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Abstract 

Background  Habitat structure strongly influences niche differentiation, facilitates predator avoidance, and drives 
species-specific foraging strategies of bats. Vegetation structure is also a strong driver of echolocation call character-
istics. The fine-scale assessment of how bats utilise such structures in their natural habitat is instrumental in under-
standing how habitat composition shapes flight- and acoustic behaviour. However, it is notoriously difficult to study 
their species-habitat relationship in situ.

Methods  Here, we describe a methodology combining Light Detection and Ranging (LiDAR) to characterise three-
dimensional vegetation structure and acoustic tracking to map bat behaviour. This makes it possible to study fine-
scale use of habitat by bats, which is essential to understand spatial niche segregation in bats. Bats were acoustically 
tracked with microphone arrays and bat calls were classified to bat guild using automated identification. We did this 
in multiple LiDAR scanned vegetation plots in forest edge habitat. The datasets were spatially aligned to calculate the 
distance between bats’ positions and vegetation structures.

Results  Our results are a proof of concept of combining LiDAR with acoustic tracking. Although it entails challenges 
with combining mass-volumes of fine-scale bat movements and vegetation information, we show the feasibility and 
potential of combining those two methods through two case studies. The first one shows stereotyped flight patterns 
of pipistrelles around tree trunks, while the second one presents the distance that bats keep to the vegetation in the 
presence of artificial light.

Conclusion  By combining bat guild specific spatial behaviour with precise information on vegetation structure, the 
bat guild specific response to habitat characteristics can be studied in great detail. This opens up the possibility to 
address yet unanswered questions on bat behaviour, such as niche segregation or response to abiotic factors in inter-
action with natural vegetation. This combination of techniques can also pave the way for other applications linking 
movement patterns of other vocalizing animals and 3D space reconstruction.
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Background
Vegetation structure is a key biotic factor that affects ani-
mal movement [1]. Vegetation influences, among others, 
prey-predator interactions as it offers shelter from preda-
tors [2, 3]. While some nocturnal species are night active 
to reduce predation risk [4, 5], they often make use of 
the vegetation cover to find additional shelter [6]. Bats in 
particular depend on nocturnal darkness [7, 8]. Even in 
darkness, only a limited number of species ventures out 
in relatively open space when foraging, and these are gen-
erally fast-flying and manoeuvrable species [9, 10]. Many 
other species stay in cluttered environments when forag-
ing; these are typically slow-flying species [9, 10]. There-
fore, vegetation structure strongly influences bat activity 
and niche segregation between bat guilds [11, 12]. Study-
ing the effect of vegetation structure on the behaviour 
and ecology of bats is often done at the landscape level 
[13–16]. Detailed information on how bats from differ-
ent bat guilds adjust their small-scale spatial behaviour 
to vegetation structure is highly important to understand 
species-habitat relationships in forest environment [11, 
12, 17].

Bat guilds may not only be differentiated by their flight 
behaviour, but also by their echolocation calls [9, 18]. 
Bats rely on echolocation to navigate, avoid obstacles and 
locate prey [19, 20]. As bats adjust their calls to the task 
and environment they are faced with [12], the structure 
of natural vegetation is a strong driver of call character-
istics. Generally, calls differ with distance to background 
objects, such as the ground and vegetation. Such changes 
include increasing bandwidth and shortening inter-
val and call duration when approaching vegetation 
[21]. However, the transition zone between open- and 
edge-space calls has been studied with limited spatial 
resolution [22, 23]. Precise measures of call parameter 
adjustment in response to the background can only be 
estimated by combining the position of a bat at the time 
of the call emission with the distance to the vegetation 
and the ground.

Knowing the precise positions of bats relative to veg-
etation structures is essential to understand the response 
of bats to different environmental factors. For example, 
there is accumulating evidence that bats’ behaviour is 
affected by ambient light. In line with nocturnality in 
general, the response of bats to low light levels at night 
is widely recognized as related to predator avoidance [4, 
5]. This hypothesis is supported by the fact that slow-fly-
ing bats emerge later from their roosts compared to fast 
and agile bats [8]. Higher ambient light levels may cause 
bats to fly closer to vegetation structures in order to be 
less conspicuous to potential predators. This may reduce 
the possibility to observe bats and indeed, several stud-
ies reported lower activity of bats with moonlight, mainly 

in tropical bat species [24–27]. Flying closer to vegetation 
may hamper prey capture success, as background echoes 
may interfere with prey echo, especially for open-space 
and edge-space foragers [12]. The potential benefit of 
extra safety by flying close to the vegetation is therefore 
a trade-off between predator avoidance and foraging effi-
ciency, which may be influenced by light.

In order to study the interaction between vegetation 
and flight behaviour, high resolution information on 
both flight pattern and vegetation structure is essential. 
Very few studies have explored the three-dimensional 
(3D) spatial data of vegetation to study bat behaviour. 
Some laboratory-based evidence demonstrates that 
bats use visual and auditory cues to navigate [28] and 
fly in stereotyped flight paths [29], but studies in real-
life environments are sparse, most likely because of the 
labour-intensiveness of 3D flight path assessment. Few 
studies have studied bats in their natural habitat using 
remote sensing methods such as Light Detection and 
Ranging (LiDAR) [17, 30–33]. While aerial laser scan 
(ALS) was preferred to cover larger areas [17, 31–34], 
very fine-scale vegetation information can be obtained 
at the plot level with terrestrial laser scanning (TLS), 
especially below the canopy, where bats potentially fly 
to avoid predators or search for prey [35–37]. TLS has 
become the method of choice for precise 3D scanning 
of vegetation relevant for bat habitat, as it is the best 
approach for scanning the canopy and the vegetation 
below  [38]. In previous studies, spatial distribution of 
bats was assessed using ultrasonic bat detectors, thermal 
imaging [39], GPS (Global Positioning System) tags [34] 
or mist nets [25]. While bat detectors or mist nets pro-
vide limited detail on vertical stratification of bats [11, 
25], thermal imaging can mainly be used in open areas, 
as it is difficult to combine data from multiple cameras 
in dense forest and thus to reconstruct bats’ flight pat-
terns. Several cameras are needed and must be carefully 
positioned with greater but precisely known distance and 
exact angle in order to calculate precise positions of bats, 
and this has to be done again every single time they are 
set up in a new environment. Therefore, these techniques 
are much less suitable to study the fine-scale species-hab-
itat relationship of bats.

Nowadays, acoustic localisation can overcome some 
disadvantages of these methods. It offers great opportu-
nities to precisely study animal movements on a fine but 
limited spatial scale. Acoustic localisation is done by cal-
culating the time-of-arrival-difference (TOAD) of each 
signal between several microphones [40, 41]. Acoustic 
tracking using microphone arrays is easy to deploy: it is 
limited to mounting a frame with microphones at fixed 
positions on a tripod. As long as one knows the position 
and the angle of the frame relative to the ground plane, 
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bats’ positions can be calculated relative to the array [41]. 
As echolocating bats produce numerous echolocation 
calls per second, the technique allows for tracking with 
a high spatial and temporal resolution, and echolocation 
calls can be simultaneously used for species identifica-
tion. The method is thereby a great complementation to 
GPS tracking, which provides much less precise spatial 
data, but at a much larger scale and specific for each indi-
vidual. Another benefit of acoustic localisation is that 
animals do not need to be captured and carry a logger or 
transmitter, so their behaviour is not altered by this tech-
nique and even very small bat species can be tracked.

Here, we show that the difficulty of accurate assess-
ment of the interaction between bat flight behaviour and 
spatial structures can be resolved with combining acous-
tic bat tracking and LiDAR vegetation scans. This opens 
up the possibility to acquire knowledge on the funda-
mental mechanisms on how bats interact with their envi-
ronment. Recent developments in portability and ease 
of deployment of both techniques facilitate quick collec-
tion of spatial data on vegetation structure and bat flight 
behaviour in the field. Although it entails challenges with 
combining mass-volumes of fine-scale bat movements 
and vegetation information, here we show the feasibility 
and potential of combining those two methods for future 
studies on bats. This combined method could be applied 
as well to other systems linking movement patterns and 
measurements of 3D space.

Methods
Field sites
Acoustic bat tracking was combined with LiDAR scans 
in forest edge habitat at seven experimental sites set up 
to study the effect of artificial light at night on the for-
est-edge ecosystem [42]. The sites are located in the 
Netherlands and consist of either coniferous forest with 
Scots pine (Pinus sylvestris) or Douglas fir (Pseudotsuga 
menziesii), or mixed forest with Scots pine, common 
oak (Quercus robur) and birch (Betula sp.). At each site 
we collected data at three plots (Fig.  1). The distance 
between the centre of two plots varied between 88 and 
386 m (average 204 m; standard error, s.e. 17).

Acoustic localisation
Data collection
Bats were acoustically recorded from 15 min before sun-
set to 15 min after sunrise for a total of 27 nights between 
May 8th 2020 and August 9th 2020. Up to seven micro-
phone arrays were deployed at one site per evening in the 
open area, at the forest edge and in the forest to account 
for different vegetation structures (three plots per site, 
two to three arrays per plot).

Technical description of the system
Each array consisted of eight microphones (omnidi-
rectional microphones FG-23329 Knowles Electronics, 

Fig. 1  Set-up to collect LiDAR data at one plot within a site with a RIEGL VZ-400 terrestrial laser scanner. To include both open and closed 
vegetation structures, we deployed microphone arrays (T-shaped) at the forest edge and in the forest and we scanned the plot up to 15–20 m from 
the array. Each star represents an individual scan location at which both an upright and tilted scan were done
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Itasca, IL, USA), fitted on an aluminum frame with arms 
in x, y and z directions (see Fig.  2a for precise layout). 
The array frame could be disassembled for easy transport 
in remote field sites only accessible by foot. The micro-
phones were connected to a custom-made amplifier 
and filter unit (Fig. 2b). Sound recordings were digitised 
with an Analog–Digital-Converter USB-6346 (DAQ) 
(National Instruments, TEX, USA) at a sampling rate of 
300 kHz and 16 bit resolution. MALTA Software (Micro-
phone Array Localisation Tool for Animals, version 3.6, 
CAE Software & Systems, Germany) allowed real-time 
visualization of time series of all channels and computa-
tion of real time spectrogram of one channel at a time. 
All recording parameters were controlled and set in the 
MALTA Software, and all sound recordings were stored 
on Mini PCs (Gemini X, Beelink). Recording systems 
were remotely controlled and monitored using WLAN 
routers (TP-Link M7200 MiFi) and TeamViewer (Team-
Viewer GmbH, Germany).

Each system was battery-powered by one 12 V 20 Ah 
battery for the Mini PC and the DAQ and one 12 V 5 Ah 
battery for the amplifier, adding up to 25 Ah in total. The 
power requirements of the entire system were 1.3 A at 
12 V, i.e. approximately 15 W, allowing for 20 h of record-
ing. The recordings were stored on an external 1 TB SSD. 
All the recording equipment including batteries easily fits 
in a 20 L box (Additional file 1: Fig. S1).

Calculating 3D positions
Each echolocation call reaches each of the eight micro-
phones at a different time because of the distance 
between the microphones. The time-of-arrival-difference 
(TOAD) between the signal of the reference microphone 
(in this case the top microphone) and the signal of each 

of the other microphones was determined by cross cor-
relation using a custom-built software (TOADSuite, P. 
Stilz, J.C. Koblitz and H.R. Goerlitz) [43] in MATLAB 
R2020a (The MathWorks, Inc., Natick, MA, USA). The 
bat’s position at the moment of signal emission was cal-
culated based on these TOADs [44].

For the analysis two approaches are possible: (1) the 3D 
position of every call localised with sufficient precision is 
considered as an individual data point. (2) subsequently, 
flight paths based on the spatial temporal pattern of suc-
cessive localised echolocation calls can be computed. 
Note that the spatial coverage of the array is limited to 
a hemisphere with a radius of 5–20 m depending on bat 
species. Animals frequently leave and re-enter this hemi-
sphere and it is impossible to determine whether the 
same or a different bat is recorded.

Localisation error assessment
Technically, only four microphones are needed for 3D 
localisation. In this study we added four extra micro-
phones, resulting in an overdetermined array with eight 
microphones (Fig. 2). The use of an overdetermined array 
allows assessment of localisation error by comparing the 
theoretical TOADs based on isotropic spherical sound 
spreading from the localised sound source position with 
the real TOADs of the incident sound at the multiple 
microphone positions. Two types of localisation errors 
can be assessed, namely the radial error and the tangen-
tial error. The radial error defines the difference between 
the actual and calculated 3D position of the sound source 
in a direct line to the centre of the array. The tangential 
error defines the difference between the actual and cal-
culated 3D position of the sound source in the plane 

Fig. 2  Acoustic localisation setup. a Array set-up in the field, red dots indicate the positions of the eight microphones (also numbered), b schematic 
of the set-up
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perpendicular to the axis between the centre of the array 
and the calculated position (see Additional file 2).

Large localisation errors may occur for short and faint 
calls with short inter-pulse interval during the feeding 
buzz phase (the moment bats capture an insect; [20]), or 
when calls from two individuals are recorded simultane-
ously, leading to cross correlation mismatch between the 
microphones. As a rule of thumb, an accurate localisation 
can be achieved in a distance of one to ten times the array 
dimension (in this case 2 to 20 m with an array aperture 
of 2 m). 3D positions based on recordings of pulses very 
close to the array are the least precise localisations due to 
reflection and shading artefacts from the array frame, rel-
atively large TOADs because of the array geometry and 
microphones receiving highly different signal shapes of 
different emission directions. Therefore, positions within 
two meters of the centre of the microphone array were 
excluded (Additional file  2: Fig. S4). Positions located 
more than 20 m away were kept, as it is possible to detect 
and localise very loud calls emitted in the open area. 
Moreover, as the aim of this method is to combine bats’ 
positions with fine-scale vegetation data, positions were 
excluded if one of the two localisation errors was greater 
than 0.5 m.

Species identification
Sound files were analysed with the Tadarida software 
([45], online repository: https://​github.​com/​YvesB​as, 
January 2021 version) to detect and classify sound events. 
As the identification of bats to the species level is diffi-
cult based on their echolocation parameters, we limited 
identification to the following bat guilds: the ENV group 
including Eptesicus spp., Nyctalus spp. and Vespertilio 
spp. that are open space aerial foragers, the Myotis group 
including Myotis spp. that forage close to and within foli-
age or over water surfaces, and the Pipistrellus group 
including Pipistrellus spp. that are edge space aerial for-
agers [10, 18].

Lastly, we linked each microphone array derived 3D 
position to the species group identified by Tadarida, 
using the detection time of the bat calls.

LiDAR
Multiple returns Terrestrial LiDAR data were collected 
from June 2020 to April 2021 with a RIEGL VZ-400 ter-
restrial laser scanner (RIEGL LaserMeasurement Sys-
tems, Horn, Austria). Scans were done under leaf-on 
conditions (presence of foliage on deciduous trees), but 
plots with almost exclusively coniferous species were 
scanned later in the season. For each plot in which we 
linked acoustic localisation with LiDAR, scans were done 
at 7–16 locations (dependent on the number of arrays 
and density of the understorey vegetation), following the 

setup shown in Fig.  1. One scan was always done close 
to the microphone array, and additional scans were done 
at a distance of ~ 15 to 20  m from the array, to ensure 
that we captured the vegetation structure in the whole 
plot. At each scan location, two scans were done; the 
first scan with the scanner straight up, covering zenith 
angles between 30° and 130° off nadir. The second scan 
was acquired with the instrument tilted at 90° from the 
vertical to sample the full hemisphere. Scans were done 
with an angular resolution of 0.06 degrees, resulting in a 
cloud density with a mean Euclidean nearest neighbour 
distance of < 2 cm within the plot. Reflective targets were 
used to co-register and align the individual scan loca-
tions using RIEGL’s RiSCAN Pro Software version 2.8.0 
[46]. Finally, the co-registration was optimised using 
the Multi-Station Adjustment (MSA) algorithm, within 
RiSCAN Pro. MSA modifies the position and orientation 
of individual scan locations in several iterations to calcu-
late the best overall alignment. The resulting point clouds 
were filtered based on the deviation of the returned 
LiDAR signal. Returns with a higher pulse deviation often 
represent semi-returns, softer targets or noise which can 
hinder further analysis [47]. Therefore, all points with a 
pulse deviation higher than 15 were filtered out. Per plot 
this resulted in point clouds containing between 17 and 
206 million points, depending on the size of the area 
scanned and the vegetation density.

Combining LiDAR and acoustic localisation
Microphone arrays were set up during the LiDAR scans 
in exactly the same position and angle as when tracking 
bats (Additional file 3). The array is thus present in both 
3D datasets. The array coordinates (the four ends and the 
centre of the frame) in LiDAR scans were subsequently 
used as a reference to apply a rigid body transformation 
(translation and rotation, [see Additional file 3]) on bats’ 
positions to align them with the coordinate system of the 
vegetation scans in CloudCompare (version 2.12 beta, 
2022).

Distance to the vegetation can be directly assessed by 
calculating the distance for each bat’s position to the 
closest vegetation point using the Cloud-to-Cloud Dis-
tance computation tool in CloudCompare. However, 
isolated vegetation points may interfere with the calcu-
lation. Therefore, the point clouds are ‘voxelised’ by con-
verting data into a 3D volume of data values. This yields 
a 3D grid with the number of points per voxel indicating 
voxel specific vegetation density [48]. Unlike point cloud 
data, voxels have a defined length, width, area and vol-
ume, which can contain quantitative information on the 
space occupied by vegetation. These parameters depend 
on voxel size; small voxels result in data redundancy, 
while large voxels overestimate the space occupied by 

https://github.com/YvesBas
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objects [48, 49]. According to Ross et al. [49], a 10–25 cm 
resolution is the optimal size for estimating canopy gaps 
in forest plots, which is an important factor to take into 
account when studying bat flight behaviour. This also 
corresponds to the closest distance between target and 
background clutter required for bats such as Myotis nat-
tereri to detect prey [21]. Lasvoxel tool in LAStools (ver-
sion 210418, rapidlasso GmbH, Gilching, Germany) was 
used to build a 3D grid of 20 cm3 cubic voxels. For each 
voxel we thus obtain an occurrence value of vegetation 
points, and we can define voxels with a vegetation count 
value below a specific threshold as background voxels.

Results
Overall activity
Out of 138 recorded array nights (one array night is a full 
night of recording for one microphone array), 6822 (s.e. 
1465) 3D positions per night were calculated in average. 
By defining a bat pass as a 10 s file containing at least one 
position, this resulted in 326 (s.e. 38.3) passes per night 
in average. 93.52% of the 3D positions were assigned to 
the Pipistrellus group, 6.29% to the ENV group (Eptesi-
cus spp., Nyctalus spp. and Vespertilio spp.) and 0.19% to 
the Myotis group. This is consistent with previous stud-
ies carried out at the same sites using different acoustic 
monitoring devices [50, 51].

Individual tracks
Individual tracks can be constructed using subsequent 
3D positions, which has the advantage that two indi-
viduals recorded at the same time can be spatially sep-
arated. This can be done in some cases using just one 
spatial dimension (i.e. x, y or z coordinate values; see 
Figs.  3, 4). In Fig.  3, one bat flies back and forth from 
4  m at one side of the array to 2  m at the other side 
of the array with a very regular movement pattern (see 

Additional file  1: Fig. S2 for the track in 3D). On the 
other hand, Fig.  4 shows two to four distinctive flight 
tracks. As individuals leave and enter the recorded 
hemisphere, it is however impossible to assess whether 
the same or different bats are recorded over time. The 
maximal recorded distances for the ENV, Pipistrellus 
and Myotis groups are respectively 37.25  m, 34.27  m 
and 20.70 m from the array.

Integration of LIDAR and acoustic localisation
Case study 1: Stereotyped flight paths
Spatial alignment of vegetation scans and bats’ posi-
tions shows that bats’ positions can be well aligned 
with the vegetation, as represented in Fig. 5. Obstacles 
like tree trunks obstruct sound propagation of bat calls 
when in between the bat and the microphone array, 
thus the echolocation calls cannot reach the micro-
phones and cannot be localised. These acoustic shad-
ows validate the alignment of the two 3D datasets by 
matching the missing bats’ positions with the obstacles 
in LiDAR scans. Figure 5 shows data from three nights 
of recordings at the same plot. Pipistrelles use stereo-
typed flight paths in cluttered environment by circling 
around the trees each night in each vegetation layer 
(subfigures of Fig. 5). However, it is not feasible to esti-
mate how many individuals were flying in these stereo-
typed flight paths based on acoustic recordings. This 
first case study is one of the few pieces of evidence of 
stereotyped flight paths of pipistrelles in their natural 
habitat [52].Fig. 3  Individual flight track of a bat in one dimension (Y coordinate 

over time). Y = 0 m corresponds to the centre of the microphone 
array (positions are more than 2 m away from the array centre in 
three-dimensional space)

Fig. 4  Multiple flight tracks of bats in one dimension (Y coordinate 
over time). Y = 0 m corresponds to the centre of the microphone 
array (positions are more than 2 m away from the array centre in 
three-dimensional space). Red boxes highlight the presence of two 
individuals at the same time. A and B correspond to two individuals 
with distinctive flight tracks. C and D are either tracks of the same 
individuals or from two other individuals
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Case study 2: Distance to vegetation
The second case study describes the distance that bats 
keep to the vegetation structure and obstacles. Figure 6 
depicts the distance pipistrelles keep to the vegetation 
in forest-edge habitat. The flight path of one individual 
along the forest edge is also reconstructed as an exam-
ple (Fig.  6). Spatial data are structured in 20 × 20 × 20 
cm voxels. In this case study, pipistrelles fly around a 
lamppost, while keeping their distance both from the 
vegetation and the lamppost, as shown in Figs.  6 and 
7. When flying in a wider corridor, bats stay further 
away both from the vegetation (Fig.  7a) and the light 
source (Fig. 7b). In the wide corridor (7.6 m wide), bats 
fly in average at 4.07 m from the lamppost and 3.99 m 
from the vegetation (Welch t-test = 7.06, p < 0.001). 
In the narrow corridor (4.8  m wide), bats fly in aver-
age at 3.14 m from the lamppost and 2.84 m from the 

vegetation (Welch t-test = 12.4, p < 0.001). Thus, pip-
istrelles fly closer to the vegetation than the lamppost, 
but they also keep a certain distance to the vegetation 
to avoid clutter.

Myotis and ENV groups data from the same plot 
are available in Additional file  1: Fig. S3. Pipistrelles 
and ENV groups exhibit a different use of space (Myo-
tis group was not compared, as only two tracks were 
recorded, see Fig. S3c). While most pipistrelles fly up to 
4 to 5 m from the vegetation, ENV species have a wider 
distribution of distance to the vegetation (Fig.  8a; the 
two distributions are significantly different according 
to the Kolmogorov–Smirnov test, D = 0.22, p < 0.001). 
Moreover, pipistrelles generally fly closer to the lamp-
post than ENV species (Fig.  8b; the two distributions 
are significantly different according to the Kolmogo-
rov–Smirnov test, D = 0.46, p < 0.001).

Fig. 5  Top view of Pipistrellus spp. positions (coloured dots) integrated with a vegetation scan (black dots) at heights that included most of the 
calculated bats’ positions (from 4 to 10 m above the ground). Each colour corresponds to a different recorded night (blue for June 9th 2020, red for 
July 28th 2020 and yellow for July 30th 2020). In the second plot (from 5 to 6 m high), the cross indicates the microphone array’s position. The tree 
trunks (circled) produce acoustic shadows beyond them (represented by the blue arrows)
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Fig. 6  Distance of bat activity relative to the vegetation. Top view of Pipistrellus spp. positions (coloured dots) integrated with the voxelised 
vegetation scan (black dots) within the horizontal plane between 3.5 and 4.5 m above the ground. The T-shape represents the array. The red 
arrow shows an example of a flight trajectory. Voxels have a size of 20 × 20 × 20 cm. Only voxels with at least ten vegetation points are marked as 
‘vegetation voxels’ as this preserves a fine-scale resolution in vegetation while filtering out background voxels containing isolated vegetation points. 
The distance to the vegetation corresponds to the absolute distance (in meters) of each bat position to the closest vegetation voxel containing 
at least ten vegetation points. The black icon next to the microphone array shows the position of the lamppost (height of 4 m), which is part of 
the experimental setup of the “Light on Nature” sites. The highlighted sections indicate the narrow (light red) and the wide (light blue) corridors 
described in Fig. 7

Fig. 7  Space use of pipistrelles in response to artificial light in a narrow (4.8 m wide, n = 1342 positions) and a wide (7.6 m wide, n = 6463 positions) 
corridor shown in Fig. 6. A Distribution of bats’ distance to the closest vegetation voxel containing at least ten vegetation points. B Distribution of 
bats’ distance to the lamppost
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Discussion
In this study, we show that the combination of acoustic 
localisation and LiDAR vegetation scanning is a method 
of great potential to study the interaction of bats with 
their immediate surroundings. The ability to study bat 
behaviour in relation to fine-scale structures is of rel-
evance as many bat species strongly rely on these for 
nightly foraging and commuting routines [53–55]. They 
may change this interaction depending on momentary 
and local weather [56], light conditions [57] or prey 
availability [36, 37]. By combining acoustic localisation 
and LiDAR, these interactions can be precisely quanti-
fied [58]. With the improvements on the acoustic track-
ing system, microphone arrays have become easy to 
deploy and recordings can now be remotely controlled 
and monitored for two full nights. The ability to use the 
microphone array system remotely controlled for consec-
utive nights allows for additional assessment of temporal 
changes in addition to spatial data.

Acoustic tracking data have a very high spatial accu-
racy, with spatial resolution of few centimetres. This is 
very valuable to study the fine-scale interaction of bat 
flight with habitat structure, which would not be possible 
with GPS or radio tags. It also provides very high tempo-
ral resolution data, as bats emit numerous echolocation 
calls per second. As we used an overdetermined array, it 
is possible to use differences in predicted and observed 
TOADs to estimate localisation errors.

The limitations of acoustic localisation depend on a 
complex relation of a multitude of parameters, for exam-
ple shading artefacts from the array frame, array geom-
etry, call directionality and shape, or inter-pulse intervals. 
Interfering calls and low signal-to-noise ratio can limit 
the localisation precision. Therefore, the selection of an 
optimal array setup depends on the task to solve and the 

recording conditions. More accurate localisation can 
be achieved with larger TOADs using of an array with a 
larger aperture. However, if the targeted sound is highly 
directional, it may not reach some of the microphones. 
Here, an array with a smaller aperture may remain a bet-
ter option for good localisation results.

The range for spatial detection is species-dependent, as 
acoustic parameters of echolocation pulses vary across 
bat species [59]. ENV calls are often louder and at lower 
frequencies, and therefore can be detected and local-
ised further away. Myotis species tend to reduce their 
call amplitude when flying in cluttered environment and 
approaching prey [60], thus they will be less detectable. 
However, the error variance in 3D positions calcula-
tion follows the same patterns between the three species 
groups (Additional file 2: Fig. S4).

Combining 3D data obtained by the two different tech-
niques requires precise alignment, but we show this is 
well feasible with the use of reference locations, in our 
case the array position itself (but if necessary, more refer-
ence locations can be added). As shown in the first case 
study, hard objects, such as tree trunks, create acoustic 
shadows and impair the ability to localise bats when in 
between the bat and the microphone array. Although 
this can be solved with the construction of flight paths, 
LiDAR data may further be helpful to solve potential 
issues with acoustic shadows produced by obstacles as 
these data reveal the location of such obstacles. Strictly 
speaking, the LiDAR data do not validate the 3D bats’ 
positions, but precisely explain the acoustic shadows pro-
duced by trees in case of proper alignment.

This first case study is also one of the few pieces of evi-
dence of stereotyped flight paths of pipistrelles in their 
natural habitat [52]. As already suggested by Hulgard 
et al. (2016) [29] in the big brown bat (Eptesicus fuscus), 

Fig. 8  Space use of the ENV group (n = 1790 positions) and the Pipistrellus group (n = 62,336 positions) in forest edge habitat. A Distribution of bats’ 
distance to the closest vegetation voxel containing at least ten vegetation points. B Distribution of bats’ distance to the lamppost
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pipistrelles may also reduce their sensory processing load 
for navigation in known area in order to ameliorate their 
foraging efficiency. Combining the bats’ positions with 
vegetation scans provides an additional layer of informa-
tion in our understanding of the acoustic field of view in 
echolocating bats. The ability of prey detection depends 
on the distance to clutter of a foraging bat. Therefore, 
it is highly relevant to get high-detailed information on 
vegetation through LiDAR scans and combine this with 
acoustic localisation data to study how vegetation affects 
echolocation behaviour of bats in cluttered habitat. This 
would allow to investigate the plasticity in echolocation 
signals at a fine-scale spatial resolution in the field.

The second case study shows the potential of unrav-
elling the interaction of bat flight behaviour and the 
vegetation structure. Different bat guilds keep distinct 
distances to obstacles; in our example, open-space forag-
ers such as ENV species stay further away from the veg-
etation and from a lamppost than opportunistic species 
like pipistrelles. Therefore, measuring the distance of bats 
to the vegetation is particularly relevant to understand 
niche segregation of bat guilds in relation to the density 
of habitat clutter.

How bats respond to abiotic factors, such ambient light 
by the moon or artificial light sources and how these 
interact with vegetation [50] can be studied in much 
more detail using acoustic tracking and LiDAR. The 
deterrent effect of light could also be studied in greater 
detail by mapping the light level around lampposts and 
link this with the vegetation structure around the light 
source and bat 3D activity.

This example also shows the potential of this method to 
precisely look at behaviours such as the use of corridors 
by bats and their flight characteristics via the analysis of 
their trajectories, which has important implications for 
bat protection measures  at the landscape level. Lastly, 
parameters such as flight speed or straightness of the 
flight trajectories can also be computed to evaluate bat 
responses to obstacles such as vegetation.

Bats are appropriate model organisms to validate our 
combined method, as their flight behaviour is shaped 
by habitat characteristics and  their echolocation signals 
are excellent for high-resolution acoustic tracking. How-
ever, combining LiDAR with acoustic tracking could be 
applied for other vocalizing organisms (i.e., nocturnal 
species for which visual survey methods are ineffec-
tive such as crickets, katydids [61] and frogs [62, 63]). 
Combining the two techniques could also help to bet-
ter understand acoustic behavioural changes in shrews 
in response to habitat clutter [64], or map song posts 
and territories of songbirds [65–67]. The main criterion 
to combine LiDAR with acoustic tracking is to use one 
or more common objects in both datasets (in our case, 

the array) as reference for co-registration. At least three 
reference points (here we used five points) are needed to 
apply a rotation and translation matrix on one 3D dataset 
to align it with the other one. LiDAR could also help to 
precisely map microphones that are separated from each 
other on larger distances and synchronized by radio-
transmission or GPS signal in thick vegetation.

Conclusions
Combining techniques as acoustic localisation and 
LiDAR allows to precisely map bat flight movements in 
response to spatial structure, opening up the possibility 
to address open and novel questions on fine-scale bat 
behaviour, such as niche segregation between different 
bat guilds, and responses to artificial light at night. While 
it is important to consider wider landscape composition 
to study forest management and bat conservation, stud-
ies on the local, fine scale may prove highly important 
to provide bats high-quality foraging habitat. There are 
other vocalizing animal species, such as songbirds, of 
which novel information can be collected to exploit the 
potential of the combination of the methods, making the 
methodology outlined in this paper relevant for a wide 
range of study systems.
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