-
ber variation (CNV), across both gene families and plant spe-
cies. Specifically, CNV between gene families ranged from 
singleton families in the majority of the species surveyed 
(e.g. the master transcription factor EARLY2 FACTOR c, 
E2Fc; KATANIN genes involved in xylem development, KTN; 
or the homologs of Arabidopsis ALTERED XYLOGLUCAN 9, 
AXY9) to families containing 100+ gene copies per genome 
on average (e.g. peroxidases, PRX; polygalacturonases, PG; 
and pectin esterases, PE) (Fig. 1A and Supplemental 
Table S3). Moreover, CNV across plants highlighted species 
displaying deviations of gene copy number for several cell 
wall gene families. On the one hand, this was observed for 
specific plant clades known to share taxon-specific genome 
duplications, as the Salicaceae and Cucurbitaceae families 
or the Gossypium and Brassica genera (dashed boxes in  
Fig. 1A). On the other hand, copy number differences were 
also revealed between Poaceae and several eudicot species 
for multiple cell wall gene families (solid black boxes in  
Fig. 1A and Supplemental Table S4). Remarkably, some of  
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these gene families are particularly relevant for type I to II cell 
wall differentiation. For example, they include the 
IRREGULAR XYLEM (IRX) 9 and 14 genes involved in xylan 
synthesis (CAZy GT43 family); the PECTIN 

METHYL-ESTERASES and associated inhibitors (PME and 
PMEI), which affect the pectin content of cell walls; or the 
PHENYLALANINE AMMONIA-LYASE genes (PAL), which cata-
lyze the first step of the phenylpropanoid/lignin pathway. 

A

B C

Figure 1. Copy number properties of cell wall genes. A) Heatmap showing the large CNV of cell wall gene families (columns) across the 169 genomes 
of the study (rows). Colors of heatmap cells represent the copy number of each species–gene combination. Left to the heatmap, genomes are ca-
tegorized based on taxonomic clades. Dashed boxes indicate species displaying CNV for most cell wall gene families compared with other taxonomic 
groups. Solid boxes indicate groups of gene families showing CNV between Poaceae and other angiosperms (mostly eudicots). B) and C) PCA plots 
of the 169 genomes of the study based on CNV patterns. The 2 plots display PCA results at the level of general plant clades (B) and of individual plant 
families (C), respectively.   
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To better elucidate the relationship between CNV and 
angiosperm cell wall diversity, CNV data were also analyzed 
by PCA (Figs. 1, B and C, and Supplemental Table S5). The 
first 2 components capture 46% of the total CNV across all 
genes and species and clearly separate Poaceae from the 
other angiosperms. This highlights the relevance of cell wall 
gene CNV as a major genomic property underlying Poaceae 
and eudicot cell wall diversity. Moreover, PCA highlighted 
a generally large level of CNV also within Poaceae and eudi-
cots themselves, as these species are extensively spread with-
in the plots in Fig. 1, B and C. This is in line with both the 
relatively large Poaceae cell wall diversity (within the frame-
work of the type II cell wall) (Vogel 2008; Burton and Fincher 
2014) and with the numerous (segmental) duplications and 
genomic translocations experienced by the different Poaceae 
species during grass evolution (Wang et al. 2015; Lee et al. 
2020). Besides Poaceae, the majority of eudicots and non-
commelinoid monocots form a single large cluster in the 
plots in Fig. 1, B and C. The different plant families within 
this cluster do not display further clear grouping patterns, 
suggesting that intrafamily CNV in eudicots can be large 
and of similar magnitude as for eudicots as a whole group. 

Given the clear association between cell wall gene CNV 
and type I to II cell wall differentiation, statistical tests 
were performed to assess which gene families display signifi-
cant copy number differences between Poaceae and eudi-
cots. The results showed that 70 of the 150 cell wall gene 
families analyzed (47%) display significantly different copy 
number levels between these groups of plants (t test, alpha  
= 0.05; Supplemental Table S4). These 70 families were ana-
lyzed for the magnitude of significant differences, as well as 
for their relevance for cell wall differentiation between 
Poaceae and eudicots based on scientific literature. In this 
way, 20 particularly relevant families were identified 
(Table 1). These genes mediate critical steps in the biosyn-
thesis of cell wall components that are variable between 
Poaceae and eudicot cell walls and display CNV patterns in 
line with such differences, mainly in a perspective of gene 
dosage variability. The detailed explanations of the patterns 
found are reported in Table 1. 

Cell wall gene synteny reveals conserved and 
divergent genomic gene contexts between Poaceae 
and eudicots 
Recent studies highlighted how differential gene synteny 
across plants might underlie trait variability and evolutionary 
adaptations, through changes of genomic gene contexts that 
can impact gene functions (Dewey 2011; Zhao et al. 2017;  
Kerstens et al. 2020; Pancaldi et al. 2022a). To test if this is 
also the case for cell wall genes and type I and type II cell 
walls, the syntenic conservation of the 150 cell wall gene fam-
ilies across the 169 genomes of the study was examined. Gene 
synteny was analyzed using the network approach developed 
by Zhao and Schranz (2017), which organizes large sets of 
syntenic genes from diverse genomes into networks where 

nodes represent genes and edges intergenic synteny. This 
way, synteny patterns can be dissected with statistical meth-
ods for networks analysis, including network decomposition 
into communities of nodes displaying significantly higher 
synteny within than between communities. Such syntenic 
communities represent independent gene positional config-
urations—or genomic contexts—occurring in specific groups 
of species. 

The synteny analysis of the 320,005 cell wall genes (from 
the 150 gene families and 169 genomes) yielded a synteny 
network with 258,316 different nodes: 80.7% of the initial 
cell wall genes (Supplemental Data Set 1). The large number 
of cell wall genes retained in the network as nodes indicates a 
very high level of syntenic conservation of cell wall genes. 
Specifically, such percentage is higher than that detected in 
other studies of unrelated gene families (Zhao et al. 2017;  
Kerstens et al. 2020), but is in line with the level of synteny 
observed for the Cellulose synthase gene superfamily, a smal-
ler distinct set of cell wall genes, in previous studies 
(Schwerdt et al. 2015; Pancaldi et al. 2022a). Moreover, 
each cell wall gene in the synteny network is on average syn-
tenic with >50 other genes, irrespectively of it being a 
Poaceae or eudicot gene. This is remarkable, as while exten-
sive gene synteny can be expected for any gene type in 
Poaceae (Gale and Devos 1998), this property is much less 
common in eudicots (Zhao and Schranz 2019). 

Synteny network decomposition yielded 7,634 different 
syntenic communities of at least 4 nodes, each representing 
a specific genomic context of a specific cell wall gene type, 
conserved in a specific group of species (Fig. 2). These synten-
ic communities were taxonomically and functionally profiled, 
revealing 3 main community groups. The first group contains 
597 communities consisting of 87,905 total cell wall genes 
whose positional genomic organization is conserved across 
all or most of the angiosperms analyzed, including Poaceae, 
eudicots, noncommelinoid monocots, and sister species 
such as Amborella trichopoda (black box in Fig. 2). 
Interestingly, functional profiling showed that these widely 
conserved syntenic communities contain a large proportion 
of transcription factor genes and genes synthesizing lignin 
and other cell wall phenylpropanoids (66% and 52% of all 
the syntenic transcription factors and lignin/phenylpropa-
noid genes, respectively). Conversely, the fraction of cellulose 
and hemicellulose genes within these communities is much 
smaller (14% and 33%, respectively). The second group in-
cludes 1,678 communities containing 98,538 total genes 
that display completely divergent syntenic conservation be-
tween eudicots, Poaceae, and noncommelinoid monocots 
(green boxes in Fig. 2). Of these communities, 718 are largely 
conserved across eudicots and noncommelinoid monocots, 
but not in Poaceae; 492 communities are conserved within 
Poaceae but not in eudicots and noncommelinoid monocots; 
468 communities are conserved within Poaceae and most 
noncommelinoid monocots, but not in eudicots. 
Concerning functional profiling, hemicellulose-related gene 
functions are the ones with the highest proportion of genes  
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Table 1. Gene families displaying significant copy number differences between Poaceae and eudicots that appear particularly relevant for the 
differentiation of type I and type II cell walls in view of their known cell wall function and the direction of the copy number patterns observed 

Gene family Eudicot 
mean copy 

number 

Poaceae 
mean copy 

number 

Functional relevance of copy number pattern for 
type I and type II cell walls 

References  

Mannanases (MAN)  4  1 Mannanases are associated with mannan synthesis 
and remodeling. Mannans are common in 
eudicots but seldom in Poaceae. 

Zhong et al. (2019), Vogel 
(2008) 

Irregular xylem 9 (IRX9/9L; 
GT43)  

6  13 Central gene for xylan synthesis. Complexes with 
IRX10/10L and IRX14/14L. Xylans are much more 
abundant in Poaceae than eudicots. 

Zhong et al. (2019), Vogel 
(2008) 

Irregular xylem 10 (IRX10/10L; 
GT47)  

33  26 Central gene for xylan synthesis. Complexes with 
IRX10/10L and IRX14/14L. Xylans are much more 
abundant in Poaceae than eudicots. 

Zhong et al. (2019), Vogel 
(2008) 

Irregular xylem 14 (IRX14/14L; 
GT43)  

5  7 Central gene for xylan synthesis. Complexes with 
IRX10/10L and IRX14/14L. Xylans are much more 
abundant in Poaceae than eudicots. 

Zhong et al. (2019), Vogel 
(2008) 

Cellulose synthase-like G (CslG)  3  1 At least 1 CslG transfers glucuronic acid (GlcA) 
during the synthesis of saponins, and CslGs could 
therefore act as GlcA transferases, also in the 
context of cell wall. GlcA substitutions of xylans 
highly differ between eudicots (highly 
substituted xylans) and grass (poorly substituted 
xyland). 

Jozwiak et al. (2020), Pena et al. 
(2016) 

PARVUS  26  16 Involved in GlcA substitution of xylans. 
GlcA-enriched xylans are more abundant in 
eudicots. 

Pena et al. (2016), Vogel (2008),  
Zhu et al. (2017) 

BEAT/AHCT/HCBT/DAT 
acyl-transferase (BAHD)  

3  11 BAHD are involved in ferulic acid and p-coumaric 
acid substitution of several cell wall components. 
These molecules are specific to grass cell walls. 

Vogel (2008), Bartley et al. 
(2013), Molinari et al. (2013),  
Chandrakanth et al. (2023) 

Glycosyl-transferase 61 (GT61)  5  28 Genes mainly involved in both arabinosylation 
(grasses and dicots) and feruloylation (grasses) of 
xylans. 

Feijao et al. (2022), Cenci et al. 
(2018), Anders et al. (2012) 

Xylogalacturonan-deficient 
(XGD)  

22  9 Central gene for the synthesis of backbone 
xylogalacturonan backbones. Pectins are much 
higher in eudicot primary cell walls compared 
with grass ones. 

Atmodjo et al. (2013), Vogel 
(2008) 

GAUT-like proteins (GATL)  11  5 Gene involved in pectin synthesis, even if with 
unclear role. Pectins are much higher in eudicot 
primary cell walls compared with grass ones. 

Atmodjo et al. (2013), Vogel 
(2008) 

Phenylalanine ammonia-lyase 
(PAL)  

5  10 First gene of the phenylpropanoid pathway, 
affecting the total amount of substrates 
streamed to phenylpropanoid synthesis. The 
content of cell wall phenylpropanoids is higher in 
Poaceae cell walls. 

Vogel (2008), Zhong et al. 
(2019) 

Peroxidase (PRX)  95  152 Mediate in muro deposition of lignin, ferulic acid, 
and extensins. The content of cell wall 
phenylpropanoids, and specifically of ferulic acid, 
is higher in Poaceae cell walls. 

Vogel (2008), De Oliveira et al. 
(2015), Zhong et al. (2019),  
Mishler-Elmore et al. (2021) 

Cinnamoyl CoA reductase (CCR)  14  21 Central lignin gene shared by the branches of the 
lignin pathway leading to all monolignols. It can 
influence the final amounts of lignin and other 
phenylpropanoids in cell walls. The content of 
cell wall phenylpropanoids is higher in Poaceae 
cell walls. 

Tamasloukht et al. (2011),  
Zhong et al. (2019) 

Caffeic acid O-methyltransferase 
(COMT)  

10  5 COMT genes push the lignin pathway towards 
synthesis of S- and G-lignin subunits instead of 
H-lignin. Poaceae have a higher amount of H- 
subunits. 

Vogel (2008), Zhong et al. 
(2019) 

Pectin lyase (PLY)  25  9 Central gene for pectin metabolism. Pectins are 
much higher in eudicot primary cell walls 
compared with grass ones. 

Atmodjo et al. (2013), Vogel 
(2008) 

Pectin methylesterase (PME)  75  41 Central gene for pectin metabolism. Pectins are Atmodjo et al. (2013), Vogel 
(2008)                                                                                                                                                                                                                          

(continued)  
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Table 1. (continued)  

Gene family Eudicot 
mean copy 

number 

Poaceae 
mean copy 

number 

Functional relevance of copy number pattern for 
type I and type II cell walls 

References  

much higher in eudicot primary cell walls 
compared with grass ones. 

Pectin methylesterase inhibitor 
(PMEI)  

73  38 Central gene for pectin metabolism. Pectins are 
much higher in eudicot primary cell walls 
compared with grass ones. 

Atmodjo et al. (2013), Vogel 
(2008) 

Dynamin-related protein (DRP/ 
ADL)  

16  12 Genes likely involved in pectin trafficking to cell 
wall. Pectins are much higher in eudicot primary 
cell walls compared with grass ones. 

Atmodjo et al. (2013), Vogel 
(2008) 

BEL-like homeodeomain 6 
(BLH6)  

2  4 Transcription factor displaying divergent function 
in grasses (inducer of secondary cell wall 
synthesis) and eudicots (repressor of secondary 
cell wall synthesis). 

Rao and Dixon (2018) 

Expansins (EXP)  39  70 Involved in cell wall expansion by remodeling 
hemicellulose polysaccharides and pectins, as 
well as the interaction between hemicellulose 
and cellulose. Grass-specific β-expansins likely 
co-evolved with the specific features of grass 
xylans. 

Vogel (2008), Atmodjo et al. 
(2013), Sampedro et al. (2015)  

Figure 2. Heatmap displaying the taxonomic profiling of the 7,820 syntenic communities detected across the 150 cell wall gene families and 169 
plant genomes of this study. Heatmap cells are colored based on gene copy number of each community (columns) and species (rows) combination. 
Colors range from white (copy number = 0) to dark blue (max copy number). Communities are clustered based on patterns of taxonomic profiling. 
Dashed rectangles group communities representing genomic contexts that (i) are conserved across all (or most) angiosperms (black rectangle), (ii) 
are differentially conserved between Poaceae and (most of) eudicots (green rectangles), or (iii) display lineage-specific patterns of conservation (pink 
rectangles). Boxes on the left side, indicated with “a” and “b,” display the taxonomy of species over which syntenic communities were taxonomically 
profiled (see legend in the figure).   
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represented within the communities of group (ii) in Fig. 2 
(46% of all the hemicellulose-related syntenic genes), fol-
lowed by cellulose-related genes (41%), lignin/ 
phenylpropanoid-related genes (35%), and transcription fac-
tors (29%). Finally, the third group of syntenic communities 
contains the remaining 5,359 communities, which include 
34,138 total genes and display mostly lineage- or species- 
specific patterns of gene synteny (pink boxes in Fig. 2). 
Among these are 144 communities specific to Brassicaceae, 
87 communities specific to Fabaceae, and other minor 
groups of communities specific to Salicaceae, Rosaceae, and 
Cucurbitaceae. 

Community data were also cross-referenced with gene 
copy number results, showing that large CNV exists both be-
tween and within syntenic communities for several gene 
families. Specifically, CNV is often taxon- and/or community- 
specific. As an example, Fig. 3, A and B, shows that 2 genes at 
the basis of sucrose supply for cellulose synthesis—SUCROSE 
PHOSPHATE SYNTHASE (SPS) and SUCROSE SYNTHASE 
(SUS)—display a Poaceae-specific increase in gene copy 
number (>3 gene copies per species on average) relative to 
eudicots (mostly singleton or double-gene copies). 
Alternatively, Fig. 3C displays that PECTIN LYASE (PLY) genes 
show both copy number and presence–absence variation be-
tween Poaceae and eudicots between and within several gen-
omic contexts. Interestingly, the different genes reported in  
Fig. 3 are all known to affect the content of cellulose and pec-
tins (Zhong et al. 2019), which both tend to vary considerably 
between type I and type II cell walls (Vogel 2008). 

To conclude, like CNV data, community data of each gene 
family were also analyzed together with available information 
on gene function in the context of type I and type II cell walls 
from scientific literature. The next paragraphs report the re-
sults of this analysis for different gene families that are critical 
for secondary cell wall deposition and for hemicellulose bio-
synthesis. Moreover, Table 2 reports a list of gene families 
that display either conservation or differentiation of genomic 
contexts across Poaceae and eudicots and appear relevant for 
type I to II cell wall differentiation. 

Conserved and divergent genomic contexts for the pathways 
controlled by the functionally different BLH6/BLH9 
transcription factors 
BLH6 and BLH9 are phylogenetically close cell wall transcrip-
tion factors (Fig. 4A) that are present in all angiosperms but 
display diverse functionalization patterns, with BLH9 being a 
repressor of lignification across all plants and BLH6 acting as 
repressor and inducer of secondary cell wall in eudicots and 
grasses, respectively (Rao and Dixon 2018). This makes these 
genes a particularly interesting case to study the genetic fac-
tors underlying Poaceae–eudicot cell wall differences. 
Phylogenomic analysis revealed 3 distinct BLH6 genomic con-
texts and 2 separate BLH9 genomic contexts (Fig. 4A). These 
genomic contexts correspond to distinct phylogenetic gene 
clades supported by high bootstrap (95 to 100) (Fig. 4A). 
Interestingly, while both BLH9 genomic contexts are 

conserved across all the angiosperms, of the 3 BLH6 contexts, 
1 is specific to eudicots and the other 2 are restricted to 
grasses (Fig. 4A). Moreover, the overall BLH6 copy number 
is also different between grasses and eudicots, with 
Poaceae having 3.6 BLH6 copies per species on average, com-
pared with 2.2 of eudicots (t test’s P = 0.000). This difference 
is not observed for BLH9 (2.3 copies per grass species vs 1.9 in 
eudicots; t test’s P = 0.119). Remarkably, the “surplus” BLH6 
grass copies are not equally spread across the 2 
Poaceae-specific BLH6 genomic contexts. In fact, the light 
blue community in Fig. 4A contains 2 BLH6 copies per grass 
species on average, compared with only 1 copy for the green 
community in Fig. 4A. Overall, these results show a clear as-
sociation between the (phylo)genomic organization of BLH6 
and BLH9 and their functional diversification in the context 
of type I and type II cell walls. 

To further investigate the association between the genom-
ic organization and functional specialization of BLH6/BLH9 
genes, phylogenomic analyses were extended to the other 
genes within the BLH6 regulatory pathway. These include 2 
downstream transcription factors—OVATE FAMILY 
PROTEIN 4 (OFP4) and KNOX TALE 7 (KNAT7)—and a major 
lignin structural gene, FERULATE 5-HYDROXYLASE (F5H) 
(Rao and Dixon 2018; Qin et al. 2020). Divergent phyloge-
nomic patterns between Poaceae and eudicots were revealed 
for all these genes. Specifically, OFP4 genes turned out to be 
organized into 2 main syntenic communities (Fig. 4B). The 
largest one groups nearly all the eudicot OFP4 copies, plus 
the majority of noncommelinoid monocots OFP4 and only 
2 Poaceae copies. Conversely, the smaller community in-
cludes nearly all the Poaceae OFP4 and corresponds to an in-
dependent phylogenetic clade (bootstrap 99). Regarding 
KNAT7, its phylogenomic analysis also revealed the presence 
of 1 Poaceae-specific syntenic community and 1 eudicot- 
specific syntenic community (Fig. 4C). Moreover, KNAT7 
genes were phylogenomically analyzed together with the 
members of the KNAT3 family (Fig. 4C), which groups homo-
logs involved in lignin deposition and regulated by the mas-
ter cell wall transcription factors NST1 and NST2 (Qin et al. 
2020). As for BLH9, the function of NST transcription factors 
and of KNAT3 genes is largely conserved across grasses and 
eudicots (Rao and Dixon 2018), and phylogenomic analyses 
showed that both KNAT3 and NST genes display widespread 
syntenic conservation across both grasses and eudicots (Figs. 
4, C and D). Finally, phylogenomic analysis of the last gene 
within the BLH6 regulatory pathway—F5H—remarkably dis-
played differential syntenic and phylogenetic organization 
between Poaceae and eudicots (Fig. 4E). 

As a final step in the analysis of the genes belonging to the 
BLH6 regulatory pathway, it was tested whether the gene 
clades corresponding to differential genomic contexts be-
tween Poaceae and eudicots displayed differential selection 
pressures between grass and eudicot clades. Selection pres-
sure is defined by the ratio of nonsynonymous (dN) over syn-
onymous (dS) substitutions between different gene 
nucleotide sequences (Schwerdt et al. 2015). Thus,  
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A B C

Figure 3. Examples of genomic context-specific patterns of gene CNV across 3 cell wall gene families. In all the heatmaps, columns represent syn-
tenic communities detected for a specific gene family, while rows represent species, ordered taxonomically (see legend). Heatmap cells are colored 
according to the gene copy number for every genomic context–species combination (see legend). A) SPS. B) SUS. C) PLY.   
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Table 2. Gene families displaying either Poaceae-/eudicot-specific or angiosperm-wide synteny that appear particularly relevant for the 
differentiation of type I and type II cell walls in view of their known cell wall function 

Cell wall 
gene 
function 

Genes in Poaceae- and/ 
or eudicot-specific 
communities (%) 

Genes in 
angiosperm-wide 
communities (%) 

Genes in other 
lineage-specific 

communities (%) 

Relevance in the context of type I and 
type II cell walls 

References  

F5H  93.9  0.0  6.1 Central gene in lignin synthesis, 
regulating total lignin production and 
monolignol ratio 

Zhong et al. (2019),  
Vogel (2008) 

CslA  75.1  0.3  24.7 Binds mannan residues during (gluco) 
mannan synthesis 

Zhong et al. (2019),  
Vogel (2008) 

CslC  61.5  29.8  8.7 Binds glucose residues of XyG molecules Zhong et al. (2019),  
Vogel (2008) 

AXY9  89.8  0.0  10.2 Mediates XyG O-acetylation Zhong et al. (2019),  
Vogel (2008) 

XXT  64.6  31.0  4.4 Binds xylose residues over forming XyG 
backbones 

Zhong et al. (2019), 
(Vogel 2008) 

IRX9/9L 
(GT43)  

73.0  15.0  12.1 Forms a biosynthetic complex together 
with IRX14/14L and IRX15/15L to 
bind xylose residues during xylan 
synthesis 

Zhong et al. (2019),  
Vogel (2008) 

IRX14/14L 
(GT43)  

64.0  23.0  13.0 Forms a biosynthetic complex together 
with IRX9/9L and IRX15/15L to bind 
xylose residues during xylan synthesis 

Zhong et al. (2019),  
Vogel (2008) 

IRX15/15L  62.1  0.0  37.9 Forms a biosynthetic complex together 
with IRX9/9L and IRX14/14L to bind 
xylose residues during xylan synthesis 

Zhong et al. (2019),  
Vogel (2008) 

XTH  60.7  0.0  39.3 Mediates the extension of XyG 
molecules 

Zhong et al. (2019),  
Vogel (2008) 

RGXT  61.4  0.2  38.4 Central gene for the synthesis of RGII Atmodjo et al. 
(2013), Vogel 
(2008) 

GALS  63.5  0.0  36.5 Involved in the synthesis of RGI side 
chains 

Atmodjo et al. 
(2013), Vogel 
(2008) 

XGD  61.8  0.5  37.8 Transfers xylose during 
xylogalacturonan synthesis 

Atmodjo et al. 
(2013), Vogel 
(2008) 

BLH6  97.6  2.3  0.0 Inducer/repressor of secondary cell wall 
development 

Rao and Dixon 
(2018) 

E2FC  0.0  72.7  27.3 Key upstream regulator of cell wall 
biosynthesis, which activates several 
first-layer cell wall transcription 
factors 

Taylor-Teeples et al. 
(2015), Rao and 
Dixon (2018) 

VND  19.2  69.9  10.9 First-layer cell wall transcription factors 
regulating ectopic secondary cell wall 
deposition in vessels. Their function is 
widely conserved across angiosperms. 

Taylor-Teeples et al. 
(2015), Rao and 
Dixon (2018) 

SND  3.2  87.7  9.0 First-layer cell wall transcription factors 
required for normal secondary cell 
wall biosynthesis. Their function is 
widely conserved across angiosperms. 

Taylor-Teeples et al. 
(2015), Rao and 
Dixon (2018) 

NST1/2/3  0.0  98.4  1.6 First-layer cell wall transcription factors 
required for normal secondary cell 
wall biosynthesis. Their function is 
widely conserved across angiosperms. 

Taylor-Teeples et al. 
(2015), Rao and 
Dixon (2018) 

C2H2  0.0  85.1  14.9 Repressor of secondary cell wall 
development. 

Taylor-Teeples et al. 
(2015), Rao and 
Dixon (2018) 

Several structural genes involved in critical steps of the synthesis of polysaccharides whose content differs substantially between Poaceae and eudicots have their genes mostly 
contained in Poaceae- or eudicot-specific syntenic communities. Conversely, several transcription factors with conserved function across angiosperms are retained in syntenic 
communities displaying wide conservation across angiosperms.   
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Figure 4. Phylogenetic trees displaying phylogenetic and syntenic relationships of the gene families analyzed in relation to the BLH6/BLH9 study 
case. Overall, the trees display that genes known to concur to the different BLH6 functions in Poaceae and eudicots are all differentially genomically                                                                                                                                                                                            

(continued)  
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differential dN:dS ratios between genes belonging to different 
taxonomic and/or phylogenomic clades highlight differential 
evolutionary rates associated with different genetic/genomic 
configurations. The analysis of selection pressure with the use 
of the branch model from the CodeML program (Yang 2007) 
revealed that Poaceae genes organized in independent gen-
omic contexts are systematically under significantly different 
(and positive—dN:dS > 1) selection pressure as compared 
with their eudicot counterparts [likelihood ratio test’s 
(LRT’s) P < 0.01; Supplemental Table S6)]. This holds true 
for all the genes displaying differential syntenic conservation 
in Poaceae and eudicots, except for KNAT7. Vice versa, the 
Poaceae genes organized in syntenic communities shared 
with eudicot species (as, for example, for the 2 BLH9 commu-
nities of the KNAT3 genes) did not display significant differ-
ences in selection pressure as compared with eudicot genes 
within the same communities in all the tests performed 
(LRT’s α = 0.01; Supplemental Table S6). 

To conclude, all the data displayed in this paragraph high-
light a striking association between the conservation/diversi-
fication of the positional organization and the conservation/ 
diversification of gene function for all the genes within the 
BLH6 pathway across Poaceae and eudicots, which is ultim-
ately associated with similar or divergent effects of these 
genes on plant cell walls, respectively. Remarkably, this diver-
sification is associated with a phylogenetic diversification of 
genes and extensive patterns of differential—and often posi-
tive—selection pressures, highlighting that nucleotide diver-
sification of genes is likely favored by and intimately 
associated with the observed large-scale genomic gene 
rearrangements. 

Divergent genomic contexts between Poaceae and eudicots for 
multiple important hemicellulose-related genes 
As the content of several hemicellulosic molecules differs sub-
stantially between type I and type II cell walls, the genes syn-
thesizing the backbone of the most differing hemicellulosic 
polysaccharides between Poaceae and eudicots are also rele-
vant targets for phylogenomic analyses. One such polysacchar-
ide is XyG, whose synthesis depends on Cellulose synthase-like 
C (CslC) genes—which bond the glucose residues of XyG back-
bones—and on Alfa-1,6-Xylosyltransferases (XXT), which add 
the xylose moieties (Zabotina 2012). For both these genes, 
phylogenomic analysis revealed distinct phylogenetic and syn-
tenic patterns associated with their functional diversification 
between Poaceae and eudicots (Fig. 5). Specifically, for the 
XXT family, we found a total of 6 phylogenetic clades 

corresponding to 6 independent genomic contexts (Fig. 5A). 
Three clades/communities grouped only eudicot genes and 
corresponded to the homologs of Arabidopsis XXT1, XXT2, 
and XXT3/5 genes, respectively. These are the most important 
XXT copies for XyG synthesis in Arabidopsis, forming an active 
biosynthetic complex (Zabotina 2012). Conversely, the other 3 
clades/communities were specific to Poaceae and noncomme-
linoid monocot genes and included the maize homologs of 
AtXXT1, AtXXT2, and AtXXT3/5 genes, respectively. To con-
clude, the eudicot XXT1 and XXT2 clades displayed a relatively 
large extent of interclade synteny and tree branches of similar 
sizes, highlighting relatively little phylogenetic differentiation. 
Conversely, grass XXT1 and XXT2 are independently synteni-
cally organized and phylogenetically more distant (Fig. 5A). 
Regarding CslC genes, phylogenomic analysis identified 8 dis-
tinct syntenic communities, 4 of which were specific to either 
grasses or eudicots, while the other 4 included both eudicot 
and Poaceae genes (Fig. 5B). The syntenic differentiation of 
CslC genes between Poaceae and eudicots is thus not absolute. 
However, BLAST analyses showed that the largest eudicot- 
specific CslC community included AtCslC4. This is the most ac-
tive Arabidopsis CslC gene and the only one highly expressed 
in all Arabidopsis tissues (Zabotina 2012). The 2 maize homo-
logs most similar to AtCslC4 (>60% sequence identity)— 
XP_008662691.2 and XP_008657194.1—were included in the 
2 grass-specific CslC communities. To conclude, copy number 
community data indicated that eudicot- and grass-specific 
CslC communities comprise the majority of CslC members 
from all angiosperms (342 out of 596 total genes). 

In addition to XyGs, (gluco)mannans content is very differ-
ent between Poaceae and eudicot cell walls. (Gluco)mannans 
synthesis depends largely on Cellulose synthase-like A (CslA) 
genes, which bind the mannose residues (Zhong et al. 
2019). Remarkably, phylogenomic analysis showed that 
CslA genes are genomically very differently organized be-
tween Poaceae and eudicots (Fig. 6). Specifically, CslA mem-
bers are divided into 10 different syntenic communities, of 
which 5 are specific to eudicots (2 restricted to 
Brassicaceae) and 5 specific to Poaceae and, partly, noncom-
melinoid monocots. Of the 5 Poaceae-specific communities, 
2 contain genes which are phylogenetically closer to eudicot 
CslA, while the members of the other 3 form a monocot- 
specific CslA phylogenetic clade (bootstrap = 97). 
Interestingly, Poaceae CslA copy number is highest in the lar-
gest community corresponding to such monocot-specific 
phylogenetic clade, with >3 CslA genes per species on aver-
age. Moreover, the 3 phylogenetically distinct 

Figure 4. (Continued) 
(syntenically) organized between these species. Conversely, genes related to the BLH6/BLH9 pathway but with conserved function across Poaceae 
and eudicots display conserved synteny across most or all angiosperms. In each plot, lines connecting tree leaves represent syntenic relationships 
between genes, classified according to the detected syntenic communities (different line colors indicate different syntenic communities). Rings 
around trees display the taxonomic profiling of the genes within each tree or the gene family to which each gene in a tree belongs to (in the 
case multiple gene families were aligned together into 1 tree) (see legends). Black dots on tree nodes indicate tree branches that are relevant 
for the phylogenomic diversification of gene sequences that are supported by bootstrap ≥90. A) BLH6/BLH9 phylogenetic tree. B) OFP4. C) 
KNAT3/KNAT7. D) NST. E) F5H.   
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Poaceae-specific communities group the majority of Poaceae 
CslA genes (140 out of 207 copies). 

Xylans represent a final relevant group of hemicellulosic 
molecules for type I and type II cell walls. Their most import-
ant biosynthetic genes are 3 different IRX families—IRX9/ 
9-like (CAZy GT43 family), IRX10/10-like (CAZy GT47 family), 
and IRX14/14-like (CAZy GT43 family)—that form a xylan 
biosynthetic complex (Zhong et al. 2019). As for the other 
hemicellulose-related genes above, phylogenomic analyses 
revealed substantial divergence in the positional organiza-
tion, phylogenetic diversification, and copy number dynam-
ics of IRX genes between Poaceae and eudicots (Fig. 7). While 
2 syntenic communities conserved across Poaceae, noncom-
melinoid monocots, and eudicots were detected within each 
of the IRX9/9L, IRX10/10L, and IRX14/14L clades, 54% of all the 
IRX genes studied (1,636 out of 3030) were included within 
25 different syntenic communities either eudicot- or 
Poaceae-specific. Moreover, differential copy number re-
presentation of the IRX genes between Poaceae and eudicots 
was observed for all the IRX families within the syntenic com-
munities conserved across both Poaceae and eudicots 
(Fig. 8), showing that the relative representation of shared 
IRX genomic contexts can differ substantially between 
Poaceae and eudicot genomes. To conclude, all the IRX 

communities identified are highly phylogenetically differen-
tiated, corresponding to distinct phylogenetic clades sup-
ported by high bootstrap. 

Cell wall genes are often organized in tandem gene 
clusters which are different between Poaceae and 
eudicots 
To further characterize the cell wall genomic properties of 
Poaceae and eudicots, the (differential) occurrence and con-
servation of tandem cell wall gene clusters was also studied 
for the 150 gene families and the 169 genomes. The presence 
and evolution of tandem gene clusters affect plant traits in 
several ways, for example, by influencing gene dosage or by 
facilitating gene sub- or neofunctionalization (Kono et al. 
2018). Therefore, genomic variability of tandem gene arrays 
can be relevant also for type I to II cell wall differentiation. 

Our analyses revealed that tandem gene clusters are rela-
tively common for cell wall genes, as 44 of the 150 gene fam-
ilies analyzed have (part of) their genes organized in tandem 
arrays of at least 2 members in 60% or more of the species 
surveyed. Conversely, 85 gene families (57% of the total) 
are mainly organized as (distinct) singleton loci (tandem ar-
rays found in <40% of the species surveyed). The remaining 

A B

Figure 5. Phylogenetic trees displaying phylogenetic and syntenic relationships of the 2 main gene families involved in XyG biosynthesis: XXT (A) 
and CslC (B). The trees show that these genes tend to be differentially organized in Poaceae and eudicots from a genomic (synteny) point of view. 
Specifically, the functionally most important XXT and CslC members known in Arabidopsis and their respective homologs in Poaceae (maize) are 
organized in completely different genomic contexts. In each plot, lines connecting tree leaves represent syntenic relationships between genes, clas-
sified according to the detected syntenic communities (different line colors indicate different syntenic communities). Rings around trees display the 
taxonomic profiling of the genes within each tree (see legends). Black dots on tree nodes indicate tree branches that are relevant for the phyloge-
nomic diversification of gene sequences that are supported by bootstrap ≥90. The syntenic communities containing Arabidopsis and maize genes of 
interest are indicated (black arrows). Within gene IDs, “BC” indicates Arabidopsis, while “ND” indicates maize.   
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21 gene families displayed mixed singleton/tandem patterns, 
depending on the species (Supplemental Table S7 and Data 
Set 2). Overall, genes involved in cellulose, lignin/phenylpro-
panoid, and pectin biosynthesis are the ones most often or-
ganized as tandem clusters. Conversely, cell wall transcription 
factors and genes involved in sugar supply for cell wall bio-
synthesis are the classes mostly arranged as singleton loci 
(Table 3). 

Given our focus on the genetics underlying Poaceae and 
eudicot cell wall differences, the variability of cell wall gene 
tandem clusters between these 2 groups of species was stud-
ied more in detail. This analysis revealed that 20 of the 44 cell 
wall gene families with high occurrence of tandem gene clus-
ters display marked differences in the properties of such clus-
ters between Poaceae and eudicots (Table 4). Specifically, 
such differences entail either the presence/absence variabil-
ity of tandem clusters between Poaceae and eudicots (11 
gene families) or the number of genes included in tandem 

arrays between Poaceae and eudicots (9 gene families). 
Remarkably, some of the gene families displaying variability 
of gene tandem arrays between Poaceae and eudicots are 
particularly relevant for the differences between type I and 
type II cell walls. For example, they include 2 critical families 
affecting the content of lignin and of cell wall hydroxycinna-
mates: PAL—displaying 1 tandem cluster of 5 genes per spe-
cies on average in Poaceae, but no clusters in eudicots—and 
PRX, which displays 17 tandem arrays of 4 genes per species 
on average in Poaceae and 9 clusters of 3 genes each on 
average per eudicot species. Moreover, 4 important 
pectin-related gene families—XYLOGALACTURONAN 
XYLOSYLTRANSFERASE (XGD), PME/PMEI, PE, and PG—all 
display a higher occurrence of tandem gene clusters (with 
also more genes per cluster) in eudicots compared with 
Poaceae (Table 4). Interestingly, for several gene families, 
the variability of tandem gene clusters between Poaceae 
and eudicots goes in parallel with the differences in gene 

Figure 6. Phylogenetic tree displaying the phylogenetic and syntenic 
relationships of the main gene family involved in mannan biosynthesis: 
CslA. The tree shows that these genes are organized in (multiple) differ-
ent genomic contexts in Poaceae and eudicots. Within the tree, lines 
connecting the leaves represent syntenic relationships between genes, 
classified according to the detected syntenic communities (different 
line colors indicate different syntenic communities). The ring around 
the tree displays the taxonomic profiling of the tree genes (see legends). 
Black dots on tree nodes indicate tree branches that are relevant for the 
phylogenomic diversification of gene sequences that are supported by 
bootstrap ≥90.  

Figure 7. Phylogenetic tree displaying the phylogenetic and syntenic 
relationships of the 3 main gene families involved in xylan biosynthesis: 
IRX9/9L, IRX10/10L, and IRX14/14L. The tree shows that these genes are 
organized in (multiple) different genomic contexts in Poaceae and eu-
dicots. Within the tree, lines connecting the leaves represent syntenic 
relationships between genes, classified according to the detected syn-
tenic communities (different line colors indicate different syntenic 
communities). The rings around the tree display the taxonomic profil-
ing of the tree genes and the genes belonging to each IRX gene family 
(see legends). Black dots on tree nodes indicate tree branches that are 
relevant for the phylogenomic diversification of gene sequences that 
are supported by bootstrap ≥90.   
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A B C

Figure 8. Heatmaps showing the genomic context- and taxonomic clade-specific patterns of gene CNV across the 3 IRX gene families involved in 
xylan synthesis. In all the heatmaps, columns represent syntenic communities detected for a specific gene family, while rows represent species, or-
dered taxonomically (see legend). Heatmap cells are colored according to the gene copy number for every genomic context–species combination 
(see legend). A) IRX9/9L. B) IRX10/10L. C) IRX14/14L.   
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copy number variation (see commonalities between Tables 1 
and 4). This highlights once again the extensive interaction 
between the genomic factors considered in this study in 
shaping the genomic contexts of Poaceae and eudicot cell 
walls. 

Discussion 
The biological basis of the profound differences between the 
type I cell walls of eudicots and the type II cell walls of 
Poaceae is not yet fully understood. Such differences entail 
nearly all the cell wall components and represent the likely 

product of the combined evolution of the different angio-
sperm lineages and of cell walls themselves as plant struc-
tures (Vogel 2008; Sarkar et al. 2009). Typically, such 
complex evolutionary trajectories leave traces in plant genes 
and genomes (Zhao et al. 2017; Kerstens et al. 2020). 
However, the occurrence, extent, and relevance of a genetic 
differentiation underlying type I and type II cell walls are still 
debated (Yokoyama and Nishitani 2004; Penning et al. 2019;  
Yokoyama 2020; Kozlova et al. 2020). This study revealed ma-
jor differences between Poaceae and eudicots in the genomic 
organization of several cell wall genes. This differentiation in-
volves multiple genomic properties, including the presence/ 

Table 3. Statistics of gene tandem cluster presence across broad categories of cell wall gene functions 

Cell wall broad process Percentage of gene 
families organized 

in tandem clustersa 

Number of gene 
families organized 

in tandem 
clustersa 

Percentage of gene 
families not 
organized in 

tandem clustersb 

Number of gene 
families not 
organized in 

tandem clustersb 

Percentage of gene 
families displaying 
unclear patternc 

Number of gene 
families 

displaying 
unclear patternc  

Callose synthesis  0.0  0  0.0  0  100.0  1 
Cellulose synthesis  46.2  6  38.5  5  15.4  2 
Glucose supply to 

polysaccharide 
synthesis  

0.0  0  100.0  8  0.0  0 

CW_other_proteins  38.1  8  57.1  12  4.8  1 
Hemicellulose 

metabolism  
30.0  15  60.0  30  10.0  5 

Lignin/ 
phenylpropanoid 
synthesis  

42.1  8  31.6  6  26.3  5 

Pectin metabolism  36.8  7  42.1  8  21.1  4 
Transcription factors  0.0  0  94.1  16  5.9  1 

aTandem clusters occur in >60% of the species analyzed. bTandem clusters occurring in <40% of the species analyzed. cPattern observed does not fall in any of the 2 previous 
categories (a and b).  

Table 4. Gene families displaying large variability in cell wall gene tandem clusters between Poaceae and eudicots as either differential number of 
tandem clusters or the presence/absence of tandem clusters 

Cell wall gene 
function 

Average number of gene tandem 
clusters per species (Poaceae) 

Average number of genes 
per cluster (Poaceae) 

Average number of gene tandem 
clusters per species (eudicots) 

Average number of genes 
per cluster (eudicots)  

ARAD  3  3  1  2 
MUR2/3/4  3  3  1  2 
FUT  4  3  2  2 
EXP/EXPL  8  4  2  3 
PME/PMEI  2  2  9  3 
PRX  17  4  9  3 
PE  4  2  11  3 
PG  7  3  11  3 
BBE_like  1  5  3  7 
GALT  2  3  0  2 
ERF  1  5  0  2 
XXT  1  3  0  2 
PAL  1  5  0  3 
HCT  0  …  1  3 
DRP/ADL  0  …  1  3 
FLA11/12  0  …  1  4 
ESB1  0  …  1  3 
PLY  0  …  1  3 
THE1  0  …  1  3 
XGD  0  …  2  3   
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absence and copy number variation of genes and gene tan-
dem arrays, syntenic gene conservation, and gene sequence 
diversification. Moreover, the magnitude of such differenti-
ation is exceptional, as the vast majority of the gene families 
analyzed displays at least 1 pattern of genomic diversification 
between Poaceae and eudicots. Finally, for several gene fam-
ilies for which functional characterization is available, differ-
ential genomic patterns correspond strikingly with the cell 
wall differences between Poaceae and eudicots (Fig. 9). 
Considering that genomic properties as differential gene syn-
teny and CNV are known sources of functional gene diversi-
fication and phenotypic innovations (Flagel and Wendel 
2009; Zhao et al. 2017; Artur et al. 2019; Lye and 
Purugganan 2019; Kerstens et al. 2020), the profoundly 

different cell wall genomic properties between Poaceae and 
eudicots are a potential major driver of the cell wall differen-
tiation between these 2 plant clades (Fig. 9). 

In light of what was just discussed, it is relevant to under-
stand how the different cell wall “genomic landscapes” of 
Poaceae and eudicots got shaped and how they can lead 
to phenotypic cell wall diversification. In this regard, the dif-
ferentiation of syntenic genomic contexts seemed to have 
played a major role. The fact that differentially organized 
genomic gene contexts can facilitate the functional diversifi-
cation of plant genes, leading to phenotypic adaptations, has 
been amply discussed, as for the MADS-box (Zhao et al. 
2017), APETALA2 (Kerstens et al. 2020), LEA (Artur et al. 
2019), or NRT plant gene families (Zoghbi-Rodríguez et al. 

Figure 9. Summary of the differential genomic patterns between Poaceae and eudicots found for major hemicellulose and lignin genes. A) 
Differences in hemicellulose composition between Poaceae and eudicot cell walls (upper part), with schematic representation of the backbones 
of the polysaccharides responsible for these differences, along with the indication of the major genes synthesizing polysaccharide backbones and 
the differential genomic patterns found for those genes between Poaceae and eudicots. B) Representation of the lignin/phenylpropanoid pathway, 
with the indication of genes and differential genomic patterns found between Poaceae and eudicots.   
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2021). Typically, different genomic contexts can differentiate 
the modes of gene function, for example, by determining dif-
ferent patterns of gene expression or by favoring gene diver-
sification and subfunctionalization (Dewey 2011). In turn, 
differentiated functional modes can affect plant phenotypes 
and can be stabilized if selected over evolution (Dewey 2011). 
In this study, the BLH case (Section 2.2.1) clearly demon-
strated that this could be the case also for cell wall genes. 
In fact, the major genomic difference between the BLH9 fam-
ily, whose function is conserved in Poaceae and eudicots, and 
the BLH6 family—which has opposite function in Poaceae 
and eudicots—was found to be the occurrence of differential 
BLH6 genomic contexts between Poaceae and eudicots. 
Moreover, differential genomic contexts were also observed 
for all the genes directly controlled by BLH6 and that concur 
to determine its differential function in Poaceae and eudi-
cots, as OFP4, KNAT7, and F5H. Conversely, all the 
BLH-related genes whose function is believed to be conserved 
across all angiosperms—as NST transcription factors and 
KNAT3 homologs (Rao and Dixon 2018)—displayed con-
served positional genomic organization. Finally, both CNV 
and phylogenetic differentiation supported by differential se-
lection pressures were observed between the gene clades cor-
responding to distinct Poaceae and eudicot genomic 
contexts for the majority of the genes within the BLH6 path-
way. Overall, these findings suggest that the differential BLH 
genomic contexts may facilitate the different functionality of 
the BLH6 pathway in Poaceae and eudicots, in ways similar to 
that reported in the studies referenced above. The fact that 
analogous patterns were also found for the major hemicellu-
lose genes, as well as for many other cell wall structural genes 
—even if at a more general level—further corroborates this 
hypothesis and extends it to several cell wall gene families. 

Interestingly, the differentiation of genomic gene contexts 
—even if highly extensive across and within the 150 gene 
families analyzed—was not absolute, especially for some of 
the hemicellulose-related genes that were analyzed in 
Section 2.2.2. In light of the likely cell wall functional rele-
vance of differentiated genomic landscapes, the presence of 
shared genomic gene configurations between Poaceae and 
eudicots, next to highly divergent genomic contexts, for 
some of the genes participating in the synthesis of polysac-
charides that differ between grasses and the rest of angios-
perms (as the CslC and IRX genes of Section 2.2.2) could 
indicate that not all the genes of these families perform 
the same function. In this regard, it is noteworthy that 
Arabidopsis mutants at some of the CslC and IRX genes 
have been shown to display alterations of plant growth 
(Kim et al. 2020) and of seed viability (Voiniciuc et al. 
2015), suggesting the possibility for their direct or indirect in-
volvement in multiple plant functions (Little et al. 2018). In 
this sense, the presence of conserved genomic gene contexts 
between Poaceae and eudicots could be constrained by the 
involvement of some cell wall genes, particularly vital plant 
processes, next to their strict relationship with cell wall bio-
synthesis. In turn, this would once again further corroborate 

the hypothesis that diversification of genomic gene contexts 
facilitates the evolution of novel gene functions, as already 
proposed for other gene families (Dewey 2011; Zhao et al. 
2017; Kerstens et al. 2020). However, it has to be highlighted 
that this remains currently only a hypothesis based on our 
results and final functional proof to support it should be pro-
vided in future research. 

In addition to differential syntenic gene organization, gene 
CNV emerged as another major force shaping the differential 
genomic landscapes of Poaceae and eudicots. As genomic 
context variability, gene CNV also represents a well-known 
source of functional variation that can lead to phenotypic in-
novations (Jiao et al. 2011; Kondrashov 2012; Lye and 
Purugganan 2019). While duplicated variants are usually 
deleterious and commonly undergo purifying selection (Lye 
and Purugganan 2019), the extensive CNV between 
Poaceae and eudicots for a large part of cell wall gene families 
highlights the relevance of this process for the differentiation 
of the cell wall genomic landscape between these plant 
clades. Typically, CNV impacts gene function through gene 
dosage (Kondrashov 2012). The combined analysis of CNV 
and gene functionality for the genes of this study suggests 
that this could be the case for several cell wall gene families. 
For example, several important genes to determine the total 
cell wall content of phenylpropanoid compounds were 
found in higher copy number in Poaceae—which have larger 
amounts of phenylpropanoids in their cell walls—than in eu-
dicots (Table 1). One of these is PAL, which initiates the phe-
nylpropanoid pathway and determines the efficiency of 
phenylalanine conversion into precursors of lignin, ferulic 
acid, and p-coumaric acid (Zhong et al. 2019). A second ex-
ample is CYNNAMOYL-CoA REDUCTASE (CCR), whose activ-
ity affects the cell wall content of lignin, ferulic acid, and 
p-coumaric acid (Tamasloukht et al. 2011; Tu et al. 2010;  
Smith et al. 2017). Finally, PRX genes, which mediate the in 
muro deposition of monolignols and cell wall hydroxycinna-
mates (De Oliveira et al. 2015; Zhong et al. 2019), were also 
found in higher copy number in Poaceae compared with eu-
dicots. All together, these results suggest that a higher copy 
number of phenylpropanoid-related genes might reasonably 
“boost” the lignin/phenylpropanoid pathway in Poaceae, 
leading to the wider variety and higher content of cell wall 
phenylpropanoids observed in these plants compared with 
eudicots. This hypothesis is further supported by the CNV 
patterns observed for other genes related to cell wall phenyl-
propanoid content that are not strictly part of the lignin/ 
phenylpropanoid pathway. These include the BAHD and 
GT61 genes (see Table 1), which respectively transfer ferulic 
acid onto lignin monomers and form feruloylated cell wall 
oligosaccharides (de Souza et al. 2018; Cenci et al. 2018;  
Feijao et al. 2022; Chandrakanth et al. 2023). Remarkably, 
both BAHD and GT61 genes were found in much higher 
copy number in grasses (Table 1), which could explain the 
higher prevalence of ferulic acid in Poaceae cell walls through 
higher gene dosage. Moreover, since the feruloylation of cell 
wall molecules in grasses increases biomass recalcitrance to  
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industrial processing (de Souza et al. 2018), the silencing of 
certain BAHD or GT61 members, or the analysis of natural 
CNV at these genes in Poaceae populations, could open pos-
sibilities for modifying this trait. To conclude, all these genes, 
along with all the examples reported in Table 1, suggest that 
cell wall variation due to differential gene dosage dependent 
on CNV represents a likely important mechanism for the dif-
ferentiation of Poaceae and eudicot cell walls. 

Apart from the patterns reported in Table 1, CNV was also 
commonly observed between differentially conserved gen-
omic contexts, different species clades within specific gen-
omic contexts, or distinct phylogenetic clades. These 
patterns reflect an interaction between positional gene or-
ganization, CNV, and phylogenetic sequence diversification 
that took place during the evolution of cell wall genomic 
landscapes. Most likely, the combination of all these factors 
during the genomic differentiation of Poaceae and eudicots 
has contributed to deepen and stabilize the cell wall gene 
functional diversification between these plant clades. This 
appears reasonable as such “evolutionary boost” effect of 
the parallel differentiation of multiple genomic properties 
across diverse gene clades and families was already hypothe-
sized for other genes, as for the different LEA proteins (Artur 
et al. 2019). Moreover, such multiple differential genomic 
patterns were found in all the study cases of this research in-
volving genes that are most likely behaving differently in 
Poaceae and eudicots, as the genes within the BLH6 regula-
tory pathway or the XXT, CslC, and IRX genes at the basis 
of hemicellulose synthesis. 

A final genomic property analyzed in this study is the oc-
currence and conservation of tandem cell wall gene arrays. 
To a certain extent, the variability of these configurations 
can have similar effects to CNV in terms of gene dosage 
and can even overlap with CNV itself (Kono et al. 2018). 
However, the occurrence of gene tandem clusters can also fa-
cilitate gene diversification and trait variability (Picart-Picolo 
et al. 2020; Xu et al. 2020). Our results suggest that this could 
be the case for several cell wall genes between Poaceae and 
eudicots, especially considering that variability in tandem 
gene arrays goes in parallel with differentiation of genomic 
contexts and/or basic CNV. As an example, in the case of 
the previously mentioned PAL and PRX genes, the finding 
of a higher occurrence of gene tandem arrays in Poaceae 
may facilitate the combined expression of clustered genes 
in these species, in turn making it easier to modulate the dos-
age of gene products as previously hypothesized. Moreover, 
the combination of tandem arrays variability and the differ-
entiation of the other genomic properties studied may fur-
ther amplify and stabilize the differentiation of Poaceae 
and eudicot cell walls, as previously discussed for genomic 
contexts, CNV, and phylogenetic differentiation. 

In conclusion, this study clearly showed that major genom-
ic differences underlie the divergent cell walls of Poaceae and 
eudicots. Such differences involve several major genomic 
properties, and hypotheses have been discussed regarding 
their evolutionary origin and the biological modes by which 

they can translate into different cell walls. At this moment, 
the scarce knowledge about the specific function of several 
of the genes considered in this research in other species 
than Arabidopsis hampers a further interpretation of the 
patterns found beyond what is discussed above. Therefore, 
we foresee that a further detailed characterization of cell 
wall genes in several species, together with the results re-
ported in this study, will advance the investigation of the 
genetic basis of the different cell walls of Poaceae and eudi-
cots, within the context of the genomic patterns found in 
this research. Moreover, the data of this study can offer op-
portunities for novel approaches of fundamental cell wall re-
search in Poaceae and eudicots (e.g. genomic context 
engineering), as well as for the identification of gene targets 
to modify cell wall composition. 

Materials and methods 
Collection of plant genomes 
All the angiosperm genomes sequenced and published by the 
end of 2018 and available with at least a scaffold-level assem-
bly were searched for in several online databases. For each 
genome, a BED file indicating gene positions and FASTA files 
reporting protein and nucleotide sequences coded of all the 
annotated protein-coding genes were retrieved. Genomes 
were checked for assembly completeness by using the 
BUSCO Viridiplantae gene set (Seppey et al. 2019) and for as-
sembly fragmentation by assessing the number of scaffolds 
and the N50 statistics. Genomes with <75% BUSCO genes 
were excluded from further analyses. Through these criteria, 
a total of 169 genomes were collected (Supplemental 
Table S2). This set includes the genomes of 2 angiosperm spe-
cies appeared before the monocot–eudicot divergence, 11 
noncommelinid monocots, 24 Poaceae, and 132 eudicots 
from 39 different eudicot families. 

Identification of cell wall genes in all the genomes 
used 
The identification of cell wall genes within the 169 collected 
genomes was performed by following the approach pub-
lished by Pancaldi et al. (2022b). In brief, the detailed gene an-
notation and the extensive cell wall research available for 
Arabidopsis (A. thaliana) in scientific literature and online 
databases was used to create an initial list of 1,313 genes pro-
ven to be involved in cell wall biosynthesis within this species 
(Supplemental Table S8). This list was further integrated with 
some Poaceae-specific cell wall genes for which functional in-
formation was available for maize (Z. mays) and/or rice (O. 
sativa). The collected genes were classified into 150 different 
cell wall–related functions and were annotated for functional 
domain composition using HMMER3 (default parameters) 
(Mistry et al. 2013) and the hidden Markov models of all 
the protein domains available at the PFAM database 
(El-Gebali et al. 2019). Subsequently, the collected genes 
were aligned against the PEP files of all the 169 plant genomes  
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of the study using BLAST (E = 1E−3) (Altschul et al. 1990). 
This search led to the identification of all the potential 
homologs of the initial cell wall genes across all the collected 
genomes. The identified genes were also annotated for PFAM 
composition, and the BLAST outputs were then further fil-
tered based on equal domain composition between BLAST 
queries and subjects. Finally, very large gene families for 
which it is known that not all the genes are involved in cell 
wall biosynthesis (e.g. BAHD) were further filtered by building 
phylogenetic trees with RAxML (Stamatakis 2014) and iden-
tifying clades containing genes from Arabidopsis, maize, or 
rice for which cell wall functional validation is available in sci-
entific literature. For gene filtering, RAxML trees was run with 
100 bootstraps and by using the PROTCATBLOSUM62 sub-
stitution matrix. At the end, the search for cell wall gene 
homologs yielded a list of 320,005 genes across the 169 gen-
omes of the study and the 150 cell wall functions mentioned 
above (Supplemental Table S1). 

Analysis of gene CNV 
The number of gene copies present in each of the 169 gen-
omes of the study was quantified for each of the 150 cell 
wall gene functions (custom R script, available at https:// 
github.com/Francesco1994WUR/Cell_wall_phylogenomics). 
The average number of genes belonging to each cell wall 
function was determined for each genome, and t tests 
were computed to assess significant differences in average 
copy number between Poaceae and eudicots, as well as be-
tween multiple other angiosperm families at a time. In add-
ition, heatmaps were created to visualize patterns of CNV 
across both cell wall gene families and plant species. PCA 
was also performed to assess the contribution of cell wall 
gene CNV to the differentiation of Poaceae, noncommelinoid 
monocots, and eudicots (custom R script, available at https:// 
github.com/Francesco1994WUR/Cell_wall_phylogenomics). 
Finally, quantitative data from all these analyses were crossed 
with literature information on gene function to identify 
classes of genes whose copy number patterns appear particu-
larly relevant in the context of differentiation between type I 
and type II cell walls. 

Synteny analysis 
The syntenic conservation of the ∼320,000 cell wall genes of 
the study across the 169 angiosperm genomes was analyzed 
by following the methodology developed by Zhao and 
Schranz (2017) for large-scale network synteny analysis. 
Specifically, Diamond (Buchfink et al. 2015) was used to align 
all the proteins of each genome against all the other proteins 
of that genome and all the proteins of every other genome 
(default parameters; E = 1E−3). The outputs of Diamond 
were processed with MCScanX (Wang et al. 2012) to detect 
synteny (i.e. conserved gene order across multiple genomes) 
by evaluating the relative genomic position of pairs of hom-
ologous genes from each genome comparison. MCScanX was 
run with default parameters, except -s (number of colinear 
genes to claim a syntenic block) set to 3. The outputs of 

MCScanX were organized in a synteny network, in which 
each node is a gene and edges represent syntenic connec-
tions between genes. The synteny network was then filtered 
to retain only pairs of nodes linking cell wall genes 
(Supplemental Table S4) and decomposed into syntenic 
communities (i.e. groups of genes that display significantly 
higher synteny with each other than with the rest of genes 
in the network) of at least 4 nodes (k = 4), by using the 
Infomap algorithm (Rosvall and Bergstrom 2007; Rosvall 
et al. 2009). Syntenic communities of cell wall genes were 
taxonomically profiled, and the copy number of syntenic 
genes across the species contained within each community 
was also assessed. Finally, the taxonomic and copy number 
data from different syntenic communities were used to ana-
lyze the occurrence of a divergent genomic organization for 
each cell wall gene function between Poaceae, noncommeli-
noid monocots, and eudicots. 

Analysis of tandem gene clusters 
The ordinal position of cell wall genes along genomic BED 
files was assessed for each genome of the study, to identify 
the occurrence of tandem gene clusters of homologous genes 
along chromosomes (custom R script, available at https:// 
github.com/Francesco1994WUR/Cell_wall_phylogenomics). 
The results of this analysis were used to evaluate the propor-
tion of clustered and singleton genes out of the total genes 
belonging to a certain cell wall function and the mean size 
of the tandem clusters found in every species. Moreover, 
the occurrence of clustered genes within syntenic communi-
ties detected in the synteny analysis was also assessed. 

Phylogenetic analyses 
A group of gene families that displayed genomic patterns 
particularly relevant in the context of the differences be-
tween type I and type II cell walls were selected for a more 
detailed genetic study encompassing phylogenetic analysis 
(see Section 2). For this purpose, the protein sequences of 
the genes belonging to these gene families were aligned 
with MAFFT v7.453 (FFT-NS-2 algorithm) (Katoh and 
Standley 2013), with default parameters except gap opening 
penalty, set to 1.0. MAFFT alignments were trimmed using 
TrimAl v1.2 (Capella-Gutiérrez et al. 2009), with default para-
meters. Finally, RAxML v8.2.9 (Stamatakis 2014) was used to 
build phylogenetic trees out of trimmed alignments 
(PROTCATBLOSUM62 substitution matrix; 100 bootstraps). 
Phylogenetic trees were plotted and annotated using iTOL 
(Letunic and Bork 2019). The TAIR database (Huala et al. 
2001) was used to localize critical Arabidopsis genes of the 
families analyzed within each tree, while BLAST (Altschul 
et al. 1990) was used to find and localize relevant grass homo-
logs of those trees within each tree (E = 1E−3). 

Analysis of selection pressure 
Differences in the rates of selection pressure between the 
Poaceae and eudicot genes contained in both differentiated 
and shared genomic contexts of the genes included in the  
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BLH6 pathway were evaluated by using the EasyCodeML im-
plementation (Gao et al. 2019) of the CodeML program from 
the PAML4.0 package (Yang 2007). For each phylogenetic 
tree corresponding to a gene family within the BLH6 pathway 
(see Fig. 4), Poaceae clade(s) (corresponding to distinct syn-
tenic communities from eudicots or contained in shared syn-
tenic communities with eudicots, depending on the gene 
family) have been set as foreground in a branch model (mod-
el, 2; NSsites, 0) to estimate dN:dS ratios specifically for those 
branches. A basic model was also run (model, 0; NSsites, 0) to 
estimate dN:dS ratios at the whole-tree level (background), 
and a lLRT (also implemented in EasyCodeML) was per-
formed to test for significantly different selection pressure 
between foreground and background tree branches. For 
computational reasons, a random set of 80 leaves was se-
lected from the set foreground and background branches 
in order to run CodeML models and tests. 
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