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Summary

I
n the past 30 years there has been a quick progression of technological 

advances in DNA reading technologies, resulting in a vastly increased 

amount of genetic data. As a result, many techniques commonly applied 

in plant breeding have greatly advanced. Among such methods we find quan-

titative trait loci (QTL) studies, aimed at finding markers linked to a specific 

trait using genotype-phenotype associations. Also linkage mapping approach-

es, which leverage recombination frequencies between markers (linkage), to 

build genetic maps, have greatly advanced. Such developments have lagged in 

polyploids, organisms that contain more than two copies of each chromosome 

and need to be analysed using specific models. Many economically impor-

tant crops are polyploid, such as potatoes, bananas, cotton, wheat, kiwifruit, 

or roses. The garden strawberry (Fragaria x ananassa) is also a polyploid, 

with eight copies of each of its seven chromosomes, organised as four diploid 

subgenomes. Due to its high ploidy and high similarity between subgenomes, 

genetic and genomic studies have been historically very challenging in straw-

berry. One of the most important and variable traits of strawberry is its aro-

ma, a trait determined by a mixture of volatile compounds produced through 

a vast network of metabolic processes. Due to the complexity of aroma and 

of strawberry genetics, there is not much known about the underlying genetic 

mechanisms that control the wide diversity of strawberry aromas. This the-

sis elaborates on these topics, expanding current methodologies to scenarios 

that were previously not possible to be studied in polyploid organisms and 

shedding light on the effectivity of different approaches to handle polyploid 

genetic data. 
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In Chapter 2 the concept of multiparental populations (MPPs) was reviewed 

in a polyploid context. MPPs are all those populations formed by a set of in-

dividuals whose ancestors can be traced back to a limited number of founder 

individuals. A breeding programme is the prime example of an MPP, since 

they are formed by concurrent crossings from a limited set of founders. QTL 

analyses usually hinge on the development of specific experimental popula-

tions, most commonly by crossing two parents. As such, many QTL analyses 

are limited to analysing the genetic diversity present in those parents, ignor-

ing the wider diversity that can be present in the species under study. MPPs 

resolve this issue by including a wider germplasm, but without moving to the 

genome-wide association study (GWAS) setting, which carries statistical is-

sues with rare alleles and the influence of genetic structure. At the moment 

of writing this review, there were no tools available to perform QTL analysis 

in multiparental populations of polyploids, however, many models had been 

proposed to perform such analysis in diploids. I reviewed these models and 

pointed towards the need of tracking identity-by-descent (IBD) in MPPs, es-

pecially in heterozygous polyploid organisms which may harbour many dif-

ferent alleles. Tracking such IBD is especially challenging in polyploids, but 

haplotyping methods show promise in being able to estimate IBD. 

In Chapter 3 a model to perform QTL analysis in MPP of polyploids was 

presented, evaluated and implemented in the R package mpQTL. To study 

the performance of this model a set of simulated autotetraploid multiparental 

populations was developed following the nested ancestral mapping (NAM) 

design. A NAM population consists of a single central parent that is crossed 

with multiple peripheral parents, thus producing a set of F1 populations that 

have one parent in common. Each NAM contained a varying degree of genetic 

diversity, which was expected to affect the number of segregating alleles in 

each NAM population and consequently impact the QTL analysis. The model 

was evaluated using biallelic markers, true IBD markers and haplotype mark-

ers that were expected to track IBD. Both IBD and haplotype markers were 

multiallelic, a key innovation of this model implementation that is not com-

mon in diploids or polyploids. The evaluation found that the scenario with 

lower genetic diversity yielded more statistical power to detect and locate 

QTLs, and that multiallelic models (IBD or haplotypes) were more powerful 
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than biallelic ones. Most crucial was the observation that multiallelic mod-

els produced more accurate QTL positions than biallelic ones. This chapter 

showed that MPP analysis is possible and powerful in polyploids, highlighting 

the impact of genetic diversity on QTL detection in MPP populations.

In Chapter 4 an approach to perform linkage mapping using error-prone 

genotype data was developed and evaluated, with specific considerations 

for polyploid linkage mapping. Modern genotyping techniques based on se-

quencing technology can be used to genotype hundreds of thousands or even 

millions of polymorphisms cheaply. Typically, they produce less accurate data 

than older technologies like SNP arrays. This decrease in accuracy is particu-

larly prominent using skim-sequencing, a technique that aims at sequencing 

using low read depth. Genotyping errors greatly affect linkage mapping due 

to inaccurate estimation of recombination frequencies. Thus, a methodolo-

gy was developed which is able to utilize error-prone genotypes to iteratively 

construct linkage maps and this method was implemented in the R package 

Smooth Descent. Using a set of diploid and polyploid simulations, we showed 

that Smooth Descent can be used to increase genotype accuracy in diploids, 

while in polyploids it is mostly useful to improve linkage map construction. 

The tool was also applied to real datasets, where it was used to estimate error 

rates in a strawberry population and improve genotyping in tetraploid potato 

and hexaploid sweet potato. We also showed how our tool can correct geno-

types at a similar rate than other tools in the field, with better performance in 

time and resulting in better genetic maps. 

In Chapter 5 linkage maps for a strawberry (Fragaria x ananassa) popula-

tion were produced, using error-prone data generated through whole-genome 

skim sequencing. Initially, 10.24M polymorphic sites were discovered by com-

paring reads to the “Camarosa” genome assembly. An initial filtering based 

on read coverage and segregation reduced the number of markers to 4.04M. 

Since only 46 individuals were genotyped, we expected an oversaturated map 

with many completely co-segregating markers which were grouped into bins. 

Bin size, the number of markers within a bin, was very variable and could 

be used to remove markers with a high number of genotyping errors. Using 

the physical locations of markers within each bin, bins could be assigned to 
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chromosomes. An average of ~5% of markers within each bin presented con-

flicting information, being assigned to one chromosome but originating from 

a different chromosome of the genome assembly. This revealed assembly is-

sues in the “Camarosa” genome. After removing conflict markers and those 

markers from bins that could not be clearly assigned to any chromosome, 

1.85M markers remained, grouped in 6567 bins. These markers were used with 

Smooth Descent to produce linkage maps, with an estimated genotyping er-

ror ranging from 1 to 10% for samples with a read depth below 10x. Lastly, the 

maps produced using Smooth Descent were compared with the “Camarosa” 

assembly and an equivalent linkage map produced using more accurate SNP 

array genotypes. The results showed that both linkage maps are highly col-

inear (0.76 Spearman correlation). This research proved that, with adequate 

software adapted to error-prone situations, skim-sequencing genotypes can 

be successfully used to produce high quality linkage maps, even in the case of 

allopolyploid crops.

Lastly, in Chapter 6, metabolomic data from volatile organic compounds 

(VOC) of strawberry varieties were used to perform a multivariate QTL study. 

One of the most crucial traits of strawberry (F. x ananassa) is its aroma, which 

is greatly determined by the VOCs produced by the ripening fruit. Aroma is 

also one of the most variable traits in strawberry, with over 300 compounds 

having been reported. As a complex trait that is determined by the combined 

abundance of multiple compounds, we proposed that using a multivariate 

approach to summarise metabolites into a few multivariate traits, each rep-

resenting a single group of correlated metabolites, would be helpful in un-

covering main regulators of volatile production in strawberry. In a biparental 

cross together with a diverse population, 125 compounds were detected and 

96 were confidently identified. Most compounds were esters, terpenoids and 

fatty acids or compounds derived from fatty acids. The multivariate analysis 

revealed that all terpenoids were tightly correlated with each other, as were 

esters within their own chemical class. We found a major regulator influenc-

ing the abundance of at least 8 and possibly up to 17 different terpenoid com-

pounds in chromosome 3C. By estimating genomic positions of previously 

reported QTLs we were able to confirm this QTL in three previous studies. 

We did not find any major QTL for esters and we found little overlap of such 
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QTLs across the literature, confirming a lack of repeatability between studies 

that had previously been reported. In this Chapter we showed the usefulness 

of multivariate methods to coordinate the analysis of many related traits, sim-

plifying the QTL study and helping interpret its results. Moreover, we discov-

ered an important regulator of terpenoid biosynthesis that is an interesting 

target for further research and for applied breeding. 
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Resum

E
n els últims 30 anys la tecnologia de lectura del DNA ha progressat 

ràpidament, duent-nos com a conseqüència a un increment substan-

cial de la quantitat de dades genètiques. Aquests desenvolupaments 

han propel·lit també les tècniques de millora genètica vegetal. Per exemple 

l’estudi de locus de caràcters quantitatius (QTL, acrònim de l’anglès quan-

titative trait locus), que empra marcadors genètics per trobar associació en-

tre fenotip i genotip, localitzant així els gens reguladors del caràcter estudiat. 

També ha avançat significativament la cartografia genètica, una tècnica que 

permet la construcció de mapes genètics mitjançant l’estudi de freqüències de 

recombinació entre marcadors. Aquests desenvolupaments s’han produït més 

lentament en el camp dels poliploides, aquells organismes que contenen més 

de dues còpies de cada cromosoma, ja que requereixen models matemàtics 

especialitzats. No obstant això, molts cultius de gran importància econòmica 

són poliploides, entre d’altres les patates, els plàtans, el cotó, el blat, el kiwi o 

les roses. El maduixot (Fragaria x ananassa) també es poliploide, amb vuit 

copies de cadascun dels seus set cromosomes, que es poden dividir en quatre 

subgenomes diploides. L’alta ploidia i la semblança entre genomes han difi-

cultat greument els estudis genètics i genòmics d’aquest fruit, el qual explica 

l’estat relativament endarrerit de la genètica del maduixot. Un dels caràcters 

més importants i variables d’aquest fruit és l’aroma, determinat pel perfil de 

compostos volàtils produïts per una gran xarxa de processos metabòlics. De-

gut a la complexitat d’aquest caràcter i de la genètica subjacent, encara no 

s’han esclarit els mecanismes que controlen la gran diversitat metabòlica de 

l’aroma dels maduixots. En aquesta tesi s’elaboren els temes presentats, ex-

pandint diverses tècniques a escenaris poliploides que prèviament no es po-
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dien estudiar, esclarint així l’efectivitat de diferents mètodes d’estudi de la 

genètica poliploide.

Al Capítol 2 es presenten les poblacions multiparentals (MPP, acrònim de 

l’anglés multiparental population) en una revisió orientada als poliploides. 

Les MPP són aquelles poblacions formades per un conjunt d’individus que 

comparteixen un grup limitat d’ancestres fundadors. Les poblacions produ-

ïdes en un programa de millora genètica son un exemple ideal de MPP, ja 

que es generen creuant un petit conjunt de fundadors. Els anàlisis de QTL 

usualment es duen a terme en poblacions descendents de dos progenitors. 

Conseqüentment, la diversitat genètica present en aquestes poblacions és li-

mitada per la diversitat dels progenitors escollits, ignorant així doncs la diver-

sitat genètica de la població general. Una MPP resol aquest problema incloent 

un germoplasma més ampli, però sense arribar al nivell d’un GWAS, que usu-

alment implica problemes estadístics degut a la baixa freqüència d’al·lels rars 

i a la influencia de l’estructura genètica. Quan aquesta revisió es va escriure, 

no existia cap mètode per estudiar QTLs a MPP poliploides, tot i que s’havien 

proposat diversos models equivalents per diploides. En aquest capítol, s’han 

revisat els models diploides, senyalant la necessitat de rastrejar la identitat per 

descendència (IBD, acrònim de l’anglés identity by descent), especialment en 

organismes poliploides i heterozigots, que tenen una alta probabilitat de con-

tenir múltiples al·lels. Rastrejar la IBD de organismes poliploides és especial-

ment difícil, però nous mètodes d’haplotipat són esperançadors i prometen 

estimacions precises de la IBD. 

Al Capítol 3 es presenta i avalua un model d’anàlisi de QTLs en MPP poliploi-

des, implementat en el paquet de R mpQTL. El rendiment d’aquest model s’ha 

estudiat fent servir un conjunt de simulacions de poblacions multiparentals 

autotetraploides, desenvolupades seguint l’esquema nested ancestral mapping 

(NAM, cartografia ancestral niuada). Una població NAM consisteix en un sol 

progenitor central creuat amb múltiples progenitors perifèrics, formant així 

una sèrie de poblacions F1 que comparteixen un sol progenitor. Cada NAM 

simulada conté una quantitat diferent de diversitat genètica, el qual s’esperava 

que afectés al número d’al·lels segregant en cada població, amb conseqüències 

directes per l’anàlisi de QTLs. El model s’ha avaluat fent servir marcadors bi-
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al·lelics, marcadors d’IBD real i marcadors d’haplotips, que s’espera que siguin 

capaços de rastrejar la IBD. Tant els marcadors d’IBD real com els haplotips 

eren multial·lelics, una innovació clau del model implementat en aquest capí-

tol que no es comú a models diploides o poliploides. Durant l’avaluació s’ha 

trobat que l’escenari amb menor diversitat genètica és el més estadísticament 

poderós per detectar i localitzar QTLs, i que els models multial·lelics (tant 

d’IBD com d’haplotips) són més poderosos que els bial·lelics. L’observació més 

crucial ha estat que els models multial·lelics estimen la posició de QTLs amb 

major precisió. Així doncs, aquest capítol demostra que l’anàlisi de MPP po-

liploides es possible i poderós, destacant l’impacte de la diversitat genètica a 

l’hora de detectar QTLs en poblacions MPP. 

Al Capítol 4 es desenvolupa i avalua un mètode de mapeig de lligament genè-

tic fent servir dades genotípiques propenses a error, amb consideracions espe-

cífiques pel mapeig d’organismes poliploides. Els mètodes moderns de genoti-

pat basats en tecnologies de seqüenciació produeixen genotips per centenars, 

milers o fins i tot milions de marcadors per un baix cost. Típicament, la pre-

cisió d’aquestes tecnologies es menor que la de tècniques més antigues com 

els SNP array. Aquesta disminució en precisió es particularment prominent 

emprant la tècnica skim sequencing (seqüenciació superficial), un mètode de 

seqüenciació a baixa profunditat de lectura. Els errors de genotipat afecten 

greument els mapes de lligament, ja que produeixen estimacions de lligament 

entre marcadors molt imprecises. Degut a això, al capítol 4 s’ha desenvolupat 

una metodologia que permet crear mapes genètics fent servir genotips pro-

pensos a errors a través del cartografiat iteratiu. Aquest mètode s’ha imple-

mentat en el paquet de R Smooth Descent. Fent servir simulacions diploides i 

poliploides he demostrat que Smooth Descent es pot fer servir per augmentar 

la precisió de genotipat en organismes diploides, mentre que en organismes 

poliploides aquesta eina millora considerablement els mapes genètics. Smooth 

Descent s’ha aplicat també a genotips de poblacions reals, on s’ha fet servir 

per estimar el percentatge d’errors de genotipat en maduixots, per millorar 

el genotipat de patates tetraploides i de moniatos hexaploides. S’ha demostrat 

també que aquesta eina es capaç de corregir genotips d’una manera similar o 

millor que altres eines del camp, fent servir menys temps i produint millors 

mapes genètics.  
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Al Capítol 5 es van crear mapes genètics pel maduixot (Fragaria x ananassa) 

utilitzant genotips propensos a error generats mitjançant skim sequencing del 

genoma complet. Inicialment es van descobrir 10,24 milions de marcadors 

polimòrfics comparant les seqüències amb l’assemblatge del genoma “Cama-

rosa”. Després d’aplicar un filtre basat en la cobertura i segregació, es va reduir 

el conjunt de marcadors a 4,04 milions. Amb només 46 individus genotipats, 

s’esperava un mapa sobresaturat amb marcadors co-segregants, els quals es 

van agrupar en manats. El número de marcadors per manat es va utilitzar per 

detectar aquells manats amb un gran percentatge d’error, descartant-los de 

l’anàlisi. Fent servir les posicions físiques (al genoma) dels marcadors de cada 

manat, es van poder assignar cada manat a un cromosoma, el qual va revelar 

una mitjana de ~5% dels marcadors assignats a un cromosoma, però originaris 

d’un altre cromosoma del genoma “Camarosa”. Després de depurar els marca-

dors conflictius i aquells en manats que no es podien assignar a cap cromoso-

ma, es van obtenir 1,85 milions de marcadors agrupats en 6576 manats. L’eina 

Smooth Descent es va emprar per generar mapes genètics, estimant alhora 

un error de genotipat entre el 1% i el 10% per a mostres amb profunditats de 

lectura inferiors a 10x. Finalment, comparant aquest mapa amb l’assemblatge 

del genoma “Camarosa” i un mapa genètic equivalent produït utilitzant mar-

cadors SNP més precisos, es va observar una alta correlació (0,76). Aquesta 

investigació demostra que, amb el software adequat per a dades propenses a 

errors, és possible utilitzar amb èxit genotips obtinguts mitjançant seqüenci-

ació superficial per a la producció de mapes genètics d’alta qualitat, fins i tot 

en organismes al·lopoliploides.

Per últim, al Capítol 6, dades metabòliques de compostos volàtils orgànics 

(VOC, de l’anglès volatile organic compound) de maduixa es van fer servir per 

dur a terme un estudi de QTL multivariat. Un dels caràcters més importants 

del maduixot (F. x ananassa) és l’aroma, que en gran mesura és determinat 

pels VOCs produïts durant la maduració del fruit. L’aroma és també un dels 

caràcters més variables del maduixot: s’han descrit més de 300 compostos 

diferents. Degut a la complexitat d’aquest caràcter controlat per l’abundància 

de múltiples compostos, es va proposar fer servir un mètode multivariat per 

resumir els metabòlits en uns pocs caràcters multivariats, cadascun repre-

sentant un grup de metabòlits correlacionats, ajudant així a descobrir regula-

Dissertatie Alejandro v2-4 DEF.indd   xviDissertatie Alejandro v2-4 DEF.indd   xvi 6-6-2023   19:32:406-6-2023   19:32:40



- xvii -

R E S U M

dors principals de la producció de volàtils. Estudiant una població biparental 

i un panell de diversitat, es van descobrir 125 compostos dels quals 96 van ser 

identificats. La majoria de compostos eren èsters, terpenoides i lípids o deri-

vats dels lípids. L’anàlisi multivariat va revelar que tots els terpenoides estaven 

altament correlacionats, així com els esters  amb el seu grup químic. S’ha tro-

bat un regulador principal influint l’abundància des de 8 fins a 17 terpenoides 

diferents al cromosoma 3C. També s’han estimat les posicions genòmiques 

de les QTLs descrites prèviament a la literatura, el qual ha permès confirmar 

aquest regulador principal. No s’ha trobat cap regulador principal de la pro-

ducció d’èsters i els resultats prèviament descrits mostren poc solapament 

entre estudis, ressaltant així la poca repetibilitat d’aquest tipus de recerca. En 

aquest capítol s’ha demostrat la utilitat dels mètodes multivariats en la coor-

dinació d’anàlisis complexos de caràcters interrelacionats, simplificant així 

l’estudi de QTLs i ajudant a la interpretació dels seus resultats. Addicional-

ment, s’ha descobert un regulador principal de la biosíntesi de terpenoides, 

el qual pot ser un caràcter interessant per futures investigacions i per millora 

genètica aplicada.

Dissertatie Alejandro v2-4 DEF.indd   xviiDissertatie Alejandro v2-4 DEF.indd   xvii 6-6-2023   19:32:406-6-2023   19:32:40



Dissertatie Alejandro v2-4 DEF.indd   xviiiDissertatie Alejandro v2-4 DEF.indd   xviii 6-6-2023   19:32:406-6-2023   19:32:40



- xix -

Resumen

D
urante los últimos 30 años la tecnología de lectura del ADN ha pro-

gresado rápidamente, trayendo consigo un incremento substancial 

de la cantidad de datos genéticos disponibles. Estos desarrollos han 

propulsado también las técnicas de mejora genética vegetal. Entre ellas, el es-

tudio de locus de caracteres cuantitativos (QTL, acrónimo del inglés quanti-

tative trait locus), que usa marcadores genéticos para encontrar asociaciones 

entre genotipo y fenotipo, localizado así los genes reguladores de caracteres. 

También se han producido avances significativos en el mapeo genético, una 

técnica que permite la construcción de mapas genéticos mediante el estudio 

de las frecuencias de recombinación entre marcadores. Estos desarrollos se 

han producido con más lentitud en el campo de los poliploides, debido a que 

requieren models matemáticos especializados. Sin embargo, muchos cultivos 

de gran importancia son poliploides, entre otros las patatas, los plátanos, el 

algodón, el trigo, el kiwi o las rosas. El fresón (Fragaria x ananassa) también 

es poliploide, con cuatro copias de cada uno de sus siete cromosomas, orga-

nizados en cuatro subgenomas diploides. La alta ploidía i la similitud entre 

sus genomas han dificultado gravemente los estudios genéticos y genómicos 

de esta fruta, lo cual explica el estado relativamente atrasado de la genética 

del fresón. Uno de los caracteres más importantes y variables de esta fruta 

es su aroma, determinado por el perfil de compuestos volátiles que a su vez 

son producidos por una compleja red de procesos metabólicos. Debido a la 

complejidad de este carácter i a la genética subyacente, todavía no se han des-

cubierto los mecanismos que controlan el aroma de los fresones. En esta tesis 

se elabora sobre los temas aquí presentados, expandiendo diversas técnicas a 

escenarios poliploides que previamente no podían estudiarse, aclarando así la 
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efectividad de diversos métodos para el estudio de la genética poliploide.

En el Capítulo 2 se presentan las poblaciones multiparentales (MPP, acró-

nimo del inglés multiparental population) en una revisión orientada a los 

poliploides. Las MPP son aquellas poblaciones formadas por un conjunto de 

individuos que comparten un grupo limitado de ancestros fundadores. Las 

poblaciones producidas en un programa de mejora genética son un ejemplo 

ideal de MPP, ya que se generan cruzando un pequeño conjunto de fundado-

res.  Los análisis de QTL usualmente se llevan a cabo en poblaciones descen-

dientes de dos progenitores. Consecuentemente, la diversidad genética pre-

sente en estas poblaciones se ve limitada por la diversidad de los progenitores 

escogidos, ignorando así la diversidad genética de la población general. Una 

MPP resuelve este problema incluyendo un germoplasma más amplio, pero 

sin llegar al nivel de un GWAS (genome-wide association study), que usual-

mente implica problemas estadísticos debido a la baja frecuencia de los alelos 

raros y a la influencia de la estructura genética. Cuando esta revisión se escri-

bió, no existía ningún método para estudiar QTLs en MPP poliploides, aun-

que se habían propuesto varios modelos equivalentes para diploides. En este 

capítulo, se revisan los modelos diploides, señalando la necesidad de rastrear 

la identidad por descendencia (IBD, acrónimo del inglés identity by descent), 

especialmente en organismos poliploides y heterocigotos, que tienen una alta 

probabilidad de contener múltiples alelos. Rastrear la IBD de organismos po-

liploides es especialmente difícil, pero nuevos métodos de haplotipado son 

esperanzadores y prometen estimaciones precisas de la IBD. 

En el Capítulo 3 se presenta y evalúa un modelo de análisis de QTLs en MPP 

poliploides, implementado en el paquete de R mpQTL. El rendimiento de este 

modelo se ha estudiado usando un conjunto de simulaciones de poblaciones 

multiparentales autotetraploides, desarrolladas con el esquema nested an-

cestral mapping (NAM, cartografía ancestral anidada). Una población NAM 

consiste en un solo progenitor central cruzado con múltiples progenitores pe-

riféricos, formando así una serie de poblaciones F1 que comparten un sólo 

progenitor. Cada NAM simulada contiene una cantidad diferente de diversi-

dad genética, el cual se esperaba que afectara al número de alelos segregando 

en cada población, con consecuencias directas para el análisis de QTLs. El 
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modelo se ha evaluado usando marcadores bialélicos, marcadores de IBD real 

y marcadores de haplotipos, que se esperaba que fueran capaces de rastrear 

la IBD. Tanto los marcadores de IBD real como los haplotipos eran multia-

lélicos, una innovación clave del modelo implementado en este capítulo que 

no es común en modelos diploides o poliploides. Durante la evaluación se 

ha encontrado que el escenario con menor diversidad genética es el más es-

tadísticamente poderoso para detectar y localizar QTLs, y que los modelos 

multialélicos (tanto de IBD como de haplotipos) son más poderosos que los 

bialélicos. La observación más crucial ha sido que los modelos multialélicos 

estiman la posición de QTLs con mayor precisión. Así pues, este capítulo de-

muestra que el análisis de MPP poliploides es posible, destacando el impacto 

de la diversidad genética en la detección de QTLs en poblaciones MPP. 

En el Capítulo 4 se desarrolla y evalúa un método de mapeo de ligamento 

genético usando datos genotípicos propensos a error, con consideraciones es-

pecíficas para organismos poliploides. Los métodos modernos de genotipado 

basados en tecnologías de secuenciación producen genotipos para centenares, 

miles o incluso millones de marcadores por un bajo coste. Típicamente, la 

precisión de estas tecnologías es menor a la de técnicas más antiguas como los 

SNP array. Esta disminución en precisión es particularmente prominente em-

pleando la técnica skim sequencing (secuenciación superficial), un método de 

secuenciación a baja profundidad de lectura. Los errores de genotipado afec-

tan gravemente a los mapas de ligamento, ya que producen estimaciones de 

ligamento entre marcadores muy imprecisas. Debido a esto, en el capítulo 4 se 

ha desarrollado una metodología que permite crear mapas genéticos usando 

genotipos propensos a error a través del cartografiado iterativo. Este método 

se ha implementado en el paquete de R Smooth Descent. Usando simulaciones 

diploides y poliploides se ha demostrado que Smooth Descent se puede utilizar 

para aumentar la precisión de genotipado en organismos diploides, mientras 

que en organismos poliploides esta herramienta mejora considerablemente 

los mapas genéticos. Smooth Descent se ha aplicado también a genotipos de 

poblaciones reales, donde se ha usado para estimar el porcentaje de errores 

de genotipado en fresones, para mejorar el genotipado de patatas tetraploides 

y de moniatos hexaploides. Se ha demostrado también que esta herramienta 

es capaz de corregir genotipos de una manera similar o mejor que otras he-
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rramientas del campo, usando menos tiempo y produciendo mejores mapas 

genéticos.

En el Capítulo 5 se crearon mapas genéticos para el fresón (Fragaria x ana-

nassa) utilizando genotipos propensos a error generados mediante skim se-

quencing del genoma completo.  Inicialmente se descubrieron 10,24 millones 

de marcadores polimórficos comparando las secuencias con el ensamblaje 

del genoma “Camarosa”. Tras aplicar un filtro basado en la cobertura y se-

gregación, se redujo el conjunto de marcadores a 4,04 millones. Con sólo 46 

individuos genotipados, se esperaba un mapa sobresaturado con marcadores 

co-segregantes, los cuales se agruparon en manojos. El número de marcadores 

por manojo se utilizó para detectar aquellos manojos con un gran porcentaje 

de error, descartándolos del análisis. Usando las posiciones físicas (en el ge-

noma) de los marcadores de cada manojo, se pudo asignar cada manojo a un 

cromosoma, lo cual reveló un promedio de 5% de los marcadores asignados a 

un cromosoma, pero originarios de otro cromosoma del genoma “Camarosa”. 

Tras depurar los marcadores conflictivos y aquellos en manojos que no se po-

dían asignar a ningún cromosoma, se obtuvieron 1,85 millones de marcadores 

agrupados en 6576 manojos. La herramienta Smooth Descent se empleó para 

generar mapas genéticos, estimando a la vez un error de genotipado entre el 

1% y el 10% para muestras con profundidades de lectura inferiores a 10x. Fi-

nalmente, comparando este mapa con el ensamblaje del genoma “Camarosa” 

y un mapa genético equivalente producido utilizando marcadores SNP más 

precisos, se observó una alta correlación entre ellos (0,76). Esta investigación 

demuestra que, con el software adecuado para datos propensas a errores, es 

posible utilizar con éxito genotipos obtenidos mediante secuenciación super-

ficial para la producción de mapas genéticos de alta calidad, incluso en orga-

nismos alopoliploides.

Por último, en el Capítulo 6, datos metabólicos de compuestos volátiles or-

gánicos (VOC, del inglés volatile organic compound) de fersón se utilizaron 

para llevar a cabo un estudio de QTL multivariado. Uno de los caracteres 

más importantes del fresón (F.  x ananassa) es el aroma, que en gran medida 

es determinado por los VOCs producidos durante la maduración del fruto. 

El aroma es también uno de los caracteres más variables del fresón: en él se 
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han descrito más de 300 compuestos diferentes. Debido a la complejidad de 

este carácter controlado por la abundancia de múltiples compuestos, se pro-

puso utilizar un método multivariado para resumir los metabolitos en unos 

pocos caracteres multivariados, cada uno representando un grupo de meta-

bolitos correlacionados, ayudando así a descubrir reguladores principales de 

la producción de volátiles. Estudiando una población biparental y un panel 

de diversidad, se descubrieron 125 compuestos de los cuales 96 fueron iden-

tificados. La mayoría de los compuestos eran ésteres, terpenoides y lípidos o 

derivados de los lípidos. El análisis multivariado reveló que todos los terpe-

noides estaban altamente correlacionados, así como los ésteres con su grupo 

químico. Se ha encontrado un regulador principal controlando la abundancia 

de desde 8 hasta 17 terpenoides diferentes en el cromosoma 3C. También se 

han estimado las posiciones genómicas de las QTLs descritas previamente 

en la literatura, lo cual ha permitido confirmar este regulador principal. No 

se ha encontrado ningún regulador principal de la producción de ésteres y 

los resultados previamente descritos muestran poco solapamiento entre es-

tudios, resaltando así la poca repetibilidad de este tipo de investigación. En 

este capítulo se ha demostrado la utilidad de los métodos multivariados en la 

coordinación de análisis complejos de caracteres interrelacionados, simplifi-

cando así el estudio de QTLs y ayudando a la interpretación de sus resultados. 

Adicionalmente, se ha descubierto un regulador principal de la biosíntesis de 

terpenoides, el cual puede ser un carácter interesante para futuras investiga-

ciones y para la mejora genética aplicada.
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Chapter 1 

General Introduction
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General Introduction

T
he study of plants has fascinated humanity since ancient times. Such 

can be seen by Theophrastus’ Historia Plantarum and Dioscorides’ De 

Materia Medica, which provide us a glimpse into the study of plants 

in antiquity. These texts already contained some of the questions that still 

intrigue us today and that contributed to the development of this thesis. Most 

noteworthy for this book is the question of heredity: why and how traits are 

inherited from parents to descendants. Nowadays we know this scientific field 

as genetics, a blooming area of the biological sciences that has grown enor-

mously in the last century. At its origin, many wrong theories were proposed 

to explain heredity, among them preformationism, spermism or ovism. Only 

the theory of blending inheritance, which proposed that offspring were the 

result of a mixture of both parents, was somewhat on the right track, although 

still largely inaccurate. 

Modern genetics cannot start with anyone other than Gregor Mendel, a monk 

from Moravia, in the modern Czech Republic. During the mid-19th century 

Mendel cultivated an experimental garden of 2 hectares where he grew about 

29.000 pea plants. His studies on the shape and colour of seeds and flow-

ers showed that many of his traits were independently inherited. He theo-

rised what are now known as the Mendelian laws of inheritance (Corcos and 

Monaghan 2008; Gayon 2016; Abbott and Fairbanks 2016). However, the ma-

jor contribution of his research was the proposition of factors -now called 

genes-, discrete units that would be independently assorted and somehow 

carry information to the next generation. The exact nature of these factors, 

however, would remain a mystery for another century.
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Several discoveries corroborated and expanded Mendel’s theory. First came 

Nettie Stevens, a biologist that studied inheritance by analysing the cell nu-

cleus of mealworm sperm. By observing their chromosomes, she was able to 

show that sperm cells carrying a large (X) chromosome would produce fe-

males, while those carrying a small (Y) chromosome would produce males 

(Stevens 1905; Carey et al. 2022). She simultaneously discovered sex chromo-

somes and proved that trait inheritance was somehow related to chromosom-

al inheritance. Her discoveries led Thomas Hunt Morgan and his students to 

the analysis of sex-linked traits in Drosophila melanogaster, the fruit fly. By 

studying these traits, he developed the idea of genetic linkage: some genes are 

linked to others and often, but not always, inherited together. By observing 

the number of times that two traits were co-inherited, he hypothesized the 

phenomenon of cross-over, or recombination. These findings led Sturtevant, 

his student, to the development of the first ever genetic map (Sturtevant 1913), 

which finally convinced their colleagues that chromosomes contained genes 

organised in a linear fashion. His cross-over hypothesis was later confirmed 

when Barbara McClintock was able to show recombination in the meiosis 

of maize chromosomes with her advanced chromosome staining techniques 

(Creighton and McClintock 1931). However, the exact nature of the gene and 

the molecule that was carrying information were still controversial topics. 

Only twenty years later this long open question was finally concluded. Nikolai 

Koltsov proposed in 1927 that traits would be inherited by a “giant hereditary 

molecule” made up of “two mirror strands” (Koltsov 1927; Soyfer 2001), an idea 

later popularised by Erwin Schrödinger as an “aperiodic crystal” (Schrödinger 

1945; Varn and Crutchfield 2016). They would be proven correct with the dis-

covery of the double helix structure of deoxyribonucleic acid (DNA) by James 

D. Watson and Francis Crick using X-ray diffraction images obtained by Ro-

salind Franklin (Watson and Crick 1953). However, it was the Hershey-Chase 

experiments what would convince the scientific community that DNA was 

the molecule transmitting information (Hershey and Chase 1952). They were 

able to show that the DNA injected by bacteriophages was the one transmit-

ting genes, and not proteins as many had previously thought. Together, these 

findings painted a clear picture of how DNA was replicated, inherited and 

pointed towards answers on how it transmitted information.
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Once DNA was found as the key culprit of inheritance, it was time to char-

acterize it. In that regard, the study of bacteriophages and bacteria proved 

instrumental. A cornerstone of modern biotechnological research was hidden 

within their cells: sequence-specific restriction enzymes (Smith 1979). By se-

lectively cleaving DNA at precise locations, these enzymes offer researchers 

a highly accurate means of identifying specific DNA sequences. Soon after, 

scientists realized that these cleavage sites could serve as markers akin to the 

traits used by T.H. Morgan and his students, but with the added advantage 

of observing DNA directly rather than inferring genotypes from Mendelian 

phenotypes. This discovery of the first DNA markers, known as restriction 

length fragment polymorphisms (RFLP), paved the way for the further devel-

opment of genetic mapping. While RFLPs had been previously used to pro-

duce recombination maps in adenoviruses, Botstein ground-breaking paper 

was the first to use RFLP markers to create a chromosome map (Botstein et al. 

1980). The publication of this paper opened a fertile field of research that con-

tinues to thrive nowadays. Crucially, genetic mapping was greatly propelled 

by the discovery of RFLP markers, a dynamic that has been repeated over the 

years as new genetic marker technologies have been developed.

These genetic maps showed much promise, due to the simplicity of their anal-

ysis and the possibility to include many more markers than was previously 

possible. However, Lander and Botstein realized that genetic maps could be 

used beyond the chromosomal organisation of restriction sites. In a landmark 

paper they described a method that would allow locating, within a map, the 

locus of a gene of interest for a particular trait (Lander and Botstein 1989). 

The principle would be to cross two parents with a contrasting phenotype, 

analyse the offspring’s genotype and phenotype, and associate the marker in-

heritances with the observed phenotype, thus obtaining a probability profile 

along each chromosome defining the most likely locus for the causal gene 

of a trait. Each region of high probability would be a quantitative trait locus 

(QTL). Their method was designed to use a few dozen markers per chromo-

some and could analyse biparental and family populations. Although limited, 

geneticists quickly realised the potential of such studies to underpin causal 

genes in humans, animals and crop plants, with clear impacts in medicine 

and agriculture. Eventually, many variations of such models would be devel-
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oped, adapted to all kinds of situations. Most notably, genome-wide associ-

ation studies (GWAS), which would allow to perform a similar analysis in 

natural, not experimental populations, including humans (Ozaki et al. 2002; 

Klein et al. 2005).

With this, we have reviewed the foundational work that led to the modern 

field of quantitative genetics. We now know the mechanism by which genes 

are inherited between generations, how they are organised in the genome and, 

to a large extent, how they function. DNA markers have become an essen-

tial tool in genetics and have developed greatly in the recent years, remain-

ing a vital instrument in genetic analysis. Genetic linkage maps have become 

the backbone of many important discoveries and their possibilities are being 

expanded every year, in many cases goaded by innovations in marker tech-

nologies. Finally, QTL and association studies have become the magnifier by 

which to find these needles in the large haystack of DNA. In recent years, all 

these crucial topics have received major attention, so let us dive into each in 

order to contextualize this thesis.

Plant breeding in the 21st century
The past 40 years have brought several advancements into the field of plant 

breeding. From RFLP markers we have moved to high-throughput genotyp-

ing techniques that yield thousands of genotypes at a low cost. Sequencing 

entire genomes has become easily achievable and the computational capacity 

required to analyse this data is being developed. As a result, plant breeding 

has moved forward together with the genetics field. Although many aspects of 

this revolution present interesting challenges, in this thesis I have dealt most-

ly with the study of DNA, with particular applications in strawberry.

Reading DNA

Since its discovery, DNA has become a key interest in molecular biology. Its 

organisation, the distribution of genes, the presence or absence of polymor-

phisms, all have direct implications in the biology of organisms. Novel tech-
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niques to study genomes are of special interest to plant breeding, since they 

allow us to understand the crops we work with more deeply. For instance, 

an evolutionary study on the rose genome revealed the loci responsible for 

aroma production and continuous flowering, as well as their historical origin 

in the Middle East and China (Raymond et al. 2018). Nowadays, two com-

plementary methods are commonly used to read DNA: SNP genotyping and 

high-throughput sequencing.

If you have read any molecular genetics article in the past 20 years you will 

likely be familiar with the acronym SNP, the most common marker type. It 

stands for single nucleotide polymorphism, one base-pair differences, usually 

biallelic, that are abundant in the whole genome of virtually all species. The 

first step to genotyping SNPs is discovery, locating SNPs in the genome. After 

discovery, the actual genotyping step is performed. At each SNP position, the 

abundance of the SNP alleles are measured, and a genotype score is given. 

Two main methods exist for high-throughput SNP genotyping, the first based 

on probe-based SNP arrays (Ganal et al. 2012), the second using exclusively 

sequencing technologies (Zargar et al. 2016; Torkamaneh et al. 2016). Impor-

tantly, sequence-based genotyping provides a larger number of markers, but 

at a lower accuracy than SNP arrays. For this reason, linkage mapping has 

required major adaptations in the past years. Firstly, algorithms for linkage 

mapping can become quite slow as the number of markers increase, prompt-

ing the development of efficient methods for sequence-based genotypes (Wu 

et al. 2008; Liu et al. 2014; Preedy and Hackett 2016; Rastas 2017). Additional-

ly, since accuracy of linkage maps is greatly affected by genotyping error rates 

(Lincoln and Lander 1992; Cartwright et al. 2007) it is questionable how use-

ful linkage mapping can be with error prone data. The major driver of errors 

in sequence-based genotyping is read depth (Deschamps et al. 2012; Sims et 

al. 2014), and since higher depth is equivalent to higher costs, one can expect 

most researchers to avoid high depth experiments. In fact, some have argued 

in favour of skim-sequencing approaches, purposefully lowering sequencing 

depth to reduce costs (Kumar et al. 2021; Adhikari et al. 2022). As we will see, 

this will have a clear effect on linkage mapping approaches, meaning that new 

adaptations will be required.
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Sequencing, the reading of DNA strands, is slowly becoming the preva-

lent technology for anything genetics. Its development seems non-stopping 

(Heather and Chain 2016; Hu et al. 2021b). With increased read length, ac-

curacy and volume one might think that sequences will take over markers. 

Indeed, assembling entire genomes with a phased sequence per chromosome 

is becoming a standard, available even at high levels of genome complexity 

(Colle et al. 2019; Piet et al. 2022). Nevertheless, comparing sequences across 

individuals remains challenging, with the pangenomics approach of compar-

ing entire genomes still under development (Bayer et al. 2020). The main unit 

of study will likely be the haplotype, the exact combination of alleles of a DNA 

sequence (Garrison and Marth 2012; Clevenger et al. 2018; He et al. 2018). 

Although a haplotype can span an entire chromosome, as is the case in hap-

lotype-phased assemblies, they can also span much shorter regions, thus be-

coming multiallelic markers. Importantly, multiallelic markers seem to pro-

vide more accurate results in QTL studies, genome association and genomic 

selection (Wang et al. 2016; Sallam et al. 2020; Bajgain and Anderson 2021; 

Li et al. 2021). Further development of these type of sequence-based markers 

seems a promising step forward in genetic analysis. 

Understanding DNA

Beyond finding DNA sequences, a major interest of plant breeding is under-

standing what those sequences do in a biological context. Several approaches 

exist to do this. Functional analyses and mutation experiments, often called 

reverse genetics approaches, study specific genes and characterize their action 

upon phenotypes (Gilchrist and Haughn 2010; Malzahn et al. 2017). Gene pre-

diction approaches can use sequence features, RNA data and protein databas-

es in order to annotate entire genomes with relatively high accuracy (Brůna et 

al. 2021). However, in the field of quantitative genetics we use the QTL study 

as the major approach. A QTL study is always based on finding associations 

between phenotype data and genotype data, and as such it has greatly evolved 

as both types of datasets have changed.

Originally, QTL studies were only performed in biparental populations. These 

populations were mostly crossings between diploid, inbred parents, meaning 
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only two alleles segregated in the population. Obviously, this represented an 

extremely narrow range of the genetic diversity within a species. To alleviate 

this issue, the GWAS approach was developed, similar in principle to a QTL 

study, but using evolutionary linkage disequilibrium (LD) among markers to 

find associations between markers and causal loci. It quickly became evident 

that the non-random distribution of LD, known as genetic structure, was a 

major hinderance for QTL analyses and prompted the development of several 

approaches (Yu et al. 2006; Huang et al. 2019). Nowadays, there is an increased 

interest in multiparental populations, which can harbour larger diversity than 

biparental crosses while reducing the effect of genetic structure (Würschum 

2012; Garin et al. 2015; Mangandi et al. 2017; Li et al. 2022b). However, they 

pose significant challenges, especially when these population types deal with 

more complex polyploid crops. In a biparental QTL analysis we attempt to 

estimate which parental alleles each individual has inherited, in other words, 

which markers are identical by descent (IBD). In multiparental populations, 

particularly polyploid ones, estimating IBD is more challenging. Besides the 

interconnectedness of populations, unknown relatedness between the found-

er parents of the population complicate IBD estimates. Although several ap-

proaches are being designed to solve this issue, they remain exclusive to dip-

loids (Jacquin et al. 2014; Broman et al. 2019; Li et al. 2021; Zheng et al. 2021). 

It seems likely that using haplotype-based, multiallelic markers in polyploids 

can help bridge that gap, and although challenging, many tools have been de-

veloped to obtain polyploid haplotypes (Motazedi et al. 2017; Clevenger et al. 

2018; He et al. 2018; Majidian et al. 2020). 

Models must also adapt to changing phenotyping data. Large and complex 

phenotypic datasets are becoming available (Yang et al. 2020; Hall et al. 2022). 

One common approach, which involves performing a separate QTL analysis 

for each new available phenotype, is not practical for large imaging or metab-

olomic datasets that may contain thousands of variables with intercorrelat-

ed features. In this context, it is crucial to develop models that can handle 

high-dimensional data and account for the usual correlation among variables 

(e.g. Mitteroecker et al. 2016). More importantly, such methods should in-

crease model interpretability when using such large datasets, a feat that is not 

easy to achieve. 
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Application to strawberry
Strawberry is a perfect example of the evolution of Plant Breeding in the past 

decades due to innovations in the field of genetics. Genetic research has ad-

vanced at large strides, quickly moving from molecular marker development 

to genetic mapping, to genome assembly and candidate gene research. Let’s 

consider some of the challenges of these developments.

The complex puzzle of strawberry DNA

The word “strawberry” can refer to more than 20 different species, and even 

more interspecific hybrids and cultivars. The most well-known are the wood-

land strawberry (F. vesca) and the large-fruited, commercially cultivated 

garden strawberry (F. x ananassa). Due to its horticultural popularity and 

extensive breeding history, strawberry has been deeply researched since the 

beginning of the 20th century (Darrow 1966; Folta and Davis 2007). Howev-

er, the octoploid nature of its genome, with 28 pairs of chromosomes, have 

made genetic studies on strawberry especially difficult. Nowadays it is be-

lieved that strawberry is an allopolyploid due to its disomic segregation and 

preferential chromosome pairing (Sargent et al. 2009; Whitaker 2011). Allo-

polyploidy often means that the resulting polyploid is a hybrid between close-

ly related species, thus resulting in two or more subgenomes within a nucleus 

that, although very similar sequence-wise, segregate disomically and have 

diploid-like meiosis (Tate et al. 2005; Birchler 2012; Soltis et al. 2016). While 

segregation studies are clear in garden strawberry, its polyploidization history 

is still a mystery (Fig. 1A).

The origin of F. x ananassa is well documented as a cross between F. virgin-

iana and F. chiloensis (Darrow 1966). These two North American octoploid 

species, found in the west and east coast, share a common octoploid ances-

tor. However, the origin of this octoploid and therefore the origin of its four 

diploid subgenomes is a heavily debated topic (Tennessen et al. 2014; Sargent 

et al. 2015; Edger et al. 2020; Liston et al. 2020; Feng et al. 2021). The devel-

opment of genetic markers that could help clarify subgenome ancestry was 
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realised early on, yet it proved to be particularly difficult (Galletta and Maas 

1990; Hokanson 2001; Davis et al. 2006; Bassil et al. 2015). Such markers are 

still interesting nowadays, since they could greatly help in the identification 

of wild germplasm that could provide valuable genetic diversity to breeding 

programmes (Galletta and Maas 1990; Hancock and Luby 1993; Marta et al. 

2004; Davis et al. 2006). And naturally, modern breeding techniques based 

on markers could not be applied without reasonably large genetic maps and 

marker sets (Folta and Davis 2007).

Obtaining DNA markers in an allopolyploid is no easy task. Allopolyploids 

contain multiple diploid subgenomes, so for each chromosome there is one 

homolog and n pairs of homeologs. In the case of allo-ocotoploid strawber-

ry, there are 7 chromosome pairs in each subgenome, thus each of the seven 

chromosome pairs has 3 other homoeologous pairs (Fig. 1B). This is particu-

larly problematic when designing markers, since any probe must characterize 

within-subgenome variation without including noise from between-subge-

nome variation, a feat that can only be achieved when there is sufficient subge-

nome differentiation (Bassil et al. 2015; Edger et al. 2018; Cheng et al. 2018). 

Consequently, development of genetic maps was greatly delayed in strawberry 

in comparison to other crops (Folta and Davis 2007). Once maps started to be 

generated, the lack of clear methods to distinguish linkage groups added to 

the problem: each map published its own chromosome naming system with-

out a clear way to integrate genetic maps. Subgenome similarity also compli-

cated genome assembly, which explains why the diploid F. vesca genome was 

produced almost a decade before the allo-octoploid genome of F. x ananassa 

(Shulaev et al. 2010; Edger et al. 2019; Hardigan et al. 2021a). The octoploid 

sequence helped resolve the naming ambiguity of genetic maps, finally pro-

viding a translation table between them and a naming convention from A to 

D (Hardigan et al. 2021b). Although this problem is resolved, the fact that it 

existed in the first place highlights the complexity of subgenome genetics. 

With the rise in popularity of sequence-based genotyping methods, one must 

wonder if the complexities of allopolyploid genomes will not become a major 

roadblock. Read mapping in particular seems likely to be problematic, since 

reads might easily map across subgenomes, potentially adding great sources 

of noise and error to genotyping methods (Fig. 1C). It would be a shame if 
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such were the case, as these approaches enable the discovery of millions of 

markers, a veritable cornucopia of abundance for a crop in which marker de-

velopment has been so hindered. 

Breeding and research on strawberry aroma

As a horticultural crop, many breeding-related traits have received great at-

tention in strawberry research. Adaptation to climate, flowering time, modes 

of reproduction and susceptibility to diseases have all been crucial to straw-

berry breeding (Darrow 1966; Galletta and Maas 1990; Folta and Davis 2007; 

van Dijk et al. 2014; Dominique et al. 2018; Anciro et al. 2018; Labadie et al. 

2020; Castillejo et al. 2020; Tapia et al. 2021). However, flavour is a long-rec-

ognised key trait. While sugar, water content and acidity are key components 

of flavour, aroma is what ultimately makes strawberry unique (Ulrich and 

Olbricht 2016; Yan et al. 2018; Fan et al. 2021). 

Aroma is determined by the composition and abundance of volatile organic 

compounds (VOC). These low-weight molecules are characterized by their 

odorous activity and wide range of functions. Plant VOCs have a great im-

pact beyond their hedonic value, including as regulators of plant-plant and 

plant-insect interactions (de Boer et al. 2004; Bruce et al. 2005; Clavijo Mc-

Cormick et al. 2012; Effah et al. 2019). However, in strawberries the major 

Figure 1: Garden strawberry evolution and genome structure.

A) The commercial garden strawberry Fragaria x ananassa is the result of 
hybridization between two octoploid North American Fragaria species. 
Their common allo-octoploid ancestor was likely the result of a cross 
between diploids F. vesca and F. iinumae. Whether two other diploid species 
contributed to this polyploidization, and in which order these hybridizations 
took place is still under debate. B) The genome of F. x ananassa is composed 
of four subgenomes, A to D. The ancestors of A and B are clearly established, 
while C and D remain under debate. C) Schematic representation of read 
mapping on an allopolyploid. Due to high similarity between the orange 
regions in subgenomes A, C and D, mapping orange reads is an ambiguous 
process.
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VOC compounds are those expressed in fruits as part of the ripening process. 

There are a few major classes of compounds relevant to strawberry: esters, 

terpenes, lactones, aldehydes, benzenes and sulphur-related compounds are 

some of them (Ulrich et al. 2018; Yan et al. 2018). Strawberries are quite unique 

among fruits due to their unexpectedly high variability of aroma profiles. A 

review of 2018 found that during more than 30 years of research, over 900 dif-

ferent compounds have been reported in Fragaria spp. and over 300 different 

ones in F. x ananassa (Ulrich et al. 2018). They also highlight the seeming lack 

of overlap in the literature on identified compounds, with only a few being 

reported more than once. Clearly, experimental differences between studies 

are partly to blame for this discrepancy, but it is more than likely that true 

biological diversity contributes to this lack of consensus. Such can be seen by 

several studies on biparental populations that highlight the absence of certain 

compounds in part of the germplasm (Zorrilla-Fontanesi et al. 2012; Barbey 

et al. 2021). Despite a few successes, it is evident that very little is understood 

of volatile synthesis in strawberry. After years of experimental research, only 

a few relatively recent studies have uncovered functional genes (Aharoni et al. 

2000, 2004; Zorrilla-Fontanesi et al. 2012; Oh et al. 2021; Barbey et al. 2021; 

Rey-Serra et al. 2022). However, no overarching paradigm has been sketched 

that allows to effectively control or predict the desired aroma when breeding 

strawberries. Moreover, there is a lack of integrated results across studies, an 

issue that the recent genome assembly could likely help to address.

Focusing on single aroma compounds and their causal genes is in stark con-

trast with the multivariate nature of aroma. Smell and taste perception is 

clearly the combined result of all compounds, not single ones (Jetti et al. 2007). 

Similarly, metabolites are not produced alone, but as parts of large metabolic 

networks. Therefore, it seems desirable to study aroma genetics through the 

lens of overarching regulators of aroma production, rather than individual 

metabolites. To do this, information across compounds should be somehow 

integrated. Moreover, studying a broader set of samples could help more ac-

curately dissect the chemical diversity of strawberry aroma. 

While many questions remain regarding the physiology, evolution and origin 

of strawberry, some answers become clear that highlight the complex history 
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of this crop and suggest future directions (Whitaker et al. 2020). This thesis 

will hopefully contribute to the growing wealth of strawberry research, add-

ing new tools and approaches with which to study this complex plant. 

This thesis
After this introduction, five chapters are contained in this thesis, followed by 

a general discussion. Their overarching theme revolves around methodolog-

ical developments related to novel technologies and experimental settings. 

However, the biological nature of this research should not be overlooked. All 

models and methodologies here described mean little if they do not accurately 

represent a natural reality. In this sense, I have focused on polyploid organ-

isms, which are usually underserved in the methodological field and more 

particularly on allo-octoploid strawberry. 

Chapter 2 and Chapter 3 deal with the topic of multiparental populations in 

QTL mapping of polyploids. As outlined above, multiallelic markers are likely 

to be particularly useful in multiparental populations since they can closely 

track IBD. At the time of writing these chapters, however, no model nor tool 

was available that could readily perform QTL mapping in multiparental poly-

ploid populations. It was also unclear whether such models would be actually 

better. While theoretically multiallelic models are more powerful, in prac-

tice they require many more parameters than biallelic models, and thus if the 

accuracy improvement were too small, they would not be more statistically 

powerful than their biallelic counterparts. In Chapter 2 I review this issue. I 

provide some ideas on how to model QTLs in these types of populations and 

point towards tools that allow to address the issue of haplotyping in polyploid 

organisms. In Chapter 3 I go a step further and propose my own model, imple-

mented in the tool mpQTL. Using a complex set of simulations that account 

for different levels of genetic diversity and genetic architectures underlying 

the simulated traits, I was able to clearly test if there was any statistical im-

provement using such models. 

The following research was focused on genetic linkage mapping. As discussed, 
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genetic maps are an old but very useful technique to study chromosomes and 

genomes, yet modern DNA marker technologies challenge their classical al-

gorithms. That is more so the case with skim-sequencing approaches, those 

in which depth is purposefully lowered, which have even a larger error rate 

in polyploid crops. Applying this technique to allopolyploids seemed even 

more challenging. With reduced genotyping accuracy it seemed plausible that 

subgenome differentiation could not be achieved. Testing this method would 

require an application that would enable assessing the genotyping quality. Ge-

netic mapping came to mind. If skim-sequencing genotyping was possible, 

it would allow to produce maps with much larger numbers of markers at a 

similar cost than modern linkage maps. With high hopes, I aimed to answer 

this question using a dataset from strawberry population, and while doing 

so I updated an algorithm named SMOOTH (van Os et al. 2005). The results 

are described in Chapter 4 and Chapter 5. In the first, I describe Smooth De-

scent, the upgraded SMOOTH that implements IBD ideas in order to correct 

genotyping errors and improve genetic maps (in diploids and polyploids). In 

Chapter 5 I show the results of applying Smooth Descent to a skim-sequenc-

ing population of strawberry and compare the resulting maps with maps pro-

duced using SNP array genotypes, with surprisingly positive results. 

Lastly, in Chapter 6 I return to association mapping with a multivariate QTL 

study of strawberry volatile organic compounds. While previously I worked 

on the issues caused by genetic structure and large, low-quality genetic da-

tasets, now I focused on large phenotypic datasets. As hinted above, metab-

olomics studies often struggle to integrate the results of all metabolites at 

once, an issue echoed in imaging datasets and other large phenotypic data. 

To address this problem, I opted to perform a multivariate QTL study, an 

idea that is far from new but is rarely used and for which there are no current 

standards. A multivariate QTL study aims to understand the relationship be-

tween all phenotype variables (metabolites in our case) as well as QTLs for 

those relationships. As a result, one can study groups of metabolites instead 

of individual ones, finding QTLs not only for the metabolites, but also for the 

overall pathway. While the theory is sound, the application of this approach 

was somewhat unclear. In Chapter 6 I test two possible approaches, one more 

readily obvious from metabolomics literature, and another less common but 

more statistically sound.
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Together, these chapters form the thesis that you are about to read. They also 

reflect a current trend in the quantitative genetics field, where research is 

aimed at understanding challenging datasets with the appropriate tools. Of-

ten, that has required adapting existing tools to new contexts, updating and 

expanding already existing models. The computational aspect of this work 

cannot be overstated, most of my work has meant programming these models 

into usable and shareable tools and creating reproducible research. Although 

I studied plants, the experiments of this thesis have mostly been carried out 

on the silica boards of our department’s supercomputer. 
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Abstract
Many ornamental crops are polyploid or even exist at different ploidy 

levels. Polyploid QTL analysis tools have been developed in recent years, 

yet they are limited in the population types they accept. Biparental pop-

ulations are nowadays being regarded as a limited tool for QTL discov-

ery, as only a limited number of QTLs occurs in an experimental cross 

and their effects might not be stable across genetic backgrounds. Ge-

nome-Wide Association Studies include more genetic diversity but suf-

fer from (hidden) genetic structure and low frequency of QTL alleles. 

Both factors influence QTL detection and effect estimation, decreasing 

the sensitivity of QTL analysis. Alternatively, multiparental populations 

(MPP) can be used, potentially combining multiple QTLs and QTL al-

leles with known population structure and balanced allele frequencies. 

Breeding populations of interconnected crosses also constitute a form 

of MPP and QTLs identified in them might be more applicable to com-

mercial cultivars. To perform QTL analysis in polyploids, mixed models 

or Bayesian approaches that consider pedigree information are recom-

mended. During the analysis, QTL effects are ideally estimated using 

IBD information, which can be obtained through haplotype estimation. 

Although MPPs could thus be a powerful set-up to estimate polyploid 

haplotypes, a software gap was identified as no current polyploid hap-

lotyping tools are able to utilize MPP pedigree information to obtain 

haplotypes across an MPP. In order to utilize MPPs to their full extent 

and expand polyploid QTL analyses to encompass typical breeding pop-

ulations, new haplotyping tools must be developed. 

Keywords

Breeding populations, IBD, GWAS, family-based analysis, 
pedigree-based analysis.
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in polyploids?

Introduction

P
olyploidy, the multiplicity of genome copies within a cell, is an impor-

tant evolutionary phenomenon that has played a crucial role in plant 

evolution (Comai 2005; Soltis and Soltis 2012). This genetic condition 

has also been utilized in breeding, particularly in the ornamental field, due to 

its direct effects on organ size and morphology, and its ability to restore fertil-

ity in interspecific hybrids. In fact, in the recent book Ornamental Crops (van 

Huylenbroeck 2018), in which molecular breeding techniques in ornamen-

tals are reviewed, virtually all crops mentioned deal with polyploidy in one 

or more of these cases: i) in natural polyploid or mixed ploidy populations, ii) 

in cultivars that had been unconsciously selected for polyploidy, iii) in plants 

with induced polyploidy to alter morphology or bridge interspecific fertility 

barriers. Given the interest of moving from classical to molecular breeding 

approaches, it is essential to develop and expand methodologies that allow 

breeders and researchers to analyse organisms that differ from the diploid 

standard.

One of those techniques is Quantitative Trait Loci (QTL) mapping. The term 

QTL arose almost accidentally in a mathematical article by (Geldermann 

1975), in which he described a marker-based method to associate variation in 

a quantitative trait with genetic loci (in a population of segregating individu-

als). Although Geldermann did not pioneer the idea, his acronym was rapidly 

adopted and has nowadays become an essential tool in breeding and research. 
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Polyploid QTL models were proposed early on (Kempthorne 1957), but their 

application has lagged in comparison to diploids until genotyping technolo-

gies and computational resources were good enough to handle polyploid ge-

netic complexity (Doerge and Craig 2000; Xie and Xu 2000). 

Interpretation of a QTL analysis and its results depends directly on the popu-

lation type, the genotyping platform and the statistical method used to detect 

QTLs. For instance, a QTL found in an F2 biparental population identifies 

those genomic regions for which the parents are polymorphic and whose vari-

ation in the F2 can be associated with phenotypic variation, suggesting a link 

between the genes in that area and the trait in question. Although the use-

fulness of this method has allowed a great variety of functional genes to be 

uncovered, the limitations of this approach are well known: QTLs detected in 

a biparental population might not be functional in other genetic backgrounds 

and not all causative loci can be detected due to the limited genetic diversity 

of the population’s parents.

Alternatively, Genome-Wide Association Studies (GWAS) can be used, where 

a group of genetically diverse individuals (generally with unknown relation-

ship between them) are used. In these populations, linkage between mark-

er and QTL allele is due to evolutionary Linkage Disequilibrium (LD) rather 

than the LD caused by recent relatedness in biparental populations. Despite 

their great usefulness, GWAS designs remain controversial (Tam et al. 2019). 

Although they allow to study a wider range of genetic diversity, effects from 

rare or weak QTL alleles cannot be adequately estimated, and thus are gener-

ally missed. Additionally, population structure and allelic diversity act as con-

founding factors that must be taken into account in order to avoid statistical 

artifacts (Yu et al. 2006; Korte and Farlow 2013).

Nevertheless, both approaches represent the two extremes of a gradient of 

population diversity (Würschum 2012). Alternatively, multiple biparental 

populations that share parents can be used. We will refer to them as mul-

tiparental populations (MPP), although in literature they are also known as 

pedigreed populations, connected populations or families. MPPs harbour a 

higher level of genetic diversity than a single biparental population, allow test-
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ing parental genes in multiple genetic backgrounds, and can be expected to 

have a more balanced genetic structure compared to GWAS panels composed 

of a random sample of diverse individuals. Moreover, MPPs are particularly 

suited for the type of exploratory crossing that is common in breeding efforts: 

a few interesting parents are selected, intercrossed and a small population is 

raised from each cross. While traditionally each cross is analysed separately, 

the MPP approach proposes joining all crosses in a single analysis. 

In this article, we consider the existing MPP populations in plant breeding 

and discuss the statistical implications of using MPPs in QTL analysis, with 

special attention to the analytical issues that arise with polyploid genetic 

analysis. 

Multiparental population types
Experimental Populations

In plants, experimental MPPs have been developed for a long time. Diallel 

crosses, populations where a set of parents are crossed in all possible combi-

nations (full diallel) or omitting reciprocal crosses (half diallel), were and are 

still used in breeding since the definition of general and specific combining 

abilities were laid down by (Sprague and Tatum 1942). However, they were not 

developed for QTL analysis, but as a form of evaluating parental contributions 

to hybrids, obtaining an evaluation of the quality of a parent as a source for 

breeding (Griffing 1956). 

More recently, complex MPP schemes have been developed. Multi-parent Ad-

vanced Generation Intercross (MAGIC) populations (Cavanagh et al. 2008)

have already been developed in a variety of crops, both diploid (e.g. maize, 

rice, tomato) and (allo)polyploid (e.g. wheat, peanut) (Huang et al. 2015). The 

principle of MAGIC is to combine alleles from different founders in a single 

genome, and thus evaluate each QTL allele in a variety of different genetic 

backgrounds. Another MPP scheme is termed Nested Association Mapping 

(NAM), in which a central parent is crossed with a set of peripheral parents, 

followed by a series of back-crosses and selfings. This population design has 
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been adopted in fewer crops, but nevertheless with great success. The maize 

NAM population (McMullen et al. 2009) is undoubtedly its most famous ex-

ample, but other NAMs have also been developed in sorghum (Bouchet et al. 

2017), soybean (Song et al. 2017), barley (Maurer et al. 2015) and a single poly-

ploid: wheat (Bajgain et al. 2016).

Breeding populations

Although the experimental MPP schemes mentioned above are useful inno-

vations, they represent only a small fraction of existing MPPs. In breeding 

programmes, it is common practice to select phenotypically interesting par-

ents and cross them together or with other cultivars, in order to explore new 

trait combinations. Thus, each parent contributes to many biparental popula-

tions, and these sets of connected crosses can be regarded as an MPP.

Breeding populations are regularly screened for interesting phenotypes, and 

genotyping these populations is becoming an increasingly common practice. 

Thus, both genotypic and phenotypic data are likely to already be available 

for these ad-hoc MPPs. Additionally, it has been suggested that utilizing such 

populations for QTL detection provides results that are more readily trans-

latable into breeding application due to their direct connection to the final 

cultivars (Jansen et al. 2003; Verhoeven et al. 2006; Würschum 2012; Bink et 

al. 2012; Bardol et al. 2013; Han et al. 2016). 

For these reasons, development of analytical methods that allow QTL analy-

sis in polyploid MPPs is especially relevant for breeding efforts, as it will allow 

breeders to describe and explore more deeply the breeding material present 

in a program. 

Statistical considerations
Genetic Structure

QTL analyses rely on association between marker and QTL alleles (also 

known as allelic disequilibrium, linkage disequilibrium, gametic phase dis-
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equilibrium or gametic disequilibrium), which occurs when alleles of two 

loci are found together more often than by chance (Flint-Garcia et al. 2003). 

Physical linkage is not the only possible cause of linkage disequilibrium (LD): 

bottlenecks, genetic drift, natural selection, domestication, breeding history 

or recent relatedness can generate long-range LD across a population, even on 

different chromosomes, a property generally called population structure (Yu 

et al. 2006).

The presence of population structure is one of the major differences between 

biparental populations and MPPs. In biparental populations all individuals 

Figure 1: Required elements for polyploid multiparental population (MPP) 

analysis. 

Left panel: a multiparental population is obtained. Its pedigree structure 
can be used in later analysis. Middle panel: raw genetic data can be used 
to estimate: i) genotypes (dosages) to determine heterozygote classes, ii) 
haplotypes, to determine which parents and offspring are identical by descent 
along chromosomes, iii) linkage map, to determine marker distance and 
order, and iv) genetic structure, as a relatedness matrix, from pedigree and 
or genotype information. Right panel: phenotypes and linkage maps are used 
to predict QTL positions. With mixed models, genetic structure is accounted 
for by the relatedness matrix and IBD alleles, while in Bayesian models that is 
achieved by incorporating pedigree information in the QTL models.
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are “equally” related (i.e. that any two individuals have the same probability of 

having a level of relatedness k), but in MPPs, those individuals that originate 

from the same cross (full siblings) are more highly related than those that 

originate from different crosses (half-siblings or unrelated). Importantly, un-

like in GWAS panels, these patterns of relatedness are predictable and can be 

incorporated in the MPP design process in order to obtain a balanced genetic 

structure. 

A direct consequence of genetic structure is a non-random distribution of 

alleles across the population, which may lead to an increased rate of type I er-

rors when genetic structure correlates to the phenotype. To resolve this issue, 

genetic structure must be considered. Two statistical frameworks have been 

used so far for this purpose: mixed models, where a relatedness matrix is used 

(Yu et al. 2006); and Bayesian QTL models in which pedigree information is 

included in their likelihoods (Bink et al. 2014). Strictly speaking, only mixed 

models have been applied using a polyploid model (Ferrão et al. 2018) through 

the R package GWASpoly (Rosyara et al. 2016). However, the diploid models of 

FlexQTLTM (Bink et al. 2014) have been used in allo-octoploid strawberry by 

treating each subgenome separately (Mangandi et al. 2017; Verma et al. 2017; 

Anciro et al. 2018). Expansion of this Bayesian framework to polyploidy would 

thus be an interesting development for autopolyploids and allopolyploids for 

which genotyping tools cannot obtain subgenome-specific genotypes. 

Modelling QTLs in multiparental populations

QTL detection requires estimation of QTL effects. The number and prop-

erties of these effects are determined by the type of situation we expect to 

encounter. In general, we can summarize MPP QTL modelling in four cate-

gories (Han et al. 2016):

1) Each effect is specific for each cross and parent genotype (Jannink and 

Jansen 2001; Blanc et al. 2006). It is assumed that there is no shared informa-

tion between crosses. We know that protein and gene functions might vary 

depending on the context in which they are expressed (i.e. genetic background, 

environ-mental factors), but completely disregarding shared information be-
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tween crosses is an over-conservative approach that ignores the potential to 

increase statistical power by using MPPs. 

2) Parental alleles are unique and effects are shared between crosses (Jan-

nink and Jansen 2001; Blanc et al. 2006; Garin et al. 2017). QTLs are estimated 

across families, but we assume that each parent contributes different alleles to 

the populations. While that might be realistic when all parents originate from 

completely divergent genepools, it does not reflect most breeding populations, 

where parents have some degree of relatedness and thus might share alleles 

at certain loci. 

3) Identity-by-descent (IBD) segments among parents harbour the same 

alleles, with identical effects between crosses (Jansen et al. 2003; Bardol 

et al. 2013; Garin et al. 2017). Two alleles are said to be identical by descent 

if they have originated from a common ancestor. This method requires the 

identification of parental alleles that are IBD and estimation of the effects for 

each unique allele. If IBD can be estimated (see below) and QTL effects are 

stable between crosses, this is the most powerful method in MPPs (Jansen et 

al. 2003). 

4) Effects are estimated per marker and identical between crosses (Wür-

schum 2012; Garin et al. 2017). In this case it is assumed that a marker allele 

indicates QTL allele, i.e. that each QTL allele is in linkage with a different 

marker allele.

Since we expect multiple QTL alleles, this would require a multiallelic marker 

system densely spread across the genome. These requirements are not yet met 

by any modern marker system: high-density SNPs are mostly biallelic, and 

multiallelic markers lack the high-density (and cost effectiveness) of SNPs. 

Whole genome sequencing could meet these criteria, but fully reconstruct-

ing all chromosomes (haplotyping of the whole genome) is still impossible in 

polyploids (see below).
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Consequences of polyploidy 
in MPP analysis

Polyploid and diploid MPPs do not differ qualitatively. Although some pop-

ulation parameters such as genetic drift, heterozygosity and allele frequen-

cies are different in polyploids, these do not impact significantly the design or 

properties of MPPs. Complications arise on the analytical side during geno-

typing, linkage mapping and haplotyping. 

The polyploid genotyping problem

Unlike diploids, polyploids present multiple heterozygote classes which must 

be distinguished. When two alleles (e.g. A and C) are detected, they must be 

quantified in order to estimate their dosage (ACCC, AACC or AAAC). Vari-

ous tools have been developed for this using both fluorescence intensities of 

SNP arrays (Voorrips et al. 2011; Serang et al. 2012; Schmitz Carley et al. 2017; 

Zych et al. 2019) and read data from genotyping by sequencing (Gerard et al. 

2018).These tools have helped not only in genotyping polyploids, but also in 

understanding the types of uncertainties that arise with each measurement 

technique (e.g. background fluorescence or allele bias in SNP arrays, sequenc-

ing error or overdispersion in sequence counts of GBS). In order to improve 

genotype estimation, allele frequency expectations in a population are usu-

ally included. There are two common frequency assumptions: a biparental 

F1 population, where frequencies depend directly on parental genotypes; and 

Hardy-Weinberg equilibrium, which is useful in randomly sampled natural 

populations (Voorrips et al. 2011; Gerard et al. 2018). To accommodate MPPs, 

frequency expectations must be adapted to reflect the structure of an MPP, 

i.e. to model multiple F1s. Such work has already been performed for fitTetra 

(Zych et al. 2019) and there exist programs initially developed with MPPs in 

mind (Schmitz Carley et al. 2017). These are positive improvements, yet more 

complex MPPs (e.g. combining pedigreed individuals and F1s) might still re-

quire further developments. 
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The polyploid mapping problem

Linkage mapping is an important tool as it allows to characterize the recom-

bination behaviour along the chromosomes of a species. More importantly, 

in order to detect QTLs, marker order must be known. Allopolyploids, that 

segregate as diploids, can use diploid mapping software to obtain a linkage 

map. However, autopolyploids, that generally segregate polysomically require 

dedicated models. Few programs are available for mapping in autopolyploids 

(Hackett et al. 2014; Bourke et al. 2018a), the most flexible being polymapR 

(Bourke et al. 2018a), as it can estimate integrated maps under different ploi-

dies and segregation models (bivalent, preferential or multivalent pairing of 

chromosomes). Nevertheless, the package can only estimate maps in F1 popu-

lations. In order to generate a map for an MPP either multiple F1 maps should 

be generated and integrated, or polymapR should be adapted to accept oth-

er population structures. In any case, current methodologies do not allow to 

generate linkage maps for (auto)polyploid MPPs. 

The polyploid haplotyping problem

More specifically relevant to MPPs is estimation of IBD. One can speak of 

two “kinds” of IBD: on the one hand family-IBD, e.g. regions of chromosomes 

from two offspring individuals that originate from the same parental chro-

mosome; and on the other, ancestral-IBD, those chromosomal regions that 

originate from the same common ancestor and that are broken down by re-

combination events (Browning and Browning 2011a). The latter might even 

span across closely related species.

Generally, IBD is estimated using haplotypes (Meuwissen et al. 2001), the 

concatenation of adjacent polymorphisms, most commonly SNPs. Finding 

the haplotypes is simple when the number of possible combinations is low, 

(with high homozygosity and low ploidy). In heterozygous polyploids the is-

sue of finding the underlying haplotypes becomes increasingly complex due 

to the great number of possible haplotypes. Combining polymorphisms to 

form haplotypes is a process known as phasing or haplotyping and can be 
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performed in different ways depending on the type of data one uses.

Firstly, genotypes can be obtained as independent polymorphism scores (e.g. 

from a SNP array), or as sequence reads, where each read might contain in-

formation about multiple polymorphic sites, thus providing short-range SNP 

phase information. Secondly, we might wish to resolve the haplotypes of a 

single individual, or of a group of individuals (related or unrelated). 

Haplotypes of a single individual can currently only be resolved using se-

quence reads, as independent SNP scores do not allow us to decide between 

the multiple haplotype possibilities. There already exist multiple tools that 

can phase polyploid haplotypes using next-generation sequencing (NGS) 

reads (Aguiar and Istrail 2012; Berger et al. 2014; Das and Vikalo 2015; He et 

al. 2018), and for short reads these will provide accurate results if sequencing 

is performed at adequate depth (Motazedi et al. 2017). In the future, haplotype 

library methods based on inferring the most likely haplotype given a set of 

previously identified haplotypes (Pook et al. 2019), might provide haplotyping 

solutions for single individuals if SNP-arrays are used. These methods, how-

ever, are still in development even for diploids and thus might take some time 

to reach polyploids. 

Phasing using populations has, comparatively, received less attention. (Brown-

ing and Browning 2011b) reviewed existing methods for diploids, and divided 

them in two main groups: i) phasing methods for unrelated individuals, which 

use either coalescent theory to haplotype likelihood via Hidden Markov Mod-

els (Scheet and Stephens 2006; Li et al. 2010; Browning and Browning 2011a) 

or a parsimony principle (Neigenfind et al. 2008); and ii) phasing models for 

related individuals, in which pedigree information and Mendelian constraints 

allow to determine likely haplotypes (Abecasis et al. 2002). Since 2011, other 

population haplotyping tools have been released for polyploids for independ-

ent SNPs in F1s (Zheng et al. 2016), for long reads in pedigreed individuals 

(Garg et al. 2016) and for short reads in parent-offspring trios (Motazedi et al. 

2018). 

None of the above-mentioned methods can currently exploit information 

Dissertatie Alejandro v2-4 DEF.indd   30Dissertatie Alejandro v2-4 DEF.indd   30 6-6-2023   19:32:516-6-2023   19:32:51



- 31 -

M U L T I P A R E N T A L  Q T L  A N A L Y S I S :  C A N  W E  D O  I T  I N  P O L Y P L O I D S ?

across MPPs. Thus, there is no available methodology that is able to trans-

form unphased SNP genotypes in polyploid MPPs into the multiallelic mark-

ers that are required to apply the modelling strategy 3 described above. This 

gap does not allow to fully utilize multiparental population QTL detection 

methods in polyploids and represents a lag of polyploid methodology with 

respect to diploids. 

Conclusion
Multiparental populations (MPPs) are an interesting prospect that could al-

low to identify and utilize QTLs with more relevance for breeding applica-

tions. In that regard, we must consider also MPPs beyond experimental pop-

ulations and realize that the breeding populations of interconnected crosses 

that are regularly generated as a form of exploratory cultivar evaluation also 

constitute useful MPPs. 

QTL modelling of MPPs is more challenging than in biparental crosses due to 

genetic structure and higher allelic diversity, but mixed models have shown 

their usefulness in analysing polyploid MPPs and Bayesian models, if adapted 

to polyploid organisms, could also prove a useful tool. Regarding the models 

of QTL effects, IBD-based (haplotype) estimates are the most theoretically 

consistent method to perform QTL analysis in MPPs, as they account both for 

family-based linkage and possible sharing of alleles between parents. Howev-

er, estimation of IBD in polyploids is a challenging task and no method has 

yet been developed that can adequately obtain haplotypes across multiparen-

tal populations fully capitalizing on the shared information between crosses, 

either from sequencing reads or from unphased SNPs. 

Polyploid genetic tools are usually developed as extensions from less general 

diploid models. Similarly, MPP polyploid tools must be developed as gener-

alizations of methodologies that were developed for application in different 

population types. To that end it will be useful to look both at polyploid tools 

for biparental and GWAS populations and at diploid tools for MPP analysis, 

harvesting developments from both fields.
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Abstract
Quantitative Trait Locus (QTL) analysis allows to identify regions re-

sponsible for a trait and to associate alleles with their effect on pheno-

types. When using biallelic markers to find these QTL regions, two al-

leles per QTL are modelled. This assumption might be close to reality in 

specific biparental crosses but is unrealistic in situations where broader 

genetic diversity is studied. Diversity panels used in genome-wide asso-

ciation studies or multi-parental populations can easily harbour multiple 

QTL alleles at each locus, more so in the case of polyploids that carry 

more than two alleles per individual. In such situations a multiallelic 

model would be closer to reality, allowing for different genetic effects for 

each potential allele in the population. To obtain such multiallelic mark-

ers we propose the usage of haplotypes, concatenations of nearby SNPs. 

We developed “mpQTL” an R package that can perform a QTL analysis 

at any ploidy level under biallelic and multiallelic models, depending on 

the marker type given. We tested the effect of genetic diversity on the 

power and accuracy difference between bi-allelic and multiallelic mod-

els using a set of simulated multiparental autotetraploid, outbreeding 

populations. Multiallelic models had higher detection power and were 

more precise than biallelic, SNP-based models, particularly when genet-

ic diversity was higher. This confirms that moving to multi-allelic QTL 

models can lead to improved detection and characterization of QTLs. 

Keywords

Polyploidy, multiparental, QTL, multiallelic, genetic diversity 
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Introduction

Q
uantitative Trait Locus (QTL) analyses are those experiments in 

which a population is genotyped with many markers that cover the 

whole genome, and phenotyped for traits of interest. Once that is 

done, positions along the genome are tested for association, either defined by 

the markers or by some clever estimate such as those used in interval map-

ping (Lander and Botstein 1989; Akond et al. 2019). QTL studies have been 

extremely useful in unravelling genomic regions that control or contribute 

to important plant traits such as disease resistance, yield, crop quality or tol-

erance to abiotic stresses. The precision of these studies has been improved 

by the advent of high-throughput technologies, that facilitated genotyping of 

thousands to millions of Single Nucleotide Polymorphisms (SNPs) in a single 

analysis. This is nowadays also possible in polyploid organisms, thanks to sta-

tistical and computational developments in the areas of genotyping, linkage 

map construction and QTL analysis (Rosyara et al. 2016; Bourke et al. 2018b). 

When trying to find QTLs two aspects will define the outcome obtained: the 

type of population studied, and the QTL modelling approach chosen. 

Population types

A classical population type is the biparental cross, a population of siblings 

obtained by crossing two parents, usually contrasting in the trait of interest. 
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If both parents are homozygous, as is the case in many self-fertilizing species, 

QTLs found in this type of population will reflect the allelic differences be-

tween the two parents. If the parents are diploids, there will likely be only two 

alleles per QTL segregating in that population. Since the cross contains only 

a small fraction of the genetic diversity of the species, QTL results from these 

populations may not be applicable to other populations and markers linked to 

QTLs cannot easily be used in other crosses. 

Another possibility is to use a genome-wide association study (GWAS), in 

which a large set of diverse individuals are studied, and thus a large number 

of QTL alleles is expected to segregate. Unlike in biparental crosses, an asso-

ciation between markers and QTLs is expected due to Linkage Disequilibri-

um (LD) rather than direct family linkage. These studies produce more widely 

applicable QTL results, but introduce some drawbacks: i) rare allele variants, 

which will be present at low frequency in a GWAS panel, will easily be missed 

even if they affect the phenotype, and ii) linkage disequilibrium (LD) is not 

spread homogeneously across the population or the genome, an effect known 

as “genetic structure”, and this may generate false positives if not taken into 

account (Yu et al. 2006; Korte and Farlow 2013).

Nevertheless, as described in (Würschum 2012), mapping in biparental pop-

ulations or GWAS panels represent two extremes of a genetic diversity gradi-

ent. An intermediate form can be found in multi-parental populations (MPP). 

An MPP is formed by individuals that share a limited number of known an-

cestors, for instance, a set of connected biparental crosses, or multiple lines 

originating from a small set of founders. As such, the number of QTL alleles 

will be at most of ploidy × founders. Additionally, as the genetic structure in 

an MPP originates from mostly known pedigree relationships, it will be less 

complex than that of GWAS populations, and the allele frequencies will often 

be more balanced.

The MPP concept fits well the type of populations usually available in breeding 

programmes, where multiple crosses are made with some interesting parents. 

Breeding populations become then ad-hoc MPPs and instead of analysing 

each cross separately, the whole breeding program could be analysed at once, 
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increasing statistical power. The idea that utilizing breeding populations for 

QTL analysis might be a better option than creating specific experimental 

populations has been studied previously (Jansen et al. 2003; Würschum 2012; 

Bardol et al. 2013; Bink et al. 2014), although in diploid species under biallelic 

models.

Modelling approaches

The type of mathematical model used for QTL analysis will heavily depend on 

the population under study. In a classical biparental population an analysis of 

variance (ANOVA) will easily provide accurate QTL estimates. In contrast, in 

a GWAS panel, genetic structure must be taken into account, usually in the 

form of a mixed model (Yu et al. 2006). In the case of a MPP, a similar mixed 

model could be used, although if the genetic structure is simple enough, a 

fixed factor accounting for subpopulations may perform well also (Yu et al. 

2006). 

The number of modelled QTL alleles is also relevant. Typically, since biallelic 

markers are used, two alleles per QTL are modelled. Assuming the presence 

of only two alleles, however, is sensible under very few scenarios. As ploidy, 

heterozygosity or the number of founders of a population increase, the num-

ber of expected QTL alleles rises. The larger the number of alleles, the less 

realistic the biallelic model becomes for describing the observed variance. 

Nevertheless, as SNP markers have become the standard polymorphism in 

modern genotyping, using them directly implicitly tests a biallelic scenario. 

However, SNP information can be used differently. By combining adjacent 

SNPs, biallelic SNPs can be turned into multiallelic haplotype markers (Ler-

oux et al. 2014).

Due to the increased genetic diversity present in GWAS and MPP popula-

tions, it is foreseeable that moving to multiallelic QTL models will provide a 

gain in statistical power. Nevertheless, biallelic models are simpler and thus 

more powerful, and they have a long trajectory of success. There is currently 

no software available that can perform multiallelic QTL analyses in polyploid 

populations in the presence of genetic structure, but such software is being 

developed. Under which circumstances, if any, will a genetically diverse pop-
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ulation benefit from a multiallelic QTL modelling approach?

To answer this question, we have simulated a series of autotetraploid MPPs 

with different levels of genetic diversity. Populations were designed following 

the Nested Association Mapping (NAM) structure, where one central parent 

is crossed with many peripheral parents (McMullen et al. 2009). We adapted 

the QTL modelling approach presented in (Garin et al. 2017) for diploid MPPs 

with inbred founders, expanding it to a polyploid and heterozygous case. We 

present this approach as an R package (R Core Team 2016) named “mpQTL” 

to perform QTL analysis. This package together with the simulated MPPs al-

lowed us to assess the effect of biallelic or multiallelic markers on QTL detec-

tion and QTL precision under different genetic diversity scenarios. 

Materials and Methods
Statistical Models

Mixed models allow to correct for dependence between observations due 

to genetic structure. Yu et al. (2006) defined a “unified mixed model”, also 

known as the  Q + K model (Rosyara et al. 2016), that can accommodate both 

a population structure matrix (Q) and a kinship matrix (K): 

Where y is the vector of phenotypic trait values, Xβ represents the incidence 

matrix and marker effects (SNP effect in (Yu et al. 2006));  Qv are the pop-

ulation structure matrix and vector, respectively; Zu are design matrix and 

vector of genetic background effects (polygene component in (Yu et al. 2006)); 

and ε is the residuals vector. The variances of the random effects, u and ε are 

also defined: K is the kinship matrix and , the genetic variance; R is a matrix 

with off-diagonal numbers being 0 and the diagonal is the reciprocal of the 

number of observations underlying each genotype estimation, and  is the 

residual variance.

         2      1
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Fixed term: allele parametrization

Definition of X requires a genetic model, that is, a method to transform genet-

ic data into an incidence matrix X. Polyploid genetic models have existed for a 

long time (Kempthorne 1957) and have inspired more recent versions applied 

to SNP data (Hackett et al. 2001; Luo et al. 2005). The simplest of them is the 

biallelic model (model B in (Würschum 2012), association mapping in (Liu 

et al. 2012)), which considers SNP alleles as equal to QTL alleles. In a biallelic 

model, the SNP dosages are used to predict genetic effects, giving the Xβ term 

the following form:

Where δi are the dosages (a value from 0 to ploidy) of one of the SNP alleles,  

μ is the intercept and β the genetic effect of that SNP allele. We denote the 

incidence matrix as Xb for this modelling strategy. Note that this represents 

an additive model without intra or inter-locus interaction, i.e. no dominance 

or epistasis between alleles is modelled. 

Alternatively, Identity-By-Descent (IBD) information can be used to generate 

an ancestral model (Garin et al. 2017), or a PBA model (Bink et al. 2014) or an 

LDLA model (Bardol et al. 2013; Giraud et al. 2014). Under the ancestral mod-

el, the dosage of each ancestral allele or haplotype in the NAM population is 

used to estimate genetic effects. The shape of the Xβ term then takes the form: 

In this case, the dosages of all alleles except one (the reference allele) are spec-

ified. Therefore, k is the number of alleles -1. Each β represents the additive 

genetic effect of each ancestral allele, relative to the effect of the reference 

ancestral.

111  2

1  1  … 1   3

Dissertatie Alejandro v2-4 DEF.indd   41Dissertatie Alejandro v2-4 DEF.indd   41 6-6-2023   19:32:556-6-2023   19:32:55



- 42 -

H A R V E S T I N G  D A T A  F R O M  P O L Y P L O I D  P L A N T S

Random term: kinship matrix calculation

In this model, a kinship matrix K is calculated using the realized relationship 

(Rosyara et al. 2016): 

Where D is a dosage matrix with markers on columns and individuals on 

rows, and the mean of each column is zero (column means have been sub-

tracted for each column); and     is the mean of the diagonal of the DDt matrix. 

If haplotypes are used instead of biallelic SNPs, D can consist of concatenated 

matrices similar to Xa (without the intercept column), so that the number 

of columns is equal to the total number of alleles present across all markers 

used. To mitigate the bias due to differences in marker density across the ge-

nome, kinship estimates are calculated on a subset of evenly distributed SNPs 

(one marker per cM). 

Haplotyping

Haploblocks were arbitrarily defined using a sliding window of 6 consecu-

tive SNPs with an overlap of 4 SNPs (first haplotype is SNP1-SNP2-…-SNP6, 

second is SNP3-SNP4…-SNP8). A haploblock of length 6 can tag a maximum 

of 26 = 64 alleles if all combinations are present, although in our simulations 

the number of observed alleles was much lower, with the average number of 

observed alleles ranging from 11.23 in NAM1 to 21.8 in NAM10. To obtain a 

haploblock position, the average position of the 6 SNP markers was taken. 

Haplotypes were obtained from the simulated phased SNP genotypes gener-

ated by PedigreeSim. 
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Power Study

Definition of QTL interval

Single marker QTL methods do not provide an estimate for the QTL interval, 

yet with a defined threshold and a genetic map one can interpret the p-value 

distribution to obtain them. Since adjacent markers are not independent, and 

the closer to a true QTL position, the more significant the p-value becomes, 

one expects a chain of increasingly significant markers, pointing towards a 

true QTL position. Based on this, we define a QTL interval as a set of ordered 

markers above the significance threshold such that: 

where dij is the distance between adjacent significant markers i and j, and l  

represents a linking distance. As a result, a QTL interval is defined by a chain 

of significant markers, where adjacent significant markers are at a distance 

smaller than l. Therefore, for each value of l we can define a set of detected 

QTL intervals. Since the choice of l is arbitrary, we performed power calcula-

tions with l from 0 to 10 cM in steps of 0.5 cM. 

Significance threshold

To adjust for multiple testing, an empirical permutation threshold was cal-

culated for each QTL analysis (Churchill and Doerge 1994). Thresholds were 

obtained with 100 permutations on a single population for each model, as 

threshold values did not change substantially between populations. 

Power estimates

 To evaluate the QTL models here presented we will use 1) QTL detection pow-

er, the probability of detecting a QTL position when present; 2) false positive 

rate, the probability of having a significant marker outside a QTL region; 3) 

QTL accuracy, the closeness of a QTL peak (position of maximum probability 

within an interval) to the true position and 4) QTL and marker precision, the 

probability that a significant QTL interval or marker is a true positive. 

, … ,    where    
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QTL detection power can be calculated as the proportion of true QTLs that 

are found by the model. While this is informative, one can easily increase 

detection power by increasing the number of false positives. To estimate the 

false positive rate, we must define the true negative markers (N). We consid-

ered as true negatives all markers outside a 10cM interval around our true 

QTL positions (5cM above and 5cM below). We then define as false positives 

(FP) those markers that are above the significance threshold (they have lower 

p-values, higher significance) and are outside the 10cM true interval. Lastly 

the false positive rate is calculated as FP/N.

The range of a QTL interval is defined by the positions of its leftmost and 

rightmost markers. QTL intervals will be considered true positives if the QTL 

range includes the simulated QTL position. All markers belonging to a true 

positive QTL interval are considered true positive markers, whereas the rest 

of significant markers present in other QTL intervals will be considered false 

positives. Isolated significant markers will be ignored.

Under this framework we can define detected QTLs, true QTLs, significant 

markers and true positive markers. We will use these values to calculate the 

precision (proportion of true positives over all positives) for both QTLs and 

markers. 

Finally, we considered the ability of a model to predict the position of QTL 

within an interval. We can define a QTL peak as the most significant marker 

within a QTL interval, as is done when applying logarithm of odds (LOD) 

scores. QTL accuracy can then be calculated as the average distance of a QTL 

peak in a true QTL to the true QTL position. 

Power measures were calculated for each of the three models in 11 popula-

tions for each level of genetic diversity (total of 44 populations).
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Implementation

All computations in this study were done in R (R Core Team 2016). 

 Ridge regression using a restricted maximum likelihood procedure was used 

to obtain the mixed model estimates, which in this context are equivalent to 

the Best Linear Unbiased Predictions (BLUP) (Whittaker et al. 2000; Meu-

wissen et al. 2001). Such calculations can be performed using the mpQTL 

package, where the solution algorithm, F-test approximation and p-value cal-

culation where based on the mixed.solve() function of the rrBLUP package 

(Endelman 2011). 

To improve computational efficiency, the EMMAX/P3D approach was ap-

plied (Kang et al. 2010; Zhang et al. 2010), which approximates variance com-

ponents once, and recycles these components at each marker position, reduc-

ing the amount of large matrix multiplications that must be performed. 

Simulation

Multiparental Population design and genotype Simulation

Nested Association Mapping (NAM) populations were generated using Ped-

igreeSim V2.0, a simulation software that can simulate not only diploid but 

also polyploid meiosis (Voorrips and Maliepaard 2012). PedigreeSim gener-

ates genotypes given a genetic map, a pedigree and the genotypes of the first 

generation (founders) of that pedigree. Simulations were performed using 

Haldane’s mapping function, allowing only bivalents with random pairing 

and the parameter “NATURALPAIRING” set to 1.

To speed up the calculations, an adapted tetraploid potato genetic map was 

used (Bourke et al. 2016) containing only the first five chromosomes (3509 

markers representing 485 cM). The individuals used in this study were simu-

lated in a two-stage process: firstly, ancestor individuals were generated and 

used to obtain ten separate populations (ancestral groups); secondly, from 

each ancestral group a set of NAM founders were chosen to obtain parallel 

NAM populations.  
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For each ancestral group (AG), 10 ancestor individuals were generated with 

random SNP scores at each marker. Each SNP position is also given an “IBD 

allele”, unique to each homologue of each ancestor (even if the SNP state is the 

same). Each ancestral group has 10 founders, and thus a total of 40 IBD alleles 

will segregate in each AG. These alleles we will name ancestral alleles. Each 

ancestor is randomly crossed (without selfing, as potato is an outbreeder) to 

produce a first generation of 100 individuals, which will serve as parents of the 

second generation. This process was repeated for 50 generations, maintaining 

a constant generation size of 100 individuals. Finally, 100 individuals per AG 

were obtained as potential parents for the creation of NAM populations. 

A NAM population consisted of one central parent crossed with nine periph-

eral parents, without any of the subsequent inbreeding that was originally 

proposed for NAM crossing scheme for selfing crops (McMullen et al. 2009). 

Each cross produced 50 offspring, thus totalling at 460 individuals per NAM. 

To simulate NAMs with different degrees of genetic diversity, parents were 

sampled from the same or from different AGs. A NAM1 contains parents 

from only one AG, while a NAM5 contains parents from 5 different AGs, with 

the same number of parents per group when possible. When the numbers of 

parents per AG was not equal the central parent always originated from the 

AG providing the most parents. For each level of genetic diversity, 11 popula-

tions were simulated. At the end of the process, the genotypes of each indi-

vidual were obtained in terms of ancestral alleles (IBD alleles) and in terms of 

SNP dosages.

Phenotype Simulation

Phenotypes were simulated based on the simulated genotypes: genotyp-

ic values were obtained by assigning genetic effects to the ancestral alleles 

at pre-defined QTL positions. Each individual will then harbour four QTL 

alleles at each QTL position and the final phenotype is equal to the added 

effects of all QTL alleles plus a normally distributed noise. No interactions 

between alleles in one QTL or among QTL loci were simulated, and thus ad-

ditive phenotypes were obtained. 

We considered a situation where three unique QTL positions (at chromosome 
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1, 67.88 cM; chromosome 2, 61.2 cM and chromosome 4, 100.49 cM) were 

segregating. Each AG has a random allelic mean, and allele effects are drawn 

from a normal distribution around that mean. Additionally, 50 small-effect 

QTLs were added randomly across the genome to simulate a polygenic effect. 

For further information see Appendix 1. 

Results
Population Simulation

Ten Ancestral Groups (AGs) were simulated, each of them being founded 

with 40 different founder alleles. After 50 generations of random mating with 

a generation size of 100 individuals, each locus contained 8 to 20 founder al-

leles, with an average between 12.5 and 13.5 depending on the AG. 

Figure 1. Visualization of genetic distance matrix K.

Left: Heatmap of K, where lighter colours indicate higher genetic similarity between 
individuals. (P, parents; An x Am, cross between AG n and AG m; Cn, cross n). Right: 
Individual genotypes plotted on the two first principal components of the K matrix. 
Dot clouds correspond to offspring of crosses 1 to 9 (X, central parent, of AG1; A, 
peripheral parents of AG1; B, peripheral parents of AG2; C, peripheral parents of AG3). 

Dissertatie Alejandro v2-4 DEF.indd   47Dissertatie Alejandro v2-4 DEF.indd   47 6-6-2023   19:32:576-6-2023   19:32:57



- 48 -

H A R V E S T I N G  D A T A  F R O M  P O L Y P L O I D  P L A N T S

Parents from the last generation of AGs were used to obtain NAM popula-

tions. Different degrees of genetic diversity were simulated by sampling par-

ents from the same or different AGs, thus producing genetic structure. This 

is visualized for one example in Figure 1, which shows a heatmap of the re-

latedness matrix K and a Principal Coordinate Analysis (PCoA) plot of the 

same matrix. On the left, we see how cross 3, 4 and 5, derived from crosses 

between AG1 and AG2 (A1 x A2 in Fig. 1), have a higher relatedness between 

them than with any other cross. Similarly, in the PCoA plot we observe how 

the individuals from these crosses (light blue dot cloud) cluster together in the 

midpoint between X (from AG1) and the three parents B (from AG2). These 

indications confirm that our two-step approach was successful in generating 

NAM populations with genetic structure. A similar outcome can be observed 

in the NAM1 to NAM10 simulations.

Population comparison

For each level of diversity, 11 populations were tested with the three proposed 

models. In almost all cases, al models were able to detect all QTL regions. Re-

gardless of the linking distance used for QTL estimation, lower diversity re-

sulted in higher detection power (Table 1). This can be observed at l = 3 using 

haplotype markers: NAM1 has a detection power of 1 (all QTLs were found 

in the 11 populations), but this power decreases to 0.818 in NAM10. Similarly, 

the false positive rate decreases as diversity increases and is lowest in the SNP 

model than in IBD or haplotype models. In Figure 2 the 99th percentile profiles 

also highlight the increased power in lower diversity populations, where the 

dark blue line representing NAM1 populations had higher significance values 

for all QTL peaks and for all models. As diversity increases, a similar decrease 

can be observed for QTL precision. Finally, the mean peak distance from the 

QTL peak to the true QTL position was also larger (lower accuracy) at a high-

er level of diversity in the populations (Table 1). 

Marker comparison

Across NAM populations and at a linking distance (l) of 3 cM, detection pow-

er averaged at 0.74 for SNPs, 0.93 for IBD and 0.92 for haplotypes and was 
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stable for l > 1 cM. The decrease in detection power as genetic diversity in-

creased was markedly larger in the SNP models than in the multiallelic mod-

els (Table 1). This can be clearly observed in the 99th percentile lines in Figure 

2: when diversity increases, the trend line is below the significance threshold 

in the SNP models, while for both multiallelic models all trend lines stay well 

above their respective thresholds.  In Figure 3 left and centre panels, we can 

see how the proportion of true positives increases as the value of l increases. 

For l > 1 cM, QTL precision is on average higher for multiallelic models (0.91 

IBD, 0.92 haplotype) than for the SNP model (0.86). Marker precision is also 

higher for the multiallelic models (0.99 IBD, 0.99 haplotype, 0.92 SNP). The 

choice of l has an impact on this difference, as for lower values of l (but above 

1) precision is much lower for the SNP model. This is due to the presence of 

significant markers further away from the true QTL position in the SNP mod-

el than in the multiallelic models (Fig. 4). 

Table 1: Power comparison across genetic diversity and marker types. 

Each estimate is an average of 11 populations for each diversity level, 
with l = 3 cM. SNP refers to the biallelic model, IBD refers to the ancestral, 
multiallelic model and Hap refers to the haplotype-based approach. For 
detection power and QTL precision, higher numbers indicate a better model, 
while for false positive rate and accuracy, lower numbers indicate a better 
model.

Detection power) False positive rate QTL precision
Accuracy

(cM from true position)

SNP IBD Hap SNP IBD Hap SNP IBD Hap SNP IBD Hap

NAM1 0.939 1 1 0.012 0.066 0.055 0.917 0.850 0.941 0.593 0.161 0.121

NAM3 0.909 0.970 0.970 0.008 0.065 0.054 0.865 0.814 0.886 0.550 0.192 0.130

NAM7 0.545 0.939 0.909 0.005 0.064 0.040 0.697 0.842 0.879 0.687 0.325 0.331

NAM10 0.606 0.848 0.818 0.005 0.055 0.038 0.773 0.932 0.850 0.665 0.312 0.621
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Peak accuracy (Fig. 3, right panel) is stable from l > 1 at 0.25 cM for IBD and 

0.30 cM for haplotype models. In the SNP model, peak accuracy is lower and 

shows more variation. At l = 1 peak accuracy is similar to the IBD and hap-

Figure 2: Overlap of p-value distribution across all populations in the three 

models. 

Top, biallelic SNP model; middle, multiallelic IBD model; bottom, multiallelic 
haplotype model. Coloured solid lines represent the 99th percentile of all p-values 
observed in each genetic diversity level at a particular position. The red dotted line 
marks the estimated permutation threshold for each model (SNP: 10-422, IBD: 10-327, 
haplotype: 10-367). 
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lotype models, yet many false positives are present in the QTL analysis (see 

Fig. 4). At higher l, average peak distance increases from 0.33 cM at l = 2 to 

0.83 cM at l = 7. 

Discussion
Model comparison

The essence of a QTL study is the genetic linkage between observed markers 

and unobserved QTL alleles. When dense genetic maps are used, the purpose 

of a QTL model should be to obtain an increasing marker significance as the 

analysis approaches a true QTL position. The definition of QTL interval used 

in this study stems from such reasoning: we expect a chain of contiguous sig-

nificant markers that form a peak structure, pointing towards the true QTL 

position. 

Figure 3: Power measures for each model with different values of l. 

Power was calculated with l=0 to 10 in steps of 0.5 cM over 44 NAM 
populations (11 of each: NAM1, NAM3, NAM7 and NAM10), for the SNP dosage 
model (snp), true IBD model (ibd) and haplotype model (hap). Coloured areas 
represent the 20th to 80th percentile of power values for each model, and 
trend lines represent the average of each. Both lines and area edges where 
smoothed using a LOESS regression.
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Classical QTL experiments were carried out on inbred diploid experimental 

crosses. In this setup one can expect only two alleles per QTL to segregate, 

and thus biallelic SNP markers are able to uniquely tag each allele. In this 

context, a SNP regression is equivalent to testing the difference in phenotype 

due to having 0, 1 or 2 copies of each marker allele (Lander and Botstein 1989; 

Haley and Knott 1992). However, when we move to scenarios where more 

than two alleles per QTL are expected to segregate at a single locus, for in-

stance when heterozygosity is expected to be high or in multiparental popu-

lations, single SNPs no longer tag QTL alleles uniquely. Thus, each SNP allele 

might tag more than one functional QTL allele, creating a situation where 

the regression test is being performed between groups that do not represent 

a unique effect. Only if, by chance, those groups happen to divide function-

Figure 4: Example of QTL interval detection. 

P-value distributions are shown for the same region in the same population 
using the three models (left, SNP; middle, IBD and right, haplotype). 
Detected QTLs are presented above each plot for three values of l: 1, 3 and 
5 cM. Horizontal red dotted lines represent the permutation threshold for 
each model, and grey vertical lines highlight the true QTL position. In the 
SNP model with l = 1 cM, three QTL intervals are detected, of which only one 
contains the true QTL position, while with higher values of l, only one QTL 
interval is detected. In the IBD and haplotype models, a single true QTL is 
detected for all l values shown.
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al alleles between those with large effects and those with small effects, will 

SNP markers be significant. Since two factors are affecting the significance 

of biallelic markers (i.e. distance to the true QTL position and the grouping 

of multiple effects), they become worse at estimating the true QTL position.

Figure 4 illustrates this situation. The three panels represent the same pop-

ulation being analysed with the three models presented in this study. It can 

be seen how in the SNP model there are three significant markers at approx-

imately 54.5 cM, while the true QTL position is at 61.2 cM. Meanwhile there 

are quite some markers near the true position that are not significant. Such 

behaviour is not seen in the multiallelic models where markers near the true 

QTL position form a clear peak and more distant markers show no signifi-

cance. 

The consequences of this can be seen in Fig. 2 and Fig. 3. First, SNP models 

have overall lower significance at the QTL regions (Fig. 2), an effect that is 

increased when genetic diversity increases and biallelic markers become in-

creasingly worse at tracking the multiple effects present in the population. 

This explains the lower detection power of biallelic models when genetic di-

versity is increased (Table 1). Secondly, we see how at low linking distances, 

SNP models have a high number of significant markers in false-positive QTL 

intervals (Fig. 3 middle). As l is increased, marker precision increases (there 

are less false-positive QTLs), but at the cost of accuracy (Fig. 3 left): the QTL 

intervals become larger (Fig. 4), including markers at some distance of the 

QTL position with higher significance than those at the simulated QTL po-

sition.  

Thus, in a context of high genetic diversity, the usefulness of SNP models will 

depend on marker density, as higher density gives higher chances of having 

at least one marker at the QTL position that divides functional QTL alleles in 

two groups with statistically different means. Even if such a marker is found 

and the location of the QTL is detected, the effect estimated by a regression 

model does not realistically represent the true functional alleles present in the 

population. 
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Considering the lower detection power, lower accuracy and inability of bial-

lelic QTL models to estimate effects for multiple alleles, it is clear that SNP-

based biallelic models are a limited and limiting tool when applied to multial-

lelic populations. 

Multiallelic markers

In order to apply multiallelic models, one must be able to obtain multiallelic 

genotypes. One possibility is to utilize markers that are multiallelic per se, 

such as SSR markers, but these markers are less common along the genome, 

their detection cannot be automated, and they are therefore hard to apply 

within high-throughput pipelines. 

Alternatively, several studies have proposed the use of multiallelic haplotypes: 

groups of phased adjacent SNPs. This type of markers has the advantage of be-

ing predictive of two parts of IBD: family IBD, regions of chromosomes from 

two individuals that originate from the same parental chromosome; and an-

cestral IBD, chromosomal regions originating from the same ancestral chro-

mosome that could occur in more than a single founder and that are broken 

down by recombination events (Browning and Browning 2011a). 

While in our simulations haplotyping was trivial because the genotype of 

each individual was known, haplotyping of real SNP data requires phasing. 

For instance, if two adjacent marker genotypes of an individual are AAAB and 

AAAB, the underlying four haplotypes could be both AA-AA-AB-BA or AA-

AA-AA-BB. Some approaches have been developed for haplotyping in poly-

ploids (Browning and Browning 2011b; He et al. 2018; Thérèse Navarro et al. 

2020) but regardless of the method, haplotype estimation from SNP data car-

ries a certain degree of uncertainty due to the high number of possible solu-

tions with similar probabilities. This uncertainty is not present in the haplo-

types used in this study, meaning that the haplotype model here presented is 

performing better than what would be expected with real data, depending on 

the accuracy of haplotype estimation.

Nevertheless, sequencing technologies are becoming a mainstream approach 

for genotyping, and haplotypes can be directly observed in longer sequencing 
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reads. Identifying haplotypes for different individuals given a set of reads is a 

complex mathematical problem that has spurred the development of a variety 

of tools (Berger et al. 2014; Garg et al. 2016; He et al. 2018; Motazedi et al. 

2018). The haplotypes obtained from these methods could also be used with 

the multiallelic polyploid model introduced in this paper, allowing to perform 

QTL analysis in genetically diverse polyploid populations based on sequence 

data. 

Lastly, in this simulated population each founder allele had a different QTL 

effect. In nature this might not be the case, as it is well known that many mu-

tations are in fact neutral and thus do not change the QTL effect of that mu-

tated allele. This could imply that the number of haplotypes would be higher 

than the number of QTL effects in a population, thus decreasing the useful-

ness of haplotype-based multiallelic markers. 

Preparing multiparental populations

When organizing an MPP, the power to be able to detect the effects of an 

allele at a QTL depends on its frequency. The more individuals harbour one 

QTL allele, the more information the MPP provides about it. The expected 

frequency of founder alleles is directly affected by two factors: founder genetic 

diversity and offspring per founder.   

The number of alleles segregating in a population is a direct reflection of the 

genetic diversity of its founders. When relatedness between founders is high, 

the chances of two founder chromosomes harbouring the same allele is also 

high. In MPPs where founders are very related, ultimately not many alleles 

can be expected to segregate. In contrast, when relatedness between founders 

is low, they have high chances to contribute unique alleles. The approach here 

presented estimates one parameter per each allele in the population, and thus, 

if population size is maintained constant, the power of the model decreases as 

the number of alleles increases. This hypothesis was confirmed by our simu-

lation study where systematically, higher diversity populations, which require 

more allele effect parameters, presented lower QTL detection power, lower 

precision and lower QTL accuracy (Fig. 2, Table 1). 
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A second aspect to be considered is the number of offspring per founder. The 

larger the contribution of a founder to the individuals of the MPP, the higher 

the power to detect and estimate the effects of its alleles (Garin et al. 2020). 

For instance, using our NAM design, the alleles present in the central parent 

were present in all crosses. Alleles from peripheral parents not shared with 

the central parent had fewer individuals contributing to their effect estima-

tion, meaning these estimations will be less powerful.

Considering the previous points, we suggest that MPPs should be developed 

with an intermediate diversity and ensuring that those alleles to be studied 

are kept at a relatively high frequency. Following this logic, a few parents from 

the same ancestral group (AG) can be selected (which likely share some al-

leles) and crossed with several other AGs. If all AGs are equally interesting 

for the QTL study, then all AGs should have a similar contribution to the 

offspring (Garin et al. 2020). If an MPP is designed from an already-existing 

set of connected F1 crosses, then each cross should be of similar size and the 

number of crosses per AG should be similar. When more complex pedigrees 

are used, ancestry coefficients can help guide the design of MPP.  

Conclusion
 Genetic diversity is the basis of breeding, and thus, characterizing it becomes 

essential in the development of new varieties. The methods developed within 

the “mpQTL” package add to the growing toolset for polyploid organisms. It is 

now possible to apply multiallelic models in polyploid organisms in the pres-

ence of genetic structure, which we have shown are more powerful, especially 

in the presence of high genetic diversity. Additionally, this study supports an 

alternative approach to the study of genetic diversity. Instead of using a diver-

sity panel to perform a GWAS, a selection of these diverse accessions can be 

used as founders of an MPP. Each biparental cross within the MPP will add 

information to the QTL study, and future crosses can be added to the overall 

MPP analysis. This approach shows much promise in the context of breeding, 

particularly for its ability to connect and share information between crosses 

that in traditional approaches would remain separate. 
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Supplementary information
Genetic model selection and 

phenotype simulation 

Simulating phenotypes is a challenging process as countless genetic situations 

might be generated: one big QTL effect and several small ones, many random-

ly sized QTLs, etc. An educated choice must be taken considering the type of 

research question to be addressed. 

In this study, our objective was to characterize the statistical power of the IBD 

model in multiparental populations of polyploids. Ancestral groups represent 

closed populations from which parents are sampled and were created to sim-

ulate different degrees of genetic similarity between parents. This approach 

emulates common scenarios in plant breeding, where diversity is structured 

in gene pools due to geographic isolation and differential selection pressures 

between pools (e.g. Balfourier et al. 2018). 

Genetic model

To describe our phenotypic simulation methods, let us consider a phenotype 

that is defined by: 

Where yi is the phenotype of individual i, with genetic effect Gi and random 

residual effects Ei, distributed as a normal random variable with mean 0 and 

variance   . For simplicity, we simulated additive QTLs with no inter QTL 

interactions. Following the notation presented in Materials and Methods, the 

     ~ 0,  
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genetic effect can be defined as the sum of the allele effects multiplied by the 

dosage of each allele. Thus, for a phenotype defined by QTLs  l = {1, ... , L}, each 

QTL containing  j = {1, ... , kl} alleles and each allele having an effect αjl (for the 

size of genetic effects, see following section), we can express the value yi as:

As heritability is a relevant parameter in QTL analysis, we might be interested 

in controlling it. Let us define a general heritability (of all QTLs combined) as  

                             ,         where       is the additive variance (in our case also the total 

genetic variance, as all genetic effects are additive). Assuming independence 

between genetic and environmental effects, we can rescale the genetic effects 

to achieve a heritability h2* using the following formula: 

Where     represents the rescaled genetic effects. Additionally, a “polygenic 

term” has been added to the phenotypes, which is intended to increase family 

phenotypic resemblance. The polygenic term was generated by selecting 50 

random positions along the genome, and assigning genetic effects distributed 

normally following                                  where ei corresponds to the genetic 

effect on locus i and 0.1 is the standard deviation of the normal distribution. 

These genetic effects were assigned without taking into account the AG of the 

alleles, thus simulating family-relatedness rather than ancestral relatedness. 

As a result, genetic effects on polygenic loci ranged from -0.37 to 0.32, with an 

average of 0.002.

Choice of genetic effects

The number of genetic effects that must be obtained will depend on the num-

ber of different ancestral alleles present at each position, and thus is both po-

sition and population dependent. In a NAM3 population we have on average 

11 alleles per locus. We simulated genetic effects in such a way that each an-

cestral group contributed functional alleles (alleles with a nonzero effect) for 

three QTLs positions. Once these alleles have been assigned we must assign 

allele effects. To do so, we considered three different scenarios:

 

/

            1   

~  0, 0.1
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1) Allelic effects within ancestral groups are very similar, but very differ-

ent between ancestral groups. Those are genes that are very strongly 

selected (a trait that is essential for survival) but with a different effect 

(a different phenotypic value) being selected in each ancestral group. 

2) Allelic effects with some variation within ancestral groups, but also 

some variation between ancestral groups. We could imagine a gene 

contributing to a non-essential trait of which multiple variants exist 

in each ancestral group, but that have different means for each ances-

tral group.

3) Allelic effects where the ancestral group has no influence on the effect 

distribution. Highly variable genes under diversifying selection would 

behave in such manner.

Once a scenario has been chosen, the allelic effect choice was performed as 

follows:

1) An ancestral mean μAG is chosen randomly from a uniform distribu-

tion. Since the effects will be scaled when the heritability control is 

performed, only the relative size between means is relevant. 

2) Genetic effects are chosen from a normal distribution so that 

α~N(μAG,σ2), where we consider all ancestral groups to have the same 

variance σ2. 

When σ2 is much smaller than the difference between the μAG, we will sim-

ulate scenario 1. On the other extreme we find scenario 3, where the size of 

σ2 is so large that differences between μAG are not meaningful. It is in the 

intermediate point between these two extremes where we can find scenario 

2. Since it was not evident which scenario would be more interesting for our 

study, we simulated high heritability phenotypes with all of them and applied 

the ancestral model with true IBD alleles (Fig. S1)

We observed that in scenario 1, no peaks were found back, while scenario 

3 had the strongest peaks and scenario 2 still detected peaks but of smaller 

size. Scenario 1, where all genetic diversity is between ancestral groups, rath-

er than within ancestral groups has no detection power due to the structure 
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correction we perform. Since we are eliminating structure-associated pheno-

type variation (in scenario 1 this is in fact all variation) the only phenotypic 

variation left is noise, and thus no QTL peaks are detected. While scenario 3 

offers the most power, it seems unlikely that there would be no relationship 

between ancestral group and genetic effect. Thus, we performed simulations 

using scenario 2. In practice, that meant generating phenotypes using three 

random means between 0 and 1 with σ2 = 1. 
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Supplementary Figure 1 (following page): Genetic effect diversity scenarios. 

When there is a high correlation between phenotype and genetic structure, 
that is, when certain effects are present only in subsets of the population, 
the models become insensitive. In green we see a case where all the effect 
variance is present between AGs (Div 1), in purple when variance is divided 
between and within AGs (Div 2) and in ochre, the case when effect variance 
is only present within AGs and all AGs harbour similar effects (Div 3). Top 

left: overlap of three effect models for an ancestral model. The diversity 
scenario 1 is the least powerful since the structure correction is elimination 
all population variation, in scenario 2 there is some detection although 
p-values remain inflated and in scenario 3 there is no inflation and QTL peaks 
are clearly detected. Top right: QQ-plot of the p-values in the top left panel, 
highlighting the p-value inflations seen in scenarios 2 and 3. Bottom left: 

graphical representation of the relative effect sizes for alleles of each AG in 
each of the diversity scenarios. Bottom middle: same Manhattan plot as in top 
left but using a biallelic model. In this case there is no inflation since alleles 
are not nested within certain parts of the population. Bottom right: QQ-plot of 
the bottom middle panel. We see how in this case there is no inflation.
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Abstract
Linkage mapping is an approach to order markers based on recombina-

tion events. Mapping algorithms cannot easily handle genotyping errors, 

which are common in high-throughput genotyping data. To solve this 

issue, strategies have been developed, aimed mostly at identifying and 

eliminating these errors. One such strategy is SMOOTH, an iterative al-

gorithm to detect genotyping errors. Unlike other approaches, SMOOTH 

can also be used to impute the most probable alternative genotypes, but 

its application is limited to diploid species and to markers heterozygous 

in only one of the parents. In this study we adapted SMOOTH to expand 

its use to any marker type and to autopolyploids with the use of identi-

ty-by-descent probabilities, naming the updated algorithm Smooth De-

scent (SD). We applied SD to real and simulated data, showing that in the 

presence of genotyping errors this method produces better genetic maps 

in terms of marker order and map length. SD is particularly useful for 

error rates between 5% and 20% and when error rates are not homogene-

ous among markers or individuals. With a starting error rate of 10%, SD 

reduced it to ~5% in diploids, ~7% in tetraploids and ~8.5% in hexaploids. 

Conversely, the correlation between true and estimated genetic maps 

increased by 0.03 in tetraploids and by 0.2 in hexaploids, while worsen-

ing slightly in diploids (~0.0011). We also show that the combination of 

genotype curation and map re-estimation allowed us to obtain better 

genetic maps while correcting wrong genotypes. We have implemented 

this algorithm in the R package SmoothDescent.

Keywords

Linkage mapping; genotyping error; identity-by-descent; imputation
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Introduction

L
inkage mapping is the process by which a set of markers segregating in 

a population are grouped and ordered. Each marker is placed within a 

linkage group, oftentimes corresponding to a chromosome, and given 

a genetic position within that group. The usefulness of genetic mapping has 

made it a consistent tool during the past century: starting with the study of 

trait co-segregation in Drosophila (Sturtevant 1913), continuing to the proof 

of the linear structure of genes and chromosomes (Benzer 1959), and the first 

QTL analyses (Lander and Botstein 1989). Its relevance has not diminished 

nowadays, as it enables the study of genomic patterns of recombination, 

thereby highlighting the functional and structural properties of a genome. 

Linkage maps are also an essential tool for studies in organisms without a 

reference genome (e.g. (Hu et al. 2021a), in plant and animal QTL studies and 

in the assembly and improvement of genome sequences (Mascher and Stein 

2014; Fierst 2015). 

Genetic mapping algorithms have been greatly influenced by the progress of 

genotyping. As newer technologies provided larger marker sets, novel map-
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ping algorithms had to be developed to handle growing numbers of markers 

(Cheema and Dicks 2009). The most recent genotyping techniques, sequenc-

ing-based methods such as genotyping by sequencing (Elshire et al. 2011) 

or whole genome sequencing (Varshney et al. 2014), are able to identify and 

genotype millions of variants in a single analysis but suffer from a common 

drawback: an increased proportion of genotyping errors. That is particular-

ly problematic for the purpose of genetic mapping, since the ordering algo-

rithms on which many mapping approaches rely are notoriously sensitive 

to errors (Hackett and Broadfoot 2003; van Os et al. 2005; Cartwright et al. 

2007). Since most algorithms depend on pairwise recombination estimates, 

wrong genotypes can give the false estimate that a double recombination has 

occurred, producing sub-optimal map orders and inflated map lengths (i.e. 

>100 cM). The general strategy to deal with this problem has been to detect 

and eliminate highly spurious markers (Lincoln and Lander 1992; van Os et 

al. 2005; Cartwright et al. 2007; Wu et al. 2008; Cheema and Dicks 2009; Liu 

et al. 2014; Rastas et al. 2016), although the errors can also be explicitly mod-

elled, increasing the number of retained markers (Bilton et al. 2018).  

Polyploidy, the presence of more than two chromosome sets in an organism, 

is a relatively common condition in crop species (e.g. rose, potato, strawberry, 

sugarcane, wheat) that poses special challenges in linkage mapping. In au-

topolyploids, which usually originate from genome duplication within a sin-

gle species, polysomic segregation and double reduction require specialized 

methods of linkage estimation (Bourke et al. 2018a). In allopolyploids, aris-

ing from interspecific hybrids, segregation usually follows a diploid pattern, 

but genotyping can be more inaccurate due to the difficulty of distinguish-

ing between homoeologous sequences (Kaur et al. 2012). Although these is-

sues have been addressed with specialized tools and approaches (Glover et al. 

2016; Bourke et al. 2018b), these tools were not designed with consideration of 

the high error proportion in sequencing-based genotype data, and due to the 

unique challenges of polyploids, diploid-oriented tools cannot be used. 

In this study, we aimed to develop a ploidy-aware approach that would help in 

using high-throughput genotyping information for genetic mapping, without 

discarding vast amounts of data due to an increased error rate. Therefore, 
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we adapted SMOOTH (van Os et al. 2005), a simple and efficient method for 

error detection and correction based on the identification of unlikely gen-

otype scores. The original algorithm was only applicable to diploids and to 

markers heterozygous in only one of the parents. By using identity-by-descent 

(IBD) probabilities, we extended this model to any ploidy and marker segrega-

tion type. Additionally, we changed the k-nearest neighbours approach used 

in SMOOTH to an interval-based approach, which improves identification 

and correction of errors in maps with a heterogeneous marker distribution. 

We term this updated method Smooth Descent, the IBD-based descendent 

of SMOOTH. Similar to the original algorithm, Smooth Descent requires a 

preliminary map to be applied, thus it should be thought of as part of an iter-

ative mapping approach, so that with each round of mapping and smoothing 

a better map is obtained. 

This algorithm has been implemented as an R package called ‘SmoothDes-

cent’. The package also generates so-called “graphical genotypes” that can be 

used as a quality assessment tool by researchers, along with visualizations of 

the iterative correction process and other diagnostic plots.

Materials and Methods
Smooth Descent approach

SMOOTH and Smooth Descent are both based on the same principle: com-

paring an observation (error sensitive) and expectation (error tolerant) ma-

trix of genotypes and identifying as errors the inconsistencies between both 

matrices. The difference lies in the way genotypes are expressed in both ap-

proaches: as raw genotype scores in SMOOTH, and as Identity-by-Descent 

(IBD) probabilities in Smooth Descent. In Smooth Descent observed IBD is 

obtained through the naive IBD algorithm described below, while expected 

IBD can be obtained through two methods, weighted average IBD or hidden 

Markov model IBD. The three methods are described below.
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Naive IBD probabilities

The algorithm begins with parental phasing and a preliminary map that indi-

cates the order and distances of markers. A number of methods can be used, 

experimental and computational, to obtain parental phasing (Browning and 

Browning 2011b; He et al. 2018; Al Bkhetan et al. 2021) and a preliminary map 

(Rastas 2017; Bilton et al. 2018). In our software, mapping is performed by pol-

ymapR (Bourke et al. 2018a) and parental phasing is expected to be obtained 

by the researcher.

Phased parental genotypes are expressed using the homologue matrix H, in 

which columns represent parental homologues and rows are markers, ordered 

according to the preliminary map.  The number of columns p will be the sum 

of parental ploidies. Thus, the matrix H is composed of columns H1 to Hp. In 

a diploid cross p = 2 + 2 = 4, there would be 4 columns; in a tetraploid cross, 8 

and in a cross between a diploid and a tetraploid, 6 columns would be speci-

fied. The first set of columns correspond to the homologues of the first parent, 

and the rest to the homologues of the second parent. Each cell of the H matrix 

contains a 0 when that homologue holds the reference allele A at that marker, 

and 1 if it holds the alternative allele B. Because of this, only biallelic markers 

can be used in Smooth Descent. The choice of reference allele will not influ-

ence IBD calculations, and thus it can be done at random. For a diploid cross, 

an example of H would be: 

In a tetraploid:

First, we will calculate the error-sensitive, observed IBD probabilities or naïve 

IBD probabilities. For that we need to obtain all possible homologue com-

binations that can be inherited, which we denote as configurations with the 

symbol ci. This will depend on the number of homologues that parent 1 and 

parent 2 pass on to the offspring, which in turn depends on their ploidy.

1 0 0 00 1 1 00 0 0 1  1
0 1 0 1 0 0 0 01 0 1 1 1 0 0 01 0 0 0 0 0 1 1  2
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In the case of a diploid, parent 1 provides a single homologue, either H1 or H2; 

while parent 2 can provide H3 or H4. Although there can be recombinations 

along the inherited homologues (e.g. switching from H1 to H2), this does not af-

fect our analysis since it is performed marker by marker. Thus, there are four 

configurations, c1={H1,H3}, c2={H1,H4}, c3={H2,H3}, c4={H2,H4}. On the other 

hand, in a tetraploid example, each parent will provide two homologues. Thus, 

a single parent can provide any of six pairs of homologues: (H1,H2), (H1,H3), 

(H1,H4), (H2,H3), (H2,H4) or (H3,H4). Moreover, due to multivalent formation, 

double reduction scenarios are possible, meaning that parent 1 could also con-

tribute (H1,H1), (H2,H2), (H3,H3) or (H4,H4). If both parents are tetraploid, this 

amounts to 100 possible configurations. However, since double reduction is 

relatively rare, and for the sake of simplicity, it has not been considered in 

this implementation of Smooth Descent. Thus, we will only consider the 36 

configurations possible, i.e. we assume that no double recombination occurs. 

The next step is to determine the marker dosage, dj, (of the alternative allele) 

of each configuration. This must be calculated independently for each marker. 

For one marker, matrix H assigns either 0 or 1 to each parental homologue. 

The inherited dosage of that configuration is simply the sum of the associated 

parental homologues. For instance, for the first marker (row) in the diploid 

example, c1 = {H1,H3} thus d1 = 1 + 0 = 1 while c3 = {H2,H3} thus d3 = 0 + 0 

= 0. For the first marker of the tetraploid example, c1 = {H1,H2,H5,H6} thus 

d1 = 0 + 1 + 0 + 0 = 1 etc. 

To obtain IBD probabilities for one individual, one must consider the ob-

served genotype of that individual. Since an individual must hold one of the 

described configurations, only those configurations whose dosage matches 

the observed genotype are possible configurations. For each genotype g, we de-

note the set of possible configurations as Cg, where kg the number of possible 

configurations. When no double reduction is considered, all configurations 

are equally probable, thus the IBD probability of Hi is: 

Where f(cj ,Hi) is an indicator function that takes the value 1 if Hi belongs to 

| ,  3
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cj and 0 otherwise.

For example, let us consider an offspring for the two parents represented in 

the homologue matrix in equation 1 with a genotype of 1, 0, 1. The possible 

inheritance configurations for a diploid parent are c1={H1,H3}, c2={H1,H4}, 

c3={H2,H3}, c4={H2,H4}. For the first marker H1 = 1; H2 = 0; H3 = 0; H4 = 0, 

meaning that each configuration has the following values: c1 = 1, c2 = 1, c3 = 

0 and c4 = 0. Only two configurations, c1 and c2 are possible given that the 

genotype is 1, meaning that kg = 2. Thus: 

A similar process can be followed for the second marker. In that case H1 = 0; 

H2 = 1; H3 = 1; H4 = 0, meaning  c1 = 1, c2 = 0, c3 = 2   and c4 = 1. Only one con-

figuration is possible that the genotype is 0: c2, thus kg = 1. Applying equations 

3 and 4 as done above yields the following results: 

Lastly, the third marker can be computed considering that H1 = 0; H2 = 0; 

H3 = 0 and H4 = 1. Thus,  c1 = 0, c2 = 1, c3 = 0   and c4 = 1. In this case the geno-

type is also 1, meaning that kg = 2, since only c2 and c4 are possible. This yields: 

, :    1    0 4

|1 , ,2 22 1 

|1 , ,2 02 0 

|1 , ,2 12 0.5 

|1 , ,2 12 0.5 

|1 1    |1 0   |1 0    |1 1 

|1 0.5    |1 0.5   |1 0    |1 1 
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If we combine these results, we can obtain the IBD matrix  according to the 

naive model for this individual: 

This algorithm will be applied after each iteration of correction, as described 

below, to obtain matrix I1, and subsequently to obtain matrix I2, etc. 

IBD prediction – weighted average

One of the two methods implemented for IBD prediction in Smooth Descent 

is based on a local weighted average of observed IBD around a marker, in-

spired by SMOOTH’s proposal and similar to the procedure suggested by 

(Wu et al. 2008). This requires two steps: first, defining the set of local mark-

ers and second, estimating the weights to be applied to each marker.

Let’s start with marker mi. The set of local markers, Li, are those markers closer 

than  from mi, where l is a chosen distance threshold (we chose l = 10 cM, but 

a different threshold can be provided). Additionally, low-informative markers 

will be excluded from the local set.  We defined these as markers for which 

the observed IBD probability is within the 0.3 – 0.7 range (see Error Predic-

tion section for more information). Since the predicted IBD is calculated per 

homologue, this means that Li will differ slightly per homologue. 

The weight for the observed IBD probability at marker mj will be proportional 

to the chance that there is no recombination between mi and mj. This no-re-

combination probability can be obtained from the distance estimates: 

Where 1 - ρij is the probability of no recombination and f(dij) is a reversed 

mapping function of the distance between mi and mj . Three functions have 

been implemented: Morgan’s, Haldane’s and Kosambi’s. We can define the 

weights as: 

1 0 0.5 0.51 0 0 10.5 0.5 0 1  

1 1 5  

1 1 6  
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For each individual, the predicted IBD probability for marker mi will then be 

the weighted average of all the markers in Li, for which dij < 1 and the observed 

IBD probability is informative. Applying this along the I0 matrix will allow us 

to calculate the predicted IBD matrix 
^
I0.

IBD prediction – hidden Markov model

The second model for IBD prediction is based on a hidden Markov model 

(HMM), a common approach to obtain error-tolerant IBD estimates (Zheng 

et al. 2016, 2021; Mollinari and Garcia 2019). We have included in Smooth De-

scent the HMM implemented within polyqtlR (Bourke et al. 2021), an expand-

ed version of the TetraOrigin model (Zheng et al. 2016). This HMM uses a 

discrete-time Markov chain to model parental origins of chromosomes along 

the markers of each offspring. To do so, it models homologue pairing in the 

gamete’s meiosis, including recombination probabilities and gamete fusion 

to constitute a zygote, thus closely modelling the biological reality of inher-

itance. By defining a series of likelihoods for the parental haplotypes condi-

tional on the offspring genotypes, it provides a powerful tool for estimating 

IBD probabilities and recombination points.

Error prediction

In SD error estimation is performed by comparing an error-sensitive IBD 

matrix (naive IBD) with an error-tolerant matrix (weighted average IBD, or 

HMM IBD). Therefore, using SD one can obtain error estimates by compar-

ing naïve probabilities to the weighted average probabilities, or to the HMM-

based IBD probabilities.

Each IBD matrix, I0 or 
^
I0 is composed of IBD probabilities for each homologue 

and each marker, which we term i0 and 
^
i0 respectively. The principle of error 

prediction is to identify markers for which their observed and predicted IBD 

probabilities disagree strongly, meaning that the observed genotype clearly 

indicates a homologue inheritance that does not match the predicted IBD. 

More formally, an error can be identified if |i0 - 
^
i0| > δ, where δ is an error 

threshold preferably above 0.7. 

Due to this definition, low-informative markers (with observed probabilities 
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between 0.3 and 0.7) must be excluded from the weighted-average IBD pre-

diction step. The contrast |i0 - 
^
i0| will not reach a high value if either i0 or 

^
i0 

are close to 0.5. The observed IBD i0 will be close to 0.5 if the observed inher-

itance is uncertain, which means we do not have enough information to dis-

cern whether that genotype is an error. The predicted IBD 
^
i0, should be close 

to 0.5 if the set of local markers have both high and low IBD probabilities, in-

dicating that there is a local disagreement on inheritance. If low-informative 

markers are kept, even if many informative markers exist that clearly indicate 

homologue inheritance, the presence of low-informative markers will central-

ize the local weighted average and prevent identification of putative errors. 

Thus, low-informative markers should be removed from IBD prediction. 

Genotype correction and iteration

When a marker is detected as erroneous, a new genotype can be imputed by 

computing the most likely marker genotype according to the predicted IBD. 

The new set of genotypes can be used to calculate an improved map, and a 

corrected IBD matrix, I1. The previous steps can then be repeated to obtain a 

new error matrix E1 and further improved genotypes. Thus, an iterative ap-

proach emerges, where in each iteration the genotypes are further corrected. 

As iterations progress the genetic map is expected to change less, and thus 

we are more certain of the achieved order. In view of caution regarding the 

introduction of artefacts, the error threshold was set at δ = 0.9 during the first 

iteration, and then slowly decreased to 0.7 as iterations progress. 

Best iteration selection

When using Smooth Descent, we must choose the best iteration according to 

some criterion. We offer the  R2 estimate of the second-order polynomial re-

lationship (i.e. d = a + br + cr2 + ε) between inter-marker distance d, and the 

recombination frequency  (not to be confused with distance-based recombi-

nation frequency ρ used for IBD prediction). Unlike ρ, r is calculated during 

the mapping process through a likelihood or Bayesian method and is the ba-

sis of the final map order. In a good map, the relationship between rij and dij 

should be mostly linear, where high recombination frequencies lead to high 

distances. Thus, the iteration with the highest R2 can be considered the best. 
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Simulated data

PedigreeSim (Voorrips and Maliepaard 2012), a program that simulates mei-

otic pairing and recombination for a range of pedigrees and ploidies, was used 

to simulate genotype data. We simulated diploids, tetraploids and hexaploids. 

For each ploidy, ten F1 populations were simulated (30 in total) with 100 in-

dividuals each. Every individual had one single chromosome containing 200 

segregating markers distributed at variable densities along the chromosome. 

Error rates were applied randomly by changing the genotypes of 1%, 5%, 10%, 

20% of the markers. 

Additionally, two special cases were designed to test the effect of variable er-

ror rates across individuals (special case A) and across markers (special case 

B). Special case A contained 80 individuals with an error rate of 0.02 and 20 

individuals with an error rate of 0.3. Special case B had the same error rate 

for all individuals, but variable across markers, ranging in a continuous curve 

along the chromosomes. The curve was defined as a smooth spline passing 

through the error rates 0.02, 0.1, 0.3, 0.02 and 0.1 at approximately 25 cM 

intervals along the chromosome. Thus, high error rate markers were located 

close to one another and at the centre of the chromosome. 

Each genotype dataset was mapped using Smooth Descent with 10 iterations 

and tested using the weighted average or HMM method for computing er-

ror-tolerant IBD probabilities. To evaluate the effectiveness of SD, as well as 

the additional tools tested, three parameters were used: genotyping error, the 

percentage of genotypes different from the true genotypes; position correla-

tion, the correlation between the true map positions and estimated map posi-

tions; and map length, the size of the estimated genetic map.

Real data

Data from strawberry (Fragaria x ananassa) data was obtained from whole 

genome sequencing of 48 individuals from an F1 population. Variant discov-

ery was performed using bcftools and genotyping with the R package “up-
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dog” (Gerard et al. 2018), allowing to genotype ~10M markers. After filtering 

markers based on depth and genotyping quality, ~1.8M markers were kept 

and summarised into ~6500 unique markers across all chromosomes. Due 

to a skim sequencing strategy, many genotyping errors were expected and 

observed, which proved this dataset useful for testing our approach. Since 

strawberry is an allopolyploid with strict chromosomal pairing behaviour, the 

data could be treated as that of a diploid. 

Data from sweet potato (Ipomoea batatas) was taken from (Mollinari et al. 

2020). Sequencing was performed using the polyploidy-optimized method de-

scribed in GBSpoly (Wadl et al. 2018). The obtained read counts were passed 

to SuperMASSA (Serang et al. 2012) and genotypes were filtered for quality. 

For chromosome 15, a final count of 1513 genotypes were obtained for 287 in-

dividuals. These genotypes were used with SD, creating a preliminary map de 

novo and performing genotype correction on the genotypes. A single iteration 

of SD was used since no more improvements could be made subsequently.

Data from diploid potato was taken from (Clot et al. 2022). The dataset con-

sisted of 1536 full-sibs from a cross between two heterozygous clones C 

(USW5337.3) and E (77.2102.37). This population was skim sequenced to an av-

erage coverage of ~1.5x. Parent specific SNPs were called using bcftools v.1.13 

and used to impute haplotypes in bins of 0.1Mbp resulting in 4893 female and 

4735 male segregating markers. Smooth Decent was used based on physical 

position with five rounds at prediction interval of 1 Mbp and two final rounds 

with a prediction intervals of 5 and 10 Mbp respectively.

Software comparison

SD is a unique tool since it is the only available tool that aims at correcting 

polyploid (and diploid) linkage maps while simultaneously correcting gen-

otyping errors. However, other tools exist that can perform one of the two 

functions. We have compared SD to polymapR (Bourke et al. 2018a), a poly-

ploid linkage mapping approach that does not perform genotype correction; 

and to MAPpoly (Mollinari and Garcia 2019), a HMM approach that is able to 

correct genotypes and re-estimate marker positions but that does not re-com-

pute linkage map orders. 
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Ten F1 populations equivalent to those described in the Simulated Data sec-

tion were used. Genotyping errors were added at a rate of 1%, 5%, 10%, 15%, 

20%, 25% and 30%. For each population and error rate four approaches were 

tested: polymapR, MAPpoly, SD using weighted average IBD prediction and 

SD with HMM IBD prediction. For both MAPpoly and SD the same prelim-

inary map was provided. Additionally, the error prior provided to MAPpoly 

was the actual simulated error rate. Lastly, SD results were obtained with 5 

iterations since previous results (see Simulation results) showed that iterating 

more than 5 times did not have a significant impact in the result. 

After running each approach, position correlation (correlation between true 

and estimated map positions), map length and computational run-time were 

obtained. Genotyping error was only calculated for SD and MAPpoly meth-

ods, since polymapR does not perform genotype correction. 

Results
Simulated data

A total of 10 populations per ploidy were tested with 6 different levels of gen-

otyping error and two IBD prediction methods, showing the usefulness of 

Smooth Descent (SD) in correcting genotypes, improving map orders and 

shortening map lengths (fig. 1). It can be observed how the most impactful 

changes occur in the first few iterations: the biggest change in genotype cor-

rectness (fig. 1 top), the largest improvement in genetic map correctness (fig. 1 

middle) and the biggest reduction in map length (fig. 1 bottom). Note that map 

length was particularly short in polyploids (~60 cM in tetraploids and ~45 cM 

in hexaploids), an issue that seems to stem from preliminary map calculation.

Ploidy is an important factor in the behaviour of SD, moving from a genotype 

corrector at lower ploidies to a map corrector in higher ploidies. In diploid 

cases (fig. 1 left column) SD is able to halve genotyping error (e.g. ~5% reduc-

tion in the 0.1 error rate scenario, fig. 1 left top, table 1) and to shorten map 

lengths, especially in the highest error rate cases (e.g. ~30 cM shortening, 
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Figure 1: Results of 10 simulated populations across error rates and ploidies. 

Within each section, each column represents a ploidy and panel the top row 
shows the results for the IBD estimation with the weighted average procedure 
(IBD = weight) and the bottom row for the IBD estimation with the HMM (IBD 
= hmm). A) Genotyping error, the rate of genotypes that are different from 
the true genotypes. B) Position correlation, the correlation between true 
genetic positions and estimated positions in a genetic map. C) Map length, 
the size in cM of the estimated maps. In each plot, points represent individual 
observations and lines are the average. Each colour represents one simulated 
error type, with special A being heterogeneous rate across individuals and 
special B being heterogeneous rate along the map. 
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fig. 1 left bottom, table 1). Nevertheless, in diploids, SD does not significantly 

impact the correlation (there’s a small decrease) between true and estimated 

map positions, since the preliminary map is already highly correlated to the 

true map, although longer. In contrast, in polyploid scenarios reduction of 

genotyping error is smaller (table 1, fig. 1 middle and right columns), but the 

correlation between true and estimated maps improves substantially, espe-

cially in the hexaploid case. Map size reduction is of the same order, about 

30cM. Importantly, for lower error rate cases, there was a slight increase in 

genotyping errors, although this did not affect the correlation with the true 

map or map size. This can be attributed to incorrect imputations by the SD 

algorithm. Wrong imputations occur in all scenarios, but in most cases they 

represent a small fraction of the imputed genotypes, finally yielding an over-

all improved genotype correctness. Only when ploidy is high and genotyping 

error is low the number of correct genotypes decreases due to wrong impu-

tations.

The two IBD prediction methods tested (weighted average and HMM) per-

formed similarly in diploids but had some differences as ploidy increased. 

Genotyping error correction was better for the HMM as ploidy and initial 

error rate increased (table 1, error rate 10%). Consequently, estimated map 

positions and map sizes were also better for the HMM in high ploidy and high 

error rate cases. However, at lower error rates the HMM method produced a 

larger increase in genotyping errors (table 1, error rate 1%). 

Real data

Two real datasets were tested using Smooth Descent, a low-depth dataset of 

garden strawberry (Fragaria × ananassa) (fig.2 A), chromosome 15 of Ipo-

moea batatas (fig. 2 B) and a low-depth dataset of a diploid potato (fig. 2 C). 

Each strawberry chromosome was mapped using a relatively small population 

genotyped at low depth. Smooth Descent corrected up to 13% of genotypes, 

largely correlating with depth so that samples sequenced at lower depth had 

more genotype corrections. About 3.5% of studied chromosomes had a depth 

above 10x and had more than 2% of genotypes corrected, an unexpected result 

probably caused by errors during mapping leading to overcorrection of some 

samples. 

Dissertatie Alejandro v2-4 DEF.indd   80Dissertatie Alejandro v2-4 DEF.indd   80 6-6-2023   19:33:066-6-2023   19:33:06



- 81 -

S M O O T H  D E S C E N T :  A  P L O I D Y - A W A R E  A L G O R I T H M  T O  I M P R O V E 
L I N K A G E  M A P P I N G  I N  T H E  P R E S E N C E  O F  G E N O T Y P I N G  E R R O R S

The dataset of autohexaploid I. batatas was used to test SD in a scenario with 

better genotype accuracy. SD corrected 7.38% of genotypes while maintaining 

an equivalent relationship between the physical and genetic maps (fig. 2B). 

This highlights the ability of SD to improve genotype accuracy even in situa-

tions where there have not been major issues in defining linkage map.

Lastly, a diploid dataset of potato was genotyped using very low sequencing 

coverage of ~1.5x, which suggested a low-quality genotypic dataset (Clot et al. 

Error 

rate (%)
Ploidy IBD method Δ Error (%) Δ Correlation Δ Size (cM)

1 2 hmm -0.27 -0.0008 -3.10
1 2 weight 0.16 -0.0032 -8.27
1 4 hmm 1.58 -0.0034 -6.05
1 4 weight 0.69 -0.0013 -7.94
1 6 hmm 1.76 -0.0031 -7.12
1 6 weight 0.53 0.0014 -4.70

10 2 hmm -4.98 -0.0011 -29.41
10 2 weight -5.15 -0.0020 -35.01
10 4 hmm -2.94 0.0302 -29.00
10 4 weight -2.33 0.0298 -22.44
10 6 hmm -1.51 0.2354 -30.88
10 6 weight -0.95 0.2083 -24.64

Table 1: Average change between preliminary map and last iteration of Smooth 

Descent. 

Two error rate cases (0.01 and 0.1) are shown to illustrate the difference 
between the last iteration of SD and the preliminary error rate (Δ Error), 
correlation between the true map positions and estimated map positions 
(Δ Correlation) and map size (Δ Size). All values were calculated as last 
iteration – preliminary value (positive means increase, negative means 
decrease). Values are shown for all ploidies and IBD estimation methods 
(hmm is hidden Markov model and weight is weighted average method).
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2022). Separate parental maps were generated and each group of markers was 

corrected using SD with physical order as an input, since a high-quality po-

tato genome sequence was available. The results show a drastic improvement 

in the correlation between the physical and genetic maps before and after 

applying Smooth Descent. 

Figure 2: Error detection and marker order in two real datasets after applying 

Smooth Descent. 

A) Relationship between sequencing depth and the rate of markers corrected 
by Smooth Descent for each chromosome of 52 individuals of strawberry 
(Fragaria x ananassa). B) Relationship between physical and genetic positions 
of 1513 markers in chromosome 15 of Ipomoea batatas, before and after 
correcting 7.38% of genotype calls using Smooth Descent. C) Relationship 
between physical and genetic positions of 1716 markers in chromosome 12 
of Solanum tuberosum, before and after using Smooth Descent to correct low 
depth genotypes based on a physical order.
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Software comparison

The performance of Smooth Descent was compared to two similar software 

tools: polymapR (Bourke et al. 2018a) and MAPpoly (Mollinari and Garcia 

2019). The former performs linkage mapping in polyploids without consid-

ering genotyping errors. The latter uses a pre-determined order and a HMM 

method to obtain new map distances and new genotypes. 

In figure 3 we can see the improvements that SD brings. The reconstructed 

maps have better position correlation and shorter lengths with SD, particu-

larly when the error rates increase. Importantly, only SD changes the order as 

genotyping errors are corrected, a feature that is clearly useful especially as 

the error rate and ploidy increases (fig. 3 top left). As expected, higher error 

rates lead to longer maps when using polymapR, but surprisingly, in MAPpoly 

that is the case with both very low or very high error rates. Note that polyploid 

map lengths are much shorter than expected, an issue that is common to pol-

ymapR and SD. In terms of genotyping error correction, MAPpoly is better 

than SD in diploids, but both perform equivalently well in polyploids, except 

in higher error rates where the HMM of SD is somewhat better. Lastly, the 

computation time needed for 5 iterations of SD is around 400s in diploids and 

tetraploids, and around 1000s or 2500s in hexaploids for the weighted average 

or HMM methods. In comparison, polymapR was always faster, which is to 

be expected since SD is iteratively running polymapR. MAPpoly time con-

sumption was much higher as ploidy and error rate increased, with very long 

waiting times in hexaploids. 

Overall, SD is better at recovering the correct order and shortening maps 

regardless of the situation. MAPpoly was better in the diploid scenario in 

terms of genotype correction and time consumption but became equivalent 

or worse than SD in tetraploids and hexaploids. 
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Figure 3: Software comparison with other tools. Average observations of 10 

populations per ploidy with simulated genotyping errors. 

Top left, correlation between true map position and estimated map position. 
Top right, map length in cM. Bottom left, time spent in seconds, note 
logarithmic y axis. Bottom right, genotyping error of corrected genotypes. 
Grey dashed line indicates the starting error rate. Note that polymapR does 
not produce corrected genotypes and thus is not included in this panel. Each 
color and shape corresponds to a different approach: red circle, polymapR, 
green triangle MAPpoly, blue square (sd hmm) SD with HMM approach, purple 
cross (s _weight) SD with weighted average approach.
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Discussion
In this study we have shown that Smooth Descent is able to substantially re-

duce genotyping errors, particularly in diploids, and to greatly improve mark-

er order in polyploid linkage mapping, especially using the HMM approach. 

Moreover, when compared to related tools, SD computes better linkage maps 

with an equivalent or better level of genotype correction. Our findings are 

supported by analysis of real data: there was a clear correlation between se-

quencing depth and estimated genotyping errors in a low-depth strawberry 

dataset, and an accurate genetic map was obtained after correcting around 

7.4% of genotyping errors in hexaploid sweet potato. Thus, we have shown that 

genotype correction is a useful method to improve linkage mapping in the 

presence of genotyping errors.

In contrast, the most popular strategy of error management in current ge-

netic mapping software is marker or genotype removal. In JoinMap this is 

achieved through a Bayesian parameter (Liu et al. 2014), while Lep-Map2 does 

so through a Hidden Markov Model (HMM) (Broman et al. 2003; Rastas et al. 

2016). GUSMap, on the other hand, does not remove errors but compensates 

their impact in map length, also within an HMM model (Bilton et al. 2018). 

Finally, HighMap uses SD’s predecessor SMOOTH (van Os et al. 2005), and 

thus could benefit from the developments presented here (Liu et al. 2014).  

The genotype correction approach presented in this article depends on trans-

mitting confident parental information to uncertain offspring genotypes. 

Essentially, if most local markers indicate that one chromosomal region of 

a parent has been inherited, the offspring genotypes should match parental 

haplotypes. This rationale, and therefore the accuracy of SD, depends on two 

important factors: marker order and parental phasing. 

Marker order

The set of local markers used to identify wrong genotypes is clearly defined 

by marker order. It is not crucial that marker order is exact, but the overall 
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preliminary order should be correlated to the true order. In instances where 

the provided preliminary order is very far off from the true order, SD will 

not be able to impute genotypes correctly and any map improvement will be 

spurious. 

Marker order can be determined by a linkage mapping procedure where a 

measure of linkage and an ordering algorithm is used to obtain a genetic map. 

In our implementation of SD these correspond to polymapR (Bourke et al. 

2018a) and MDSMap (Preedy and Hackett 2016) respectively. Both processes 

are sensitive to genotyping errors, meaning that as errors increase, the ac-

curacy of the estimated linkage map will decrease. Consequently, there is a 

natural upper limit to the level of genotyping error that SD can tolerate: once 

the error rate impedes the calculation of a relatively good preliminary genetic 

map, SD stops being useful. This also means that if different methods were 

designed that could compute marker orders independently of genotyping er-

rors, SD applicability would be expanded.

Linkage mapping is not the only way to determine marker order. As reference 

genomes are built, it is increasingly common to obtain physical positions for 

markers. If such information is available, one could apply SD using physical, 

instead of genetic positions. This opens the possibility of using SD to data-

sets that are too large to be mapped using linkage techniques, but that could 

benefit from an error-cleaning algorithm. Moreover, since the order would 

not need to be re-calculated after genotype correction, only a single itera-

tion of the algorithm would be necessary. Nevertheless, particularly for the 

weighted-average IBD estimation procedure, the usage of physical positions 

rather than genetic positions could be problematic since physical distances 

do not represent the same recombination probabilities along the genome. In 

centromeres a distance of 100,000 bp will include less recombinations than 

100,000 bp in the chromosome arms. This should not be a major problem in 

the application of SD though, since the recombination frequencies are used 

relative to each other within small local intervals. Furthermore, if the loca-

tions of the pericentromeric regions are known (which they often are), then it 

would be possible to generate pseudo-cM positions of markers to circumvent 

this issue. 
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Parental phasing

To calculate identity-by-descent (IBD) probabilities, the backbone of genotype 

error detection and correction in SD, accurate parental phases or parental 

haplotypes are required. In this study we have not aimed at characterizing 

the effects of parental phasing in SD, as there has been much research dedi-

cated to this complex issue (Browning and Browning 2011b; He et al. 2018; Al 

Bkhetan et al. 2021), both in diploids and in polyploids. Currently, there are 

two types of approaches that can be used to establish parental phasing: based 

on marker scores or on sequence reads.

Marker scores have been used within several Hidden Markov Models (HMM) 

to obtain accurate phases. Recent studies in diploid data showed that consen-

sus haplotyping approaches are the most accurate (Al Bkhetan et al. 2021), al-

though individually tools like SHAPEIT4 (Delaneau et al. 2019) and BEAGLE5 

(Browning et al. 2018) have the best performances in terms of time efficiency 

and accuracy. Several HMM have also been developed focused on polyploid 

data which can estimate phases: MAPpoly (Mollinari and Garcia 2019), poly-

Origin (Zheng et al. 2021), and polyqtlR (Bourke et al. 2021). Although many 

of these methods consider genotyping error in their estimations, since phas-

ing depends on marker segregation, an increased genotyping error rate in the 

target population can decrease phasing accuracy. 

Alternatively, reads can be used to perform haplotype assembly: by observing 

multiple polymorphisms in a single read one can infer the most likely haplo-

type phases. Multiple tools have been developed to produce long-range hap-

lotypes using short reads, long reads or a combination of both (Garg 2021). In 

diploids, WhatsHap (Patterson et al. 2015) and HapCut2 (Edge et al. 2017) are 

the most popular methods, being able to produce chromosome-level haplo-

types when combining short and long read data (Garg 2021). In polyploids, the 

assembly problem is more complex, which has required the development of 

specific tools such as HapCompass (Aguiar and Istrail 2012), HapTree (Berger 

et al. 2014) and SDhaP (Das and Vikalo 2015). Although useful, the accuracy 

of these tools is quite variable depending on depth and ploidy (Motazedi et 
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al. 2017), never reaching the performance of their diploid counterparts. More 

recent developments like WhatsHap polyphase (Schrinner et al. 2020), based 

on long-read sequencing or Hap10 (Majidian et al. 2020), oriented to link-read 

data, are promising in closing the gap between diploid and polyploid haplo-

type assembly.

Application of Smooth Descent

The original idea behind the development of SD was to create a tool that 

would be able to utilize low-depth, inaccurate genotypes to obtain accurate 

linkage maps. Intuitively, we expected that confident parental phasing would 

be enough to create such an approach. We have shown that indeed, if parental 

information is accurate and marker order is well established, genotype cor-

rection can be performed, and accurate linkage maps obtained. Thus, we can 

imagine the following genotyping setup for an F1 population. First, the two 

parents are sequenced at high depth using long-read sequencing, in order to 

compute parental haplotype phases. Secondly, the F1 population is genotyped 

using low-depth short reads. If a marker order is not established yet, SD can 

be used iteratively to improve genotypes and obtain an accurate linkage map. 

Otherwise, a single iteration of SD is used to eliminate as many genotyping 

errors as possible. If the marker number is relatively small, the HMM method 

of SD is applied, if the dataset is larger the more efficient, although less accu-

rate, weighted average method is used. Finally, a set of corrected genotypes 

is obtained. In this manner, SD would reduce genotyping costs by allowing a 

lower depth of sequencing in the F1 offspring. 

Overall, SD is a simple and informative software tool. It estimates IBDs, cal-

culates error rates per marker and individual and can impute corrected gen-

otypes. Our implementation, together with MDSmap (Preedy and Hackett 

2016) and polymapR (Bourke et al. 2018a) allows SD to work in multiple ploi-

dies and with large datasets. We also provide many visualization tools which 

will help uncover the hidden information within genotyping data and turn 

Smooth Descent into SMOOTH’s descendent. 
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Abstract
Next generation sequencing technologies are revolutionizing the way in 

which we study genotypes. They provide much larger genotype datasets 

than SNP arrays, without the problem of ascertainment bias. Howev-

er, they also bring with them a higher error rate. Data volume and this 

increased error rate are both big problems for linkage mapping, a tech-

nique that remains a crucial source of information of marker location in 

the genome. Especially in complex crops like allopolyploid strawberry, 

containing multiple highly homologous subgenomes, it is possible that 

sequencing cannot provide data of high enough quality (at a reasonable 

cost) to produce linkage maps as good as those obtained with the more 

accurate SNP array genotypes. In this study we aimed to produce such 

linkage maps, starting from whole genome skim resequencing data of 48 

strawberry (Fragaria x ananassa) individuals of the Holiday x Korona 

cross. By the combination of binning, iterative error correction and the 

physical positions of markers, we were able to produce linkage maps of 27 

of the 28 chromosomes of comparable quality to a linkage map obtained 

with SNP array technology. We placed 1.85M markers in 2434 unique 

positions and detected a small portion of the genome that is likely to 

have been wrongly phased during the subgenome assembly. With this, it 

is clear that even in such a complex situation as an allo-octoploid crop, 

skim sequencing can be used to produce good quality linkage maps, pro-

vided that adequate analytical techniques are applied.

Keywords

strawberry, whole-genome sequencing, high-density linkage map
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Introduction

I
n the year 2000, Genbank stored 11.1 Gbp of sequences; by 2010 that 

number had increased tenfold (112.1 Gbp) and it rose to another order of 

magnitude by 2021 (1053.3 Gbp) (NCBI 2022). These numbers reflect an 

undeniable rise in the popularity and usage of sequencing data: every day we 

sequence more biological samples. With this transition, we move away from 

SNP arrays and the well-known ascertainment bias they introduce (Lachance 

and Tishkoff 2013; Geibel et al. 2021). Combined with lower prices, longer 

reads and increased accuracy, sequencing technologies are certain to become 

-if they are not already- the backbone of modern genetic research. As this 

technological shift unfolds, many analytical techniques originally designed 

for marker-based data must be revisited and adapted to handle the new prop-

erties of sequence information: very large datasets with potentially higher er-

ror rates.

Linkage mapping, the grouping and ordering of markers based on recombi-

nation frequencies, has allowed the study of chromosomal structure since its 

first application in Drosophila (Sturtevant 1913). However, Sturtevant only 

had to order 6 polymorphic markers, while modern sequencing-based gen-

otyping studies routinely discover hundreds of thousands or millions of pol-

ymorphisms. With more than a dozen markers it is impossible to compare 
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all possible marker orders to find the optimal solution, since the number of 

possible orders is prohibitively large (1.21x1018 for 20 markers). Instead, several 

algorithms have been proposed to find approximate solutions for hundreds 

or a few thousand markers (Cheema and Dicks 2009; Liu et al. 2014; Rastas 

et al. 2016; Preedy and Hackett 2016). When marker numbers rise beyond the 

thousands, and with limited sized populations, many markers segregate iden-

tically and become redundant, a property that can be exploited to reduce the 

effective number of markers used during mapping (Rastas 2017). Thus, even 

when millions of markers are genotyped, only a small subset of these need to 

be directly considered for mapping.

Thus far, genotyping errors are more common in sequencing data than in oth-

er genotyping technologies, an issue with well-described impacts in linkage 

mapping (Hackett and Broadfoot 2003; van Os et al. 2005; Cartwright et al. 

2007). This problem is exacerbated when sequencing with low depth, or skim 

sequencing, the main factor influencing sequence-based genotyping accura-

cy (Chan et al. 2016; Gerard et al. 2018). In linkage mapping studies, marker 

removal is the most usual way to deal with erroneous genotypes (Lincoln and 

Lander 1992; van Os et al. 2005; Cartwright et al. 2007; Wu et al. 2008; Chee-

ma and Dicks 2009; Liu et al. 2014; Rastas et al. 2016). It would then seem 

that the advantage of genotyping hundreds of thousands of markers is then 

countered by the need to remove many of them due to genotyping errors. An 

alternative is to use imputation or genotype correction to improve sequenc-

ing-based genotypes (Chan et al. 2016; Torkamaneh et al. 2018; Zheng et al. 

2018; Malmberg et al. 2018; Thérèse Navarro et al. 2022). However, it remains 

unclear whether such an approach would provide the same level of linkage 

mapping accuracy that can be achieved with SNP arrays.

Strawberry has been a challenging crop to work with, particularly regarding 

linkage mapping. Due to its allo-octoploidy, it is difficult to distinguish the 

subgenome origin of markers based on sequence, and segregation information 

is also difficult to interpret (Edger et al. 2018). In spite of this, several link-

age maps have been produced over the years (Rousseau-Gueutin et al. 2009; 

Spigler et al. 2010; van Dijk et al. 2014; Tennessen et al. 2014; Sargent et al. 

2015; Hardigan et al. 2020), with varying nomenclature. Recently, a subge-
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nome-resolved genome assembly has been published (Edger et al. 2019). With 

it, it becomes possible to use read mapping as a means to discover markers in 

strawberry. However, due to high sequence similarity between subgenomes, 

it is unclear whether this approach will yield markers useful for linkage map-

ping. 

In this study we used whole genome skim resequencing of an F1 population 

of strawberry to produce linkage maps. With this setup we aimed to answer a 

multifaceted question: is it possible to use whole genome skim resequencing 

data (instead of SNP array data) to generate linkage maps in an allopolyploid 

crop? The issues of data-volume, sequencing errors and mis-mappings due to 

subgenome homology will need to be overcome. Thus, our analysis provides 

both a protocol to use this type of data as well as an evaluation of the quality 

that can be expected. Finally, we contribute to the growing number of analyt-

ical approaches to use sequencing data in genetic studies.

Materials and methods
Marker discovery

Strawberry varieties Holiday and Korona were crossed and 46 individuals of 

their offspring, as well as the parents, were whole genome resequenced using 

Illumina 150 paired-end technology. Sequencing depth (reads bp per haplo-

type bp) was variable across samples, between 25x and 5x. Variant discovery 

was performed de novo by aligning reads against the Camarosa v1.01.a refer-

ence genome (Edger et al. 2019) using the Burrows-Wheeler Aligner (Li and 

Durbin 2009). Using the program bcftools (Li 2011) 10.24M polymorphic sites 

were detected. Markers with average read counts below 20 reads per individ-

ual or not segregating in the progeny were discarded, resulting in 4.04M kept 

markers. Allelic read counts were extracted and the R package updog was 

used to call genotypes (Gerard et al. 2018), which estimated diploid genotype 

scores as well as miss-genotyping probability and other parameters. 
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Binning and linkage group assignment

Markers were grouped in bins of co-segregating markers, that is, markers with 

identical genotypes across individuals. Note the difference with other binning 

approaches where markers are grouped by estimating recombination points 

(Rastas 2017). The number of markers within a bin was used as a criterion to 

filter erroneous genotypes. We filtered those with <40 markers. This value 

was obtained empirically during our research but can be derived by calculat-

ing the number of expected recombinations and segregation types per chro-

mosome. 

For example, in chromosome 1A we initially detected ~127K markers. Assum-

ing that only 5% of markers have some genotyping error, we expect 120.65K 

to be correctly genotyped. We expect between 1 and 3 recombinations per 

individual in each chromosome pair, with 46 individuals that is equivalent 

to 46 to 138 recombination bins. Since strawberry is a heterozygous diploid, 

each recombination bin can contain three different segregation marker types. 

Thus, 120.65/46/3 = 0.87K markers per bin if there is one recombination per 

individual, 0.29K markers per bin if there are three recombinations. Thus, we 

could expect between 870 and 290 markers per bin to contain only correctly 

typed markers. This can be generalized into the following formula:

Where m is the number of markers, ε is the expected error rate, n is the num-

ber of individuals and r the number of recombinations per individual, and 

lastly s is the number of segregation marker types, which will depend on 

ploidy and heterozygosity. Due to a large variation in the number of markers 

per chromosome, in our case the bin sizes ranged between 130 for chromo-

some 7C and 1601 for chromosome 6C. This calculation assumes that markers 

and recombination points are homogeneously distributed across the chromo-

somes, which is far from true. This may explain why despite choosing a much 

lower value than our lower margin of 130 we still obtained good results.

 1
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Bins were assigned to chromosomes by analysing the physical position of 

markers within each bin. A binomial test was used to assign bins to a chromo-

some if at least 70% of the markers within a bin belonged to the same chromo-

some in the physical sequence. Bins that failed to be assigned were discarded. 

The true region of a bin was computed using the range of marker positions 

within the assigned chromosome, thus defining the true bin region that was 

used further in the study. 

Conflict marker analysis and blast test

After assignment to a chromosome, some markers showed a conflict between 

physical and genetic information: while the bin had been assigned to one 

chromosome, some of its component markers originated from other genome 

sequences. These were named conflict markers. To test the origin of these con-

flict markers we proceeded to analyse the homology between the sequences 

around each conflict marker and the overall bin sequence for their respective 

bins. 

For each conflict marker, a sequence of 500bp was extracted (250bp at each 

side of the polymorphism). Each sequence was then blasted against the whole 

Camarosa genome using default parameter settings. If a hit of any quality was 

found within the range of the true bin region plus an additional 100kb on each 

side, the conflict was considered as “blast positive”, meaning the sequence of 

the conflict marker shares homology with some portion of the corresponding 

bin sequence. 

Linkage mapping and error detection

Bins were mapped using a two-step approach. First, preliminary maps were 

built using polymapR (Bourke et al. 2018a). Those maps were used to obtain 

parental marker phases by analysing the segregation of simplex markers for 

each parent, as described in the vignette of polymapR. The preliminary maps 

and parental phases obtained were then used to apply Smooth Descent, a tool 

that is able to correct the order and estimate genotyping errors based on iden-

tity-by-descent probabilities (Thérèse Navarro et al. 2022). 
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 All bins assigned to the same chromosome were mapped as one linkage 

group. Smooth Descent was iterated 10 times, and the iteration with the high-

est R2 between pairwise recombination frequencies and pairwise marker dis-

tances was taken as the best iteration. Through this iterative process a set of 

corrected genotypes was obtained. Comparing the initial genotypes and the 

corrected genotypes allowed us to estimate the number of genotyping errors 

per chromosome and individual. 

A new set of bins was obtained by joining those bins that, after genotype cor-

rection, contained the same genotypes across all individuals (i.e. were iden-

tical). These new set of bins was mapped to obtain the final genetic maps. 

The physical range of each bin was computed using the 5% and 95% position 

quantiles to minimise the influence of potential outliers. The final bin and 

map composition is shown in supplementary data 1 and 2.

SNP array map

The obtained map was compared with a genetic map developed in the same 

population using SNP array-derived genotypes of 50 individuals, the 46 indi-

viduals used for skim-sequencing plus an additional four individuals. Since 

an unambiguous relationship between the SNPs of the SNP array dataset and 

the genotypes used in this study could not be established, comparison be-

tween the two maps was based on genotype correlations between markers. 

Two markers were considered equivalent, and thus amenable to be placed in 

the same genetic location if the correlation between their genotypes exceeded 

95%. 

Results
Marker filtering and bin analysis

The polymorphism discovery pipeline found 10.24M markers in the Holiday 

x Korona population when compared to the Camarosa reference genome. 

Several criteria were used to filter low-quality markers: read count below an 

average of 20 per individual, mis-genotyping probability above 5% and not 
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segregating in offspring. After this process, 4.05M markers were retained. 

Co-segregation bins were subsequently computed, which resulted in 1.06M 

bins of uniquely segregating markers.

Bin size, the number of markers within each bin, was greatly variable. The 

number of markers in a bin can be used as an indicator of quality since er-

ror-containing bins are expected to be smaller. We obtained a lower threshold 

by roughly estimating the number of expected markers of the same segrega-

tion within a bin delimited by recombination events. We chose to consider 

Figure 1: Overview of co-segregating marker bins. 

A) Number of bins found within each linkage group. A very small number 
of bins contain ≥40 markers (green portion of each bar is barely visible). B) 
Number of markers found in bins of <40 markers (blue) or ≥40 markers (green) 
per linkage group. About 50% of markers within each linkage group are found 
in bins with ≥40 markers. C) Number of markers that can be clearly assigned 
to a subgenome split according to bin size. D) Example of a single bin of co-
segregating markers, physical positions of contained markers. The number 
above each sequence label indicates the number of markers in that sequence.
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confident bins those with 40 markers or more. A large proportion of bins 

contained less than 40 markers (fig. 1A). Of the 4.05M markers, about half 

was found in the 0.76% bins with more than 40 markers (fig. 1B). This puts 

into question the reliability of the rest of the markers, since we expect a high 

number of identically segregating markers due to an oversaturation of pol-

ymorphisms, it is unlikely that any marker has less than 40 replicates (see 

Methods for details). 

Once markers are grouped into bins of co-segregation, we assume that each 

bin corresponds to a unique position in the genome. Each marker within a 

bin had a position in the F. x ananassa genome “Camarosa”, and as such we 

expected co-segregating markers to all originate from a single region of a 

Figure 2: Distribution of conflict markers on linkage group 2. 

Markers with homology to the true bin region are shown as bl+, and markers 
without homology are shown as bl-. A) Overall distribution of conflict markers 
across all subgenomes of linkage group 2. B) Distribution of conflict markers 
identified in bins located in a specific area of chromosome 2A.
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single sequence. However, in many bins that was not the case, with markers 

assigned to different chromosomes (often different subgenomes of the same 

linkage group) being binned together (fig. 1D). A proportion test was used to 

assess whether a bin was formed of more than 70% of markers belonging to a 

single chromosome. The result showed that most bins containing ≥40 mark-

ers could be assigned to a sequence, while most bins <40 markers could not 

be confidently assigned, i.e. less than 70% of markers belonged to the same 

chromosome (fig. 1C). The following analyses were performed using 6567 bins 

(representing 2.01M markers) which contained ≥40 markers and could be un-

equivocally assigned to one chromosome. 

Origin of conflict markers

The retained bins were composed of a large proportion of markers from one 

sequence but with a few markers (average of 5%) originating from the ho-

moeologous chromosomes (fig. 1D). We hypothesized that those out-of-place 

markers, the conflict markers, corresponded to wrongly mapped reads due to 

a high sequence similarity between the true bin region (where most markers 

within a bin are found) and the sequence around the conflict marker on an-

other subgenome. A blast search was performed, which showed that across 

the whole genome, only 50.11% of conflict markers shared sequence similarity 

with the true bin region (blast positive, bl+), indicating that at least half of the 

cases could not be explained due to read mapping to homologous regions of 

a different subgenome. There was no particular distribution of blast positive 

or blast negative (bl-) markers across the genome (fig. 2A) nor within spe-

cific bins (fig. 2B). This suggests that the conflict markers cannot be easily 

attributed to mis-mapping. Nevertheless, we removed the conflict markers 

from further analysis, since whatever the cause, their physical positions in the 

genome sequence were not reliable. In total, 1.85M markers remained, distrib-

uted across 6567 bins of co-segregating markers. 

Error correction

On average, 1.8% of all genotype calls were identified as genotyping errors 

across the whole dataset. However, error rates were highly variable among 
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individuals depending on their sequencing depth (fig. 3). Over all chromo-

somes, individuals with an average sequencing depth below 10x had elevated 

error percentages. There are also some chromosomes that, particularly for a 

few individuals, seem to have unusually large percentages of error, e.g. ~25% 

in 3D or~20% in 1D. It seems likely that these errors are due the relatively 

small mapping population and regions of low marker density that cannot be 

adequately mapped. Nevertheless, the overall relationship between genotyp-

ing errors and depth is, as expected, abundantly clear. It is noteworthy that 

the markers were already filtered, and thus the observed genotyping error 

Figure 3: Relationship between sequencing depth and error rate per 

chromosome and individual. 

A) Overall depth to error distribution. B) Depth to error per individual, plotted 
separately for each mapped chromosome. Note the absence of 7C which could 
not be mapped. The lack of errors of chromosome 7A is due to the choice 
of no correction as the best possible map according to the Smooth Descent 
algorithm.
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rates do not reflect the true number of genotyping errors produced, but rather 

those errors that were kept after filtering based on marker quality parameters.

Linkage maps

Using Smooth Descent, errors were detected and corrected, which allowed to 

re-compute the number of bins. Finally, the 1.85M markers were grouped into 

2434 bins and mapped into 27 chromosomes (7C could not be mapped due to 

a lack of polymorphisms in one parent). The obtained map (sequencing map) 

was compared with the Camarosa genome assembly (physical map) and with 

a linkage map of the same population produced using SNP array genotypes 

(array map). The collinearity between the sequencing map with the array and 

physical maps was on average 0.76 and 0.71 respectively (fig. S1). The physical 

sequence and array maps show the largest discordance, with an average col-

linearity of 0.64. The most common errors in the sequencing-based map are 

large gaps due to low marker density (e.g fig. 4 chromosomes 4C, 5B, 7A), and 

small inversions of a few markers (e.g. fig. 4, 0-20cM of 3A, 15-30cM of 6A). 

Nevertheless, it seems that even though there was an abundance of genotyp-

ing errors the produced genetic maps have a similar quality to the array-based 

genetic map.  

The comparison between sequences helps us pinpoint a few chromosomes 

that were likely wrongly assembled in the reference genome: the sequencing 

and array maps are largely collinear, while the physical sequence is not (fig. 

S1). Such is the case for chromosomes 2C, 2D and 6D. This might have to do 

with the reference variety used to assemble the genome, Camarosa, since it 

is known that it harbours a translocation on chromosome 6D (this has been 

fixed in the following genome version, Royal Royce). For 2D a similar situation 

might be the case. However, the linkage maps comparisons show that for 2C, 

even if the array and sequencing maps are mostly collinear, there is still quite 

some disagreement between the two maps. The difficulty on mapping this 

chromosome might be due to a lack of markers in a relatively large region, 

resulting in a gap in the sequencing-based linkage map (fig. 4). 
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Discussion
We were able to produce linkage maps using low-depth whole genome rese-

quencing data, with a quality comparable to linkage maps produced using 

SNP array technology. The crucial difference, however, is the final number of 

mapped markers: 13384 in the SNP array map (in 1587 bins) and 1.85M in the 

sequencing-based map (in 2434 bins). With this there is a clear confirmation 

that, even when using low-depth data, sequencing can substitute SNP arrays 

in the linkage mapping arena. However, there are a couple of caveats to be 

considered when using sequencing data.

Imputation and genotyping errors

A main driver of cost in sequencing-based genotyping of a population is depth. 

Consequently, low-depth approaches, also known as skim sequencing, have 

been proposed and applied in a variety of settings  (Malmberg et al. 2018; Ku-

mar et al. 2021; Adhikari et al. 2022). A main consequence of skim sequencing 

is the large proportion of missing or incorrect genotypes obtained, due to low 

coverage and incomplete allele sampling. To address this issue, imputation 

has been shown to be highly effective, particularly in populations with low 

genetic diversity such as biparental populations (Xu and Bai 2015; Chan et al. 

2016; Fuentes-Pardo and Ruzzante 2017; Torkamaneh et al. 2018; Zheng et al. 

2018; Malmberg et al. 2018; Thérèse Navarro et al. 2022). What remains un-

clear is the level at which a sample can be considered “skim sequenced”. While 

some researchers claim between 1x and 2x to be sufficient for diploids, others 

Figure 4: Comparison between linkage maps. 

For each chromosome, three maps and their relationships are shown. The 
left band represents the SNP array-based map, the middle band is the 
sequencing-based map produced in this study (note that each marker 
represents a bin of co-segregating markers), the rightmost band indicates 
the length of each chromosome sequence in the Camarosa genome. The 
relationship between sequencing map (gbs) and chromosome sequence (seq) 
shows the range of physical positions within a bin of co-segregating markers.
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point towards a per-sample average of 5x (Malmberg et al. 2018; Adhikari et 

al. 2022). The true required depth is possibly related to genetic diversity of the 

population in question: higher heterozygosity and rare variants decrease the 

accuracy of imputation (Malmberg et al. 2018). Naturally, baseline sequencing 

levels should also be increased as the ploidy of the organism increases.

Notwithstanding the usefulness of imputing missing genotypes, erroneous 

calls are also a crucial aspect of low-depth sequencing data. Most imputation 

tools reach accuracies above 80% under different circumstances, but they only 

take into account imputation of missing values, not correcting wrongly scored 

genotypes (Malmberg et al. 2018). A genotyping pipeline that hinges on skim 

sequencing should also consider methods to detect and correct erroneous 

calls. Detection can be based on genotyping quality scores provided by the 

genotype calling software. Alternatively, a specific algorithm to detect and 

correct erroneous genotypes can be applied. Some such methods have already 

been developed and show significant promise (Money et al. 2015; Zheng et al. 

2018; Browning et al. 2018; Thérèse Navarro et al. 2022). 

Linkage mapping with millions of points

Data volume is the second aspect that critically defines sequencing data and 

genotypes derived from it. Where SNP array datasets often produce some-

where between 10k and 100k SNPs usable for downstream analysis, sequenc-

ing-based datasets produce millions of points. Importantly, this allows to 

filter the data stringently, only keeping the most reliable genotypes. In our 

study, this meant moving from the initial 10.24M SNPs discovered to the final 

1.85M SNPs in the linkage map. On the other hand, such staggering numbers 

of data-points easily overwhelm genetic analytical methods. The case is quite 

clear in linkage mapping, where no more than a few thousand markers can 

be ordered in a reasonable amount of time using modern algorithms. To deal 

with this limitation, we reduced the dataset using the co-segregation binning 

approach described, similar to that proposed by (Rastas 2017). Other method-

ologies of which the time cost scales based on the number of markers suffer 

from a similar problem, e.g. GWAS analyses. The latest developments in the 

field deal not as much with increased power as they do with increased perfor-
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mance in terms of time and memory efficiency (Liu et al. 2016; Huang et al. 

2019). Thus, the surprisingly voluminous flow of data that sequencing provides 

could as well be a wellspring of knowledge as a flood of noisy information.

A reference genome can greatly influence 

the outcome

In most cases, sequencing data are analysed by comparing them to a refer-

ence genome. What such a reference contains can vary greatly: a genome se-

quence of a single individual, a linear consensus of multiple genomes or even 

a pan-genomic set of sequences (Hurgobin and Edwards 2017; Marschall et al. 

2018; Tao et al. 2019). Alternatively, reference-free marker discovery methods 

can be used to avoid reference bias (Leggett and MacLean 2014), although 

these methods usually do not work well in allopolyploids due to high se-

quence similarity between subgenomes (Edger et al. 2018). In an organism 

like strawberry, where four subgenomes inhabit the nucleus, the construction 

of a subgenome-phased reference genome (in which the four subgenomes have 

already been separated) seems almost indispensable for sequencing-based ge-

notyping. In that regard, there has been some concern that high sequence 

similarity would prevent accurate read mapping in allopolyploids. In straw-

berry, this does not seem to be a problem: only a small fraction of markers 

(~5%) were putatively the result of mis-mapping, and of those, only half could 

be explained by mis-mapping. We think it is more likely that such conflict 

markers were the result of incorrect subgenome phasing of small sequences 

during genome assembly. Some of these errors, such as the large translocation 

in 6D, have been addressed in the Royal Royce genome sequence (Hardigan 

et al. 2021a). However, it seems evident that further improvements on the ge-

nome assembly of F. x ananassa can still be achieved, especially now that a 

solid subgenome-phased blueprint is available.

Computational resources become necessary

Finally, although skim sequencing generates large datasets for a small price 

per sample, it requires a substantial computational investment. While SNP 

arrays produce genotype data that is relatively easy to process, skim sequenc-
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ing requires imputation, data reduction and an adequate reference (or refer-

ence-free method) in order to produce genotype information of equivalent 

quality. Thus, one cost is substituted by another. Whether this trade-off is 

worth it will likely depend on the research aim, the size and genetic diversity 

of the population and the computational resources already available in each 

case. 

What is undeniable is that the shift towards sequencing technologies is un-

avoidable and using them to their full potential will require more computa-

tional resources, techniques and expertise than ever before.
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Supplementary Figures

Supplementary figure 1: Boxplot of order correlations between array (array), 

sequencing-based map (gbs) of the Holiday x Korona population and the F. x 

ananasa “Camarosa” genome sequence (seq). 

Chromosomes with a correlation below 0.5 were labelled to highlight the 
maps showing low collinearity. 
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Abstract
Garden strawberries, Fragaria x ananasa, are loved for their unique aro-

ma and taste. Their fragrance can be attributed to one of the most com-

plex repertoires of volatile organic compounds (VOC), comprising esters, 

terpenoids, aldehydes, alcohols, furans, lactones, benzenoids and sulfu-

ric compounds. While the aroma profile has been the object of study 

for a long time, the genetic control of this complex trait is still mostly 

unknown. In this study, we analysed a diversity panel and a biparental 

population of strawberries using gas-chromatography mass-spectrome-

try. We detected 125 compounds of which 96 were identified, comprised 

mostly of esters and terpenoids. To simplify these complex datasets, 

we applied multivariate transformations to obtain multivariate pheno-

types that summarise phenotypic information of groups of correlated 

metabolites. Combined with a QTL analysis, this approach allowed us 

to identify major QTLs regulating terpenoid production. We were not 

able, however, to detect general QTLs for ester compounds, suggesting 

that this compound class is not as co-regulated as terpenoids. Finally, we 

compared our results with those published in four previous studies, con-

firming some of our results but with little overall overlap. Although the 

populations of these studies are quite different, the lack of overlapping 

QTL may suggest large non-genetic effects on VOC production that need 

to be considered to obtain more reproducible results.
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aroma; metabolomics; multivariate QTL; strawberry; terpenoid
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Introduction

V
olatile organic compounds (VOC) are a large group of molecules pro-

duced by the secondary metabolism of plants. Due to their variability 

and abundance, they are used by all kinds of organisms to detect and 

identify plants. For instance, pollinators use them to find flowers (Schiestl and 

Johnson 2013; Raguso 2016). They also mediate attraction of herbivores and 

their predators (de Boer et al. 2004; Bruce et al. 2005; Clavijo McCormick et 

al. 2012) and they are an essential tool in competition among plants (Effah et 

al. 2019). In general, VOCs are detected through the sense of taste and smell, 

thus they also play a major role in determining consumer liking of plant parts, 

or any other food (Fan et al., 2021; Pavan et al., 2021; Torri et al., 2021). 

Consumer preference studies have shown multiple times that aroma, togeth-

er with sweetness, are the most important indicators for overall liking in 

strawberry (Schwieterman et al. 2014; Fan et al. 2021). The importance of its 

aroma stands out even in its genus name, Fragaria, from the Latin fragans, 

meaning “fragrant”. Indeed, the chemical composition of strawberry aroma is 

surprisingly complex: over almost three decades of study, 978 different VOC 

compounds have been identified in Fragaria fruits (both wild and cultivated), 
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with around 300 being reported more than once (Ulrich et al. 2018). They can 

be summarized into a few chemical families: terpenoids, esters, aldehydes, 

lactones, furans, alcohols and ketones. The wide variety of compounds re-

ported highlights a complex aroma metabolism that has proven a significant 

challenge for biologists trying to elucidate its genetic control. Aroma volatiles 

are often produced by complex biosynthetic pathways – chains of reactions 

mediated by multiple enzymes and controlled by regulators, each susceptible 

to genetic variability, resulting in quantitative variation of VOCs. Moreover, 

fruit physiology (e.g. the ripening process) and environmental factors also af-

fect VOC production. It is probably due to this combination of effects that 

only four volatile-related enzymes have been functionally validated; FaNES 

(Aharoni et al. 2004), FaOMT (Zorrilla-Fontanesi et al. 2012), FaFAD (Zor-

rilla-Fontanesi et al. 2012; Oh et al. 2021) and FaSAAT (Aharoni et al. 2004; 

Leonardou et al. 2021). While more is being discovered about the fruit phys-

iology of strawberry and its regulators, what is abundantly clear is that the 

ripening process is heavily influenced by environmental factors (Leonardou 

et al. 2021).

Due to the high chemical complexity of strawberry aroma, a comprehensive 

analytical approach such as metabolomics is a useful tool to understand its 

biochemistry. Analysis of metabolomic datasets, however, is far from simple. 

They are typically highly collinear, due to the underlying metabolic networks 

controlling compound abundance, resulting in many metabolites displaying 

similar patterns of variation across samples. For this reason, multivariate sta-

tistical methods are a powerful tool to study and characterize metabolomic 

datasets, shedding light on the relationships between metabolites (Hendriks 

et al. 2011; Worley and Powers 2013; Saccenti et al. 2014; Debik et al. 2022). 

Consequently, when performing QTL studies using metabolomic data, mul-

tivariate QTL models are more powerful than univariate ones (Galesloot et 

al. 2014). The simplest approach to a multivariate QTL study is to perform a 

multivariate transformation of the original traits into variables representing 

distinct features of the whole dataset. These multivariate phenotypes can then 

be used in a univariate QTL analysis without the need of using cumbersome 

multivariate regression models. In a metabolomic context, this translates to 

using the correlation between metabolites to obtain a multivariate pheno-
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type representing a subset of correlated metabolites. Thus, the obtained QTL 

would identify loci controlling groups of metabolites, rather than individual 

ones. Moreover, we expect that by capturing shared information across varia-

bles we can diminish the influence of noise present in each individual metab-

olite measurement thus enhancing the signal to noise ratio, yielding clearer 

QTL profiles. Particularly in strawberry VOC studies, where so many metab-

olites are identified with relatively low repeatability across studies (Ulrich and 

Olbricht 2016), this technique could have the potential to simplify the inter-

pretation of results and help clarify on an otherwise obscure topic.

In this study we present the volatile repertoire of 345 strawberry individu-

als included in a biparental cross and a diverse population. The two datasets 

provide an interesting look into metabolic diversity of strawberries, high-

lighting the variability within a single family versus the variability of a wider 

germplasm. We applied both network-based correlation clusters and factor 

analysis (Peeters et al. 2019) in order to understand the relationship between 

compounds and to compute multivariate phenotypes. Two association mod-

els implemented in the software GAPIT3 (Wang and Zhang 2021), namely 

the mixed linear model (MLM) and Blink (Bayesian-information and Link-

age-disequilibrium Iteratively Nested Keyway) (Huang et al. 2019) were used 

for QTL detection. Additionally, we collected QTL markers previously re-

ported (Zorrilla-Fontanesi et al. 2012; Barbey et al. 2021; Rey-Serra et al. 2022; 

Fan et al. 2022) and imputed their locations in the novel Royal Royce genome 

assembly (Hardigan et al. 2021a). To our knowledge, this represents the most 

comprehensive list of volatile QTLs in strawberry to date. 

Materials & Methods
Plant materials

Two strawberry populations were used in this study, both genotyped using the 

iStraw90K array (Bassil et al. 2015). The first was a biparental population be-

tween two Junebearing varieties Rumba and Malwina, consisting of 259 sam-

ples representing 147 unique genotypes. Plants were grown in Stevensbeek, 
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The Netherlands in outdoor tabletops. Fruits were collected during a 2-week 

period in June of 2013 with most genotypes being sampled at least twice. The 

second dataset consisted of 486 samples representing 198 genotypes from a 

diversity panel, varying from experimental clones to released cultivars, in-

cluding everbearers, June-bearers and Mediterranean varieties. These were 

grown in the autumn in a greenhouse in Stevensbeek, the Netherlands, and 

harvested during the first week of August 2019. Core samples from fruits of 

both trials were obtained by diagonal sampling using a fruit corer. About 20g 

of fruit cores were obtained per genotype, frozen using liquid nitrogen and 

ground to a fine powder. The samples were then stored at -80ºC before analy-

sis, for a few days up to two months, depending on the order of sample analy-

sis. Within each trial, a series of quality control (QC) mixtures were obtained 

by mixing core samples from all varieties.

Volatile extraction, identification 

and quantification

Before volatile extraction, 1g of frozen fruit powder was incubated in a wa-

ter bath at 30ºC for 10 minutes. Then, 1 mL EDTA-NaOH solution (100mM 

EDTA, pH 7.5) was added to the sample. Shortly after, 2.2g of solid CaCl
2
 (Sig-

ma-Aldrich) was added. The samples were shaken thoroughly before being 

exposed for 20 min at 45ºC to a 65-mm polydimethylsiloxane-divinylbenzene 

(SPME) fibre, fused silica (Supelco). The extracted volatiles were inserted in 

the injection port and desorbed for 1 min at 250°C in splitless mode. 

The biparental population and the diversity panel were analysed using differ-

ent chromatographic columns. The former was separated using a Thermo TR-

5ms SQC column, with helium as carrier gas and a constant flow of 2.0 mL/

min, which resulted in low chromatographic resolution of esters. To improve 

this, volatiles from the diversity panel were analysed using a polar chromato-

graphic column, Stabilwax®-DA. Differences in the chromatographic column 

hampers the combined raw data files pre-processing, and the quantitative 

comparison across datasets. Therefore, the two volatile datasets were inde-

pendently pre-processed using Metalign (Lommen 2009), MSClust (Tikunov 

et al. 2012) and annotated matching mass spectra and retention indices to the 
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NIST14 mass spectra library using NIST MS Search software (NIST).

Multivariate analysis

Two multivariate techniques were used to understand the relationship be-

tween metabolite intensities. Each technique resulted in a grouping and a 

multivariate phenotype summarising the group. All volatile intensities were 

expressed as log10 transformations. All analyses were performed in R (R Core 

Team 2016).

Correlation networks were computed using the igraph package (Csardi and 

Nepusz 2006). To construct the graph, each metabolite was used as a vertex. 

Edges were drawn between vertices when the absolute correlation between 

the two metabolites was above 0.5. Community detection was performed us-

ing a greedy modularity optimization algorithm (Clauset et al. 2004). Each 

cluster was afterwards summarised using principal components decomposi-

tion, only considering the two first components per cluster. 

Factor analyses were performed using a regularized maximum likelihood ap-

proach implemented in the R package FMradio (Peeters et al. 2019). To de-

termine the optimal number of latent factors, the Guttman bound was used 

which seeks to separate signal factors from noise factors. The factor loadings 

were used to determine the most important compounds for each latent fea-

ture. All compounds with an absolute factor loading >0.3 were considered as 

important metabolites for that factor. 

The results of both multivariate approaches were used to inform QTL analysis 

twofold. First, the QTL results of those metabolites grouped together (either 

in a network community or within a factor), were analysed together. Secondly, 

multivariate phenotypes (either principal components or factors) were used to 

perform a QTL analysis, and their results were contrasted with those of the 

individual compounds.
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Quantitative Trait Loci identification

In both datasets QTL analyses were performed using the package GAPIT3 

(Wang and Zhang 2021). In particular, the general mixed model (GLM), 

mixed linear model (MLM), FarmCPU (Liu et al. 2016) and Blink (Huang et 

al. 2019) models were applied. We report the results of MLM and Blink since 

they are the most interesting, although the full set of results can be found 

in the supplementary data 3 and 4. In all models and traits, the Bonferroni 

threshold was applied. Although this threshold might be considered strict, 

some permutation tests indicated that such threshold was reasonable (fig. 4). 

Since our final number of markers with physical positions in the Royal Royce 

genome was 25400 this was equivalent to 1.97 x 10-6.

Labelling of QTL peaks was done to simplify position reporting. To identify 

each locus, we first pooled all identified QTL across populations and mod-

els within our own study. We then grouped those positions within 500kb of 

each other to create QTL groups representing a locus (fig. S1). Each locus was 

labelled according to the chromosome number and its position in the chro-

mosome. 

Imputation of physical positions in 

the ‘Royal Royce’ assembly

The genetic markers used in this study, as well as those used in previous stud-

ies (Zorrilla-Fontanesi et al. 2012; Barbey et al. 2021; Fan et al. 2021; Rey-Serra 

et al. 2022) were placed in the F. x ananasa “Royal Royce” genome assembly 

(Hardigan et al. 2021a). To obtain physical locations of these markers BLAST 

was used to find regions of high similarities of the marker sequences (either 

microarray probes or primers) to the Royal Royce genome. Since all markers 

had perfect hits in multiple subgenomes we had to use additional information 

to resolve the ambiguities. To that end, we used three linkage maps: (Zorril-

la-Fontanesi et al. 2012), a consensus linkage map developed as part of the 

OctoSeq project (Vickerstaff and Harrison 2017) and the physical map of the 

850K SNP array (Hardigan et al. 2020). Together, these maps covered the iS-
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traw SNP array probes (Bassil et al. 2015), the FanaSNP probes (Hardigan et 

al. 2020) and the SSR markers used in previous studies (Zorrilla-Fontanesi et 

al. 2012). By comparing the subgenome blast hits and the linkage groups of 

each map, we were able to unequivocally assign each linkage group (and hence 

the markers within that group) to a subgenome, and thus we could select an 

adequate position for each marker. 

Figure 1: Summary of compound identification and abundances. 

A) Barplot showing the number of identified compounds of each type per 
population. FAD refers to fatty-acid derived compounds. B) Distribution of 
compound abundances for the Rumba x Malwina biparental population. Grey 
area indicates the threshold of non-detection, i.e. samples with abundances 
below the threshold do not have detectable traces of the compound. C) Same 
as B but for the diversity panel.
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Results
Identified compounds

A total of 125 compounds were detected across both populations, of which 96 

could be confidently identified. In both datasets esters and terpenoids were 

the most common type of compound, although in the diversity panel many 

more monoterpenes were identified than in the biparental dataset (fig. 1A). 

The diversity panel harboured a higher number of chemical compounds, par-

ticularly monoterpenes, fatty acids, fatty-acid derived (FAD) and unidentified 

compounds. However, more esters and benzenoid compounds were found in 

the biparental population. In both datasets hexanoic acid was one of the most 

abundant compounds followed by gamma-decalactone (fig. 1B, 1C). Hexanal 

was also very abundant in the biparental population, while in the diversity 

panel 2-hexanal was more abundant. The most striking quality of both da-

tasets is the great variation in abundances between compounds, with some 

compounds being 10.000 times more abundant than others (e.g. isopropyl ac-

etate and hexanoic acid, fig. 1B). 
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Terpenoids and esters form 

independent clusters

The range of compound abundance correlations within the diversity panel 

(DP) and biparental (BP) datasets was from -0.51 to 0.96 and -0.41 to 0.90 re-

spectively. Many compounds exhibited high correlations among them, which 

suggests a genetic co-regulation of their metabolism. Terpenoid compounds 

(monoterpene and sesquiterpene) and ester compounds exhibited the highest 

levels of correlations within each biochemical class. In both datasets, terpe-

noid compounds formed the largest clusters (15 compounds in DP, fig. 2; and 

9 in BP, fig. S1). Interestingly, in both cases 4 unidentified compounds were 

grouped within the terpenoid cluster. In the case of esters, in the DP there is 

a clear relationship between the abundance of some esters (methyl and ethyl 

butanoate, and methyl and ethyl hexanoate) and of C6 to C9 fatty acids. That 

Figure 2: Correlation network of volatile abundance in the diversity panel. 

Lines between nodes represent (absolute) correlations above 0.5 and the 
width of the line is proportional to the correlation. Right) Colours correspond 
to clusters identified using a greedy modularity identification algorithm. 
Left) Colours correspond to the chemical group of each metabolite (FAD: fat-
ty-acid derived). Metabolite names have been summarized: 1Pe3Me: 1-Pen-
tene, 3-methyl-; 2He: 2-Hexenal; 2HeAc: 2-Hexenyl acetate; 2MeAc: 2-Meth-
ylpentanoic acid; 2OxAc: 2-Oxovaleric acid; 3HeZ: 3-Hexenal, Z-; AlpTer: 
alpha-Terpineol; AlTe: alpha-Terpinolene; AlTeAc: alpha-Terpineol acetate; 
BuAc: Butyl acetate; BuBu: Butyl Butyrate; ButAci: Butyric acid; Ch: Chavicol; 
CiLiOx: cis-Linalool oxide; DiEt1: Dill ether 1; DiEt2: Dill ether 2; Et: Ethylhex-
anol; EtBu: Ethyl butyrate; EtHe: Ethyl Hexanoate; EtHe2: Ethyl Hexanoate 2; 
GaDe: gamma-Decalactone; He: Hexanal; HeAc: Hexanoic acid; HepAci: Hep-
tanoic acid; HexAce: Hexyl acetate; Is: isoeugenol; IsAcAn: Isobutyric acid an-
hydre; Li: Linalool; Li37Ox: Linalool 3,7-oxide; Me: Mesifurane; MeAc: Methyl-
butyric acid; MeBu: Methyl butyrate; MeHe: Methyl hexanoate; Ne: Nerolidol; 
NoAc: Nonanoic acid; Oc1: Ocimenol 1; Oc2: Ocimenol 2; OcAc: Octanoic Acid; 
PMe14Di7Ol: p-Mentha-1,4-dien-7-ol; SyLi: Sylvestrene Limonene; Te4Ol: Ter-
pinen-4-ol; TrLiOx: trans-linalool oxide; UnXXX: Unknown compound.
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is not the case in the biparental dataset (fig. S1), where a single cluster of 7 

compounds (6 esters and 1 unknown) contains 6 out of 9 identified esters. The 

remaining clusters are relatively small, but almost all of them contain chemi-

cal compounds belonging to a single chemical class. 

Factor analysis and correlation 

clusters compute similar groups

We used factor analysis as described in (Peeters et al. 2019) in order to com-

Figure 3: Heatmap of absolute loadings for factor analysis of metabolite 

abundances in the diversity panel, compared to correlation clusters. 

Each row corresponds to one compound and each column to one factor. 
Darker colours represent a higher importance of that compound for that 
factor, measured by the absolute loading value. The left, coloured band 
indicates which rows belong to which cluster in the network-based correlation 
analysis.

Dissertatie Alejandro v2-4 DEF.indd   124Dissertatie Alejandro v2-4 DEF.indd   124 6-6-2023   19:33:256-6-2023   19:33:25



- 125 -

M U L T I V A R I A T E  Q T L  A P P R O A C H  R E V E A L S  A  M A J O R  R E G U L A T O R  O F 
T E R P E N O I D  P R O D U C T I O N  A N D  O T H E R  V O L A T I L E S  I N  S T R A W B E R R Y

pute multivariate phenotypes. For each factor a set of loadings was obtained 

for each metabolite which indicates the importance of each metabolite for 

that factor. A comparison of factor loadings with the correlation clusters (fig. 

3) shows mostly a clear correspondence between clusters and factors (i.e. me-

tabolites that had been clustered together in the network analysis all have 

high loadings in a single factor, thus a factor represents a cluster and vice-ver-

sa). Some factors are represented by single clusters: factor 2 corresponds to 

CL9, factor 5 to CL10, etc. In other cases, multiple clusters are represented 

by one factor, as happens with the terpenoid clusters CL2 and CL11 which 

are encompassed by factor 1. Some clusters are split for different factors, e.g. 

CL1 into factors 3 and 4. Lastly, factor analysis allows us to include a series 

Figure 4: Permutation thresholds for different phenotypes using 200 

permutations. 

Left) Permutation thresholds given as confidence intervals as suggested by 
Nettleton and Doerge. Each colour represents the threshold for a different 
model. Right) Phenotypic distributions for each phenotype with the spread 
of the distribution scaled between 1 and -1. The presence of long tails, for 
instance in 2-oxovaleric acid or SFactor5, indicates the presence of outliers.

Dissertatie Alejandro v2-4 DEF.indd   125Dissertatie Alejandro v2-4 DEF.indd   125 6-6-2023   19:33:256-6-2023   19:33:25



- 126 -

H A R V E S T I N G  D A T A  F R O M  P O L Y P L O I D  P L A N T S

of compounds that were not in the network analysis due to their overall low 

correlation with the rest of the compounds. Although there are some discrep-

ancies, both methods are largely equivalent: terpenoids (and some unknown 

compounds) are grouped in a single factor, esters are grouped into two fac-

tors, and the remaining factors represent mostly two or three compounds.

Blink and FarmCPU are less tolerant to non-

normal distributions than mixed models

We were interested in applying the novel models implemented in the Blink 

and FarmCPU software due to their enhanced performance and statistical 

power (Liu et al. 2016; Huang et al. 2019). Since the authors of these models did 

not provide a specific method of establishing marker significance, we consid-

ered computing empirical significance thresholds through permutation tests 

(Nettleton and Doerge 2000). We selected a subset of phenotypes with clearly 

different distributions, many deviating significantly from a normal distribu-

tion. Our permutations show a clear relationship between the lack of normal-

ity and the presence of false positives. Particularly in phenotypes where a few 

samples were strong outliers we could observe how the permutation thresh-

olds reached levels of ~10-16 to ~10-20 for Blink, and around 10-13 for Farm-

CPU (fig. 4). In contrast, mixed linear models had a permutation threshold of 

~10-8 for the same trait. This should signal that although Blink and FarmCPU 

can be more powerful models, they are more prone to extremely significant 

false-positive results in the absence of normality. This suggests that data with 

extreme distributions such as those found in metabolomics data might not be 

suitable for this family of GWAS models. For this reason, we will focus mostly 

on the results of mixed linear models for the QTL analysis.

Multivariate phenotypes help summarise 

the QTL results of related compounds

Three groups of compounds defined through the multivariate analysis con-

tained more than three compounds. The first corresponds to terpenoid com-

pounds (Factor1, CL2 and CL11), the second to compounds related to butyric 

acid (Factor 2 and CL9) and the third to ester compounds (Factor 3, Factor 4 

Dissertatie Alejandro v2-4 DEF.indd   126Dissertatie Alejandro v2-4 DEF.indd   126 6-6-2023   19:33:266-6-2023   19:33:26



- 127 -

M U L T I V A R I A T E  Q T L  A P P R O A C H  R E V E A L S  A  M A J O R  R E G U L A T O R  O F 
T E R P E N O I D  P R O D U C T I O N  A N D  O T H E R  V O L A T I L E S  I N  S T R A W B E R R Y

and CL1). We performed a GWAS analysis on the multivariate phenotypes, as 

well as on the metabolites that composed each group.

For the terpenoid groups (fig. 5), we can clearly identify three major QTL 

Figure 5: Overlapped Manhattan plot of terpenoid compounds represented by 

Factor1, CL2 and CL11. 

Only chromosomes with a significant marker in at least one trait are shown. 
The log10 p-values of multivariate phenotypes are plotted below the x-axis 
(log10(pval)), while log 10 p-values obtained from metabolites are plotted 
above the x-axis (-log10(pval)). The three multivariate groups represented 
summarise the same subset of compounds in this study: terpenoids. The red 
dashed lines represent the Bonferroni significance threshold. All significant 
points were labelled for easier interpretation.
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positions shared across many compounds of this class on chromosomes 3A, 

3B and 3C. The signal on chromosome 3A can be further separated into two 

nearby positions, which we labelled as loci 3A.1 and 3A.2. These QTLs are 

detected regardless of the multivariate phenotype used and are shared across 

15, 8, 12 and 17 terpenoids respectively (table 1), clearly pointing towards ma-

jor regulators of terpenoid production. Their positions in equivalent areas of 

each subgenome and high correlation among the genotypes of the peaks on 

loci 3A.2, 3B.1 and 3C.1 suggest that positions on chromosomes 3A and 3B 

might be artifacts due to wrong imputation of the physical location in the ge-

nome. As for 3A.1, the correlation of its peak marker with the others is lower, 

suggesting a putative second QTL. Besides these major QTLs, others were 

detected for individual metabolites or smaller groups of metabolites. For in-

stance, in chromosome 5A a QTL for dill ether and ocimenol was detected. 

However, these QTL were not detected using multivariate phenotypes. Thus, 

the multivariate phenotypes do not encompass the complete set of QTL de-

tected within the group, but rather the main QTL affecting most compounds. 

It is important to note that although all terpenoid compounds have correlated 

abundances, not all of them had significant QTL.

For the other two groups (ester compounds and butyric acid-related com-

pounds) there were fewer QTL detected (Table 1) and little overlap between 

compounds (Supplementary fig. S3, S4). As a result, there were no major reg-

ulatory QTL identified. Moreover, the results from MLM and Blink models 

were very different, with many more QTL identified using the Blink model, 

suggesting a high number of false positives among the results. In these groups 

there were some QTL detected only when using the multivariate phenotypes. 

Although these QTL could point towards regulators that are only detected 

when combining information across phenotypes, the lack of repeatability of 

these QTL across models suggests they might be false positives. The same can 

be said of the multivariate groups that represented smaller sets of metabolites. 

QTL signals are not repeatable across studies

We gathered QTL positions from four additional studies (Zorrilla-Fontanesi 

et al. 2012; Barbey et al. 2021; Rey-Serra et al. 2022; Fan et al. 2022) and imput-
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ed their positions in the Royal Royce genome assembly (Hardigan et al. 2021a) 

(Supplementary table 3). We compared the QTLs reported for terpenoid, ester 

and butyric-acid-related compounds across studies and found little overlap. 

Of the three possible major regulators of terpenoid biosynthesis found in our 

study, only one (locus 3C.1) co-located with QTL from three other studies: 

Barbey et al. 2021, Fan et al. 2022 and Rey-Serra et al. 2022 (fig. 6). Of the 

many QTL reported on chromosome 4A for terpenoid compounds, few of 

them had positional overlap across studies. The picture is not much better 

for esters, where there is also little overlap (Supplementary fig. S6):  There 

are plenty of QTL reported across the genome, with two locations containing 

QTL from more than two studies:  3B 24Mb and 6A 17.5-21Mb. For the butyric 

compounds, no other study detected significant QTL. However, we did find 

some common QTL across studies for two furan compounds: furaneol on 1C 

and mesifurane on 7D (Supplementary fig. S7) 

It is important to note that each study identified different compounds, with 

only 7 out of 102 compounds identified in more than two studies (alpha-ter-

pineol, butyl acetate, gamma-decalactone, mesifurane, methyl anthranilate, 

nerolidol, octanol) and 76 compounds were identified only in a single study. 

Previous studies were all based on biparental crosses, and thus the lack of 

overlapping volatiles might be due to the comparison with our diversity panel, 

which is more diverse in metabolites. Nevertheless, common QTL for groups 

of metabolically related compounds would be expected. 

Discussion
Multivariate analysis of metabolic data

One of the main challenges of this study was the organisation of results into a 

sensible and comprehensive summary. High-throughput datasets such as the 

metabolomic dataset here studied offer a substantial amount of information 

but extracting and understanding this information is not a trivial task. To ad-

dress this issue, we classified our metabolites using two different multivariate 

approaches: correlation network communities and factor analysis. While the 
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Model MV group
MV QTLs in 

metabolites
MV-only QTLs

Met-only 

QTLs
Compound types

Blink CL1 2B.1 (1), 2C.5 (2) 6A.10, 6A.4 10 ester, fatty acid

Blink CL2 3C.1 (9) 21 monoterpene, 
unknown

MLM CL2
3A.1 (9), 3A.2 

(5), 3B.1 (8), 3C.1 
(10)

8 monoterpene, 
unknown

Blink CL5 6A.9 (1) 1A.5, 2A.12, 
7A.1 0 ester

MLM CL5 6A.9 0

Blink CL6 5B.10 5 phenylpropanoid, 
sesquiterpene

Blink CL7 1C.2, 7D.7 1 FAD
MLM CL7 7D.7 0

Blink CL8 2B.6, 3C.1, 
5A.3, 5C.4 2 unknown

MLM CL8 3A.2, 3B.1, 
3C.1 1 furan

Blink CL9 7A.8 (2) 4B.1 6 other, unknown
MLM CL9 4B.1 2 unknown

Blink CL10 7B.1 (3) 6C.11, 7A.10, 
7B.11 2 FAD

MLM CL10 7A.2 (1) 0 FAD

Blink CL11 3C.1 (3) 6B.12 9 monoterpene, 
unknown

MLM CL11
3A.1 (6), 3A.2 

(3), 3B.1 (4), 3C.1 
(6)

4
monoterpene, 
sesquiterpene, 
unknown

Blink CL12 3B.11 (2) 5B.5, 7C.8 0 lactone, unknown

MLM CL12 3A.20 (2), 3B.11 
(2) 0 lactone, unknown

Blink CL13
1D.2 (2), 3A.17 

(1), 3C.1 (2), 
4A.10 (2)

5A.3, 6A.6 2 monoterpene

MLM CL13 1D.2 (2), 3C.1 (1) 0 monoterpene

Blink Factor1 2A.16 (1), 3C.1 
(13) 32 monoterpene, 

unknown

MLM Factor1
3A.1 (15), 3A.2 
(8), 3B.1 (12), 

3C.1 (17)
12

monoterpene, 
sesquiterpene, 
unknown

Dissertatie Alejandro v2-4 DEF.indd   130Dissertatie Alejandro v2-4 DEF.indd   130 6-6-2023   19:33:286-6-2023   19:33:28



- 131 -

M U L T I V A R I A T E  Q T L  A P P R O A C H  R E V E A L S  A  M A J O R  R E G U L A T O R  O F 
T E R P E N O I D  P R O D U C T I O N  A N D  O T H E R  V O L A T I L E S  I N  S T R A W B E R R Y

former technique is more commonly used in metabolomics studies (Toubiana 

et al. 2013; Debik et al. 2022; Rey-Serra et al. 2022) the latter is still gaining 

traction in natural sciences as a promising method to simplify multivariate 

datasets (Reyment and Jöreskog 1993; Brzozowski et al. 2022). Although our 

study suggests that both techniques provide mostly equivalent groupings and 

subsequent multivariate phenotypes, we favour factor analysis as the most 

robust of the two techniques as justified below. 

In this study, we were interested in producing multivariate phenotypes that 

Model MV group
MV QTLs in 

metabolites
MV-only QTLs

Met-only 

QTLs
Compound types

Blink Factor2 5A.13 9 ester, other, un-
known

Blink Factor4 3D.6 (1), 6D.5 (4) 3A.10, 4C.1 7 ester, fatty acid
Blink Factor5 6A.6 (1), 7B.1 (3) 3B.7, 5D.9 2 ester, FAD

Blink Factor7 3C.4, 6A.3, 
6A.9 1 lactone, unknown

Blink Factor8 3B.11, 7A.6 7 ester, sesquiter-
pene

MLM Factor8 3A.20, 3B.11 2 ester, sesquiter-
pene

Blink Factor9 6A.9 (1) 1D.4, 2A.9, 
6D.13, 6D.4 0 ester

Blink Factor11 1D.2 (2) 1C.4 5 monoterpene
MLM Factor11 1D.2 (2) 1 monoterpene
Blink Factor12 3D.4, 6D.8 1 fatty acid

Table 1: Summary of QTL found organised by multivariate groups. 

For each multivariate group (MV group) we show the loci of multivariate QTL 
confirmed by individual metabolite QTL (MV QTL in metabolites), with the 
number of supporting metabolites between parentheses. We show the loci of 
QTL found only using the multivariate phenotypes (MV-only QTL). Lastly, we 
report the number of metabolite QTL that were not found in the multivariate 
phenotypes (Met-only QTL). Only those multivariate groups for which some 
significant QTL were found are reported. The description of each QTL locus 
(size, markers included, location) can be found in supplementary table 2.
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would summarise information within groups of related compounds. Using 

the network-based approach, first we must compute correlation communities 

(i.e. clusters). To that end, an arbitrary threshold (to compute the network) as 

well as a clustering algorithm must be selected. The two choices can greatly 

impact the resulting groups. Moreover, metabolites with correlations below 

the chosen threshold will not be considered during the analyses, even though 

they might contain relevant information. This was the case for unknown 

Figure 6: QTL positions of terpenoid compounds across studies. 

Positions were imputed on the Royal Royce genome assembly. The size of 
each dot corresponds to the number of significant associations at a specific 
location. The colour corresponds to the type of phenotype. Compound QTLs 
shown include: alpha-curcumene, alpha-farnesene, alpha-terpineol, alpha-
terpineol acetate, alpha-terpinolene, beta-bisabolene, beta-farnesene, beta-
myrcene, beta-pinene, cl11 pc1, cl2 pc1, d-limonene, dill ether 1, dill ether 2, 
factor1, geraniol, linalool, linalool 3,7-oxide, mesifurane, myrtenol, nerolidol, 
ocimenol 1, ocimenol 2, p-mentha-1,4-dien-7-ol, sylvestrene limonene, 
terpinen-4-ol, trans-linalool oxide, unknown 107, unknown 141, unknown 152, 
unknown 163, unknown 70, unknown 71, unknown 77, unknown 90, unknown 
91. For detailed positions check supplementary table 3.
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compound 90, which only through factor analysis can be assigned to the ter-

penoid group. Since the network approach is not a dimensionality reduction 

technique, we must use a different method to obtain multivariate phenotypes. 

We used principal component decomposition, which forces us to choose a 

number of components to keep, yet another arbitrary choice. The combina-

tion of threshold, clustering algorithm and decomposition method yields an 

approach the outcome of which will greatly depend on the decisions made by 

the researcher, rather than on the data. In contrast, factor analysis takes all 

metabolites into account, regardless of overall correlation and calculates a set 

of reduced dimensions that can be directly used as multivariate traits. While 

it is true that factor analysis is not a clustering method, analysing the loadings 

of each factor revealed the most important metabolites for that factor. We 

have shown that this is mostly equivalent to the network-based clusters while 

considering more compounds and obtaining fewer summary phenotypes to 

analyse. Overall, this tilts the scale towards using factor analysis in future 

studies, particularly to generate multivariate phenotypes.

Our main interest was uncovering major regulatory QTLs that could explain 

metabolite abundance for many compounds at once. Analysing the QTLs 

for multivariate phenotypes greatly clarified the interpretation of individual 

compound QTL. Importantly, multivariate QTL (mvQTL) did not encom-

pass the totality of metabolite QTL (metQTL) and therefore we recommend 

using multivariate analysis as an additional layer of information that is able 

to summarise and coordinate QTL results for many traits. We obtained the 

metabolite groups presented in this study using multivariate techniques, and 

thanks to these we discovered the common QTL shared within groups –as 

well as those for unique metabolites, independent of the group. We also iden-

tified some QTL that were only present in the multivariate traits, not in the 

underlying metabolites. It remains to be seen whether these QTL have a true 

biological origin and reflect the higher power of multivariate QTL studies or 

whether they should be considered an artifact. Given the results shown in the 

terpenoid group it seems that multivariate traits are more useful to summa-

rise overlapping QTL, rather than to find new, multivariate-only QTL.
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Groups of co-regulated metabolites

In this study we focused on three groups of correlated compounds which 

could be controlled by major regulators. According to our results, that is only 

the case for terpenoid compounds. While esters are known as major com-

pounds produced by Rosaceae fruits (Schwab et al. 2008; Defilippi et al. 2009), 

we did not find any major regulator. This was also the case for the group of 

butyrate-related compounds.

Terpenoid compounds are a highly diverse chemical group found in all plants 

with roles in plant growth, development and environmental interactions, both 

biotic and abiotic. They are also highly appreciated for their aromatic proper-

ties, adding floral and herbal aromas to many essential oils and fruits, includ-

ing strawberries (Aharoni et al. 2004; Schwab et al. 2008; Ulrich and Olbricht 

2016). Although diverse, all terpenoids originate from the same five-carbon 

isoprenoids: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate 

(DMAPP). The flux of these precursors is a critical determinant of terpe-

noid biosynthesis, and as such, plant cells heavily regulate the core isopre-

noid biosynthetic pathways (Hemmerlin 2013; Tholl 2015; Zhou and Pichersky 

2020). Plants use two pathways to produce IPP and DMAPP: the cytosolic 

mevalonic acid pathway (MVA) and the plastidial methylerythritol phosphate 

pathway (MEP). Precursors from MVA produce mostly sesquiterpenes, while 

isoprenoids produced through MEP are mostly turned into monoterpenes. 

In our study, most of the identified terpenoid compounds and QTLs are for 

monoterpenes, suggesting that the major regulators found have to do with the 

plastidial synthesis of terpenoids. The location of our detected QTL coincides 

with those reported in other studies, and it is possible that our signal coin-

cides with the FaNES gene suggested by Aharoni et al. 2004, and putatively 

located in 3C (Barbey et al. 2021; Fan et al. 2021). However, in Arabidopsis 

thaliana crucial regulatory enzymes of the two terpenoid pathways have been 

suggested: isopentenyl phosphate kinase (Henry et al. 2015) and Nudix hydro-

lases (Henry et al. 2018). By controlling the amount of available precursors, 

these enzymes have been shown to impact overall terpenoid abundance. Our 

QTLs could also reflect one of such regulators. A candidate gene study of the 
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QTL regions would provide much insight into this genetic regulator. 

Esters are considered the key compounds, or character impact compounds, 

of strawberry fruits (Zabetakis and Holden 1997; Ulrich et al. 2018). Due to 

their high concentration and early detection, they have traditionally been the 

main focus of aroma research in strawberries (Aharoni et al. 2004; Dong et 

al. 2013; Rey-Serra et al. 2022). Esters are produced through the esterification 

of an alcohol and an acid through the action of an alcohol-acyl transferase 

(AAT) (Schwab et al. 2008; Defilippi et al. 2009). There exists a wide range of 

variability in AAT enzymes, both in structure and substrate specificity (De-

filippi et al. 2009). Due to the lack of specificity of the identified strawberry 

AAT (SAAT) enzymes, the ester profile is mostly determined by the availa-

bility of alcohol and acid substrates (Aharoni et al. 2000). For this reason, it 

is not surprising that we could not identify any major regulator for all esters: 

some are determined by limiting concentrations of alcohols or acids, some are 

determined by the (in)activity or (in)specificity of ester-producing enzymes 

(Defilippi et al. 2009). For example, fatty acid metabolism was directly linked 

to ester production in pear fruits, where lipoxygenase activity could be linked 

to the resulting ester profiles (Luo et al. 2021). 

Lastly, a group of butyrate-related compounds was found, formed by isobu-

tyric acid anhydre, methylbutyric acid, 2-oxovaleric acid and two unknown 

compounds. Of these, two are clear derivates of butyric acid, while the third is 

of valeric acid. In cashew apple extract such compounds were found as crucial 

aroma active compounds adding cheesy, sweaty and rancid notes (Filomena 

Valim et al. 2003). While these can be an important part of a well-rounded 

aroma in cheese and alcoholic beverages, it tends to be less desirable in fresh 

fruits and thus can be considered off-flavours. Although biosynthesis of these 

compounds could also be derived from fatty acid or branched-chain amino 

acid degradation, butyric acid derivates such as indole butyric acid (IBA) or 

gamma-amino butyric acid (GABA) are well known plant hormones and thus 

the presence of butyric acid derivates could be more related to developmen-

tal processes. Regardless of their origin, our study suggests that the observed 

correlation between these compounds cannot be attributed to a single or few 

genetic factors since no QTLs were found for them.
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Inconsistency across studies

Volatile research of strawberry aroma has been of interest since there has 

been the possibility of extracting and studying individual metabolite com-

pounds (Zabetakis and Holden 1997). Over the years, the advent of metabolo-

mic techniques that allowed the identification of multiple compounds at once 

has allowed the discovery of a great variety of compounds. However, as noted 

in (Ulrich et al. 2018) there is little overlap among the detected volatiles. Our 

results confirm that the same is true for QTL signals. Across four previous 

studies and this one, there was a remarkably low overlap between the detected 

QTLs, and even the detected metabolites were mostly study-specific. Several 

reasons have been suggested for this seeming lack of consensus, some exper-

imental and some biological (Ulrich et al. 2018). 

Experimentally, a diverse set of methods is used to prepare and store samples, 

extract VOCs, and identify and quantify them; but one would expect that re-

gardless of technique, there would be some level of agreement across studies 

beyond the identification of broad chemical classes such as esters, terpenoids 

or lactones. More likely, biological differences might be the real culprit behind 

the chemical variability observed. It has been reported on several occasions 

that strawberry genotypes have a wide chemical diversity (Song et al. 2011; 

Dong et al. 2013; Ulrich et al. 2018; Yan et al. 2018). As a result, the choice of 

individuals could greatly affect the identified compounds in each study. Our 

panel contained a wide range of genetic diversity, unlike previous studies that 

detected QTLs in biparental crosses. Furthermore, volatile abundance with-

in the same variety can vary greatly within the ripening process of a single 

fruit, and throughout the fruiting period of a strawberry plant. Consequently, 

the choice of harvesting time can greatly impact the final set of volatiles dis-

covered. On top of that, any environmental factor that influences ripening 

or fruiting can have a clear measurable effect on VOC abundance and com-

position, and such has been shown in strawberry (Schwieterman et al. 2014; 

Leonardou et al. 2021). Together, methodological differences, identification 

limitations, biological diversity, developmental processes and environmental 

impact on volatile production may be behind the apparent extreme chemical 

variability observed in strawberries. 
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A different approach is necessary

This study contributes to a growing corpus of research studying the produc-

tion of volatiles in strawberry, but somehow it seems unable to clarify what 

genetic elements control the wide diversity of strawberry volatiles more deep-

ly. Previous research has pre-eminently focused on ester production, probably 

due to their high abundance, early detection and known relationship with 

alcohol and fatty acid catabolization during ripening (Zabetakis and Holden 

1997; Aharoni et al. 2000; Defilippi et al. 2009; Schwieterman et al. 2014; Fan 

et al. 2021). As others have before (Ulrich et al. 2018; Barbey et al. 2021), we 

point towards terpenoids as an additional group to consider as relevant. Our 

study suggests that their variation is mostly influenced by few QTL controlling 

many compounds at once and confirms some loci across other research, sug-

gesting thus an important target for future breeding efforts. Previous studies 

have also shown the importance of a high terpenoid abundance to improve 

sweetness perception (Ulrich and Olbricht 2016), although given their wide 

variety of smells, more detailed studies might be required. However, our anal-

ysis also highlights the complexity of volatile metabolomics in strawberry and 

its dependence on genotype-specific and environmental factors. With this in 

mind, it might be relevant to question the open-ended discovery approach 

used in previous research and our own. If the focus of the study is to detect 

as many metabolites as possible in as many samples as possible, one cannot 

expect to be able to understand the dynamics of volatile production during 

ripening or its reaction to environmental cues. Perhaps a better approach 

would be to limit sampling to a few compounds within a chemical class and 

increase the number of samples along the ripening stages of a fruit. With such 

an approach, a clearer relationship between metabolism, development and en-

vironment could be drawn, moving us closer to understanding how volatiles 

are produced and what influences their abundance. 

Dissertatie Alejandro v2-4 DEF.indd   137Dissertatie Alejandro v2-4 DEF.indd   137 6-6-2023   19:33:296-6-2023   19:33:29



- 138 -

H A R V E S T I N G  D A T A  F R O M  P O L Y P L O I D  P L A N T S

Conclusion
In this study we aimed and achieved to identify QTL for volatile compounds 

by applying multivariate methods with the hopes of finding major regulatory 

QTL. We identified many individual QTLs, some unique to the biparental 

and diversity panels, highlighting the relevance of different population types 

when studying strawberry metabolomics. In the diversity panel, we found a 

clear major QTL affecting terpenoid compounds, mostly monoterpenes, sug-

gesting that terpenoid variability is produced by differential regulation of the 

plastidial MEP pathway. Our analysis also reveals that compound correlation 

does not necessarily reflect a common set of QTL, suggesting that other fac-

tors such as ripening and response to environmental factors could be con-

trolling volatiles beyond what our research could clarify. To characterize the 

metabolic networks controlling volatile production, especially for esters, fur-

ther studies will be required, hopefully targeting more specifically the role of 

developmental processes in the metabolic activity of strawberry fruits. In the 

meantime, further research into the terpenoid regulatory networks of straw-

berry could present an interesting target for fundamental research into the 

MEP and MAV pathways, and for applied research in breeding for strawberry 

aroma.
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Supplementary Figures

Supplementary figure 1: Representation of QTL loci detected in our analysis. 

Left panel, all QTL loci detected in the analysis, each black box representing 
the range of each locus. Right panel, individual QTL ranges for traits, color 
coded according to the compound type of each trait. Unknown compounds 
and multivariate traits are also included.
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Supplementary figure 2: Correlation network of volatile expression in Rumba x 

Malwina population. 

Lines between nodes represent (absolute) correlations above 0.5 and the 
width of the line is proportional to the correlation. Right) Colours correspond 
to clusters identified using a greedy modularity identification algorithm. 
Left) Colours correspond to the chemical group of each metabolite (FAD: 
fatty-acid derived). Metabolite names have been summarized: 12Di: 
1,2-Dimethylcyclopentadiene; 2He: 2-Hexenal; Ac: Acetophenone; AlCa: 
alpha-Caryophyllene; AlPh: alpha-Phellandrene; AlpTer: alpha-terpinol; 
AlTe: alpha-Terpinene; Be: Benzaldehyde; BeAc: Benzoic acid; CiLiOx: cis-
linalool oxide; DiEt: Dill ether; DLi: D-Limonene; EtHe: Ethyl hexanoate; GaDe: 
gamma-Decalactone; He: Hexanal; HeAc2: Hexyl acetate 2; IsAc: Isopropyl 
acetate; MeAc: Methyl acetate; MeBu: Methyl butyrate; MeHe: Methyl 
hexanoate; NoAc: Nonanoic acid; Oc: Ocimenol; OcAc: Octanoic Acid; OcBu: 
Octyl Butryrate; OcHe: Octyl hexanoate; PhFo: phenacyl formate; PMePr: 
p-Methoxybenzyl propionate; TrLiOx: trans-linalool oxide; ZZAlFa: Z,Z-alpha-
Farnesene; UnXXX: Unknown XXX
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Supplementary figure 3: Heatmap of absolute loadings in a factor analysis 

of metabolite abundances in the Rumba x Malwina population, compared to 

correlation clusters. 

Each row is one compound and each column is one factor. Darker colours 
represent a higher importance of that compound for that factor, measured 
by the absolute loading value. The left, coloured band indicates which rows 
belong to which cluster in the network-based correlation analysis.
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Supplementary figure 4: Overlapped Manhattan plots of ester compounds 

represented by Factor3, Factor4 and CL1. 

The log10 p-values of multivariate phenotypes are expressed in negative 
(log10(pval)), while p-values obtained from real metabolites are expressed in 
positive (-log10(pval)). The three multivariate groups represented summarise 
a group of compounds mostly composed of esters, although other compounds 
are present. The red dashed lines represent the Bonferroni significance 
threshold. All significant points were labelled for easier interpretation.
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Supplementary figure 5: Overlapped Manhattan plot of butyric compounds 

represented by Factor2 and and CL9. 

The log10 p-values of multivariate phenotypes are expressed in negative 
(log10(pval)), while p-values obtained from real metabolites are expressed in 
positive (-log10(pval)). The two multivariate groups represented summarise 
groups of compounds mostly composed of butyric-related compounds, 
although others are also present. The red dashed lines represent the 
Bonferroni significance threshold. All significant points were labelled for 
easier interpretation.
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Supplementary figure 6: QTL positions of ester compounds across studies. 

Positions were imputed on the Royal Royce genome assembly. Compound QTL 
shown include: 2-butenoic acid, methyl ester, (e)-, 2-hexen-1-ol, acetate, (z)-, 
2-hexenoic acid, methyl ester, 2-methylpentanoic acid, 2-metyhlbutyl acetate, 
3-methylbutyl acetate, 3,4-dimethyl-1-pentanol, butanoic acid, 1-methyloctyl 
ester, butanoic acid, 2-methyl-, octyl ester, butanoic acid, 3-methyl-, octyl 
ester, butyl acetate, butyl butanoate, butyl hexanoate, butyl propanoate, 
butyl acetate, butyric acid, cinnamyl acetate, decyl acetate, decyl hexanoate, 
ethyl acetate, ethyl decanoate, ethyl hexanoate, ethyl butyrate, ethyl 
hexanoate, ethyl hexanoate 2, ethyl isovalerate, heptanoic acid, hexanethioic 
acid, s-methyl ester, hexanoic acid, hexyl acetate, hexyl butanoate, hexyl 
hexanoate, isoamyl hexanoate, isopropyl butanoate, isopropyl hexanoate, 
methyl 2-hexenoate, methyl 2-methylbutyrate, methyl anthranilate, methyl 
benzeneacetate, methyl benzoate, methyl butanoate, methyl decanoate, 
methyl hexanoate, methyl isovalerate, methyl nicotinate, methyl octanoate, 
methyl pentanoate, methyl salicylate, methyl thiolacetate, methyl butyrate, 
methyl hexanoate, metyhl acetate, myrtenil acetate, nonanoic acid, octanoic 
acid, octyl acetate, octyl butanoate, octyl hexanoate, propyl butanoate. For 
detailed positions refer to supplementary table 3.
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Supplementary figure 7: QTL positions of furan compounds across studies. 

Positions were imputed on the Royal Royce genome assembly. Compound QTL 
shown include furaneol (location on 1C) and mesifurane (location on 7D). For 
detailed positions refer to supplementary table 3.
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Figure 1: Visual summary of the contributions of this thesis within a typical 

quantitative genetics study. 

A quantitative genetics study is composed of a population, its phenotypes, 
some genomic map and genotypes associated with such a map. These 
sources of information come together in the form of a statistical model, 
usually influenced by the population type, which can be leveraged to discover 
quantitative trait loci (QTL). In Chapter 2, multiparental population structures 
are reviewed, in particular for polyploid organisms. In Chapter 3 a new model 
is proposed that can harness information from a polyploid multiparental 
population to find association signals within the genome. In Chapter 4, Smooth 
Descent is developed, a new method that can improve genotyping accuracy and 
linkage map construction using skim-sequencing, a new type of genotyping 
approach. In Chapter 5, Smooth Descent is applied to the skim-sequencing 
genotype data of allopolyploid strawberry, highlighting that the obtained quality 
is equivalent to that of maps constructed with SNP arrays while increasing the 
number of mapped markers. In Chapter 6, metabolic profiles of strawberry 
aroma are analysed with multivariate methods and used for a QTL study using 
two multivariate approaches, showing how such an analysis can help identify 
major regulators of phenotypes, particularly in multivariate datasets.

Dissertatie Alejandro v2-4 DEF.indd   150Dissertatie Alejandro v2-4 DEF.indd   150 6-6-2023   19:33:396-6-2023   19:33:39



- 151 -

General Discussion

A 
data-driven quantitative genetics study is based on a population of 

individuals, some type of map of the genome (usually a linkage map 

or genome sequence), and phenotypes and genotypes for those indi-

viduals (Fig. 1). A statistical model is chosen, partly informed by the popula-

tion structure, which allows to perform an association study and find those 

genomic regions most associated with the examined phenotypes. The chap-

ters presented in this thesis contribute to this growing array of analytical ap-

proaches, statistical methodologies that open doors to types of data that were 

previously not possible to study. 

In Chapter 2 I discuss multiparental population structures for polyploid or-

ganisms, a type of population that is seldomly used in quantitative genetics, 

although it is very commonly found in breeding and research populations. 

To effectively use such populations, a statistical model that can adequately 

model such data needs to be developed. I present such model under the name 

mpQTL in Chapter 3, showing the increased accuracy of multiallelic markers 

compared to biallelic ones. In Chapter 4, I move towards linkage mapping, a 

method to obtain genetic maps from markers. Although linkage mapping is 

a well-known technique developed over a hundred years ago, it is still useful 

and informative, yet current methodologies are easily challenged by sequenc-

ing-based methods to obtain genetic markers. I address these challenges and 

propose a methodology suitable for polyploids, Smooth Descent, in Chapter 

4. In Chapter 5, I use this same approach in a real population of strawberry, 

an allopolyploid with challenging genetics. Using error-prone skim-sequenc-

ing data I obtain genetic maps and compare their quality with maps obtained 
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using SNP array markers (usually considered more accurate). The maps I 

produced were of similar quality to those using SNP array data, but with a 

hundredfold increase in the number of mapped markers. Lastly, in Chapter 6 

I move towards QTL analyses again, this time focusing on multivariate phe-

notypes: the metabolic profile of strawberry aroma. I show that by adequately 

harnessing the multivariate information within this dataset, overarching reg-

ulatory trends can be confidently identified, helping organise an otherwise 

difficult study. With this approach we found and confirmed a major regulator 

of terpenoid biosynthesis and located it in the most recent genome assembly 

of strawberry, a crucial piece of information that was hitherto not reported. 

In the section that follows I will dive into each of these topics in more detail, 

outlining the main findings of this thesis and current state of the art, while 

introducing those questions that in my view remain to be answered.

Moving towards multiallelic markers
In Chapter 2 I covered the application of QTL models to multiparental poly-

ploid populations, a type of population that combines multiple linked fam-

ilies, akin to the complex pedigree structures of breeding programmes. I 

highlighted the need to track identity by descent (IBD) as the main innova-

tion needed to move from biparental to multiparental populations, especially 

in polyploids. In Chapter 3 I present a new model and tool, mpQTL, which 

adapts the common mixed model framework for QTL analysis to the poly-

ploid scenario. I tackled IBD-tracking by proposing the usage of a multiallel-

ic model (using IBD-based alleles), in contrast to the classical biallelic SNP 

markers that are commonly used. Leveraging a simulation study, I was able 

to prove that multiallelic models are more precise in QTL studies than bi-

allelic ones, an observation that has been echoed in similar research in the 

past years (Wang et al. 2016; Sallam et al. 2020; Bajgain and Anderson 2021; 

Li et al. 2021). Nevertheless, it was recently found that this improvement is 

not constant and depends on the structure of the multiparental population, 

sometimes being equivalent to the biallelic model (Li et al. 2021). Regardless, 

multiallelic models represent an interesting movement forward in QTL anal-
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ysis, allowing to link biological alleles with their statistical effects on traits 

of interest. I anticipated that there was a crucial factor affecting the increase 

in accuracy of mpQTL: allele estimation. High throughput multiallelic geno-

typing is a challenging endeavour, more so in polyploid organisms. Now, it 

remains as the biggest hurdle to the application of multiallelic markers, which 

in turn are necessary for accurate multiparental analysis.

For the moment, the main method to estimate alleles in a population of re-

lated individuals is by IBD estimation. Obtaining IBD estimates in polyploid 

biparental populations can be readily achieved, with methods such as that 

used in Chapter 4, or other Hidden Markov Model (HMM) approaches (Mol-

linari and Garcia 2019; Zheng et al. 2021). In diploids, many IBD calculation 

tools are available. While most are oriented to specific population designs, R/

qtl2 implements most crossing schemes (Broman et al. 2019), and RABBIT 

can use any multiparental design (Zheng et al. 2015). In contrast, for poly-

ploids only polyOrigin is available, and its usage is limited to interconnected 

F1 populations of autotetraploids (Zheng et al. 2021). More complex multipa-

rental designs like Multiparent Advanced Generation Inter-Cross (MAGIC), 

or pedigreed families common in breeding programmes remain out of the 

possibilities for current polyploid IBD estimation tools. 

An alternative to probabilistic calculation of IBD is the usage of haplotypes. 

In Chapter 3 I have shown that concatenated biallelic markers can be turned 

into multiallelic markers that can closely predict IBD segregation. We might 

then turn to multiallelic haplotype markers in order to apply mpQTL to poly-

ploid populations, but then the question follows, how does one obtain these 

haplotypes?

Haplotyping methods

Searching for the word “haplotyping” in any literature database yields hun-

dreds of papers spanning multiple decades. Haplotyping has been a topic of 

interest for a long time. Unsurprisingly, there is an abundance of methodolo-

gies, problem formulations and tools, many applicable to polyploids. Howev-

er, no golden standard or preferred method has appeared yet. Moreover, the 

nomenclature of these approaches is quite diffuse, with terms like haplotype 
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phasing, haplotype inference or plain haplotyping being used interchangeably 

in vastly different contexts. Attempting to obtain haplotypes that would be 

suitable for multiallelic analysis in a multiparental polyploid population easily 

turns into the task of finding the best tool in this vast library of methods. To 

assess their suitability, I propose to divide haplotyping approaches based on 

the type of data they require. According to this, we find marker phasing, read 

phasing, haplotype assembly and haplotype inference. 

The principle of marker phasing is to use only marker information and their 

position on a genome to obtain haplotypes. More often than not this ap-

proach targets populations of siblings, in which case the problem is resolved 

by phasing the parents, usually employing a Hidden Markov Model (Saada 

et al. 2022). This technique is in fact equivalent to the IBD estimation tools 

discussed above, which indeed can also be used to obtain haplotypes (Molli-

nari and Garcia 2019; Zheng et al. 2021). Other types of models leverage ped-

igree information outside the HMM framework (Motazedi et al. 2018, 2019; 

Voorrips and Tumino 2022), or simply use marker dosages from unrelated 

individuals to restrict the search space (Neigenfind et al. 2008; Su et al. 2008; 

Voorrips and Tumino 2022). Although the implementations differ, the results 

across this type of tools are similar. Haplotypes can be resolved locally, thus 

resulting in multiallelic markers, but they are not totally accurate, produc-

ing either missing values or incorrectly estimated haplotypes (Voorrips and 

Tumino 2022). Moreover, their limitations are equivalent to those described 

for IBD-based approaches. No tool is able to analyse complex pedigree struc-

tures. Nevertheless, specific parts of breeding programmes might be possible 

to haplotype using some of these tools, making mpQTL applicable in those 

cases. 

Read phasing is another popular method of developing haplotypes. The pro-

cess starts by comparing reads to a reference genome, obtaining then a set 

of polymorphic sites. Unlike in marker phasing, haplotypes are obtained by 

observing multiple polymorphisms in the same read. While in marker phas-

ing haplotypes are built probabilistically, with read phasing the real haplo-

types are observed within a read. As such, these methods can produce haplo-

types for single individuals without the need of a population, although some 
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can improve estimation by leveraging family or population information (e.g. 

Motazedi et al., 2018). Haplotype assembly approaches are similar to read 

phasing, but instead of simply phasing polymorphisms on a reference genome 

these techniques attempt to assemble the whole genome but obtaining one 

sequence per haplotype -instead of a single consensus sequence (Zhang et al. 

2020; Michael and VanBuren 2020). The division between read phasing and 

haplotype assembly is often tenuous, since detecting read overlap is the main 

source of information in both approaches. Moreover, if a putative genome is 

de novo assembled with reads, any read phasing method could be used as a 

haplotype assembly. Many tools exist for diploids and polyploids. The main 

differences among them are the type of data used: low-coverage short reads, 

high-coverage short reads, long reads, chromatin contact data or a combina-

tion of these sources (Zhang et al. 2020; Michael and VanBuren 2020; Saada 

et al. 2022; Guk et al. 2022). 

Both for read phasing and haplotype assembly approaches, one might ques-

tion their applicability in the context of a multiparental QTL study. On the 

one hand, a multiparental population does contain family inheritance infor-

mation that can be leveraged to improve haplotype estimation. Both methods 

tend to ignore such information, favouring the within-individual information 

only and thus do not seem the most appropriate in a multiparental context. 

On the other hand, applying these methods across a large population would 

require sequencing many samples and processing each set of reads, leading 

to a substantial increase in the experimental and computational cost. With 

much higher expenses, these approaches are unfeasible if large economic re-

sources are not available. 

Lastly, haplotype inference is another method of obtaining haplotypes. In 

this case, a haplotype library or reference panel is constructed first, and mark-

er data are used to infer the most likely haplotype. This approach has had 

special relevance in human genetics, where exceptionally large reference pan-

els of haplotype-phased genomes are already available (Browning et al. 2018; 

Ebler et al. 2022). Whether these methods are relevant to plant breeding is 

debatable. Firstly, plant breeding programmes usually have a relatively narrow 

set of founders. Assembling haplotypes for these founders could be enough 
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to infer the haplotypes of all their descendants. However, it is often common 

to introduce exotic germplasm into breeding programmes in order to bring 

novel alleles. How would inference methods behave with such unknown hap-

lotypes? Obtaining a haplotype confidence estimate would likely be crucial in 

these cases, but such parameter is not trivial to calculate.

Applicability: a need for standards

So, the question remains, which of these methods would be best for obtaining 

multiallelic markers? The most complete is haplotype assembly, but its exces-

sive cost makes it unreasonable for large populations. The cheapest is marker 

phasing, and current tools seem to be usable in a breeding context with some 

interconnected families (although not with more complex designs). The accu-

racy of current tools has not been deeply studied and thus it is unclear how 

applicable they would be in a real multiparental context. Read phasing seems 

promising, but it is particularly difficult in polyploid organisms without ex-

pensive long-read sequencing. Overall, it remains unclear what tool performs 

best, an issue worsened by the lack of consensus on appropriate metrics to 

evaluate haplotyping methods (Saada et al. 2022). Some researchers have pro-

posed to develop a benchmarking dataset to test all tools in similar condi-

tions (Garg 2021; Saada et al. 2022; Guk et al. 2022). Considering the needs of 

multiparental polyploid populations and what has been highlighted by other 

authors, such dataset should include repetitive sequences, structural varia-

tion, polyploid organisms, a pedigree structure, and some population diver-

sity, possibly simulating a wide variety of genotyping and sequencing tech-

nologies. An attempt to build such dataset has already been started with the 

“Phasing toolkit” of Saada et al. but will need to be expanded much further to 

encompass the wide range of tools currently available (Saada et al. 2022). Only 

when such a wide study is performed there will be clear answers as to when 

to apply each tool.

This type of deeply analytical and methodological research contrasts heavily 

with the applied interests of this field. In a recent haplotyping study, tran-

scriptome analysis of autotetraploid potato revealed substantial allele-specific 

expression in 11% of genes (Sun et al. 2022). This is equivalent to specific haplo-
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type alleles having a large effect on the phenotype, while others have a smaller 

effect, a situation that can be modelled within mpQTL. The situation is similar 

in allopolyploids for alleles across subgenomes: strawberry alleles have been 

shown to be differentially expressed, particularly across subgenomes (Lee et 

al. 2021). This is in line with the subgenome dominance hypothesis, which 

states that one subgenome dominates over others (Cheng et al. 2018; Bird et al. 

2018). Although there is a clear trend, it is unclear whether allelic differences 

may change the directionality of subgenome dominance, a question that can 

only be answered with genome-wide studies of allelic effects. With mpQTL 

such research could be easily applied in a multiparental setting. Allelic effect 

estimations produced through the mixed model framework presented would 

highlight the importance of intra- and inter-subgenome variation, while also 

enabling the analysis of a wider range of alleles that traditional QTL studies 

under biparental populations ignore. Nevertheless, application of mpQTL to 

its full extent requires multiallelic genotyping that currently seems out of the 

realm of possibility, particularly for large populations. With current methods, 

haplotype estimation depends on obtaining large datasets of expensive long-

read sequences for each individual. The most cost-effective paradigm would 

be to obtain short blocks of phased markers instead, with unclear and possibly 

heterogeneous accuracies across the genome. Alternatively, investing in the 

development of a representative haplotype panel to be used with an inference 

method would likely yield satisfactory results. Until a good benchmarking and 

evaluation method exist, the best tools to obtain multiallelic markers to apply 

in mpQTL will need to be studied case by case, as is being currently done.

Allopolyploid linkage mapping
In Chapters 4 and 5 we developed and applied a novel approach to use 

skim-sequencing in an allopolyploid linkage mapping context. The most cru-

cial question for this piece of research was whether the increased error rate of 

skim-sequencing data would impede assigning markers to the linkage groups 

of each subgenome. Reads were aligned to a reference genome and there was 

a general concern that such alignment would not be accurate due to the high 

similarity between subgenomes, an issue that had clearly been a major obsta-
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cle in previous research (Kaur et al. 2012; Bassil et al. 2015; Edger et al. 2018). 

In that regard, the release of the allo-octoploid reference genome presented a 

unique opportunity (Edger et al. 2019). Aligning reads to the diploid F. vesca 

genome, as was planned before the release of the F. x ananassa genome, would 

have greatly complicated this research. An additional challenge was the great 

volume of data. Sequencing-based linkage maps require specific methodol-

ogies that can handle large or  very large datasets, as well as large error rates 

(Liu et al. 2014; Rastas 2017; Bilton et al. 2018). Exactly how to perform such 

analysis was not clear from literature, especially considering the allopolyploid 

nature of strawberry.

Handling of error-prone genotype data

In Chapter 5 I proved that, with the appropriate cautions, linkage mapping 

can be performed with skim-sequencing data as accurately as with SNP array 

data. The key, however, was having a suitable method to handle genotyping er-

rors since skim-sequencing data is extremely error prone, particularly in poly-

ploid organisms. I opted to first eliminate highly spurious markers through 

a bin-based approach, followed by genotype correction using the Smooth 

Descent algorithm presented in Chapter 4. Although in practice genotype 

correction was performed, i.e., a dosage score was changed to another score, 

the word “correction” might be a misnomer. It would be more accurate to 

call Smooth Descent an error detection and genotype imputation algorithm, 

since in essence potential genotyping errors are first detected, implicitly made 

missing, and substituted by an imputed genotype. Except for the error detec-

tion aspect, the rest of the approach is similar to other imputation methods 

usually applied to improve sequencing-based genotypes, especially those that 

capitalize on family relationships (Deschamps et al. 2012; Huang and Han 

2014; Chung et al. 2017; Torkamaneh et al. 2018). 

Imputation is sometimes perceived as an untrustworthy method to improve 

data, at least requiring further confirmation. However, there has been much 

consideration to its accuracy and the effects it can have on false positives (e.g. 

Hickey et al., 2012). When adequately applied, imputation is currently con-

sidered to be an accurate approach to improve genotyping data. In reference 
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panel imputation, where a set of references are genotyped at high density 

and target samples are genotyped at much lower marker density, it has been 

shown that great accuracy can be achieved in diploids (Halperin and Stephan 

2009; Das et al. 2018). Considering the research presented in Chapters 4 and 

5, I agree with these observations. In the simulations and real data used to test 

Smooth Descent, it was clear that the algorithm is able to improve genotyp-

ing accuracy and linkage map reconstruction. The linkage maps produced in 

Chapter 5 showed the application of Smooth Descent in practice. I was able 

to obtain linkage maps that were highly colinear with the strawberry genome 

assembly and an equivalent linkage map obtained with higher accuracy SNP 

array genotypes. Thus, the ability of Smooth Descent to impute markers in 

this context is clearly established, as well as the procedure to generate linkage 

maps using skim-sequencing data.

As mentioned, the application of Smooth Descent in Chapter 5 was preceded 

by a bin-based removal of genotyping errors i.e., markers with identical seg-

regation across individuals were binned, and bins with few markers removed. 

The reasoning was that since we expect  a great number of markers with iden-

tical segregation, those markers that are (close to) unique most probably con-

tain many genotyping errors. Although we did not try, it would seem possi-

ble to apply Smooth Descent differently, as an imputation method. Instead 

of removing the most spurious markers from the analysis, those in bins with 

few markers, we could include them and attempt to use Smooth Descent to 

improve their genotyping. The only limitation to this approach is the estima-

tion of marker order and position. In the research presented in Chapter 5, the 

marker order was obtained from genotype scores and thus highly spurious 

markers would probably not be correctly placed in these maps, nor correctly 

imputed. With a different source for marker order, however, such imputation 

would be possible, and this was in fact the approach that was taken in the 

research of Clot et al. (2022). This highlights that as an imputation algorithm 

Smooth Descent can probably be used beyond the application given to it in 

this thesis. 
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Subgenome sequence differentiation

Crucial for allopolyploid genetics is the differentiation between subgenomes. 

In the research conducted in Chapter 5 this was based on the analysis of 

co-segregating, fully linked markers and aided by the chromosome sequenc-

es of the “Camarosa” octoploid genome assembly (Edger et al. 2019). With-

in each group of co-segregating markers (within each bin) the proportion of 

physical positions assigned to each chromosome was tested. This revealed an 

interesting phenomenon. Firstly, bins containing more markers had confident 

assignments, while smaller bins had similar proportions of markers across 

chromosomes, leading to ambiguous assignments. This aligned well with our 

assumption that bins with more markers represented correct genotypes. Sec-

ondly, we also saw that within bins, even in those that were confidently as-

signed and that contained hundreds or thousands of identically segregating 

markers, we could find some “conflict” markers that originated from other 

chromosomes, according to the genome assembly. These markers represent 

incongruencies between the genetic data and physical data. Our analysis sug-

gests that the conflicts originated in the genome assembly due to its inaccu-

rate phasing. There seemed to be small regions that had been wrongly as-

signed to a homoeologous chromosome of a different subgenome. 

The inaccuracies shown in Chapter 5 are not surprising given the complexity 

of haplotype assembly in allopolyploids (Zhang et al. 2020). Such issues have 

been recognised by the group that produced the “Camarosa” genome when 

they published a new F. x ananassa sequence named “Royal Royce” (Hardi-

gan et al. 2021a). Since then, two other genome sequences have been released, 

“Wongyo” (Lee et al. 2021) and “Yanli” (Mao et al. 2023). The main strategy 

to avoid subgenome chimeras during the assembly of these genomes was the 

usage of long-read sequencing and chromatin contact data (HiC). For Royal 

Royce, trio-binning was applied to separate high-accuracy long reads (HiFi) 

into two haplotype bins; for Yanli, long reads, short reads, and HiC were com-

bined to confidently phase haplotype sequences. As Wongyo is a highly ho-

mozygous variety, haplotype phasing was not performed and instead a sin-

gle consensus sequence was obtained for each of the 28 chromosomes. In all 
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cases, linkage mapping approaches akin to that described in Chapter 5 were 

used in order to identify putative chimeras and improve assembly quality. 

This highlights the importance of linkage mapping even in the era of hap-

lotype-phased genome assemblies. Although a hefty investment in multiple 

sequencing approaches seems unavoidable when trying to assemble polyploid 

haplotypes, linkage mapping is clearly a uniquely useful source of informa-

tion to understand genome structure. Once such genomes are available, I have 

shown that even skim-sequencing data can be used to obtain accurate linkage 

maps, even helping to point out inaccuracies in the reference genomes.

Remaining questions on allopolyploidy

After all the progress made in recent years on allopolyploid genomics, some 

biological questions remain poorly understood. The presence of orthologous 

genes in different subgenomes leads to an unavoidable question: which genes 

are controlling the phenotypes. Some argue that one subgenome contributes 

above all others, a hypothesis known as subgenome dominance (Alger and 

Edger 2020). In strawberry, it seems that subgenome A (from F. vesca) could 

behave as dominant, according to some expression data (Edger et al. 2019). 

However, this is not the case for all transcripts, with some subgenomes being 

dominant over others in different developmental stages (Lee et al. 2021). The 

underlying reasons for such dominance are poorly understood, although it is 

possible that they are part of the “genome shock” produced when two  different 

species generate an allopolyploid hybrid (Soltis et al. 2012, 2016; Cheng et al. 

2018). Edger et al. 2019 proposed that the dominance had a phylogenetic basis, 

meaning that all alleles originating from F. vesca would dominate over others. 

Others think this apparent bias might be due to a more accurate and complete 

reference genome for F. vesca and thus more reliable transcript identification 

from that subgenome. These hypotheses add another layer of complexity to 

the subgenome ancestry question, which remains unresolved.

Genome shock after allopolyploidization includes several symptoms. Tran-

scriptional de-regulation is one of them, but also transposable element ac-

tivation, chromosome rearrangements within and between subgenomes and 

overall meiotic instability (Ramsey and Schemske 2002; Soltis et al. 2012, 
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2015; van de Peer et al. 2017). This phenomenon can be clearly observed in 

triploid bananas since the ancestors are known (Baurens et al. 2019). Addi-

tionally, it has been well described that when Fragaria species meet in the 

wild they readily hybridize, producing fertile hybrids and more surprisingly 

fertile aneuploids, each with its own genomic rearrangement landscape (Brin-

ghurst 1990; Liston et al. 2014). This type of polyploid evolution has been re-

ferred to as a “polyploid complex ”, local, temporary, unstable, multi-ploidy 

populations, from which a single stable polyploid emerges and expands to a 

wider ecological niche (Stebbins 1940, 1942). Nowadays this type of phenome-

non is referred to as reticulate evolution and can be readily studied in natural 

populations of other species, such as the Eurasian goldilocks buttercup, Ra-

nunculus auricormus (Karbstein et al., 2022). These observations would point 

to a mosaic ancestry hypothesis for strawberry, contradicting the notion that 

each subgenome must have a unique ancestor. Indeed, multiple authors have 

already hinted towards this (Liston et al. 2020; Hardigan et al. 2020). This was 

recently shown by Feng et al. (2021) using a variety of phylogenetic approach-

es, showing a heterozygous phylogeny within each chromosome, although no 

particular “ancestry mosaic map” was obtained. For this topic, it seems that 

more complete genome sequences of wild Fragaria species are required, since 

no phylogenetic study has been able to compare phylogeny across the >20 

Fragaria species described to date. The haplotype-phased genome assemblies 

recently released, including that of the wild octoploid F. chiloensis (Cauret 

et al. 2022), will likely be helpful in this regard since they could help clarify 

whether mosaic ancestries are similar across individuals. 

Fruit ripening and 
volatile production

One of the most important traits of strawberry is its unique aroma, produced 

by a mixture of volatile compounds. Due to the high natural variability of 

volatile production in strawberries, it is relevant to find key genetic regulators 

that control aroma. Moreover, as a complex multivariate trait, it offers an in-

teresting challenge for traditional QTL analysis. In Chapter 6 of this thesis, 
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I analysed such a metabolic dataset in strawberry, both for a biparental and 

a diverse population. I also gathered results across other similar studies in 

order to assess the reproducibility and validity of our own findings. By lev-

eraging multivariate techniques, I was able to find an interesting locus on 

chromosome 3C that seems to control overall terpenoid abundance, that is, I 

found a major regulator of terpenoid production. I could confirm this finding 

in other studies after estimating the positions of all previously reported QTLs 

in the Royal Royce genome. This was in stark contrast to the results for esters, 

a compound class that is often considered the most important in strawberry 

(Dong et al. 2013; Ulrich and Olbricht 2016; Fan et al. 2021; Rey-Serra et al. 

2022). We did not find any meaningful QTL signals for esters in our study and 

across the literature there was little agreement. The issues behind this lack of 

repeatability have already been reviewed and are most likely due to biological, 

experimental, and analytical reasons (Ulrich et al. 2018). Variability of fruit 

ripening and flowering times might heavily contribute to the apparent lack of 

relevant QTL signals for esters. 

Although we did find a major regulator, I believe the analysis performed and 

reported on in Chapter 6 suggests that this type of metabolic QTL study is 

not well suited for understanding the dynamic process of strawberry ripening 

and its secondary metabolism. Instead, an approach that focuses on study-

ing metabolic profiles through the development and growth of the strawberry 

fruit and its shifting metabolism might be more appropriate. Ripening has 

been heavily studied, although much remains to be uncovered in strawberry.

The physiology of ripening

As a horticultural crop, the importance of fruit set and ripening in strawber-

ry for agriculture is self-evident. The edible portion of strawberry is in fact 

not a fruit, but an enlarged receptacle. Technically, the fruits are the seeds 

that cover strawberries, the achenes. Strawberry ripening is a dynamic pro-

cess that starts with auxin production and transport in the achenes, followed 

by a decrease in auxin levels and an increase in abscisic acid (ABA) (Cherian 

et al. 2014; Li et al. 2022a). Different processes must be synchronised to ob-

tain a ripe strawberry: fruit enlargement, sugar accumulation, fruit softening 
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through cell wall degradation and production of secondary metabolites like 

flavonoids, esters or terpenoid compounds (McAtee et al. 2013). Strawberry 

is a non-climacteric fruit, meaning that ethylene does not play a significant 

role in strawberry ripening – although it is not entirely absent. There has been 

much research into the regulation and control of ripening in strawberry, ow-

ing in part to the simplicity of transformation and gene silencing techniques 

(Folta and Davis 2007; Guidarelli and Baraldi 2015). Despite extensive knowl-

edge of up- and down-regulated genes during fruit ripening, the network of 

molecular regulation of strawberry is largely unknown (Cherian et al. 2014). 

The interplay of such regulation network with environmental factors has not 

been explored, despite the clear observations that light and temperature affect 

strawberry shape and flavour (Carbone et al. 2009; Tulipani et al. 2011; Alva-

rez-Suarez et al. 2014; Warner et al. 2021; Leonardou et al. 2021). Importantly, 

virtually all studies have highlighted that environmental impact on quality 

traits is genotype dependent. This is unsurprising, given that adaptation to 

climatic conditions has always been an important goal of strawberry breeding 

programmes.

As previously pointed out, the availability of an octoploid genome assembly 

will clearly aid in the discovery of ripening-related genes, facilitating RNA 

expression studies and the subsequent inference of regulatory networks. The 

datasets generated in Chapter 6 could easily be linked to transcriptomic data 

to predict regulatory networks much more effectively than through QTL 

analysis. Moreover, some of the analytical methods published to reconstruct 

regulatory networks are well-suited for the study of environmental effects on 

gene expression (e.g. Li et al. 2015; Jones and Vandepoele 2020). Octoploid 

strawberry would be an interesting model to study regulatory network evo-

lution, since the presence of the four subgenomes has likely contributed to 

sub-functionalization and specialization of the key regulators of ripening. 

Such studies would require extensive temporal, environmental and transcrip-

tomic data, paired with a sophisticated analysis that could link findings to the 

newly published genome. The recent advances in strawberry genomics will 

undoubtedly propel more sophisticated molecular research that, until now, 

has only been possible in better characterized model species. 
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Multivariate analysis of plant molecular data

Chapter 6 introduced multivariate analysis as a useful way to reduce and 

study otherwise large and obscure datasets. A not-so-common method in the 

metabolomics field was applied, factor analysis, which showed much promise. 

Unlike network-based approaches that are more commonly applied in metab-

olomic studies, factor analysis is simple and reproducible, with a single hy-

perparameter that needs to be tuned (the number of latent factors). The tech-

nique proved useful in identifying groups of correlated variables and their 

common genetic associations and thus seems promising for future analyses. 

I have clearly shown the usefulness of multivariate approaches to dissecting 

phenotypic traits, an interest that is growing in recent years.

The need to apply a dimension-reduction tool to understand a plant dataset 

is not unique to metabolomic datasets. There is a growing field of research 

that is oriented towards generating large datasets in an automated fashion 

by using sensors and imaging technology (Coppens et al. 2017; Pieruschka 

and Schurr 2019; Yang et al. 2020). Such big datasets present several challeng-

es, among them the need to somehow reduce their complexity to essential 

features that are more explanatory than the hundreds of variables gathered 

in automated phenotyping experiments. The QTL analysis of Chapter 6 pre-

sented a relatively traditional approach to phenotype-genotype association. 

Although we added a multivariate aspect to it, the nature of the association 

model was in essence identical to that proposed by Lander and Botstein in 

1989 –albeit with adaptations and improvements developed later (Lander and 

Botstein 1989; Yu and Buckler 2006; Wang and Zhang 2021). More modern 

approaches to detect association that intelligently leverage the multivariate 

properties of large datasets are englobed in genomic prediction. The main 

principle behind genomic prediction is to use the entire genome to predict 

traits, comparing the predictions to true, evaluated datasets. The multivariate 

approaches used to dissect large genotypic data in genomic prediction can 

contribute many lessons to multivariate analysis of phenotypes. However, as 

larger phenotyping datasets are made available, such prediction models also 

need to tackle with the increased phenotypic dimensionality problem. Such a 
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combination of multivariate genotypes and phenotypes has been reviewed in 

detail in a recent statistical manual (Montesinos López et al. 2022). Through a 

multivariate lens, the statistical models developed in the genomic prediction 

field will likely play a key role in understanding increasingly complex pheno-

typic datasets, including but not limited to metabolomic datasets. 

One might wonder what the relevance of traditional QTL studies in this ge-

nomic prediction context is. I would argue that the findings produced by the 

analysis of Chapter 6 could not be produced by a genomic prediction approach. 

Only with such a QTL analysis, powered by multivariate techniques, we can 

leverage phenotype information to find major genetic regulators that point 

to specific loci, which in turn open the door to further molecular research. In 

the case of Chapter 6, a locus that controls the production of flowery, herbal 

and citrussy aromas in strawberry, that controls the production of terpenoids. 

Computational genetics
In the past years, we have experienced a veritable social revolution. With the 

expansion of the internet, the popularization of personal computers and the 

generation of ever-larger datasets that carefully describe our societies, no as-

pect of our lives has been left untouched by information technologies. The 

thesis you have in your hands (or perhaps in front of you through a screen) is 

clearly a consequence of these changes in the world, particularly in the field 

of plant genetic research applied to plant breeding. Vast amounts of genetic, 

phenotypic, and environmental data are being acquired, sprouting in us feel-

ings of possibility, of that scientific hope one feels when a discovery seems 

at the tip of your fingers. The road towards these discoveries is paved with 

quantitative genetics, the hybrid child of applied statistics, genetics, and mo-

lecular biology. Unsurprisingly, the tools of quantitative genetics now heavily 

rely on the same information systems: databases to hold and distribute data, 

algorithms to efficiently resolve mathematical problems and programs to in-

tegrate algorithms into useful statistical tools, all are becoming the standard 

toolset of any quantitative geneticist. This expansion and transformation of 

our methods gives us, the statistically minded geneticists, a dynamic and ex-
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hilarating work environment to apply our skills. Naturally, such changes bring 

with them important challenges, particularly as we transition from classical 

to data-driven plant breeding.

There are plenty of excellent reviews on the topic of large data in plant breed-

ing. Some focus on the statistical methods needed to utilize this data, particu-

larly in the genomic prediction context (Azodi et al. 2019; Tong and Nikoloski 

2021). Others highlight the need for adequate databases for data management: 

since expensive experimental data usually needs to be stored, accessed, and 

shared across multiple parties, including for publication, an adequate da-

tabase infrastructure seems indispensable in order to easily manage data 

(Pieruschka and Schurr 2019). These observations have propelled internation-

al coordination, with initiatives like ELIXIR, a European institution that aims 

to provide best practices, tool repositories and general data literacy education 

to researchers of the life sciences (Harrow et al. 2021). A new interdisciplinary 

field of science is emerging, where data collection, management, analysis, and 

dissemination meet. To fulfil those needs, new types of research roles are 

emerging, like that of the data steward (Arend et al. 2022). As a librarian or 

archivist did in the past, a steward’s job is to ensure data quality, manage its 

organisation and promote its storage on standardised systems that facilitate 

data integration. Also, the scientific programmer has appeared, the researcher 

whose main job is to develop software tools, usually including experimen-

tal approaches that implement new analytical ideas. Best practices have been 

published regarding this type of software development, focused on program 

design and structure (Wilson et al. 2014; Artaza et al. 2016) and on software 

management and dissemination (Alves et al. 2021). It will not be difficult to 

notice that this thesis greatly hinges between these roles, managing and using 

data and developing and storing software. Proofs of this are the presented 

software tools, mpQTL and Smooth Descent, that will need to be adequately 

maintained in the future. The existence of these new roles and their required 

skills also highlights the importance of education renewal, adding learning 

goals to curriculums that reflect the changing needs of the field (Arend et al. 

2022). 

Finally, to complete this thesis, I can say that I have managed to answer what 
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is likely the most puzzling question of any PhD research: what was I research-

ing? I am confident to say that computational genetics has been my specializa-

tion. I have worked to expand and upgrade statistical methodologies to new 

computational practices, addressing the gaps left by their original proponents 

regarding the usage of polyploid data. For this, I have learned programming, 

high-efficient computing, new statistical methods, automated data analysis 

and other topics that are probably closer to computer sciences than to biology. 

I have also deeply dived into more classically genetic topics, the polyploidiza-

tion history of strawberry and  its unclear ancestry, subgenome differentiation 

and linkage mapping, the physiology of fruit ripening and the incredibly di-

verse metabolic products of this little red fruit. As my research has been in-

terdisciplinary, so has my focus shifted between fundamental research on the 

mathematical properties of multiallelic, polyploid QTL models and applied 

research on the suitability of skim-sequencing data and interpretability of big 

phenotypic data. The application of multiallelic models in complex popula-

tion structures or the clear differentiation between allopolyploid subgenomes 

and their relevance to complex traits like metabolic profiles will require fur-

ther research to be understood. With this thesis, I hope to have contributed to 

resolve some uncertainties, and more importantly, I hope I have opened new 

mysteries for the broader scientific community. I can certainly say that after 

all this learning I have more questions than ever before. How exciting!
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