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Chapter 1

Introduction

1.1 Circular bio-based economy

By 2050, world population is expected to increase up to 9.7 billion [1]. As a conse-
quence, waste generation is estimated to rise from 2 to 3.4 billion tons a year (70 %),
outpacing population growth (≈ 20%) by more than double [2]. The energy demand
is also projected to increase nearly 50% in the next thirty years [3]. Yet, the major-
ity of global primary energy consumption and source of commodity chemicals relies
on fossil fuels, such as oil, coal and gas. Fossil fuels are not sustainable and their
continue use is dramatically accelerating climate change and affecting public health
[4]. Hence, it is imperative that we find and implement alternative processes for the
sustainable production of fuels and commodity chemicals.

The primary goal of the Paris agreement for climate change is to reduce carbon
emissions by 45% by 2030 and, ultimately, become carbon neutral by 2050 [5]. More
than 70 countries -including the highest polluters- have set a net-zero target, which
would mean already a 76% reduction of global emissions. 2050 is still far away, but
2030 is around the corner. This leaves seven years to develop solutions and to deploy
them in a competitive manner. Thus, we need to start taking action on promising
solutions now.

Specifically, we need to radically change the way we manage our natural re-
sources, how we use and make products, and what do we do with the waste later
on. This can be achieved with a transition towards a circular bio-based economy, a
structured solution approach that tackles climate change, biodiversity loss, waste,
and pollution [6], enhancing the use of renewable natural capital, minimizing waste
and replacing non-renewable/fossil-based products currently in use [7]. The result-
ing bio-based products would contain biogenic carbon originated from sustainable
feedstocks such as biomass or wastes, and thus, the final CO2 emissions is biogenic
CO2 that is considered carbon-neutral [8]. Considering our net-zero target and the
need to implement circular approaches, research is now needed to explore promis-
ing solutions. In this regard, microbial conversion of C1 feedstocks is envisioned as
the way forward.
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1.2 One-carbon (C1) feedstocks

Since the 1980s, the production of biofuels from agricultural feedstocks (grains,
seeds and sugars) has largely increased as a sustainable technology to mitigate cli-
mate change [9, 10]. Despite some examples where biofuels and animal feed were
produced from the same process [11], the use of agricultural substrates still raises
concerns and disapproval as they compete with food production and endanger bio-
diversity [12, 13]. To avoid this competition, the use of waste streams and lignocel-
lulosic biomass as feedstocks to produce sustainable biofuels and chemicals is also
being explored as a potential alternative. However, the hydrolysis of lignocellulosic
biomass leads to complex mixtures, difficult to break down and that require further
separation and processing, ultimately requiring larger facilities and higher energy
costs for transportation than the previous technology [14]. Nevertheless, gasifica-
tion of these complex mixtures allows for the conversion of carbon in the original
source to synthesis gas. Synthesis gas -syngas- is a mixture of CO, H2, CO2 and
traces of CH4 and other gases.

One-carbon (C1) gases can also directly be obtained as off-gas in steel-mill indus-
tries, and from the sequestration of carbon from the atmosphere. Due to their low
production cost and high availability, they have gained attention as preferable feed-
stocks for the sustainable production of fuels and chemicals. In fact, the production
of bioethanol from C1 gases is now at industrial scale [13, 15–17].

Formate andmethanol are other C1 feedstocks particularly interesting since they
are miscible, which circumvents gas-liquid mass transfer limitations associated to
gaseous feedstocks [18]. Formate (and CO) can be obtained from the electrochem-
ical reduction of CO2 [19], via photoreduction of CO2 [20] or via hydratation of
syngas [21], among others. Methanol is produced from syngas, usually obtained by
means of steam reforming of natural gas [22], and it can be used as energy carrier
for hydrogen storage and conservation [23].

1.3 Microbes as cell factories for the production of high-
value chemicals

Plant biomass can be used to produce many natural products that have an impor-
tant role as biofuels, chemicals, pharmaceuticals or flavors. In fact, plant-derived
biofuels represent the most abundant source of renewable fuels [24]. However, their
production rate often fluctuates due to changes in climate and frequently result
in low productivities. The fluctuations also affect the prediction of productivities,
which introduces risk and volatility in the supply chains. Besides, these solutions
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are tied to a particular location which also makes themmore susceptible to geopolit-
ical disturbances (e.g., sunflower in Ukraine). Chemocatalytic processes, such as the
Fischer-Tropsch synthesis can convert syngas to synthetic fuels [25], but they present
some limitations. For instance, these processes require high purity level of syngas
to avoid poisoning of the catalyst, strict CO/H2 ratios, and high operational costs
associated to the high temperature and pressure operations [26]. Alternatively, the
use of microbes as cell factories to produce high-value chemicals is gaining atten-
tion, as they present several advantages over plants and chemocatalytic processes
[13, 27, 28]. In general, microbes have high specificity, required when the target is a
specific product [29], they can grow in a more controlled environment than plants,
since they are not dependent on weather, and their production does not fluctuate.
They are not tied to grow on a specific location as their operational units can be set
everywhere. Microbes are low-priced and can be genetically modified, which often
leads to higher productivities. Besides, they can handle better than chemical cata-
lysts the variations of CO/H2 ratios, and are also more resistant to impurities (e.g.
sulfides), reducing the need for highly-priced pre-treatment of syngas [27].

1.4 Microbial conversion of C1 feedstocks

Methylotrophs are able to grow onC1 compounds such asmethane, methanol, methy-
lamine, formaldehyde, formate, formamide or carbon monoxide [30]. Methylobac-
terium extorquens is a facultative aerobic methylotroph that grows on methanol and
methylamine as well as others C2-C4 compounds, and it is highly used to study
methylotrophy [31]. Formatotrophs use formate as carbon source or for reducing
power. Cupriavidus necator is one of the most studied native formatotrophs, it can
grow on formate as sole carbon source and autotrophically using the Calvin-Benson-
Bass-ham (CBB) cycle to fix CO2 with addition of H2. It is highly used as a platform
for the production of polyhydroxyalkanoate (PHA) [32].

Formatotrophs and methyloptrophs can naturally grow aerobically on formate
and methanol via the serine cycle (M. extorquens), CBB, Ribulose Monophosphate
(RuMP) Cycle, Dihydroxyacetoneformate (DHA) Cycle, reductive glycine (rGly) path-
way and synthetically via the formolase pathway [13]. rGly has been recently discov-
ered in anaerobic bacteria (Desulfovibrio desulfuricans) [33]. Previous studies stated
that it is the most efficient route to assimilate formate aerobically (1 ATP/pyruvate)
[19, 34–36], outperforming other natural pathways [13]. Thus, recent studies have
focused on implementing this pathway synthetically in model organisms and natu-
ral formatotrophs and methylotrophs for biomass production [37–40]. For instance,
Escherichia coli cannot grow on C1 feedstocks, neither aerobically nor anaerobically,
but recent efforts have successfully proved the ability of E. coli to grow on formate
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and methanol [41–47] via the rGly pathway. This pathway was also implemented
into the model organism Pseudomonas putida for assimilation of methanol, formate
and CO2 [40], and in yeast for growth on formate [48]. Growth on formate was
demonstrated via the same pathway in C. necator [39], where the yield through the
rGly pathway was for the first time proven to exceed yield of the Calvin cycle [38].

While aerobic microbial growth on methanol and formate has shown potential
for biomass production, its use as a platform for valuable products is less exploded.
Furthermore, the toxicity events associated to formate and methanol present a chal-
lenge [13]. Anaerobic microbial conversion of C1 feedstocks has been proven to have
a higher energetic efficiency than the aerobic conversion [13], and it has already led
to the successful production of valuable products at industrial scale [17, 49, 50].

Acetogens are anaerobic bacteria that can use CO, CO2/H2, methanol and for-
mate via the Wood-Lhungdahl (WL) pathway [51]. Some acetogens could possi-
bly use the rGly pathway for autotrophic growth as they harbour the genes of the
rGly pathway [33] and was already demonstrated in Clostridium drakei [52]. Ace-
togens can therefore grow on syngas converting it into acetate, ethanol, and traces
of formate, 2,3-butanediol or lactate. Few acetogens also have the ability to pro-
duce butyrate, caproate, butanol and hexanol [53]. Clostridium autoethanogenum is
the acetogen usually used as chassis for syngas fermentation. For instance, for the
upcycling of waste-derived CO/CO2 into ethanol, that is now a product success-
fully commercialized [49]. However, the low water solubility of gases limits mass
transfer and, consequently, microbial growth and productivity. This is a limitation
that could be overcome using miscible substrates (i.e., formate or methanol). Ace-
togens also present energy limitations, since they operate at a thermodynamic edge.
In the WL pathway, formate is converted to formyl-tetrahydrofolate investing one
molecule of ATP that is recovered by producing acetate via substrate level phos-
phorylation. Hence, the WL pathway and subsequent acetogenesis have a net zero
ATP production. Thus, acetogens have to rely on additional mechanisms to gener-
ate ATP, and that is the coupling between the Na+-translocating ferredoxin:NAD+

oxidoreductase (Rnf) complex or the reduced ferredoxin:H+ oxidoreductase (Ech)
and the ATP synthase. The free energy change of the electron transport chain in
the former complex system (Rnf/Ech-ATP synthase) is coupled to the translocation
of ions, creating an electrochemical ion gradient across the membrane that is used
to generate ATP through the ATP synthase [54]. The net ATP production per mol
of acetate and ethanol produced from CO2 and H2 is only 0.3 and 0.14 - 0.15, re-
spectively [55]. CO is more energetically favourable, with a net ATP production per
mol of acetate and ethanol of 1.5 and 1.7, respectively. Acetogens oxidize CO to
CO2 (that enters the WL pathway) generating reducing equivalents. Yet, part of the
CO2 is lost. The utilization of H2 can reduce the loss of carbon, and should increase
the production of reduced products, which makes the use of syngas (CO, H2 and
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CO2) more attractive [56]. Energy barriers in acetogens limit the range of products
to simple, short-chain molecules (ethanol and acetate) and, therefore, strategies are
needed to obtain products of higher value from C1 feedstocks.

1.4.1 Microbial cultures in Biotechnology: Synthetic microbial co-
mmunities for enhanced production of added-value chemi-
cals

Since few years ago, the use of metabolic engineering strategies have been imple-
mented in acetogens, enabling the increase of ethanol and 2,3-butanediol produc-
tion [50, 57], the production of ethyl acetate from ethanol [58], or the production of
acetone and isopropanol in pure acetogen cultures [59]. However, pure cultures of-
ten present difficulties to fully utilize complex substrates, have reduced fitness, may
lead to contamination and are product specific, which limit its application [60].

Open-mixed cultures can utilize complex, cheap and impure substrates leading
to more products, and are more stable and robust than pure cultures. In addition,
the metabolic burden of costly metabolites can be overcome due to the introduction
of division of labour, in which complex tasks are distributed between community
members for mutual gain [61]. The production of medium-chain fatty-acids (MC-
FAs; C6-C8) has been achieved by mixed cultures from CO and from real syngas
effluents [62, 63]. Regardless of these advantages, in open mixed-cultures microbes
often compete for the same substrate and there can be inhibitory events due to un-
known species or interactions, which might affect the control and predictability of
these systems [60].

The use of synthetic microbial communities is emerging as a potential strategy to
tackle the shortcomings of pure and open-mixed cultures. Synthetic microbial com-
munities comprise communities of generally two to three species, selected a priori for
a specific purpose. Synthetic communities are often designed forcing a direct cross-
feeding of metabolites to optimize substrate consumption or to produce a product
of interest that would otherwise not be obtained from the same substrate by the two
species separately. In addition, unwanted by-products, competence amongmembers
or inhibition occurrences are significantly reduced and often avoided, compared to
openmixed cultures. Ultimately, members of the community can be replaced, added
or removed in a modular way to fulfill the process needs (Fig. 1.1), which is an ad-
vantage that open-mixed cultures do not have [60].

Fig. 1.1, which illustrates the work of this thesis, shows how the product portfo-
lio of a synthetic microbial community can be tuned from even- to odd-chain fatty-
acids and their respective alcohols by the addition of amicrobe that brings a different
phenotype (production of propionate), or by the replacement of a microbe that re-
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Figure 1.1: Modular approach for the design of synthetic microbial communities for C1 con-
version to added-value chemicals. Microbes can be replaced (A) or added (B) targeting prod-
ucts of different chain-lengths.

quires a different electron donor to ethanol (lactate). Owing to these advantages,
synthetic microbial communities have flourished in the past decade showing their
potential to produce added-value chemicals from the conversion of numerous sub-
strates (monosaccharides, polysaccharides, alcohols and C1 feedstocks), and going
beyond the products obtained by pure cultures [64–70]. For instance, the produc-
tion of even-chain fatty acids (C4-C8) and alcohols from syngas was demonstrated
by co-cultivation of the acetogens C. autoethanogenum or Clostridium ljungdahlii and
the chain-elongator species Clostridium kluyveri [64, 65, 68]. Another example is
the production of MCFAs from CO2/H2 by C. autoethanogenum and the solventogen
Clostridium beijerinckii [70], and the production of odd-chain MCFAs from CO by
a tri-culture of the acetogen Acetobacterium wieringae JM, the propionate-producer
Anaerotignum neopropionicum and C. kluyveri (chapter 5, Fig. 1.1).

Despite the numerous advantages, synthetic microbial communities present lim-
itations that still impede their industrial implementation. Most of the previous ex-
amples showed robust and stable communities since they were grown under con-
ditions where all members survived, e.g., same pH range. However, often optimal
conditions differed favouring growth in detriment of production, or favouring the
accumulation of intermediates rather than final products.
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1.5 Computational approaches to increase the poten-
tial of microbial systems

Some of the drawbacks and limitations of microbial systems as cell factories can be
addressedwith the support of computational approaches. Genome-scale constrained-
based metabolic modeling is the computational approach commonly used to study
microbial systems through genome-scale metabolic models (GEMs). GEMs represent
the list of metabolic reactions, metabolites and genes retrieved from the annotation
and curation of microbial genomes. GEMs have been shown to be potent tools in bio-
technology and health applications for pathway design, pathway evaluation, process
characterisation, chassis optimisation and media design [71, 72]. For instance, the
use of metabolic modeling led to the identification of targets for the increase of oil
production in oleaginous yeasts [73]. The construction of the GEM of C. autoethano-
genum shed light into the energy metabolism of anaerobic gas fermentation in aceto-
gens [74]. Recently, GEMs have also been used to study functional reprogramming
of cancer cells at the pathway level [75]. In the past decades, the construction of
microbial GEMs has rapidly increased due to the enlarged availability of sequenced
genomes [72]. Genomes are sequenced and subsequently annotated through bioin-
formatic tools that are constantly being improved and expanded. CarveMe, Mod-
elSEED, KBase, Raven, AuReMe [76–80], among others, are tools that automatically
construct a draft model from annotated genomes, incorporating in some cases the
genome annotation step [81]. The output draft models require a following man-
ual curation and refinement to improve their quality and completeness [82]. Often,
there is a preference for the use of reduced GEMs, known as core models. They
represent a small and essential part of the metabolism including the central carbon
and energy metabolism, and additional pathways related to phenotypes of interest
(e.g., substrate utilization or product formation). While information of secondary
metabolism or amino acids pathways is lost, the use of core models is often prefer-
able since it reduces computational time and complexity (e.g., dynamic modeling),
futile cycles are avoided, and have shown similar predictability to full models [83].

GEMs are studied using Constrained-Based Reconstruction and Analyis (CO-
BRA) techniques available in several packages, such as COBRA Toolbox and CO-
BRApy [84, 85]. In these approaches, the information contained in a GEM is trans-
lated into a mathematical problem; a stoichiometry matrix (S) and a vector repre-
senting the flux through all of the reactions in a network (v). This matrix represents
the stoichiometry of every metabolite and every reaction. The stoichiometry of re-
actants is represented with a ‘-’, and the stoichiometry of products with a ‘+’ in the
matrix. GEMs have different type of reactions; metabolic reactions, transport and
extracellular reactions. Intracellular reactions take place inside the cell (i.e. the cy-
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tosol). Transport reactions represent the flux of a metabolite from the intracellular
compartment to the extracellular compartment, and vice versa. Extracellular reac-
tions represent the uptake rate of substrates or the production of metabolites. The
reversibility of the reactions is represented with bounds, which symbolize the maxi-
mum flux that one reaction can have (mmol gDW-1 h-1) and the flux direction. When
a reaction has a negative flux, this indicates that the flux goes in reverse direction,
and the other way around. In addition, GEMs have a biomass synthesis reaction, rep-
resenting the growth rate (h-1). Additionally, more constraints can be applied to, for
example, define the substrate uptake rate or block flux through a specific reaction.
Flux Balance Analysis (FBA) [86] is one of the mathematical approaches most com-
monly used to simulate scenarios with GEMs. FBA assumes steady-state (S.v=0), and
fluxes are computed under the specified constraints maximizing a predefined objec-
tive function; normally, the biomass synthesis reaction. FBA requires the definition
of an objective function, as a way to mimic the most common cellular objective, cell
growth. Objectives can be modified, and one can maximize production of a prod-
uct of interest or the uptake of a specific substrate. However, this can result in an
overestimation of the objective function, that could be far from reality. Flux Vari-
ability Analysis (FVA) [87] is an alternative approach that can overcome some of the
FBA limitations. FVA gives the maximum and minimum flux that satisfies a defined
% of the maximum objective function. Flux sampling [88] is a promising approach
that instead of maximizing a predefined objective function, inspects the feasible so-
lution space by generating probability distributions of steady-state metabolic fluxes
under specified conditions [89]. FBA, FVA and Flux sampling are meant to represent
continuous systems where a steady-state is reached.

Dynamic FBA (dFBA) [90], an extension of FBA, is an approach that uses FBA
to update the flux of the extracellular environment, and kinetics to calculate the
concentration of substrates and products over time. These approaches have been
successfully implemented to represent non-continuous environments (i.e., batch,
fed-batch) with pure cultures for unraveling principles of microbial metabolism,
designing strategies to increase desired products, substrate conversion or microbial
growth [72, 91, 92].

Several algorithms identify possible genetic interventions targeting the produc-
tion of a desired product, and coupling growth and production [93, 94]. There
are also extensions of GEMs that aim to improve the predictability of these mod-
els. Enzyme-constraints GEMs (ecGEMs) [95] for example, include enzyme kinetics
and abundances, and GEMs of metabolism and gene expression (ME-models) [96]
include the synthesis of the gene expression and calculate the optimal proteome al-
location for a specified phenotype. The predictability of GEMs can be increased
by the addition of information in the form of constraints based on transcriptomics,
proteomics and genomic data.
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1.5.1 Metabolic modeling of microbial communities

In the past decade, genome-scale, constrained-based metabolic modeling has also
been extended to model microbial communities of two to more than hundred indi-
viduals for biotechnology, medicine and bioremediation applications [97, 98]. Mod-
eling communities brings additional complexity to mathematical formulations com-
pared to the modeling of single species. The simulation of continuous environments
requires the creation of a community model. This is achieved by the extension of
the stoichiometric matrix with the integration of single species models as single
compartments, and a common extracellular compartment through which they share
metabolites with one another. In single species models, the flow of metabolites is
represented with specific fluxes (mmol gDW-1 h-1), and growth rate is calculated for
1 g of biomass. In community models, each species have their own relative abun-
dance with respect to the total biomass of the community. To account for this, the
flow of extracellular metabolites is represented as environmental fluxes (mmol (L)-1

h-1) and the relative abundance would be integrated as part of the biomass synthe-
sis reaction, or transforming environmental fluxes to specific fluxes when calculat-
ing intracellular fluxes of each species, and vice versa. In continuous environments
(e.g. chemostat), balanced growth of species and the community can be assumed;
thus, the mathematical problem becomes a linear problem. cFBA is one of the ap-
proaches that best predict continuous environments and assumes balanced growth
[99]. The main difference among all type of approaches is the consideration of the
objective function. Many tools optimize the community growth or/and the species
growth rates (MMT, MICOM, OptCom) [100–102]. Yet, the selection of the objective
function in static approaches is not unanimous, and some approaches (e.g. Opt-
Com) [102] do not consider balanced growth of species and communities in envi-
ronments where steady-state is assumed (e.g. chemostats). A solution to this is the
use of approaches that do not require the maximization of an objective function (e.g.
Flux sampling). Non-continuous environments can be simulated with dynamic ap-
proaches. In these approaches, the species can grow at a different growth rate, and
single GEMs are not integrated in the same stoichiometric matrix, but treated sepa-
rately, and dFBA can be applied. In general, dynamic approaches differ again in the
selection of the objective function. Some opt for the maximization of the community
growth rate (DyMMM) [103], some others follow a bi-level approach and require the
definition of a second objective, usually the species growth rate (e.g. d-OptCom)
[104], or a priority list of objectives [105]. Finally, spatiotemporal approaches aim
to represent 2D dimensional surface environments (e.g. Petri dish) informing on
the spatial distribution of extracellular metabolites, biomass of species and uptakes
rates at any given time point (e.g. COMMETS) [106]

In the past decade, several tools became available that aimed to model contin-
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uous, dynamic and spatiotemporal environments using GEMs [99]. Although some
tools still need some refinement, they have been used to design new co-cultures, gain
access to microbial metabolism and to suggest genetic interventions for increased
production [51, 70, 107–109].

1.6 Thesis objectives and outline

In this thesis I aim to i) gain understanding into principles of cellular metabolism
of C1-fixation, ii) guide experimental designs for the conversion of C1 substrates to
added-value chemicals by synthetic microbial communities, and iii) focus on strate-
gies to increase the production of even- and odd-chain medium-chain fatty-acids
(MCFAs) in these systems. To these ends, I assess the state-of-the-art of microbial C1
conversion and bioproduction, construct GEMs of individual species and commu-
nity GEMs of synthetic communities, validate those GEMs with experimental data,
and run simulations to guide new experimental designs. To achieve these objectives
I apply FBA, dFBA, flux sampling, constraint-based optimization algorithms, GEM
reconstruction tools and community modeling approaches and tools, that were also
evaluated.

In chapter 2, I (along with my co-workers) review the mechanisms of microbial
C1 conversion. We compare the energetic efficiency of the bioproduction of biomass
and products between the aerobic and anaerobic conversion of C1 feedstocks. We
also describe and compare the biomass, acetyl-CoA and pyruvate yield of the assim-
ilation of methanol and formate via natural and synthetic pathways using the core
model of E. coli and FBA. Finally, we discuss the challenges of using methanol and
formate as microbial feedstocks.

In chapter 3, chapter 4 and chapter 5 I describe how we follow a modular ap-
proach by assembling different combination of microbes to target the production of
even- and odd-chain products from syngas. First, a co-culture of an acetogen and
a chain elongator species was proven to produce even-chain fatty-acids (chapter 3,
chapter 5). Next, the incorporation of a propionate-producing species proved the
shift of products from even- to odd-chain fatty-acids (chapter 4, chapter 5).

In chapter 3, a community GEM of a co-culture of C. autoethanogenum and C.
kluyveri is constructed. Then the co-culture GEM is used to model the conversion
of syngas to even-chain fatty acids comparing with available chemostat data using
an expanded cFBA with Flux Sampling. This requires the scaling of specific fluxes
to environmental fluxes by the incorporation of the relative abundance (biomass
species ratio). The relative abundance are calculated from microscopic observations
and from RNAseq reads. I identify the effect of the relative abundance on the pro-
duction and consumption of cross-feeding metabolites. Finally, I identify strategies
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to optimize the production of MCFAs.
In chapter 4, I present the first GEM of the propionate producerA. neopropi-

onicum for its further incorporation in a community that targets the production of
odd-chain fatty acids. The GEM is validated with experimental data of growth ex-
periments on several substrates using Flux sampling and fermentation of ethanol
(+ acetate) in batch using dFBA. The GEM serves to clarify the mechanisms of the
acrylate pathway for propionate production. The annotation and construction of the
model served to identify key metabolic elements of this species and to understand
their role in the metabolism.

In chapter 5, I present the community GEMs of the acetogen Acetobacterium
wieringae JM andC. kluyveri, and ofA. wieringae JM,A. neopropionicum andC. kluyveri.
The assessment of these two communities (a co-culture and a tri-culture) shows the
shift of products from even- to odd-chain by the incorporation of A. neopropionicum.
I assess the feasibility of the communities at different species ratios and growth rates
with cFBA, and identify possible designs for the optimization of even- and odd-chain
fatty acids using cFBA with Flux Sampling. As the GEM of A. wieringae JM was not
available yet, I present the newly constructed model that was built using the GEM
of C. autoethanogenum as scaffold.

In chapter 6, modeling is used to design a community able to produce butyrate
from CO2 and H2. For this, I assess growth on single and a combination of two
carbon sources on the GEM of the solventogens C. beijerinckii and C. acetobutylicum
to choose the potential candidate to co-assimilate acetate using FBA. Batch exper-
iments confirm growth on the proposed candidates (acetate and glycerol/lactate)
in C. beijerinckii. Then, the feasibility of a co-culture of C. autoethanogenum and
C. beijerinckii on several combinations of species relative abundances, growth rates,
CO2/H2 ratios and lactate feed rates is assessed with cFBA with FBA and Flux sam-
pling. A wide range of conditions initially confirmed the feasibility of the co-culture
which was subsequently established. The co-culture produces mainly butyrate and
isobutyrate, a newly identified product.

In chapter 7, we highlight the potential of using community modeling for alter-
native processes and systems other than microbial C1 re-valorization. We assess the
state-of-the-art of available community modeling tools/approaches to model static,
dynamic and spatiotemporal environments. We qualitatively assess the tools and
approaches evaluating features that covered the FAIR principles. Additionally, we
quantitatively test top candidate tools/approaches in regard to their performance
in reproducing available experimental case studies of synthetic microbial commu-
nities in the three environments. We base our evaluation in small communities of
two species and tools that used GEMs and COBRA methods. Finally, we identify the
strengths, weaknesses and challenges of using these tools and suggest recommenda-
tions for future developments and improvements of the tools.
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Finally, in chapter 8, I discuss how these chapters contribute to meet the objec-
tives of this thesis and what aspects still need to be tackled. I highlight the potential
and challenges of using synthetic microbial communities for the upcycling of C1
feedstocks, as well as the ones pertaining to the use of GEMs and metabolic model-
ing of microbial communities, giving recommendations to address some limitations.
I assess the future perspectives of synthetic microbial communities, evaluate their
current status, and give recommendations for achieving their future scale-up.
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2.1 Abstract

Methanol and formate are attractive microbial feedstocks as they can be sustainably
produced from CO2 and renewable energy, are completely miscible, and are easy
to store and transport. Here, we provide a biochemical perspective on microbial
growth and bioproduction using these compounds. We show that anaerobic growth
of acetogens on methanol and formate is more efficient than on H2/CO2 or CO. We
analyze the aerobic C1 assimilation pathways and suggest that new-to-nature routes
could outperform their natural counterparts. We further discuss practical biopro-
cessing aspects related to growth on methanol and formate, including feedstock
toxicity. While challenges in realizing sustainable production from methanol and
formate still exist, the utilization of these feedstocks paves the way towards a truly
circular carbon economy.

2.2 Introduction

To expand the share of commodity and fine chemicals produced biologically, it is vi-
tal to identify alternative microbial feedstocks to replace sugars and agricultural
products, the use of which erodes food security and threatens biodiversity [110,
111]. One carbon (C1) compounds have recently gained attention as alternative
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feedstocks for microbial growth. These compounds are naturally abundant (e.g.,
methane [112]), cheap to produce (e.g., methanol from methane [113]), or available
as industrial by-products (e.g., carbon monoxide [114]). C1 compounds can also be
produced from CO2 and renewable energy, which is critical for the establishment of
a sustainable circular carbon economy. For example, carbon monoxide and formate
can be produced by electrochemical or photochemical reduction of CO2 [115, 116].
Also, H2, produced electrochemically and photochemically [117], can be reacted
with CO2 to generate formate [118], methanol [119], and methane [120].

Cultivation of microorganisms on C1 gases – methane, carbon monoxide, and
H2/CO2 – has been explored in numerous studies and reviewed elsewhere (e.g., [28,
112, 114, 121, 122]). However, all C1 gases suffer from the common challenge of low
water solubility, which limits mass transfer and thus microbial productivity [123,
124]. In contrast, formate andmethanol are completely miscible, bypassing the mass
transfer barrier and potentially supporting higher microbial productivities. Another
major advantage of these two compounds is that, unlike the C1 gases, they can be
easily stored and transported. This enables a spatial and temporal decoupling of the
abiotic feedstock production from the biotic feedstock consumption, an important
feature that serves to insulate microbial growth and bioproduction from fluctuations
in the availability of renewable energy.

Cultivation of microbes on methanol has already been extensively explored, both
scientifically and commercially [125]. Already 50 years ago industrial production of
microbial proteins from methanol was pursued to supply human and animal nutri-
tion [126]. However, until recently, the source of methanol was always considered
to be fossil methane rather than CO2. In contrast with methanol, formate has been
largely neglected as a potential industrial feedstock, due to its relatively high price.
The only exceptions were proposals to use formate as an auxiliary carbon source to
supplement the cell with reducing power and thus boost bioproduction [127]. With
developments in electrochemical, photochemical, and catalytic methods of generat-
ing formate, interest in its use as a microbial feedstock is rising [19, 128, 129].

In a recent study, we used experimentally measured growth parameters to cal-
culate the energetic efficiencies associated with the microbial conversion of different
carbon sources into biomass and products [130]. We showed that methanol and
formate outperform other C1 compounds as microbial feedstocks (Fig. 2.1). Specif-
ically, the energetic efficiency by which anaerobic acetogens convert methanol and
formate into a product is 80-90%, rather than 60-80%when cultivated on H2/CO2 or
carbon monoxide. Aerobically, the energetic efficiency of converting methanol and
formate into biomass can reach 50%, while for other C1 feedstocks it lies in a range
of 20-40%. The high efficiencies associated with microbial growth on the miscible
C1 compounds are key to their commercial use.

Here, we aim to provide an overview of microbial cultivation on methanol and
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Figure 2.1: Methanol and formate support higher energetic efficiencies under both aerobic
and anaerobic conditions. Rectangles represent the 25-75% percentile values as calculated
using experimentally measured values for mesophilic microorganisms (≤ 49◦C) as available
in ref. [130]. Energetic efficiency was calculated as the fraction of the combustion energy of
the substrate that is retained in the product (for acetogens) or biomass (for aerobic microbes).
Detailed explanation of the calculations is provided in ref. [130]
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formate. First, we discuss anaerobic growth of acetogens on these C1 compounds.
Next, we analyze aerobic microbial growth on methanol and formate, starting with
natural pathways and their variants and ending with synthetic pathways that might
enable more efficient growth and bioproduction. Finally, we discuss specific techni-
cal challenges associated with microbial cultivation on methanol and formate.

2.3 Anaerobic growth of acetogens onmethanol and for-
mate: hidden treasure?

Bioproduction with acetogens is thoroughly researched and commercially exploited
using gaseous C1 feedstocks, i.e., H2/CO2 and CO [131–133]. In contrast, only
a small number of acetogens have been tested for growth on methanol and for-
mate, which can be directly assimilated into the reductive acetyl-CoA pathway (Fig.
2.2). As compared to the gaseous feedstocks, the miscible carbon sources support
higher energetic efficiencies of bioproduction (Fig. 2.1) [130]. For example, in the
model acetogen Acetobacterium woodii, the energetic efficiency of acetate production
from methanol and formate is 89% [134, 135], considerably higher than 74% with
H2/CO2 [136].

Figure 2.2: Formate andmethanol are directly assimilated into the reductive acetyl-CoA path-
way. Acetogens can integrate the miscible C1 carbon sources in the reductive acetyl-CoA
pathway without the production of other metabolic intermediates, e.g., formaldehyde.
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While little data is available regarding the growth rate of acetogens on methanol
and formate, it seems to be in same range as for H2/CO2: 0.03-0.08 h-1 for formic
acid and 0.07-0.1 h-1 for methanol vs. 0.02-0.1 for H2/CO2 (Fig. 2.1) [130]. Similarly,
acetogenic growth on carbon monoxide and methanol are comparable (Fig. 2.1); for
example, the growth rate of Eubacterium limosum on methanol, 0.11 h-1 [137], is
close to that on carbon monoxide, 0.165 h-1 [138].

The toxicity of methanol and formate for acetogens has never been comprehen-
sively tested. Acetogens are commonly tested for growth on these feedstocks at
concentrations ranging between 10 mM and 100 mM. The maximal reported con-
centrations tested are ≈ 500 mM methanol and ≈ 150 mM formate [139]. At these
concentrations, methanol had some inhibitory effects on growth, whereas growth on
formate resulted in a long lag phase [139]. While the cause of these inhibitory ef-
fects remains elusive, it is important to emphasize that some of the major toxicities
associated with methanol and formate are completely avoided in acetogens. Specif-
ically, methanol is assimilated directly into the tetrahydrofolate system without the
formation of the highly reactive intermediate formaldehyde (Fig. 2.2), which is the
major cause of methanol toxicity in aerobic methanol assimilation [113]. Similarly,
anaerobic acetogens, which do not use respiratory proteins, avoid the toxic effects
associated with formate inhibition of cytochrome c oxidase [140].

One of the major barriers that limits the use of acetogens for bioproduction is
their highly restricted product spectrum [141], which, in many cases, requires chal-
lenging metabolic engineering to expand [121]. Exchanging the gaseous substrates
H2/CO2/COwithmethanol and formate could provide an easier way to broaden this
product spectrum. For example, E. limosum and Butyribacterium methylotrophicum
cultivated on methanol produce butyrate as a major product [142, 143]. A system-
atic characterization of how the product profile of acetogens shifts when gaseous
substrates are replaced with miscible ones is still missing. Once performed, such
analysis could point towards novel bioproduction opportunities with considerable
economic prospects.

2.4 Aerobic growth on methanol and formate: native
pathways and their variants

When compared with anaerobic conditions, cultivation of microorganisms with oxy-
gen decreases the energetic efficiency, but dramatically expands the product spec-
trum as it uncouples bioproduction from generation of cellular energy [130, 131].
Aerobic growth on methanol and formate is naturally supported by four metabolic
pathways: the Calvin Cycle, the Ribulose Monophosphate (RuMP) Cycle, the Dihy-
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droxyacetone (DHA) Cycle, and the Serine Cycle. Yet, as we discuss below, this count
might be misleading, as each of these pathways has several variants.

The Calvin Cycle is known to support growth on methanol and formate in mul-
tiple microbial lineages. In fact, aerobic growth on formate for biotechnological
purposes was mostly explored with microorganisms which employ the Calvin Cy-
cle, mainly Cupriavidus necator (formerly known as Ralstonia eutropha) [128, 144,
145]. However, the use of the Calvin Cycle for growth on either methanol or formate
is characterized by a low energetic efficiency of only 20-35% (Fig. 2.1). Two main
reasons explain this apparent inefficiency. First, as the physiological reduction po-
tential of NAD+ (-250 mV [146]) is considerably higher than that of CO2 to formate
or methanol (-420 mV and -400 mV), the complete oxidation of these C1 compounds
with NAD+ as an acceptor is energetically wasteful. Second, among the different car-
bon fixation pathways, the Calvin Cycle is one of the least energy efficient routes due
to its high ATP consumption [147].

The RuMP Cycle and the DHA Cycle, operating exclusively in bacteria or yeasts,
respectively, follow a similar metabolic strategy to enable methanol assimilation
(Fig. 2.3). In both routes, methanol is first oxidized to formaldehyde, which is then
condensed with a pentose phosphate to give metabolites that are reassimilated into
the pentose phosphate pathway (PPP), regenerating the initial substrate and pro-
viding fixed carbon for cell growth. The RuMP Cycle converts methanol to biomass
at a high energetic efficiency of 40-50%, while the DHA Cycle operates at a lower
efficiency of 30-35%. The RuMP Cycle also supports a significantly higher growth
rate than the DHA Cycle (Fig. 2.1). The higher efficiency of the bacterial RuMP
Cycle can be explained by a lower ATP cost for glyceraldehyde 3-phosphate (GAP)
formation (Fig. 3) and by the energetically wasteful oxidation of methanol with O2
by methylotrophic yeasts using the DHA Cycle.

The RuMP Cycle nicely demonstrates that a metabolic pathway does not nec-
essarily have a unique structural identity but rather represents a family of vari-
ants. The shared core of the RuMP Cycle consists of the enzymes 3-hexulose-6-
phosphate synthase and 6-phosphate-3-hexuloisomerase, which together convert
formaldehyde and ribulose 5-phosphate (Ru5P) to fructose 6-phosphate (F6P) (brown
arrows in Fig. 2.3 A-D). The fate of F6P, however, differs between microbial lineages.
In some microorganisms, F6P is metabolized via glycolysis and the non-oxidative
PPP to regenerate Ru5P (Fig. 2.3 A,B), while in others, F6P is channeled to the
Entner-Doudoroff (ED) pathway and Ru5P is subsequently regenerated from pyru-
vate and GAP (green arrows in Fig. 2.3 C,D). Another variation exists with regards
to the production of sedoheptulose 7-phosphate, which can either be generated via
the activity of a transaldolase (Fig. 2.3 A,C) or via the formation and dephospho-
rylation of sedoheptulose 1,7-bisphosphate (S17BP, blue arrows in Fig. 2.3 F,D).
Finally, the oxidation of methanol to formaldehyde can be supported either by an
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Figure 2.3: Natural pathways supporting the aerobic assimilation of methanol and formate
and their structural variants. (A-D) Different variants of the RuMP Cycle, where glycer-
aldehyde 3-phosphate is assumed to serve as biomass precursor. Methanol oxidation to
formaldehyde is supported by an NAD-dependent methanol dehydrogenase (‘N’) or by a
PQQ-dependent enzyme (‘Q’). Formate can potentially be reduced to formaldehyde via a
formyl-CoA intermediate. (E) The DHA Cycle, where methanol is oxidized to formaldehyde
via an O2-dependent methanol oxidase (‘O’). (F) Variants of the Serine Cycle. PQQ-dependent
methanol dehydrogenase (‘Q’) can be replaced with an NAD-dependent enzyme (‘N’) and
tetrahydromethanopterin (‘MPT’)-dependent formaldehyde oxidation can be replaced with
an NAD-dependent (‘N’), glutathione-dependent (‘G’) or mycothiol-dependent (‘M’) system.
Serine conversion to hydroxypyruvate can be replaced with deamination to pyruvate (green
arrows) and the formation and cleavage of malyl-CoA can be replaced with threonine biosyn-
thesis and degradation (blue arrows). Assimilation of acetyl-CoA to biomass can take place
either via the glyoxylate shunt or via the more efficient ethylmalonyl-CoA pathway. X1, X2
and X3 refer to the number of times a given reaction takes place in order to generate one
GAP molecule (general precursor for biomass production). ‘FBA’ corresponds to fructose 1,6-
bisphosphate aldolase; ‘TA’ to transaldolase; ‘SBP’ to sedoheptulose 1,7-bisphosphatase; ‘ED’
to Entner–Doudoroff pathway.
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NAD-dependent enzyme or by a pyrroloquinoline quinone (PQQ)-dependent dehy-
drogenase [148].

Bioproduction frommethanol via the RuMPCycle has been exploredmostly with
the thermophile Bacillus methanolicus [113]. However, as genetic tools for the engi-
neering of B. methanolicus and other methylotrophs that use the RuMP Cycle are
limited, their use in biotechnology is restricted. To address this problem, several
research groups are attempting to introduce the RuMP Cycle into biotechnologi-
cal production hosts such as Escherichia coli and Corynebacterium glutamicum [149–
153]. None of the attempts have so far been successful in establishing growth on
methanol as sole carbon source. Yet, the combination of different strategies such as
modular pathway engineering, growth-coupled selection for pathway activity, and
adaptive laboratory evolution could pave the way towards synthetic methylotrophy
in the near future [63, 154–156]. Bioproduction usingmethylotrophic yeasts that use
the DHA Cycle, e.g., Pichia pastoris and Hansenula polymorpha, has been performed
on industrial scale and mostly focused on the production of biomass, single-cell-
protein, and, more recently, heterologous protein, while the production of smaller
compounds is largely unexplored [157]. One study has attempted to introduce the
DHA Cycle into the non-methylotrophic yeast Saccharomyces cerevisiae, but growth
on methanol as sole carbon source was not demonstrated [158].

The RuMP Cycle and DHA Cycle could potentially support growth on formate
if it could be reduced to formaldehyde in vivo. Such reduction was previously pro-
posed, relying on the promiscuous activity of an acetyl-CoA synthetase which ligates
CoA to formate to generate formyl-CoA and an (acetylating) acetaldehyde dehydro-
genase which reduces formyl-CoA to formaldehyde [34, 129]. While the rate of these
reactions is currently very low [129], it could be improved via enzyme engineering,
allowing for the establishment of formate assimilation via the RuMP Cycle or the
DHA Cycle. The Serine Cycle offers a completely different metabolic architecture
to support the direct assimilation of both methanol and formate into cellular me-
tabolism (Fig. 2.3F). Within this pathway, methanol is oxidized to formaldehyde
by a PQQ-dependent enzyme, while formaldehyde is oxidized to formate via the
tetrahydromethanopterin system [148]. These canonical oxidation routes could po-
tentially be replaced with alternatives. PQQ-dependent methanol dehydrogenase
might be exchanged with an NAD-dependent enzyme, which conserves more energy
and hence could support higher yields. The tetrahydromethanopterin system might
be replaced with a glutathione-dependent or mycothiol-dependent formaldehyde
oxidation, or even with an NAD-dependent formaldehyde dehydrogenase [159]. For
example, the introduction of a glutathione-dependent formaldehyde oxidation route
from Paracoccus denitrificans enabledMethylobacterium extorquens to grow on metha-
nol after the deletion of the endogenous tetrahydromethanopterin system [160].

The canonical structure of the Serine Cycle (black arrows in Fig. 2.3F) is con-
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served in all microorganisms that use this pathway. Yet, alternative synthetic vari-
ants that might be more suitable for implementation in non-methylotrophic biotech-
nological hosts have been suggested and at least partially demonstrated. For exam-
ple, to bypass the formation of the highly reactive intermediate hydroxypyruvate
[161], serine deamination to pyruvate was suggested and recently demonstrated in
E. coli (green arrows in Fig. 2.3F) [34, 162]. Also, as the introduction of malyl-
CoA synthetase and lyase could disrupt flux via the TCA Cycle, it was suggested
that glycine could be regenerated via threonine biosynthesis and degradation (blue
arrows in Fig. 2.3F) [34]. Indeed, glycine produced in this way was shown to be
condensed with formate-derived 5,10-methylene-THF to generate serine in E. coli
[163]. The product of the Serine Cycle, acetyl-CoA, can be assimilated via either the
glyoxylate shunt or via the more energetically efficient ethylmalonyl-CoA pathway
[148]. The replacement of the latter with the former was recently demonstrated in
M. extorquens [164].

Microorganisms that use the Serine Cycle have been explored formultiple biotech-
nological applications, including high titers of the biopolymer polyhydroxybutyrate
[165]. The development of versatile genetic tools (e.g., [166]) has enabled consider-
able expansion of the product spectrum with methanol as a feedstock; however for
most products only low yields and titers have been achieved [113, 167–170].

2.5 Aerobic growth onmethanol and formate: synthetic
pathways

All naturally occurring aerobic methanol and formate assimilation pathways are
cyclic and heavily overlap with microbial core metabolism (i.e., pentose phosphate
pathway, glycolysis, and TCA Cycle). This makes their implementation in non-
methylotrophic hosts highly challenging, as it requires the establishment of a deli-
cate balance between the high fluxes expected within the pathway with those that
diverge from and converge into the pathway [171]. In contrast, the introduction of
a linear C1 assimilation pathway should be much simpler to achieve. Indeed, two
synthetic, linear methanol and formate assimilation routes – the reductive glycine
(rGly) pathway and the formolase pathway – have been suggested and at least par-
tially demonstrated.

The rGly pathway was designed as an aerobic analogue to the anaerobic reduc-
tive acetyl-CoA pathway [172]. It consists of naturally occurring, ubiquitous en-
zymes but is not known to support aerobic growth on methanol or formate in nature
(although recently suggested to support growth under anaerobic conditions [173]).
The core of the rGly pathway includes the condensation of formate with THF and
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Figure 2.4: Synthetic methanol and formate assimilation pathways and their structural vari-
ants. (A) Variants of the reductive glycine pathway. Methanol can be oxidized to formalde-
hyde via an NAD-dependent (‘N’), PQQ-dependent (‘Q’), or O2-dependent (‘O’) enzyme.
Glycine can be converted to serine and then assimilated via deamination to pyruvate or con-
version to glycerate (blue arrows). Glycine can also be converted to glyoxylate via a transam-
inase enzyme (‘T’) or an O2-dependent oxidase enzyme (‘O’). (B) Variants of the formolase
pathway. Methanol can be oxidized to formaldehyde via an NAD-dependent (‘N’), PQQ-
dependent (‘Q’) or O2-dependent (‘O’) enzyme. Formate can be reduced to formaldehyde via
a formyl-CoA intermediate. Formaldehyde is condensed either to dihydroxyacetone (DHA,
green arrows) or to glycolaldehyde. This latter intermediate can be assimilated via oxidation
to glyoxylate using native enzymes, or via its conversion to acetyl phosphate using a repur-
posed phosphoketolase enzyme [178].

reduction to 5,10-methylene-THF (as in the Serine Cycle or the reductive acetyl-CoA
pathway), followed by condensation of the latter metabolite with CO2 and ammonia
to produce glycine (Fig. 2.4A). This last transformation is catalyzed by the reversible
glycine cleavage/synthase system (GCS) [174–176]. Within the initial design of the
rGly pathway, glycine is condensed with another 5,10-methylene-THF to give ser-
ine, which is then deaminated to pyruvate to serve as a biomass precursor [172].
Biosynthesis of glycine and serine from formate via the rGly pathway was recently
demonstrated in E. coli [44, 177]. In yeast, so far only production of glycine via the
pathway was shown [48].

Other variants of the rGly pathway are possible and might be preferred under
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some conditions (Fig. 2.4A). First, instead of deamination of serine, this amino acid
can be assimilated into central metabolism as in the Serine Cycle, i.e., transamination
to generate hydroxypyruvate (using, e.g., pyruvate as an amine acceptor [179]), fol-
lowed by reduction to glycerate and phosphorylation to 2-phosphoglycerate. While
relying on the highly reactive intermediate hydroxypyruvate, this route is more en-
ergetically efficient as it does not require the activity of energy-wasteful PEP syn-
thase (which consumes two ATP equivalents per activation of pyruvate). Second,
glycine can be assimilated into central metabolism without being converted to ser-
ine. Deamination of glycine to glyoxylate can be followed by self-condensation to
generate tartronate semialdehyde which is then reduced to glycerate and phosphory-
lated to 2-phosphoglycerate (Fig. 2.4A). This deamination can be catalyzed either by
a transaminase (using, e.g., 2-ketoglutarate as an acceptor [180]) or using an oxidase
enzyme (e.g., [181]). While the latter enzyme is energetically wasteful, dissipating
reducing power, its main advantage is its irreversibility, pulling formate assimilation
towards glycine biosynthesis.

Another synthetic, linear C1 assimilation pathway was based on an engineered
formolase enzyme, which condenses three formaldehyde molecules to generate di-
hydroxyacetone which is assimilated into central metabolism via phosphorylation
to dihydroxyacetone phosphate [129]. This pathway can potentially support growth
on methanol which is oxidized to formaldehyde [182] or on formate which is con-
verted to formaldehyde via the generation and reduction of a formyl-CoA interme-
diate [129] (Fig. 2.4B). At lower formaldehyde concentrations, the formolase enzyme
condenses two formaldehyde moieties instead of three, giving rise to glycolaldehyde
[178, 183]. Glycolaldehyde can enter central metabolism using natural enzymes that
catalyze its oxidation to glyoxylate, which is subsequently assimilated as described
above (Fig. 2.4B). Alternatively, a recent study has demonstrated the use of the en-
zyme phosphoketolase to catalyze the conversion of glycolaldehyde to acetyl phos-
phate [80]. This option is especially useful for the production of compounds that
directly originate from acetyl-CoA, as it bypasses the decarboxylation of pyruvate.
Although all of the required enzyme activities have been demonstrated in vitro, the
in vivo activity of the formolase pathway is highly constrained due to poor kinetics
of the formolase enzyme [178].

2.6 Yields of aerobic assimilation of methanol and for-
mate

To gain a deeper perspective on the yields expected with methanol and formate as
feedstocks under aerobic conditions, we performed Flux Balance Analysis (FBA) [86]
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using the core metabolic model of E. coli [184] to which we added the reactions of
each assimilation pathway. We used a core model, rather than a genome scale one
– including only the primary metabolic routes of the pentose phosphate pathway,
glycolysis, and the TCA Cycle – as this provides a general platform to compare dif-
ferent routes without being overly specific to E. coli’s metabolism. We considered all
the pathway variants described above and calculated the maximal biomass yields, as
well as the maximal yields of acetyl-CoA and pyruvate, which serve as precursors
in the biosynthesis of many value-added chemicals. The results are shown in Fig.
2.5. We tested, for each pathway, three different electron acceptors for methanol
oxidation, which are displayed together: light shading corresponds to oxygen, inter-
mediate shading to quinone, and dark shading to NAD+. This enabled us to better
compare the pathways, even if naturally they use different electron acceptors.

First, we compared the predicted biomass yields to experimental values [130]
which are shown in thick short lines to the left of the corresponding bars in Fig.
2.5. As expected, in most cases, the experimentally measured yields are similar to
and somewhat lower than the predicted maximal yields. Surprisingly, the measured
biomass yield for growth on formate via the Serine Cycle is substantially higher than
the predicted yield. This could be explained by noting that the stoichiometry of cen-
tral metabolism intermediates in the biomass function (of the core metabolic model)
is dictated by the specific biosynthesis pathways in E. coli and their precursors. If na-
tive methylotrophs use different biosynthetic routes – e.g., to optimize growth yield
on formate – their biomass function would differ from that of E. coli. This could lead
to the observed yield mismatch.

Methanol is a highly reduced carbon source, more reduced (per carbon) than glu-
cose or other canonical carbon sources. It is also more reduced than biomass. As a
result, growth on methanol can generate considerably more reducing power than
needed for biomass, energy (ATP production), and also bioproduction. In this case,
excess electrons are channeled to the respiratory chain and dissipated wastefully.
The more electrons are ‘dissipated’ this way the more the potential yield decreases.
For example, the RuMPCycle is expected to lead to higher electron overflow than the
Serine Cycle and the rGly pathway, as the latter two fix and reduce CO2 which serves
as an electron sink. Hence, while the RuMP Cycle supports considerably higher
biomass yield, the Serine Cycle and the rGly pathway outperform it for the produc-
tion of the relatively oxidized acetyl-CoA and pyruvate (Fig. 2.5A). To systematically
assess which methanol assimilation pathway is likely to lead to futile electron respi-
ration, we added to the metabolic model of E. coli a reaction which dissipates excess
reducing power. We found this reaction to carry positive flux when we used FBA to
maximize methanol conversion to acetyl-CoA and pyruvate using the RuMP Cycle,
the DHA Cycle, the rGly pathway, and formolase pathway (marked with a ‘*’ sign
above the respective bars in Fig. 2.5), indicating that these routes are most likely to
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Figure 2.5: Predicted biomass and product yields using different variants of the aerobic
methanol and formate assimilation pathways. We calculated yields by performing Flux Bal-
ance Analysis. Reactions of the specified assimilation pathways — illustrated in Fig. 2.3 —
were added to the core metabolic model of E. coli. (a) Methanol as feedstock. Different shades
correspond to the use of different electron acceptors for methanol oxidation: light shading
corresponds to oxygen, intermediate shading to quinone, and dark shading to NAD. The ‘*’
sign corresponds to cases where methanol oxidation produces excess reducing power, as in-
dicated by positive flux via an arbitrary NADH dissipation reaction. Dashed bars correspond
to the addition of a phosphoketolase reaction (xylulose 5-phosphate + Pi → glyceraldehyde
3-phosphate + acetyl phosphate) to the model. 27



suffer from reduced yield for the production of relatively oxidized compounds.
The yield of acetyl-CoA from methanol can be increased when the enzyme phos-

phoketolase (PKT) is introduced into the cell [185]. PKT cleaves phospho-ketosugars
into acetyl-phosphate and a corresponding phospho-aldosugar [186]. Therefore,
PKT enables the conversion of RuMP Cycle intermediates into acetyl-CoA while by-
passing glycolytic carbon loss (via pyruvate dehydrogenase). Indeed, as shown in
Fig. 2.5, the predicted maximal yield of acetyl-CoA via the RuMP Cycle increases by
50% when PKT is added to the model (dashed bars).

Growth and bioproduction with formate, a much less reduced feedstock than
methanol, does not lead to the formation of excess reducing power. Hence, the dif-
ferences in biomass yield between the formate assimilation pathways are roughly
mirrored in the acetyl-CoA and pyruvate yields and are mostly related to differ-
ences in ATP requirement (Fig. 2.5B). We assumed that formate assimilation via the
RuMP Cycle, DHA Cycle, and the formolase pathway proceeds via the reduction of
formate to formaldehyde [129]. However, as this reduction is energetically costly –
hydrolyzing ATP for the activation of formate to formyl-CoA – the yields associated
with these pathways are generally lower than those of pathways that do not depend
on formate reduction (Fig. 2.5B).

Overall, the RuMP Cycle seems to be less attractive for assimilation of methanol
and formate than might be expected, while the Serine Cycle seems to provide an
underappreciated alternative. Still, a marked advantage of the RuMP Cycle is that
is supports higher growth rates than the Serine Cycle (Fig. 2.1). The most flexi-
ble pathway seems to be the reductive glycine pathway, which supports the highest
yields of biomass, acetyl-CoA, and pyruvate with formate as a carbon source as well
as the highest yields of acetyl-CoA and pyruvate with methanol as a feedstock.

2.7 Practical aspects of using methanol and formate as
microbial feedstocks

Currently, for economic reasons, most industrial-scale fermentations are supplied
with a locally available source of bulk sugar (starch hydrolysate, cane molasses,
etc.). However, such complex raw materials vary in composition from one batch
to another, which can severely disrupt bioproduction (e.g., [187]). In contrast, C1
compounds, such as methanol and formate, can be used as carbon sources with in-
expensive, defined media and simple nitrogen sources such as ammonia. The use
of mineral (i.e., minimal) media significantly reduces downstream processing costs
and reduces variation in bioprocess conditions. Moreover, C1 compounds, particu-
larly methanol, can be used in seawater-based media [113, 188] and for wastewater
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remediation [189, 190], which serve to emphasize its versatility as a microbial feed-
stock.

The use of methanol and formate as microbial feedstocks comes with several
challenges. One of which is specific to methanol. Under aerobic conditions, growth
on the highly reduced methanol greatly benefits from the supply of pure oxygen to
the culture in order to provide a strong electron sink and avoid growth limitation
at high cell densities [191]. This results in considerable heat production. To avoid a
deleterious rise in temperature, expensive cooling is needed. It has been suggested
that reducing the oxidative capacity of methylotrophs and diverting reducing power
towards anaplerotic metabolism could help address this issue [125]. Alternatively,
the use of thermophilic methylotrophs, e.g., Bacillus methanolicus that grow at max-
imal rate at 50°C [192], can reduce the cooling burden.

A problem that methanol and formate share is their cellular toxicity. As men-
tioned above, the primary cause of methanol toxicity under aerobic conditions is the
high reactivity of the intermediate formaldehyde [193] that can cross-link and inac-
tivate proteins and other macromolecules. The threshold concentration from which
methanol starts to inhibit growth changes between microorganisms but 0.5-2% (v/v,
i.e., 150-600 mM) seems to be an optimal concentration range while growth seems
to be completely inhibited at 4-6% (v/v, i.e., 1.2-1.9 M) [194–196].

Formate toxicity is attributed to inhibition of the respiratory cytochromes [140]
and may be exacerbated by the diffusion of the protonated acid across the cell mem-
brane, which acidifies the cytoplasm and reduces the proton motive force [197]. The
threshold concentration of formate above which growth is inhibited seems to be, at
least to some extent, affected by the activity of formate dehydrogenase. Microor-
ganisms that endogenously have only weak formate dehydrogenase activity, e.g., as
E. coli [198], show severe growth impairment at formate concentrations below 100
mM [199], while those with highly active formate dehydrogenase, e.g., yeasts [200,
201], can tolerate and even benefit from concentrations of hundreds of mM. Still,
some microorganisms that can grow on formate via the Calvin Cycle, and thus ex-
hibit considerable formate dehydrogenase activity, seem to be quite sensitive to this
compound, e.g., Thiobacillus strain A1 [202] and Thiobacillus ferrooxidans [203]. Fed-
batch or continuous cultivation modes provide the best solutions for microbial cul-
tivation on methanol and formate, maximizing product titer and productivity while
minimizing the toxicity problem [130]. Nonetheless, within large bioreactors, in
which the culture is more difficult to mix, local high concentrations of the feedstock
might develop which could severely disrupt growth and bioproduction. To address
this problem, large-scale designs sometimes use a system of distributed sparging.
For example, the process developed by Imperial Chemical Industries avoided toxic
local concentrations of methanol by using 3,000 outlets in the reactor [204, 205]. Fi-
nally, we note that the positive aspect of cultivating microorganisms on a somewhat
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toxic feedstock is that the possibility of contamination by other organisms is much
reduced.

2.8 Concluding remarks

A bioeconomy based on C1 compounds was previously championed as a solution to
the grand challenges facing the latter part of the 20th century: food shortages, energy
crises, and unsustainable production. These efforts were constrained by technologi-
cal and economic factors that have changed considerably in the last decades. In the
first half of the 21st century, we face the same problems with more urgency. For-
tunately, research into the sustainable production of C1 compounds from CO2 and
renewable energy may soon provide technically and economically viable solutions.
In this new landscape, methanol and formate could have transformative potential
for bioindustry.

Methanol and formate can be assimilated into central metabolism using various
metabolic routes. Anaerobic bioproduction with these feedstocks, while currently
neglected, is highly promising for a specific set of products, such as ethanol, acetone,
isopropanol, and short-to-medium chain fatty acids. Production of other molecules
requires aerobic conditions which decouple biosynthesis from energy conservation.
While naturally occurring methylotrophic microorganisms can support such bio-
production, they are mostly limited by either low efficiency pathways (e.g., Calvin
Cycle) or by the lack of genetic tools for metabolic engineering (e.g., methylotrophs
that use the RuMP Cycle). Engineering model biotechnological microorganisms to
grow on methanol and formate is thus becoming an attractive alternative. Such ef-
forts rely either on the introduction of existing pathways (e.g., RuMP Cycle) into
non-methylotrophic hosts or on the design and implementation of new-to-nature
routes. Our analysis suggests that the synthetic pathways, and especially the rGly
pathway, might support higher bioproduction yield than the native ones, thus serv-
ing as good target for implementation in various microorganisms.

It is important to emphasize that yield is not the only important factor to consider
when comparing different pathways or pathway variants. Pathway kinetics is as
important. For example, while the formolase pathway can support high yields, the
low rate of its key enzymes makes this route less attractive. The complexity of the
engineering task is also very important: cyclic pathways that strongly interact with
core metabolism are very challenging to implement, while establishing linear routes
that operate in a more peripheral part of cellular metabolism may be more feasible.
Finally, different pathways and pathway variantsmight bemore suitable for different
products. For example, production of oxidized products from methanol is better
supported by pathways which also fix CO2 (e.g., Serine Cycle or rGly pathway) than
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pathways which rely solely on methanol as a carbon source (e.g., RuMP Cycle).
Establishing industrial bioprocesses that use methanol and formate as feedstocks

presents specific challenges such as overheating and feedstock toxicity. Solving these
issues is vital for further development of the field. Still, the advantages of using these
feedstocks – production from CO2 and renewable energy, miscibility that bypasses
mass transfer barriers, easy storage and transport – suggest that further development
of bioprocessing strategies with methanol and formate feedstocks could enable the
emergence of a truly sustainable bioeconomy.
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3.1 Abstract

Microbial fermentation of synthesis gas (syngas) is becoming more attractive for sus-
tainable production of commodity chemicals. To date, syngas fermentation focuses
mainly on the use of Clostridium species for the production of small organic mole-
cules such as ethanol and acetate. The co-cultivation of syngas-fermenting microor-
ganisms with chain-elongating bacteria can expand the range of possible products,
allowing, for instance, the production of medium-chain fatty acids (MCFA) and al-
cohols from syngas. To explore these possibilities, we report herein a genome-scale,
constraint-based metabolic model to describe growth of a co-culture of Clostridium
autoethanogenum and Clostridium kluyveri on syngas for the production of valuable
compounds. Community flux balance analysis was used to gain insight into the me-
tabolism of the two strains and their interactions, and to reveal potential strategies
enabling production of butyrate and hexanoate.

33



The model suggests that one strategy to optimize the production of medium-chain
fatty-acids from syngas would be the addition of succinate. According to the pre-
diction, addition of succinate would increase the pool of crotonyl-CoA and the etha-
nol/acetate uptake ratio in C. kluyveri, resulting in a flux of up to 60% of electrons
into hexanoate. Another potential way to further optimize butyrate and hexanoate
production would be an increase of C. autoethanogenum ethanol production. Block-
ing either acetaldehyde dehydrogenase or formate dehydrogenase (ferredoxin) ac-
tivity or formate transport, in the C. autoethanogenummetabolic model could poten-
tially lead to an up to 150% increase in ethanol production.

3.2 Introduction

One of the biggest challenges society faces nowadays is finding alternative processes
for the sustainable production of fuels and chemicals. At present, the production of
many commodities depends on fossil fuels, which is not sustainable or sugar crops,
competing with human and animal food consumption [206]. To circumvent this, cir-
cular approaches are required, such as the conversion of lignocellulosic biomass or
municipal waste as feedstocks to fuels and chemicals [207]. Although lignocellulosic
biomass has been identified as a promising source for renewable energy and carbon
[208], current technologies involving hydrolysis of this substrate result in a complex
mixture of compounds that need further separation and individual processing [14].
However, gasification of these rigid materials allows for the conversion of the car-
bon in the original source to synthesis gas (syngas), consisting mainly of CO, H2 and
CO2. This energy-rich syngas can be further used as feedstock for chemocatalytic
processes such as Fischer-Tropsh, but microbial fermentation of syngas is gaining
more attention recently as a potential production platform [27, 28]. Compared to
chemical catalysts, microorganisms are more robust to variations of CO/H2 ratio in
syngas, and are also more resistant to the presence of certain impurities (e.g. sul-
fides), reducing the need for costly pre-treatment of syngas [27].

Acetogenic clostridia are efficient microbial hosts for syngas fermentation as they
can grow on CO and CO/H2 via the Wood–Ljungdahl pathway [209]. However, the
natural product range of most acetogens is limited to a mixture of acetate and etha-
nol [210]. Co-cultivation of a syngas-fermenting organism with other organisms
(that use the primary products of syngas fermentation) can be used to extend the
range of possible products. Previously, a co-culture of Clostridium autoethanogenum
andClostridium kluyveriwas described to producemedium-chain fatty acids (C4-C6)
and their respective alcohols by assimilation of CO or syngas [64, 68]. C. autoethano-
genum is an acetogenic bacterium able to produce acetate and ethanol when grow-
ing on CO or syngas [211]. C. kluyveri grows on acetate and ethanol via reverse-β-
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oxidation, producing chain-elongated acids like butyrate and hexanoate. When C.
kluyveri is grown in co-culture with C. autoethanogenum on CO, it produces butyrate
and hexanoate, which are further reduced by the acetogen to the corresponding al-
cohols, butanol and hexanol [64]. MCFA are used to produce pharmaceutical and
personal care products, animal feed additives and lubricants, among other, and can
be converted chemically or enzymatically into valuable biofuel molecules such as
methyl esters, methyl ketones, alkenes and alkanes [212, 213]. The theoretical max-
imum yield of hexanoate production in a co-culture of C. autoethanogenum and C.
kluyveri is 0.056 mmol of hexanoate per mmol of CO, whereas the yield obtained in
the most recent study [68] was 0.009 mmol hexanoate per mmol of CO, so there is
substantial room for improvement and new strategies need to be developed.

Genome-scale, constraint-based metabolic models (GEMs) attempt to represent
the complete set of reactions in a living organism, and have been used to gain better
understanding of cellular metabolism, assessing theoretical capabilities or designing
media and processes [72]. GEMs can be used to link the microbial consumption and
production rates with cellular growth rates. Moreover, they enable linking these
phenotypes with the genome content of the studied organisms and with internal
phenotypes, such as metabolic fluxes that are usually difficult to measure experi-
mentally. GEMs and their analysis with constraint-based techniques, such as flux
balance analysis (FBA) for the calculation of steady-states, have been proven effec-
tive tools to devise strategies for increasing productivity of microbial fermentation
processes [72, 86, 214]. Specifically, GEMs have been used to further understand the
metabolism of clostridia. For instance, the GEM of Clostridium thermocellum allowed
the design of metabolic strategies to increase ethanol production after identifica-
tion of bottlenecks in central carbon metabolism that were inhibiting its production
[215]. Stolyar and collaborators [216], generated a multi-species GEM by combining
the GEMs of bacterium Desulfovibrio and archeonMethanococcus maripaludis S2 into
a single model with a shared extracellular environment, bringing the use of GEMs
to a next level. Since then, this type of community models have been used to de-
scribe metabolic interactions among community members and inter-species fluxes
[217]. Li and Henson [218], recently used GEMs to compare mono-culture and
co-culture systems to produce butyrate from carbon monoxide. They applied dy-
namic flux balance analysis (dFBA) [90] to analyze a community GEM to cover the
changes in community composition over time and to assess the relative performance
of these mixed cultures. The availability of GEMs for C. autoethanogenum [219] and
C. kluyveri [220], enables the use of community modeling as a potential method to
help optimizing the performance of this co-culture for syngas fermentation to elon-
gated acids and alcohols.

In this study, we present a multi-species model built by combining the GEMs
of C. autoethanogenum [219] and C. kluyveri [220]. The model accounts for exper-
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imental measurements informing on relative species abundances and steady-state
production rates of syngas fermentation products obtained in chemostat runs under
different conditions for mono-culture and co-culture [68]. In order to test the model,
experimental values were introduced as environmental constraints by employing
community flux balance analysis (cFBA) [217, 221]. cFBA implicitly assumes equal
abundances of the species when exchange fluxes are expressed on a per gDW basis.
To circumvent this, and considering that in microbial communities different species
can have distinct abundances, we have scaled fluxes by volumes in this study. Addi-
tionally, cFBA also assumes equal growth rates of the members of the community. In
the current analysis of a co-culture in a chemostat, equal growth rates are achieved
as the dilution rate ensures same growth rate for each organism [222]. Subsequently,
the model was used to identify and assess strategies to optimize desired products,
specifically butyrate and hexanoate.

3.3 Materials and methods

3.3.1 GEMs of C.autoethanogenum and C. kluyveri

To represent the metabolism of C. autoethanogenum, the previously described GEM,
iCLAU786 , was retrieved in SBML (XML) format from the supplementary material
provided by Valgepea et al. [219]. This model was amended with an exchange reac-
tion to simulate acetate uptake when this is used as additional substrate (EX_AC_c).
eQUILIBRATOR [223] was used to manually verify reaction directionality: Gibbs
energy released (∆G) at pH 7.0 and ionic strength (0.1M) was computed. Reactions
with ∆G ∈ [−30,30] kJ/mol were considered reversible.

The GEM of C.kluyveri, iCKL708, was downloaded in table format from its pub-
lication [220]. An additional reaction was added to excrete biomass, which was first
included as new metabolite and as additional product in the biomass reaction BOF.
Minor changes were applied affecting the reversibility of few reactions and addition
of protons. Pyruvate synthase (Rckl119) was set to non-reversible in the direction
of pyruvate production [224, 225]. Pyruvate formate lyase (PFL) was set to non-
reversible, allowing only the production of formate and acetyl-CoA. Protons were
added in the exchange of heptanoate reaction (Rckl870). eQUILIBRATOR [226] was
used to manually verify reaction directionality as in previous model. The updated
model was converted to SBML level 3 version 1 standardization [227].
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3.3.2 Multi-species GEM reconstruction

The multi-species GEM of C. autoethanogenum and C. kluyveri was generated by
combination of single species models: iCLAU786 [219] and the updated version of
iCKL708 [220], respectively, following a compartmentalized approach [216] were
each species is considered a single compartment. Therefore, we consider two inter-
nal compartments: ‘cytosol_auto’ and ‘cytosol_kluy’, with ‘c’ and ‘ck’ as their re-
spective identifier (id). Intracellular metabolites were assigned to their correspond-
ing compartment and the flag ‘_c’ was added to the id of metabolites belonging to
‘cytosol_auto’ and ‘_ck’ to those belonging to ‘cytosol_kluy’. In addition to these
two internal compartments, the model has an extracellular compartment that is
unique for both species. To achieve this, all metabolites that were defined as ex-
tracellular (‘_e’) in its original models, will be defined in the common extracellular
compartment of the community model, id: ‘_e’. As some metabolites will appear
in both species, names need to be unified and corrected to have the same nam-
ing system (namespace). Metabolites that are shared between species, will be ex-
changed through this extracellular compartment, being first transported from the
corresponding intracellular compartment to the extracellular compartment, or vice
versa. In principle, all metabolites that are present in both internal compartments
and are defined in the extracellular compartment, can be exchanged, being the di-
rectionality of the associated reactions favorable to produce the exchange. However,
some dependencies have been assumed in the model based on experimental evi-
dences.

Each species has its own biomass synthesis reaction. An extra biomass metabo-
lite was created and defined in the extracellular compartment for each species:
‘BIOMASS_c_e’ and ‘BIOMASS_ck_e’. In addition, two extra reactions were added
for each species, one to transport biomass from the intracellular to the extracellu-
lar compartment, and a second one to excrete biomass (exchange reaction). A re-
action was included to distinguish the amount of H2 excreted by C. kluyveri, from
the amount of H2 metabolized by C. autoethanogenum. The same was done for ac-
etate. A reaction was included to distinguish the amount of acetate metabolized by
C. autoethanogenum, from the amount of acetate produced by C. autoethanogenum.
The model also contemplates the possible production of butanol and hexanol via
butyrate and hexanoate uptake by C. autoethanogenum. The added reactions are a
transport reaction from the external compartment to the internal compartment of
C. autoethanogenum, reactions for production of butyraldehyde and caproaldehyde
from the corresponding fatty-acids and reactions for production of alcohols from
their corresponding aldehydes. Finally, the multi-species model was transformed
into SBML level 3 version 1 (see supplementary material).
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3.3.3 Multi-species modeling framework

In order to model the community, we have followed an approach similar to the one
proposed by SteadyCom [228] and that is based on community FBA (cFBA) [221].
Environmental fluxes (mmol L−1 h−1) are integrated as model constraints instead
of specific fluxes (mmol gDW−1 h−1), where gDW indicates grams of dry weight.
The biomass reaction of each species incorporates as new term, the biomass of the
relative species together with the growth rate term. In this way, we can account
for species abundance in the community. The biomass of each species is calculated
based on the community biomass and the species ratio. In addition to this, steady-
state and equal growth rate of species are assumed.

3.3.4 Calculation of species abundances

The ratio between C. autoethanogenum and C. kluyveri in co-culture, was estimated
from partitioning RNAseq reads and confirmed via cell counting in microscopy ob-
servations as two independent methods. Transcriptomic data was obtained from
steady-state co-cultures grown in chemostats [68]. The Genomes of C. autoethanoge-
num: DSM 10061 (GCA_000484505.1) [229] and C. kluyveri: DSM 555
(GCA_000016505.1) [230] were retrieved from the European Nucleotide Archive.
The genomes have similar size with sequence length 4.352.205 and 4.023.800, re-
spectively [231]. Reads were mapped to each genome using BWA-SW (Burrows
Wheeler Aligner) [232] and the ratio was calculated based on the amount of reads
associated to each species.

The second method consisted of direct cell counting under microscopy obser-
vations. This led to a proportion between cell numbers of 10 C.autoethanogenum
by 1 C. kluyveri. This proportion was considered to calculate the accumulated dry
weight. To calculate the respective dry weights, the cellular volume of each species
was calculated based on their average size. C. autoethanogenum is a rod-shaped bac-
terium with an average size of 0.5 x 3.2 µm [211] and C. kluyveri cells are curved
rods, with average size of 12.5 µm in length and 1.5 µm in width [233]. Cell volume
was calculated following a previously proposed formula for rod-shaped cells [234]:
V = [(w2 ·π/4) · (l−w)]+(π ·w3/6)], with l and w indicating length and width, respec-
tively. The associated dry weight (DW) was then derived using: DW = 435 · V 0.86

[234]. Then, the dry weight of C. autoethanogenum was multiplied by 10 and the
dry weight of C. kluyveri was multiplied by 1 (as the observed proportion). Finally,
the biomass-species ratio was calculated based on the ratio of the accumulated dry
weights. The proportion was observed to be constant among experimental condi-
tions with CO and CO/H2, so we assume that the relative abundances are constant
for the rest of conditions too.
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3.3.5 Use of experimental values to constrain the model.

Experimental measurements were converted to mmol L−1 h−1. Product concentra-
tions, measured in mM, were used to compute product secretion rates (mmol L−1

h−1) by using the same hydraulic retention time (HRT) that in laboratory settings.
Dilution rate is the inverse of the HRT. In steady-state conditions, growth rate is
considered equal to the dilution rate and therefore, it was calculated as the inverse
of the HRT and expressed in h−1. In co-culture, growth rate of both species was
assumed to be the same and equal to that of the community, since HRT was kept
constant both, in mono-culture and co-culture experiments [222]. We have followed
the usual convention in constraint-based modeling, so that uptake is represented
by negative fluxes whereas production corresponds to positive fluxes. To model ex-
perimental conditions, we fix substrate uptake rates to the desired ones by setting
the lower bounds of the corresponding exchange reactions to the measured values
multiplied by −1 (as it corresponds to consumption). Biomass reactions were con-
strained with the growth rate multiplying the total biomass by the ratio of each
species (gDW L−1 h−1). Similarly, product formation was set to be at least 80% of
the calculated product formation by modifying the lower bound of the correspond-
ing exchange reaction. ATP maintenance reactions of each species, ATPM_auto and
ATPM, were transformed to mmol L-1 h-1 from the pre-set values in mmol gDW−1

h−1 multiplying by the total biomass and species ratio. In cases where metabolites
behave as products that are further metabolized by the other species, the transport
reactions of these metabolites are forced to operate in the direction from the external
compartment to the other species compartment.

Chemostat experimental data

Experimental data was collected from reactor run 3 and 4 of the recent study [68] on
C. autoethanogenum in mono-culture and co-cultivation of C. autoethanogenum and
C. kluyveri grown on CO/H2 and CO/acetate. In co-culture experiments, C. kluyveri
was inoculated in the reactor on top of C. autoethanogenum in a 1:20 volume ratio.
The organisms were cultivated in chemostat to control environmental conditions
such as pH (6.2), temperature (37 ◦), HRT (between 1.5 to 2 days) and medium
composition during the entire reactor run. A reactor run starts with inoculation
of C. autoethanogenum in mono-culture followed by co-cultivation with C. kluyveri
after reaching stationary phase. Total reactor volume is 1.5 L. Working volume was
set between 0.75 L to 1 L. Experiments were run on different conditions of CO/H2
and CO/acetate as initial substrates. Concentrations of organic acids and alcohols in
the reactor and gas composition in the outflow were tracked during the runs.
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3.3.6 Model simulations

Model simulations were done using COBRApy, version 0.17.0 [235], IBM ILOG
CPLEX 128 and Python 3.6. Simulations based on changes/addition of parame-
ters were done by constraining the associated reactions with the mentioned values.
When simulations required removal of a substrate or product, flux through the as-
sociated reaction was set to 0. Constraints on the profile of fermentation products
were kept unchanged when simulations were based on substrate uptake ratios in C.
kluyveri, unless stated otherwise. For each explored condition, the solution space
and the set of fluxes compatible with the measured constraints was sampled using
the sample function in the flux_analysis submodule COBRApy. Flux sampling is a
method to get a distribution of fluxes [236] under specific conditions. Presented re-
sults are the average and standard deviation based on 15000 iterations generated at
each condition. All additional assumptions taken into account during model simu-
lations are listed in the supplementary material.

3.3.7 Genetic intervention strategy

OptKnock and RobustKnock [93, 237] were applied as algorithms that suggest reac-
tions to be knocked out that can potentially increase the yield of a target reaction.
The algorithms were applied to increase ethanol production in the GEM of C. au-
toethanogenum [219]. Both algorithms were integrated in a python script adapted
for COBRApy and CPLEX as solver. OptKnock identifies a set of reaction knock-
outs that allows high production of a target product under the constraint of optimal
growth in wild type. RobustKnock guarantees a minimal production rate by consid-
ering alternative optimal solutions that produce less of the target product. This is
achieved by employing a bi-level max-min optimization. The possible reactions to be
modified were adjusted in order to avoid essential reactions, reactions associated to
essential genes, extracellular reactions and reactions with no associated genes. The
identified mutants were further implemented in the model of C. autoethanogenum
deleting the corresponding reactions. Each mutant was assessed at each experimen-
tal condition and compare to the wild type. The media as well as the biomass reac-
tion were constrained using the experimental data of mono-culture experiments for
those conditions [68]. Fluxes are expressed following the modeling framework. For
each explored condition, the solution space and the set of fluxes compatible with the
measured constraints was sampled. Presented results are the average and standard
deviation based on 15000 iterations generated at each condition.
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3.4 Results

The objective of this study is to find optimization strategies for the production of
medium-chain fatty-acids from syngas using the co-culture of C. autoethanogenum
and C. kluyveri. The generated multi-species GEM, together with the GEM of C.
autoethanogenum, were used to assess these strategies.

3.4.1 Description and validation of the GEM of individual strains

The GEM of C. autoethanogenum, iCLAU786 is composed of 1108 reactions and 1094
metabolites. The model is able to simulate growth on CO or syngas as the sole car-
bon and energy source, producing acetate and ethanol as the main fermentation
products.

The GEM of C. kluyveri, iCKL708 has been previously shown to predict growth
on ethanol and one other organic acid (acetate, propionate, butyrate, or succinate),
propanol and acetate, crotonate, and vinyl acetate, in accordance to published exper-
imental data [233, 238–240]. The updated GEM of C. kluyveri, has 993 reactions and
811 metabolites. This updated model also simulates growth on acetate and ethanol
uptake producing butyrate and hexanoate as the main chain-elongated products and
H2.

3.4.2 Multi-species GEM

The multi-species GEM contains 2064 reactions and 1823 metabolites, from which
139 reactions correspond to extracellular reactions and 208 metabolites belong to
the shared extracellular compartment. Fig. 3.1, shows the dependencies included
in the model to describe the syngas fermentation process by the co-culture based on
the experimental data [68]. H2_ck→ reaction represents the amount of H2 excreted
by C. kluyveri. Reaction→ H2_e represents the uptake of H2 in C. autoethanogenum.
Reaction→ AC_c, represents the uptake of acetate by C. autoethanogenum in simula-
tions where acetate acts as additional substrate. This serves to distinguish the fluxes
between acetate feed rate (→ AC_c), acetate production rate ( AC_e→) and acetate
consumed by C. kluyveri ( AC_e → AC_ck). These are special cases since H2 and
acetate can be shared, metabolized and produced in co-culture conditions.

Previous studies have shown that C. autoethanogenum is able to grow on CO,
CO/H2 producing ethanol and acetate as the main fermentation products [211]. Ac-
etate and ethanol can further be taken up by C. kluyveri producing H2, butyrate and
hexanoate. H2 produced by C. kluyveri appears to be further metabolized by C. au-
toethanogenum [64, 68]. Furthermore, the presence of aldehyde ferredoxin oxidore-
ductase and Ethanol:NAD+ oxidoreductase enzymes in C. autoethanogemum allows
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Figure 3.1: Dependencies applied to the multi-species model to describe possible interac-
tions. Metabolites on the left belong to C. autoethanogenum’s compartment and on the right,
to C. kluyveri’s compartment. Metabolites in the middle correspond to the extracellular com-
partment. Arrows between metabolites indicate transport reactions of that metabolite from
one species’ compartment to the extracellular compartment or the other way around. Arrows
affecting single metabolites indicate uptake or production of that metabolite. CO: carbon
monoxide; H2: Hydrogen; AC: acetate; ETOH: ethanol; BUAC: butyrate; HEXA: hexanoate;
Ji: environmental fluxes of reaction i; µ: growth rate; XT: community biomass; ϕi: species
abundance, with i equals c or ck for C. autoethanogenum or C. kluyveri, respectively.

for a potential two step conversion of butyrate and hexanoate, via the respective
aldehdye, to butanol and hexanol respectively. C. kluyveri is not able to utilize CO
and its metabolism can be inhibited by this compound [64]. However, providing co-
cultivation with C. autoethanogenum, dissolved CO concentration can be kept low.
Naturally, dissolved CO will be dependent on the gas-liquid mass transfer and the
CO uptake rate of C. autoethanogenum. Because kLa values for CO-water are rela-
tively low in stirred tanks [241], these systems are often not kinetically limited and
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low dissolved CO concentrations are expected in the culture broth. This low dis-
solved CO concentration will leave C. kluyveri metabolism unaffected [64]. In the
model this is indicated by preventing flux through the reaction COe → COck as it is
shown in Fig. 3.1.

Microscopy observation of the co-culture led to the estimation of a ratio of 10
cells of C. autoethanogenum per 1 cell of C. kluyveri. Analyses of transcriptome sam-
ples obtained by RNAseq of the community [68], were done to identify the fraction
of RNA arising from each community member. The estimated relative abundances
yielded between 90-95% ofC. autoethanogenum and 5-10% ofC. kluyveri. Differences
in cell size and volume were considered as C. kluyveri cells have approximately 36
more volume that C. autoethanogenum [211, 233, 234]. The estimated volumes were
used to estimate dry weight of each cell species, resulting the cell dry mass of C.
kluyveri, 22 times more than C. autoethanogenum. Finally, the cell ratio (10:1) was
taken into account resulting in a biomass ratio of 68.5% C. kluyveri and 31.5% C.
autoethanogenum. This cell ratio was observed in CO and CO/H2 conditions and it
was assumed to be constant in the model simulations.

3.4.3 Multi-species GEM accurately predicts experimental results

The initial mono-culture experiments only involved C. autoethanogenum [68]. Fig.
3.2, shows the steady-state production rates of the fermentation products expressed
in mmol L−1 h−1. Experiments were run on CO/H2 and CO/AC (acetate) as initial
substrates. Acetate production rate (‘EX_AC_e’) refers to the sum of the acetate feed
rate not consumed by C. autoethanogenum and the one directly produced by C. au-
toethanogenum. Fig. 3.2 shows that the model predictions match relatively well the
experimental results for C. autoethanogenum. Accordingly, the model predicts cor-
rectly that ethanol production increases at higher H2 feed rates and gradually with
the addition of acetate. However, the model predicts slightly higher production rates
for acetate in conditions with higher amounts of acetate in the background.

The co-culture experiments were run under same conditions as the mono-culture
experiments. Fig. 3.3, represents steady-state production rates of fermentation
products expressed in mmol L−1 h−1 by the co-culture. It shows the comparison be-
tween experimental results collected in co-culture experiments [68] and the results
obtained via the multi-species model. Acetate production rate (‘EX_AC_e’) refers to
the sum of the acetate in the feed, the acetate directly produced by C. autoethano-
genum, minus the acetate consumed by C. kluyveri (reaction id Rckl835). Ethanol
production rate (‘EX_ETOH_e’) refers to the ethanol produced by C. autoethanoge-
num minus the ethanol consumed by C. kluyveri (reaction id Rckl837). The model
correctly predicts production of medium-chain fatty acids upon introduction of C.
kluyveri. Similarly to the mono-culture simulations, there is a slight mismatch be-
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Figure 3.2: Comparison of experimental (_e) and model (_m) results of the steady-state pro-
duction rates of fermentation products in C.autoethanogenum in mono-culture under CO/H2
and CO/AC (acetate) conditions. X axis represents the H2 and acetate feed rate, respectively.
Y axis represents the steady-state production rates of acetate and the secondary y axis rep-
resents the steady-state production rate of ethanol. In CO/H2 conditions, CO feed rate= 4.8
mmol L−1 h−1; growth rate=0.021 h−1 and working volume= 1 l. In CO/AC conditions, CO
feed rate= 6.4 mmol L−1 h−1; growth rate=0.028 h−1 and working volume= 0.75 l. Substrates
feed rates and production rates are expressed in mmol L−1 h−1.

tween predicted and observed acetate production. The model correctly predicts the
increase of medium-chain fatty-acids when more H2 or acetate is added. When H2
feed rate is equal to 5.3 mmol L−1 h−1, butanol is also produced (0.075 mmol L−1

h−1). Also, ethanol accumulation is low in most co-culture conditions, suggesting
most of it is metabolized by C. kluyveri. The steady-state production rates of acetate
increases with increasing acetate uptake (see Fig. 3.2 and 3.3), but the amount of
acetate expressively produced by C. autoethanogenum decreases with increasing ac-
etate uptake, since the addition of acetate leads to more acetate converted to ethanol
[68]. However, there is still a relative high level of acetate accumulated versus de-
sired fatty acid products, which represents a loss of carbon into acetate that could be
minimized if C. kluyveri could consume more acetate.

Assessing the distribution of metabolic fluxes with the multi-species model

After having shown that the model describes accurately the metabolic interactions
between the two microbes, we used it to explore intracellular flux distributions that
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Figure 3.3: Comparison of the experimental (_e) and model (_m) results of the steady-state
production rates of the fermentation products in co-culture under CO/H2 and CO/AC (ac-
etate) conditions. X axis represents the H2 and acetate feed rate, respectively. Y axis rep-
resents the steady-state production rates of acetate and the secondary y axis represents the
steady-state production rate of ethanol, butyrate and hexanoate by the co-culture. In CO/H2
experiments, CO feed rate= 4.8 mmol L−1 h−1; growth rate=0.021 h−1 and working volume=
1 l. In CO/AC conditions, CO feed rate= 6.4 mmol L−1 h−1; growth rate=0.028 h−1 and work-
ing volume= 0.75 l. Feed rates of substrates and production rates are expressed in mmol L−1

h−1.

would be otherwise challenging to access. To study the metabolic fluxes in the co-
culture, we used a sampling approach that produces, for each reaction in the com-
bined model, a distribution of possible fluxes. Fig. 3.4 provides an overview of
selected reactions in the system (indicated by R#). Fluxes for all reactions can be
found in the supplementary material.

CO or CO and H2 are converted via the Wood-Ljungdahl pathway in C. autoetha-
nogenum. In this pathway, CO is converted to CO2 via CO dehydrogenase, providing
reducing equivalents to the cell. Released CO2 is shuttled into the Wood-Ljungdahl
pathway via the bifurcating formate dehydrogenase [242]. H2 taken up by C. auto-
ethanogenum is used for redox generation in NADP-dependent electron bifurcating
hydrogenase (Hyt) reaction (R3) and in formate hydrogen lyase reaction (R2 in Fig.
3.4) to produce formate. The flux through these two reactions increases with in-
creasing H2 supply. Part of the formate is excreted and part is further metabolized
to acetyl-CoA (ACCOA) following the Wood-Ljungdahl pathway. Pyruvate is partly
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produced from acetyl-CoA via the pyruvate synthase (R8 in Fig. 3.4) for assimila-
tion. The majority of the acetyl-CoA is converted to acetate via acetyltransferase
(R6) and acetate kinase, yielding ATP. Ethanol can be formed in two ways [50]: from
the reduction of acetate to ethanol via aldehyde ferredoxin oxidoreductase (R7) and
alcohol dehydrogenase, or via reduction of acetyl-CoA to acetaldehyde (ACAL) and
ethanol. Acetate and ethanol are secreted to the medium where it is partly taken up
by C. kluyveri. Ethanol production rate by C. autoethanogenum (reaction R10) and
ethanol uptake by C. kluyveri (R15) indicate that most of ethanol is removed by C.
kluyveri and proves the metabolic change to solventogenesis due to addition of C.
kluyveri. This can be observed comparing to mono-culture results showed in Fig.
3.2, where the steady-state production of ethanol was lower than in co-cultivation
with C. kluyveri (flux through R10). In C. kluyveri ethanol is oxidized to acetyl-CoA
(ACCOA) and part of acetyl-CoA is converted to acetate via acetyltransferase and
acetate kinase (R16). Acetyl-CoA initiates the reverse β-oxidation pathway (R16-
R19) to produce butyrate via acetoacetyl-CoA (AACCOA), then 3-hydroxybutyryl-
coa (3HBUTCOA), crotonyl-CoA (CROCOA) and butyryl-CoA (C40COA). C40COA,
transfers the CoA group to acetate, producing butyrate and acetyl-CoA. Some of the
butyrate can be elongated further to hexanoate by reaction of butyryl-CoA together
with hexanoyl-CoA (C60COA)(R19). Acetyl-CoA is also assimilated by fixing CO2
to pyruvate via pyruvate synthase (R20) in C. kluyveri.

Succinate is converted to Crotonyl-CoA (CROCOA), yielding an additional 2 ac-
etate (see Fig. 3.4), involving the pathway via succinyl-CoA, succinate semialdehyde,
4-hydroxybutyrate, and 4-hydroxybutyryl-CoA [230]. The model indicates that part
of the acetate pool in C. kluyveri comes from uptake of succinate produced by C. au-
toethanogenum (see R28), which could explain the slight mismatch observed in Fig.
3.3 between acetate predicted by the model compared to experimental results. The
model predicts a low amount of ethanol being oxidized to acetate (R16), supporting
activity of the succinate pathway.

The model predicts reduction of CO2 production by C. autoethanogenum with
increasing H2 feed rate (Fig. 3.4B). This was also observed in the experimental mea-
surements [68], where CO2/CO ratio decreased linearly with increasing hydrogen
uptake. According to model predictions, CO2 production rate drops to 0.28 mmol
L−1 h−1 when H2 is supplied, as compared to 2.5 mmol L−1 h−1 that is produced
when CO is the only carbon source (see supplementary material). It is observed
that more H2 is metabolized by C. autoethanogenum with increasing H2 feed rate
(as shown in Fig. 3.4B) similar to what was found in experimental results [68].
When more H2 is fed to the reactor (see R25), more protons are released. In con-
trast, less protons are released when more acetate is fed. ATP synthase increases in
both species (R12, R22) when more H2 or acetate is fed to the reactor.
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3.4.4 Effect of the biomass ratio ofC. kluyveri-C. autoethanogenum
on the metabolic profiles of the culture

The model enables detailed inspection of production and uptake profiles. There-
fore we investigated the sharing of metabolites between both organisms. Analysis of
intracellular fluxes in Fig. 3.4 suggests that succinate is produced byC. autoethanoge-
num and metabolized by C. kluyveri producing part of the acetate and crotonyl-CoA
pool needed for chain elongation and production of fatty-acids. Fig. 3.5, shows the
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Figure 3.5: The effect of changing biomass species ratios on the uptake of acetate, ethanol
and succinate by C. kluyveri at different H2 feed rates and fixed CO feed rate. CO= 4.8 mmol
L−1 h−1 and growth rate=0.021 h−1, respectively. C. kluyveri-C. autoethanogenum biomass
ratio are indicated on the x axis and y axis represents the fluxes of transport reactions from
extracellular to C. kluyveri compartment of acetate, ethanol and succinate.

different profiles depending on the biomass species ratio when we simulate chemo-
stat cultivation experiments of C. autoethanogenum and C. kluyveri growing on CO
and H2 as carbon and energy sources. Succinate, acetate and ethanol uptake by C.
kluyveri increases with more H2 supply. Succinate uptake decreases when C. kluyveri
is less abundant in the co-culture. On the contrary, the amount of ethanol and ac-
etate that is available to be metabolized by C. kluyveri decreases along with the rela-
tive abundance of C. autoethanogenum.

To further investigate the role of succinate, similar simulations were performed
but this time preventing the uptake of succinate by C. kluyveri (Fig. 3.6). The model
shows that, without succinate uptake, a biomass-species ratio of 70-30% and CO
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as the only carbon source results in an infeasible situation. In addition, the fluxes
through reactions related to non-growth associated maintenance (ATPM,
ATPM_auto) decreased substantially when biomass ratios of 60-40%, 50-50% and
40-60% were considered. Thus, the in silico analyses show that a possible way to
meet the experimentally observed constraints is through succinate uptake. Changes
in the biomass ratio also affect acetate and ethanol exchange between the microbes.
Acetate and ethanol uptake by C. kluyveri increases when more H2 is fed to the sys-
tem. Acetate/ethanol production ratios become higher when C. kluyveri is more
abundant and decrease when there is more C autoethanogenum in the co-culture.
Based on these results, the species biomass ratio in co-cultivation is estimated to be
between 60-40% and 70−30% (C. kluyveri−C. autoethanogenum).
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Figure 3.6: Effect of changing biomass species ratios on the uptake of acetate and ethanol
by C. kluyveri at different H2 feed rates without succinate uptake and fixed CO feed rate.
CO= 4.8 mmol L−1 h−1 and growth rate=0.021 h−1. C. kluyveri−C. autoethanogenum biomass
ratio are indicated on the x axis and y axis represents the fluxes of transport reactions from
extracellular to C. kluyveri compartment of acetate and ethanol.

3.4.5 Strategies to increase production ofmedium-chain fatty-acids

We used the experimentally-validated model to simulate alternative scenarios that
have so far not been explored experimentally. Accordingly, we present here an anal-
ysis of possible strategies to increase medium-chain fatty acid production by the
co-culture.
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Addition of succinate

As a strategy to increase the production of desired products, we simulated how the
addition of succinate as extra carbon source would affect the production of butyrate
and hexanoate at different H2 feed rates and fixed CO feed rate (4.8 mmol L−1 h−1).
Fig. 3.7, shows the product profile for the species biomass ratio 70−30% (C. kluyveri-
C. autoethanogenum), respectively. The increased carbon availability has been con-
sidered and used to normalize the results, so they are represented as mmol of prod-
uct per total substrate (CO and succinate) per carbon. As already indicated in Fig.
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Figure 3.7: Effect of succinate addition on the production of butyrate and hexanoate under
different H2 feed rates when a biomass ratio of 70−30% is considered. X-axis represent succi-
nate feed rate and y-axis represent mmol of butyrate or hexanoate normalized per mmols of
total substrate per carbon.

3.3, and in contrast to experimental results, the model predicts more hexanoate than
butyrate production even when succinate uptake is 0. The model predicts a yield of
0.026 mmol of hexanoate per mmol of CO. This means, that this co-culture has the
capacity to produce three times more hexanoate than what it is currently being pro-
duced (0.009 mmol per mmol of CO) [68], reducing the gap respect to the maximum
theoretical yield (0.056 mmol of hexanoate per mmol of CO) to 3%. Increased hex-
anoate production is observed next to an increase in CO2 uptake by C. kluyveri and
changes in H+ balance and ATP synthase.

Furthermore, succinate addition allows increased production of both fatty-acids.
Hexanoate production can increase up to four times when succinate is added and
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butyrate has potential to increase around five times with respect to the results ob-
tained with no succinate addition. On the other hand, simulations show no relevant
differences upon variations of H2 feed rates.

Genetic intervention strategies

As a second strategy for co-culture optimization we have predicted and evaluated
genetic interventions that could lead to higher medium-chain fatty-acid production.

The strain design algorithms OptKnock and RobustKnock [93, 237] were applied
to identify candidate reactions to be knocked out. These were subsequently evalu-
ated through dedicated simulations. Fig. 3.8 shows the effect of knocking out three
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Figure 3.8: Effect of single reactions deletion on the production of ethanol in C. autoethano-
genum. X axis represents the mutants applied on the GEM of C. autoethanogenum and y axis
represents the production of acetate and ethanol. Mutant 1: Formate transport in via proton
symport (rxn05559_c0). Mutant 2: acetaldehyde:NAD oxidoreductase (rxn00171_c0); Mu-
tant 3: formate dehydrogenase (ferredoxin) (rxn00103_c0)

candidate reactions on the production of ethanol in C. autoethanogenum. The three
reactions are located in the metabolism of C. autoethanogenum. Mutant 1 refers to
the knock out of formate transport reaction via proton symport (FORt2, model id
rxn05559_c0). Mutant 2 refers to the deletion of acetaldehyde:NAD+ oxidoreduc-
tase (ACALDx, model id rxn00171_c0). Mutant 3 refers to the knock out of formate
dehydrogenase (ferredoxin) (FDH_fer, model id rxn00103_c0). The impact of re-
moval of these reactions is compared to wild type C. autoethanogenum, correspond-
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ing to the GEM without any modification. The deletion of each reaction results in
increased ethanol production. Ethanol increases up to 83% with respect to the wild
type in simulations with CO as the only carbon source. In conditions where H2 acts
as second substrate, ethanol production increases up to 150%. Acetate decreases up
to 11% in simulations with only CO and decreases up to 30% in CO/H2 simulations.
Mutant 1 seems to have a higher ethanol yield when CO is the only carbon source
compare to CO/H2 conditions while mutant 2 and mutant 3 provide a higher effect
on ethanol/acetate ratio in CO/H2 simulations. As seen in Fig. 3.6, the produc-
tion of ethanol by C. autoethanogenum and therefore, the uptake of ethanol by C.
kluyveri, increases with increasing H2 feed rate, resulting in an increased production
of medium-chain fatty-acids. This suggests that these deletions in C. autoethano-
genum can improve the production of medium-chain fatty-acids in this respective
co-culture, since ethanol production can potentially be increased. Simulations of
the effect of these mutations in mono-culture and co-culture are presented in the
supplementary material.

3.5 Discussion

We present here a constraint-based model of the co-culture of C. autoethanogenum
and C. kluyveri in the context of CO/syngas fermentation to produce medium-chain
fatty-acids. A model with similar characteristics had already been used to simu-
late CO to butyrate conversion by bacterial co-culture systems [218]. Our model
extends previous efforts, and is calibrated and tested with a battery of available
experimental measurements. Modeling bacterial communities using flux balance
analysis and GEM is complicated by the fact that special attention has to be paid
to the biomass abundances of the microbial species in order to achieve balanced
growth of the co-culture. Previous efforts used dynamic flux balance analysis to
consider biomass growth [218]. Here, steady-state conditions were used of which
additional data was available, allowing to overcome the challenge of estimating rel-
ative abundance of each species by combiningmicroscopy observations and RNA seq
in terms of cell numbers. These were subsequently converted to biomass ratios by
considering the relationships between cellular dimensions, cell volume and biomass
dry weight. This enabled the application of community flux balance analysis [221],
which has been shown to accurately predict flux distributions and exchange fluxes
between species and the community environment when analyzing stable commu-
nities in chemostat experiments. In this model it is assumed that the exchange of
metabolites occurs indirectly using the culture medium as an intermediate. Re-
cently, a direct exchange of electrons and metabolites due to direct cell-to-cell in-
teractions have been observed in a co-culture of C. ljungdahlii and C. acetobutylicum
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[243]. Further research on the latter co-culture also demonstrates a high exchange
of proteins, showing persistence of cells with exchanged cellular components [244].
An extension of our model could include more detailed description of the mecha-
nism of metabolite exchange. This could shed light on additional interactions that
might take place such as a possible exchange of amino acids.

The presented co-culture model is versatile and can simulate the CO/syngas fer-
mentation process leading to medium-chain fatty-acid production. The presented
model describes both the behaviour of a C.autoethanogenum mono-culture thriv-
ing on syngas as well as the behaviour of a co-culture of C. autoethanogenum and
C.kluyveri. The model accurately reproduces the steady-state production rates of fer-
mentation products obtained in chemostat experiments, and predicts the shift of the
metabolism of C. autoethanogenum towards solventogenesis in co-cultivation with C.
kluyveri [68]. In addition, model predictions on production/consumption rates (see
Fig. 3.4) agree reasonably with previous literature on CO/syngas fermentation [64,
68, 211, 230]. The product profile has shown the relative high level of carbon loss
in acetate, compared to the desired elongated fatty-acids. This could be improved
by in-line product removal, pH adjustments, an increase of CO pressure to obtain a
higher conversion of acetate to ethanol or genetic engineering.

Analyses of metabolic fluxes in the model surprisingly suggested succinate pro-
duction by C. autoethanogenum as an intermediate in the co-culture. Accumulation
of succinate has not been experimentally observed in the calibration experiments
[68], and is not described as major physiological end-product of C. autoethanogenum
when grown on syngas [211]. However, its production by C. autoethanogenum in
the presence of C. kluyveri could take place as it has been reported to be an over-
flow product of acetogenic metabolism [245]. Here, succinate could be produced
to overcome the temporal overflow of C/electrons, potentially in conditions where
too much reduction equivalents are provided. Succinate is described as a possible
substrate for C. kluyveri [230]. Presence of succinate could slow down consumption
of ethanol/acetate by C. kluyveri. This would also affect co-culture compositions
by limiting C. kluyveri abundances. The suggested exchange of succinate, can ex-
plain the slight mismatch observed in the acetate production simulated compared to
the laboratory results. Mono-culture results of C. autoethanogenum however, do not
show succinate production. Thus, this difference can be derived from the biomass
drop observed with increasing acetate feed rate affecting the ATP maintenance re-
quirements [68] and redox balance.

Model simulations have shown that omitting succinate uptake resulted in un-
feasible growth conditions when grown on only CO (see Fig. 3.6, ratio 70-30%).
This dependency is additionally shown in the case with both CO and H2, where
ATPM decreased substantially to sustain growth. An alternative explanation for this
dependency could be related to C. autoethanogenum cell size assumptions, being po-
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tentially bigger than the average size , since it was reported to have considerable
variations [211]. Therefore, the co-culture might operate in ratios where the biomass
of C. autoethanogenum is more abundant, with relative values between 60-40% and
70−30%, leading to possible changes in the relative species abundance among dif-
ferent conditions.

As the model closely predicted obtained experimental values, it can be used to
design potential strategies for improved production. Here, we explored a series
of strategies to optimize the production of hexanoate. The first strategy relied on
the role of succinate, as the model predicts it increases the pool of acetate and
crotonyl-CoA, a precursor of the desired fatty-acids, in C. kluyveri (see Fig. 3.4).
The flux through the reverse β-oxidation pathway increases up to four times when
succinate is added (see supplementary material). The increase of crotonyl-CoA re-
sults in a higher butyryl-CoA pool. The presence of more butyryl-CoA initiates the
chain-elongation process to produce hexanoyl-CoA in the same way as butyryl-CoA
is formed (see Fig. 3.4). According to the model, most of butyrate formed from
butyryl-CoA reacts with hexanoyl-CoA producing hexanoate. This results in an in-
crease in hexanoate production up to three times (see Fig. 3.7). Moreover, an increase
in ethanol uptake by C. kluyveri and a decrease in acetate production by C. autoetha-
nogenum and subsequent uptake by C. kluyveri appears to cause an additional boost
in hexanoate production. According to the model, addiction of succinate raises hex-
anoate production up to 0.067 mmol per carbon of fed substrate (CO and succinate)
and would possibly lead to a further increased production of MCFA and alcohols
in conditions with higher H2 influx (> 5 mmol L−1 h−1), as it has been previously
observed. Furthermore, it has already been proven that succinate leads to an in-
crease of MCFA in C. kluyveri [239], so its addition in co-culture experiments could
potentially confirm model results.

The second strategy aims to increase hexanoate by increasing ethanol produc-
tion by C. autoethanogenum. An increasing ratio of ethanol/acetate ratio has been
shown to result in increased hexanoate production in C. kluyveri [233, 246]. In cases
where butyrate and hexanoate are not constrained (see Fig. 3.7), the predicted etha-
nol/acetate ratio (around 6:4) is higher than when butyrate is more prominent (see
Fig. 3.6). The model thus confirms previous experimental results and highlights
the potential of an increased ethanol/acetate ratio in stimulating the production of
hexanoate. It should be bear in mind that model predictions are based on optimality
principles and assumptions. The model suggests that increased ethanol production
leads to increased medium-chain fatty-acids (see supplementary material).

C. autoethanogenum is known to increase production of ethanol under acidic or
redox overloading conditions [56, 68, 247]. Additionally, partial inactivation of the
adhE cluster or knock out of one of the AOR genes has been shown to result in
increased ethanol production in C. autoethanogenum [50]. Using the GEM herein
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developed for C. autoethanogenum we predicted that the individual knock-out of
one of the following three reactions could increase the production of ethanol: ac-
etaldehyde oxidoreductase (ACALDx), formate transport (FORt2), and the bifur-
cating formate dehydrogenase (ferredoxin) (FDH_fer) (see Fig. 3.8). The acetalde-
hyde oxidoreductase reaction (ACALDx, id rxn00171_c0) is associated with several
isoenzymes encoded by genes: CAETHG-RS16140, CAETHG-RS08865, CAETHG-
RS08810, CAETHG-RS18400 and CAETHG-RS18395. The same isoforms are asso-
ciated to aldehyde ferredoxin oxidoreductase reaction (CODH-ACS) (leq000004) and
two of them (CAETHG-RS18400 and CAETHG-RS18395) are also involved in etha-
nol oxidoreductase (ALCDx) (rxn00543_c0) reaction. The affinity of each isoenzyme
to each reaction has to be studied in order to fully eliminate acetaldehyde oxidore-
ductase activity. An acetaldehyde oxidoreductase (ACALDx) mutant has previously
been shown to indeed have increased ethanol production up to 180% [50], making
the deletion of this reaction seems a promising application to increase fatty-acids
production in the co-culture system. The knock out of formate-related reactions in
C. autoethanogenum is not described previously, but model simulations done here,
suggest that they contribute to ethanol production. Formate transport in via pro-
ton symport (FORt2, model id rxn05559_c0) is catalyzed by an enzyme encoded by
only one gene -CAETHG-1601, which allows relatively easy removal of this activity.
The model predicts that inactivation of this reaction forces more flux through the
Wood-Ljungdahl pathway, increasing the amount of acetyl-CoA. Due to the increase
in acetyl-CoA pool, the fluxes through aldehyde ferredoxin oxidoreductase and ac-
etaldehyde oxidoreductase are increased, thus producing more ethanol. As third
option the model suggests to knock out the formate dehydrogenase (ferredoxin)
(FDH_fer, model id rxn00103_c0) activity. This reaction has three associated isoen-
zymes encoded by genes: CAETHG-RS00400, CAETHG-RS13720 and CAETHG-
RS14690. The inactivation of this reaction forces the production of formate mostly
via formate hydrogen-lyase from H2 (FHL, rxn08518_c0). In mono-culture condi-
tions where there is no H2 supply, H2 is produced via an NADP-dependent electron-
bifurcating hydrogenase reaction (Hyt) (model id leq000001). This functionality of
Hyt seems to occur in situations where redox mediators get too reduced [242]. The
model shows a higher conversion of CO converted to CO2 via CO dehydrogenase
(CODH4, model id rxn07189_c0) which forces more flux through Wood-Ljungdahl
pathway, producing more acetyl-CoA. Also, more CO2 is fixed producing pyruvate
via pyruvate synthase (rxn05938_c0) which is shuttled back via pyruvate formate
lyase (rxn00157_Cc0) to produce more acetyl-CoA and formate. The extra pool of
acetyl-CoA forces more flux through aldehyde ferredoxin oxidoreductase and ac-
etaldehyde oxidoreductase which leads to more ethanol.

When the reactions of fatty-acids production are not constrained, the model al-
ways predicts more hexanoate as compared to butyrate production measured in the
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actual chemostat experiments [68]. A potential reason for this is the pH of the co-
culture and related toxicity effects of medium-chain fatty acids. Hexanoate produc-
tion inC. kluyveri has been reported to be better at higher pH [248]. Thus, potentially
the pH of 6.2 in the co-culture limits its production in the actual experiments. In ad-
dition to toxicity effects, the function of membrane proteins such as ATP synthase,
electron transport chains or transporters can be affected by the change of proton
motive force at different pH [249]. This is reflected by the observation that model
predictions show differences in ATP synthase and proton balance under different bu-
tyrate/hexanoate production conditions (see supplementary material and Fig. 3.4).
However, the acid stress response is difficult to simulate in GEMs, which possibly
results in the differences observed between the model prediction and experimen-
tal results. In addition it has been observed oscillations in gas uptake rates and
extracellular byproducts synchronized with biomass levels in C. autoethanogenum
[250]. This could lead to thermodynamic changes affecting the reversibility of reac-
tions and thus, the product range. An extensive thermodynamic and metabolic flux
analysis study even extending the component contribution method [251] could have
helped to better identified those changes.

We observe an increase of CO2 uptake by C. kluyveri in cases where hexanoate
is more abundant (see Fig. 3.4 and supplementary material) compared to simula-
tions of experimental conditions, where butyrate is more abundant (see Fig. 3.4).
CO2 is essential for growth and C1 intermediate production in C. kluyveri [224, 225,
252, 253]. In line with model predictions, CO2 is converted to formate via a cyclic
mechanism [225]. CO2 is first fixed via pyruvate synthase (model id Rckl119) pro-
ducing pyruvate that is further converted to formate via formate lyase (model id
PFL), for assimilatory purposes. Formate is then assimilated via the tetrahydro-
folate pathway to, subsequently, be transformed to various amino acids needed for
growth [224, 225, 252, 253]. Model predictions show that part of the CO2 is also me-
tabolized following phosphoenolpyruvate carboxylase reaction (PPC), where CO2 is
fixed together with phosphoenolpyruvate (pep) producing oxaloacetate (oaa). Oaa
produces aspartate via aspartate aminotransferase (Rckl310). Aspartate is a pre-
cursor in the synthesis of threonine involving aspartate kinase (Rckl334), aspartate
semialdehyde oxidoreductase (Rckl323), homoserine kinase (Rckl335) and threo-
nine synthase (Rckl336). Then, threonine produces acetaldehyde and glycine via
threonine aldolase (Rckl341). Acetaldehyde is converted to acetyl-CoA following
aldehyde alcohol dehydrogenase (ADH) reaction. So, the increase in CO2 assimi-
lation could lead to more acetyl-CoA and thus, more fatty-acids. Around 30-40%
of CO2 is also converted to carbonic acid. Carbonic acid produces oxaloacetate via
pyruvate carboxylase (Rckl014), which follows the aforementioned route to acetyl-
CoA. Simulations made with higher CO2 uptake rates than the ones predicted when
hexanoate is more abundant (>0.75 mmol L−1 h−1) however, did not lead to higher
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production rates of hexanoate or butyrate. This suggest that C. kluyveri metabolizes
CO2 up to a maximum value. In fact, this is supported by the observed correlation
between growth and the maximum CO2 fixed by C. kluyveri [253]. The use of lower
hydraulic retention time and high pressure bioreactors, could possibly increase the
uptake of CO2, close to its maximum capacity.

The maximum hexanoate predicted by the multi-species GEM is reached when
succinate is added into the system in combination with CO and H2 (see Fig. 3.7).
Table 3.1, shows a comparison of electron yields for the hexanoate production pre-

Table 3.1: Comparison of electron yield obtained for hexanoate production between
predicted results by the multi-species GEM and other co-culture/mixed culture.
Electron yield is expressed by the amount of electrons going to hexanoate per to-
tal amount of electrons entering the system.

Substrates a Hexanoate b Electron yield c

C. ljungdahlii & C. kluyveri [254] CO=31.9 0.48 0.07
H2= 79.1

Mixed culture [63] CO=0.58 0.011 0.32

C. autoethanogenum & C. kluyveri [68] CO=4.8 d 0.15 0.26
H2=5.3

C. autoethanogenum & C. kluyveri [68] CO=6.5 c 0.15 0.15
AC=2.5

Multi-species GEM (this study) CO=4.8 0.59 0.6
H2=3.87
SUCC=1

aVolumetric consumption rate mmol L−1 h−1
bVolumetric production rate mmol L−1 h−1
chexanaote e-/total e- in ; CO= 2 e- per mol, H2 = 2 e- per mol; AC(acetate)= 8 e- per mol;

SUCC (succinate)= 14 e- per mol and hexanoate = 32 e- per mol
d Assuming 90% gas consumption

dicted in this study compared to hexanoate production in other studies with similar
culture systems [63, 68, 254].

Electron yield is calculated based on the amount of electrons going to hexanoate
per the total amount of electrons going into the system as carbon and energy sources.
Co-cultures of C. autoethanogenum and C. kluyveri yielded more hexanoate grow-
ing on CO/H2 or CO and acetate compared to a co-culture of C. ljundahlii and C.
kluyveri, potentially as in the latter relatively more alcohols and C8 acids were pro-
duced as well. A mixed culture enriched in Acinetobacter, Alcaligenes, and Rhodobac-
teraceae growing solely on CO [63], increased the electron yield with respect to pre-
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viously mentioned co-cultures up to 0.32. However, the addition of succinate in co-
cultivation of C. autoethanogenum and C. kluyveri grown on CO and H2 (this study),
is here predicted to increase the yield of hexanoate up to 0.6, reflecting the potential
of this approach to produce medium-chain fatty-acids.

3.6 Conclusions

The generation of the multi-species GEM of C. autoethanogenum and C. kluyveri has
provided insights into the fermentation of CO/syngas to medium-chain fatty acids
by this co-culture. The prediction of intracellular flux distribution in this consor-
tium enabled to uncover the potential importance of succinate uptake via C. kluyveri
to produce butyrate, and suggested an effect of the biomass species ratio on the sub-
strate profile of C. kluyveri. Simulations indicated that succinate addition might re-
sult in a substantial increase in hexanoate yield from syngas. In addition, the model
of C. autoethanogenum shows that the deletion of reactions FORt2 or ACALDx or
FDH_fer in C. autoethanogenum potentially increase ethanol production, suggesting
a potential increase in hexanoate production when these deletions were to be ap-
plied in co-culture experiments. Altogether, our model-driven approach has set a
good basis for the systematic design of strategies to modulate and optimize the pro-
duction of valuable chemicals from syngas.
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Chapter 4

Genome-scale metabolic
modelling enables deciphering
ethanol metabolism via the
acrylate pathway in the
propionate-producer
Anaerotignum neopropionicum
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4.1 Abstract

Microbial production of propionate from diluted streams of ethanol (e.g., deriving
from syngas fermentation) is a sustainable alternative to the petrochemical pro-
duction route. Yet, few ethanol-fermenting propionigenic bacteria are known, and
understanding of their metabolism is limited. Anaerotignum neopropionicum is a
propionate-producing bacterium that uses the acrylate pathway to ferment ethanol
and CO2 to propionate and acetate. In this work, we used computational and exper-
imental methods to study the metabolism of A. neopropionicum and, in particular,
the pathway for conversion of ethanol into propionate.
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Our work describes iANEO_SB607, the first genome-scale metabolic model
(GEM) of A. neopropionicum. The model was built combining the use of automatic
tools with an extensive manual curation process, and it was validated with experi-
mental data from this and published studies. The model predicted growth of A. neo-
propionicum on ethanol, lactate, sugars and amino acids, matching observed pheno-
types. In addition, the model was used to implement a dynamic flux balance analysis
(dFBA) approach that accurately predicted the fermentation profile of A. neopropi-
onicum during batch growth on ethanol. A systematic analysis of the metabolism of
A. neopropionicum combined with model simulations shed light into the mechanism
of ethanol fermentation via the acrylate pathway, and revealed the presence of the
electron-transferring complexes NADH-dependent reduced ferredoxin:NADP+ oxi-
doreductase (Nfn) and acryloyl-CoA reductase-EtfAB, identified for the first time in
this bacterium.

The realisation of the GEM iANEO_SB607 is a stepping stone towards the under-
standing of the metabolism of the propionate-producer A. neopropionicum. With it,
we have gained insight into the functioning of the acrylate pathway and energetic
aspects of the cell, with focus on the fermentation of ethanol. Overall, this study pro-
vides a basis to further exploit the potential of propionigenic bacteria as microbial
cell factories.

4.2 Background

Propionic acid is a naturally-occurring carboxylic acid produced by propionigenic
bacteria as end-product of their anaerobic metabolism. It is an important interme-
diate in anaerobic fermentative processes such as those occurring in the human gut,
anaerobic digesters and cheese production. It is also an essential platform chemi-
cal in the manufacture of cellulose-derived plastics, cosmetics and pharmaceuticals
and, due to its antimicrobial properties, it can be used as food preservative [255,
256]. At present, industrial production of propionic acid is based on petrochemical
processes, but efforts are being made to develop sustainable production platforms
based on the use of propionigenic bacteria as biocatalysts [255, 256]. Microbial pro-
duction of propionic acid has been researched for over 150 years, however indus-
trial implementation is still limited mainly due to low productivities, which render
such processes economically noncompetitive [255–257]. So far, most approaches
have considered strains of the genus Propionibacterium - well-studied due to their
involvement in cheese production [256] -, and have focused on the use of sugars as
feedstock. However, the chemical industry is increasingly required to rely on the
use of non-conventional, inexpensive raw materials to minimize its carbon footprint
[258]. Ethanol, a low-priced common end-product of many fermentations, is re-

62



4

garded as one of such feedstocks [258, 259]. Moreover, ethanol can be synthesised
from CO, CO2 and H2 (syngas) by acetogenic bacteria. Syngas-to-ethanol fermenta-
tion technology has been deployed at large scale, and recent advances are expected
to accelerate its development in the years to come [260–262].

Anaerotignum neopropionicum, formerly Clostridium neopropionicum [263], was
the first representative of the ethanol-fermenting, propionate-producing bacteria. It
was isolated in 1982 from an anaerobic digester treating wastewater from vegetable
cannery [264]. The ability of converting ethanol to propionate is shared with only
three other microbial species: the closest relative Anaerotignum propionicum [265]
(formerly, Clostridium propionicum [263]), the sulphate-reducing bacterium Desul-
fobulbus propionicus [266, 267], and Pelobacter propionicus [268]. In these four mi-
croorganisms, ethanol oxidation to propionate occurs in the presence of CO2 with
concomitant production of acetate, according to the theoretical Eq. (4.1). This abil-
ity of propionigenic bacteria could be exploited to upgrade dilute ethanol streams
from beer production or syngas fermentation, among others. For example, Moreira
et al. showed that co-cultures of acetogens and ethanol-consuming propionigenic
bacteria can convert syngas into propionate [269]. In their study, the acetogen Aceto-
bacteriumwieringaewas co-cultivated withA. neopropionicum; A. wieringae converted
CO to ethanol, which was used by A. neopropionicum to produce propionate.

3CH3CH2OH +2CO2↔ 2CH3CH2COO
− +CH3COO

− +3H+ +H2O (4.1)

∆Go = −124kJ

Two main pathways have been described for the fermentative production of pro-
pionic acid in bacteria: the methylmalonyl-CoA (also termed succinate pathway or
Wood-Werkman cycle) and the acrylate pathway [255, 270]. Most of the known pro-
pionigenic bacteria, including strains of the genera Propionibacterium and Cutibac-
terium, use the methylmalonyl-CoA pathway for growth. The acrylate pathway is
mostly found within members of the phylum Firmicutes [270]. Sugars and lactate
are common substrates for these pathways. Ethanol fermenters D. propionicus and
P. propionicus use the methylmalonyl-CoA pathway [267, 268], whereas A. neopropi-
onicum and A. propionicum use the acrylate pathway [271].

To fully exploit the potential of microorganisms for biotechnological applica-
tions, it is fundamental to understand their metabolism and cellular processes.
Genome-scale metabolic models (GEMs) and their analysis with COnstraint-Based
Reconstruction and Analysis (COBRA) methods [272] have become indispensable
tools in this regard [72, 214]. Flux balance analysis (FBA) is often used as the math-
ematical approach to explore the intracellular fluxes of GEMs under steady-state
conditions (e.g., in chemostat cultivations) [86]. FBA can be extended to dynamic
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FBA (dFBA), which simulates the time-step evolution of individual steady-states that
take place in time-varying processes, such as batch and fed-batch cultures [89]. A
wide range of GEMs have been successfully implemented to unravel novel metabolic
features of microorganisms, guide experimental design or improve bioprocess oper-
ation in mono- and co-cultivation. For instance, the reconstruction of the first GEM
of Clostridium ljungdahlii (iHN637) demonstrated the essential role of flavin-based
electron bifurcation in energy conservation during autotrophic growth [273]. FBA
enabled the estimation of intracellular metabolic fluxes in the GEM of the aceto-
gen Clostridium autoethanogenum (iCLAU786), helping to understand the effects of
CO supplementation on CO2/H2-growing cultures [274]. A multi-species GEM was
recently developed that described a syngas-fermenting co-culture composed of C.
autoethanogenum and Clostridium kluyveri; the model provided valuable insight into
the microbial interactions between the two microorganisms and predicted strategies
for enhanced production of the end products butyrate and hexanoate [51].

Many propionigenic bacteria have been sequenced to date [275–280], includ-
ing the ethanol fermenters D. propionicus [281], P. propionicus [282], A. propionicum
[278] and A. neopropionicum [280]. This has enabled the reconstruction of GEMs of
some of these species. All GEMs of propionigenic bacteria published to date con-
cern strains that harbour the methylmalonyl-CoA pathway. One of these works de-
scribed the reconstruction of five Propionibacterium freudenreichii species using pan-
genome guided metabolic analysis [283]. Navone et. al used the Propionibacterium
subsp. shermanii and the pan-Propionibacterium GEMs to guide genetic engineer-
ing strategies for increased propionic acid production [284]. Sun et. al developed a
constrained-based GEM of P. propionicus and validated fermentative growth of this
strain on ethanol [285].

Here we describe iANEO_SB607, the first GEM of A. neopropionicum and the first
to model the acrylate pathway in a propionigenic microorganism. The model was re-
constructed using automatic tools followed by an extensive manual curation, which
led us to the identification of electron-transferring enzymes involved in the acry-
late pathway, cofactor regeneration and energy conservation. In addition, a phys-
iological characterisation of A. neopropionicum in batch cultures was performed to
validate and complement the reconstruction of the model. FBA was used to assess
growth phenotypes on several carbon sources, and dFBA was applied to simulate
batch growth of A. neopropionicum on ethanol, and ethanol plus acetate. The com-
bination of in-depth modelling and experimentation has enabled us to examine in
detail the metabolism of ethanol fermentation in this bacterium and to address pre-
existing ambiguities.
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4.3 Materials and methods

4.3.1 Reconstruction of the GEM iANEO_SB607

The genome-scale metabolic network of A. neopropionicumwas reconstructed in four
main steps. First, the genome sequence of A. neopropionicum DSM 3847T

(GCA_001571775.1) [280] was retrieved from the European Nucleotide Archive in
FASTA format and was annotated using RAST [81]. An additional re-annotation
was carried out using eggNOG-mapper [286]. The annotation file can be found in
the public Gitlab repository:
https://gitlab.com/wurssb/Modelling/Anaerotignum_neopropionicum. The second
step was the generation of the draft model using ModelSEED [77]. For this, the
RAST annotation file was imported into ModelSEED and a Gram-positive template
was chosen to reproduce growth on rich medium. The draft model was down-
loaded in table format and SBML format. The third step consisted on the man-
ual curation and refinement of the draft model. Every reaction entry was anal-
ysed individually and modifications were made on the table format file. Specifi-
cally, (i) unbalanced reactions were corrected based on charged formulas with the
corresponding addition/deletion of H+ or H2O molecules; (ii) reaction direction
was adjusted using eQuilibrator [223]. Reactions were considered reversible if the
change in Gibbs free energy was between -30 and 30 kJ mol-1 at standard con-
ditions for reactants/products, pH 7.3 and ionic strength 0.1 M. In cases where
eQuilibrator did not retrieve information for a specific reaction, reaction direction
was adjusted based on information from MetaCyc [287] and BIGG [288] databases.
(iii) EC numbers were corrected or inserted for every reaction based on informa-
tion from KEGG [289] and MetaCyc [287]. (iv) The original genes in Patric format
[290] were replaced by the locus tag format (‘CLNEO_XXXXX’) found in Uniprot
[291] and BRENDA [292] databases. The re-annotation file was used to identify
potential gene(s) associated to reactions that lacked a gene in the original RAST an-
notation. (v) The final step consisted of gap-filling, where reactions were added
or removed to reproduce known or observed phenotypes. Gap-filling was done
combining a computational and a manual approach: an automatic gap-filling pro-
cess was run using the KBase pipeline[78], while the manual curation was based
on experimental data obtained in this study and published. The final model, iA-
NEO_SB607, can be found in the git repository in Table format, json and SBML L3V1
[227] standardization. Furthermore, the different versions together with a Memote
and FROG report (https://www.ebi.ac.uk/biomodels/curation/fbc) were combined
in an OMEX archive file [293] deposited in BioModels [294] and assigned the iden-
tifier MODEL2201310001.
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Generation of the biomass synthesis reaction and sensitivity analysis

The biomass reaction of A. neopropionicum was adapted from the biomass reac-
tions of Clostridium beijerinckii (GEM iCM925 [295]) and C. autoethanogenum (GEM
iCLAU786 [219]). The composition of the main building blocks was maintained but,
based on the protocol of Thiele and Palsson [296], protons were stoichiometrically
added to the hydrolysis part of the biomass synthesis reaction. Protons were also
added to the reactions of DNA, RNA, proteins, teichoic acids and peptidoglycans
synthesis in line with the ATP associated to polimerization. The DNA composi-
tion was determined based on the GC content of the genome of A. neopropionicum
and it was adjusted in the reaction associated to the biosynthesis of DNA. The fatty
acids composition was adjusted based on reported experimental data for A. neopro-
pionicum [263].

A sensitivity analysis was performed by modifying the content of proteins, phos-
pholipids (plipids) and cell wall components, considering cell wall components as
the sum of teichoic acid, peptidoglycans and carbohydrates composition. The rest
of components - DNA, RNA and trace- were kept fixed, as together they only rep-
resent 10% of the biomass. The composition of proteins and plipids were randomly
selected within +/- 10% of their original value. In this way, the total cell wall com-
ponents composition was calculated following equation 4.2.

Cell wall components = 1− protein− plipids − (DNA+RNA+ trace) (4.2)

Consecutively, the value of each cell component, was distributed within teichoic
acid, peptidoglycans and carbohydrates following the same proportion as they had
in the original biomass synthesis reaction. For each randomly selected value, a new
biomass synthesis reaction was obtained. This new biomass synthesis reaction was
maximised as the objective function using FBA in COBRApy [235] maintaining fixed
ethanol and CO2 uptake rates. We repeated this process 1000 times, so that we ob-
tained 1000 different biomass synthesis reactions. The composition of the cell wall
components, proteins and phospholipids was stored for each biomass synthesis reac-
tion, together with the growth rate, and acetate and propionate production rate. The
obtained growth rate, acetate and propionate production rate were normalised with
respect the original values and were plotted against each biomass building block
(Additional file 1, Fig. S4.1) Additionally, we also studied the effect of varying GAM
on the growth rate. In this analysis, the original fractions of the biomass compo-
nents shown in equation 4.2 were maintained, and we randomly selected different
GAM values within +/- 20% of the original value. We repeated this process 1000
times and calculated the growth rate for each GAM value. The obtained growth rate
was normalised with respect the original growth rate and was plotted against GAM
(Additional file 1, Fig. S4.2; git repository).
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4.3.2 Model simulations at steady-state

The model was qualitatively validated by assessing growth capabilities and product
profile on several carbon sources in steady-state Model simulations were done using
COBRApy, version 0.24.0 [235], and Python 3.6.9. The maximum empirical etha-
nol uptake rate across cultivations was 30 to 40 mmol gDW-1 h-1 (see Quantitative
assessment of iANEO_SB607 through dFBA). Based on this, the lower bound of the
substrate uptake rate per time point was constrained to 30 mmol gDW-1 h-1 to as-
sess growth on a single carbon source, and to 30 mmol gDW-1 h-1 in total to assess
growth on more than one carbon source, unless specified otherwise. The biomass
synthesis reaction was used as the objective function. Growth was considered when
the growth rate was higher than 0.0001 h-1. To better explore the solution space, the
fluxes compatible with the applied constraints were sampled using the sample func-
tion with the ‘achr’ method in the flux_analysis submodule of COBRApy [236]. The
lower bound of the biomass synthesis reaction was constrained to be at least 99% of
the maximum growth rate calculated by FBA. Presented results are the average and
standard deviation based on 5000 iterations generated at each condition.

4.3.3 Dynamic flux balance analysis simulations

The reconstructed GEM iANEO_SB607 was subjected to dFBA to simulate batch
growth of A. neopropionicum on ethanol and ethanol plus acetate. Model simula-
tions were done using COBRApy, version 0.24.0 [235], IBM ILOG CPLEX 128, and
Python 3.6.9 (see git repository). The maximum uptake rate, maximum growth rate
and initial substrate and biomass concentration obtained from batch cultivations,
were used as model inputs. To constrain the feasible flux space, ethanol uptake
was specified to follow a Michaelis-Menten-like kinetics (Eq. 4.3) with parameters
qSi,max and Km,i:

qSi =
qSi,maxS i
Km,i + S i

(4.3)

where qSi is the uptake rate of substrate i (mmol gDW−1 h−1); qSi,max is the max-
imum uptake rate of substrate i (mmol gDW−1 h−1); Km,i is the Michaelis-Menten
constant (mM) for substrate i and Si is the concentration of substrate i (mM). Km,i
was determined based on experimental data and model fitting (Additional file 1,
Table S4.1). qSi,max was calculated from experimental data of batch fermentations.
Concentrations of substrates, products and biomass over time were determined as
follows. First, the Vsi was calculated using Eq. 4.3 for each given time step and
the defined initial concentrations. Then, FBA was applied under those constraints
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to compute the fluxes at maximum growth rate. After that, the following ordinary
differential equations (ODE) were solved:

dX i

dt
= µiX i (4.4)

dS i
dt

= qSiX i (4.5)

dP j

dt
= qPjX i (4.6)

where Xi is the biomass concentration (g L-1); µ is the specific growth rate (h-1);
Si is the concentration of substrate i (mM); qSi is the uptake rate of substrate i (mmol
gDW−1 h−1); qPj is the production rate of product j (mmol gDW−1 h−1), and Pj is the
concentration of product j (mM). Equations 4.4,4.5 and 4.6 were used to calculate X,
Si and Pj. Si is used as input to calculate the next state following equation 4.3. The
objective function was changed to maximise the ATP generation (“rxn00062_c0”)
once the model became infeasible due to the low concentration of ethanol. For each
time step, the concentration of biomass, substrate and products was computed and
the calculated values were stored and plotted.

4.3.4 Experimental batch fermentation data

Cultivation conditions

A. neopropionicumDSM 3847T was obtained from the German Collection of Microor-
ganisms and Cell Cultures (DSMZ, Braunschweig, Germay). Batch fermentations
were done in 117 mL serum bottles containing 50 mL medium with the following
composition (per litre): 0.9 g NH4Cl, 0.3 g NaCl, 0.8 g KCl, 0.2 g KH2PO4, 0.4 g
K2HPO4, 0.2 MgSO4 x 7 H2O, 0.04 CaCl2 x 2 H2O, 3.36 g NaHCO3, 10 mL trace
element solution from DSMmedium 318, 1 mL vitamin solution, 0.5 g yeast extract,
0.3 g Na2S x xH2O (x=9-11) as reducing agent and 0.5 mg resazurin as redox indica-
tor. The vitamin solution contained (per liter): 0.5 g pyridoxine, 0.2 g thiamine, 0.2
g nicotinic acid, 0.1 g p-aminobenzoate, 0.1 g riboflavin, 0.1 g pantothenic acid, 0.1
g cobalamin, 0.05 g folic acid, 0.05 g thioctic acid and 0.02 g biotin. The headspace
of the bottles was filled with a gas mixture of N2/CO2 (80:20 % v/v; 170 kPa). To
test growth in the presence of H2, the headspace of bottles was filled instead with
a gas mixture of H2/CO2/N2 (10:20:70 and 80:20:0 % v/v; 170 kPa). Growth was
assessed on the following substrates: ethanol, lactate, glucose and xylose, at an ini-
tial concentration of 25 mM. Where indicated, acetate (10 and 25 mM) was added to
ethanol-fed cultures. The pH of the medium was 7.1 - 7.2. Cultures were incubated
at 30oC statically.

68



4

Analytical techniques

Liquid and headspace samples were taken periodically over the course of batch fer-
mentations and analysed for biomass, substrate and product concentrations. Biomass
growth was measured by optical density at 600 nm (OD600). Biomass concentra-
tion (mgCDW L-1) was estimated from OD600 measurements using the correlation:
mgCDW L-1 = (OD600 - 0.016)/0.0032, which was experimentally determined fromA.
neopropionicum cultures grown on ethanol. Concentrations of soluble compounds in
the supernatant of liquid samples were determined using high-pressure liquid chro-
matography (HPLC) (LC-2030C Plus, Shimadzu, USA). The HPLC was equipped
with a Shodex SH1821 column operated at 65oC. A solution of 0.1 N H2SO4 was
used as mobile phase, at a flowrate of 1 mL/min. Detection was done via a refrac-
tive index detector. Concentrations below 0.2 mM could not be accurately quantified
and are considered traces. Concentrations of gases in headspace samples were deter-
mined via gas chromatography (GC) (Compact GC 4.0, Global Analyser Solutions,
The Netherlands). To analyse H2, a Molsieve 5A column operated at 140oC coupled
to a Carboxen 1010 column was used. CO2 was analysed in a RT-Q-BOND column
at 60oC.

4.4 Results

4.4.1 Reconstruction of iANEO_SB607, the first GEM ofA. neopro-
pionicum

A draft model of the metabolism of A. neopropionicum was developed by automatic
reconstruction using the publicly available genome sequence of the microorgan-
ism (DDBJ/EMBL/GenBank accession number: LRVM00000000; [280]). The draft
model comprised 491 genes, 855 metabolites and 907 reactions. This preliminary
model predicted growth only on rich medium supplemented with amino acids and
biomass precursors, and it did not predict the production of propionate and acetate.
We performed an extensive manual curation process that resulted in the deletion,
modification or addition of reactions, metabolites and genes (see git repository). The
final model, iANEO_SB607, comprises 607 genes, 815 metabolites and 932 reactions
(Table 4.1). This is the first GEM of the propionigenic bacterium A. neopropionicum.

Two compartments are recognised in the model: the intracellular compartment
(id: ‘c0’) and the extracellular compartment (id: ‘e0’). Metabolites are assigned to ei-
ther one of the compartments. Reactions are classified as metabolic reactions, trans-
port reactions and exchange reactions. Metabolic reactions describe the biochemical
conversion of metabolites within the intracellular compartment. Transport reactions
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Table 4.1: Composition of iANEO_SB607

Features Amount

Genes 607
Metabolites 815

Intracellular metabolites 742
Extracellular metabolites 73

Reactions 932
Metabolic reactions 771
Transport reactions 88
Exchange reactions 73

Reactions associated with genes 733
Reactions non-associated with genes 199

describe the transport of metabolites across the intracellular and extracellular com-
partments. Exchange reactions simulate the excretion of metabolites outside the cell
or the uptake of metabolites into the cell. Reactions are distributed within cell sub-
systems (Fig. 4.1), except exchange reactions. The model also includes reactions in-
volved in the production of acetate, propionate, butyrate, propanol, isobutyrate and
isovalerate. Approximately 80 % of reactions could be associated to genes present
in the genome of A. neopropionicum. The remaining 20% of reactions are not associ-
ated with genes. Half of these reactions are mostly exchange reactions and diffusion
transport reactions. The other half are spontaneous reactions or gap-filled reactions
describing, in a summarised manner, the biosynthesis of biomass building blocks
(e.g., lipids, carbohydrates).

4.4.2 Sensitivity analysis of the biomass synthesis reaction

The constructed biomass synthesis reaction (BIOMASS_Aneopro_w_GAM) accounts
for the production of DNA, RNA, proteins, peptidoglycans, phospholipids, teichoic
acids and trace, and it is normalised to 1 gram per mmol. It also includes the
growth-associated ATP maintenance (GAM) as an hydrolysis reaction, and the non-
growth associated ATPmaintenance (NGAM) as a reaction of ATP phosphohydrolase
(rxn00062_c0). GAM was assumed to be 40 mmol ATP/gDW, as in the GEM of C.
acetobutylicum [297]. The lower bound of this reaction was constrained to a rate of
8.4 mmol ATP gDW-1 h-1, an estimation based on the models of C. beijerinckii [295]
and C. autoethanogenum [219].

Since the biomass synthesis reaction of A. neopropionicum was developed based
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Figure 4.1: Distribution of the reactions of the iANEO_SB607 model within cellular subsys-
tems

on these two other species, we performed a sensitivity analysis to test its robustness.
The analysis showed the effect of modifying the proportion of the main biomass
components from the biomass synthesis reaction on model predictions (i.e., growth
and production rates). In all scenarios tested, growth and production rates remained
virtually unaffected (Additional file 1, Fig. S4.1). The largest deviation of the growth
rate, acetate and propionate production rates were ± 0.0005 h-1, ± 0.005mmol gDW-1

h-1 and ± 0.0025 mmol gDW-1 h-1, respectively, which are negligible as they only
represent 3, 0.025 and 0.025 %, respectively. The effect of varying other biomass
components -DNA, RNA and trace- was also considered negligible given that they
represent a minor fraction of the biomass (10%). The growth rate was slightly more
affected when GAM was changed. The largest deviation was ± 0.00175 h-1, which
corresponds to 10.8 % difference compared to the original growth rate. The biomass
synthesis reaction was therefore considered a reliable representation of the biomass
composition of A. neopropionicum.

4.4.3 Quality of the GEM iANEO_SB607

The quality of the iANEO_SB607 model was evaluated using the SBML validator
[298] and the test suite Memote [299]. Additionally, we have run a FROG analysis
to verify the reproducibility of the model. The GEM was correctly defined in SBML
format, level 3, version 1. The GEM obtained an overall Memote score of 72 %. All
metabolites, reactions and genes were fully annotated. The annotation per database
of reactions and metabolites scored 83 %, however the annotation per database of
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genes scored a much lower value, 33 %. Reactions are mass and charge balanced, ex-
cept for reactions associated to the synthesis of biomass precursors. The model does
not have infeasible cycles and all metabolites are connected. However, the model is
only partly consistent (55 % scoring); this is due to the creation of metabolites to ac-
count for biomass precursors. These metabolites (e.g., RNA) lack a defined formula
or a correct charge and, thus, their associated reactions are considered stoichiomet-
rically inconsistent, decreasing the global consistency score. Memote identifies 102
metabolites that can only be consumed or produced, resulting in 422 blocked re-
actions in the model under the restrictive constraints. When the model does not
have constraints, FVA analysis finds 354 blocked reactions,which is in line with the
average % of blocked reactions in GEMs (20-40%) [300].

4.4.4 Qualitative assessment of iANEO_SB607 through analysis of
growth phenotypes

The iANEO_SB607 model was qualitatively validated by assessing growth of A. neo-
propionicum on several carbon sources and contrasting the results with experimental
data. Model predictions matched most of the growth phenotypes observed in culti-
vation experiments from this and previous studies (Table 4.2; full data is available
in the git repository and Additional file 1, Table S4.2).

The model predicts growth of A. neopropionicum on ethanol. Growth on xylose
and on glucose is also predicted by the model and supported by experimental evi-
dence, with exception of one study, which reported no growth of A. neopropionicum
on glucose [263]. According to a previous work, A. neopropionicum can also grow
on D-lactate, but not on L-lactate [271]. In our batch cultivations with DL-lactate as
substrate, we repeatedly observed that only ≈ 50 % of the substrate was used. The
purity of the L- enantiomer in the racemic mixture solution was, according to the
manufacturer, 27 - 33 %. This indicates that D-lactate is indeed used by A. neopropi-
onicum, but it does not exclude the possibility that L-lactate is also metabolised. Yet,
since the latter could not be confirmed, the model considers only the utilisation of D-
lactate. The model predicts growth on pyruvate as well as on one pyruvate-derived
amino acid, alanine. Serine also supports growth of A. neopropionicum, as predicted
by the model and observed in cultivation experiments. The model indicates that
branched-chain amino acids (valine, leucine and isoleucine) as well as TCA-derived
amino acids (lysine and proline), with exception of threonine, are not utilised.

Further model validation was performed by assessing the product profile on a
number of substrates from which sufficient experimental data was available, specifi-
cally: ethanol, lactate, glucose, xylose, L-threonine, L-serine, L-alanine, ethanol plus
acetate, ethanol plus L-serine and ethanol plus L-alanine. For all the substrates
tested, the model predicted mixed secretion of propionate and acetate, in accor-
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Table 4.2: Growth phenotypes of A. neopropionicum on different substrates, predicted
by the iANEO_SB607 model and observed in experiments from this and previous
studies. +, Positive; -, negative; w, weakly positive; ND, no available data.

Substrates iANEO_SB607 This study (exp.) [271] [263] [269]

Ethanol + + + + +
Ethanol & Acetate + + + ND ND
Ethanol & Alanine +a ND ND ND +
Ethanol & Serine +b ND ND ND +

Pyruvate + ND + + ND
D-Lactate + + + wc ND
D-Glucose + + + - ND
Xylose + + + + ND

L-Threonine + ND + + ND
L-serine + ND + + ND
L-Alanine + ND + + ND
D-Alanine + ND + ND ND
L-Valine - ND - w ND
L-Leucine - ND ND w ND

L-Isoleucine - ND ND w ND
Lysine - ND - ND ND

L-Proline - ND - - ND

aL-Alanine
bL-Serine
c(L-D)-Lactate

dance with experimental evidence (Fig. 4.2; full data is available in the git repository
and Additional file 1, Table S4.2). Model analysis shows that secretion of product
mixture is a requisite for energy generation and redox cofactor regeneration. The
involved pathways and their stoichiometry are described in following sections.

Butyrate, propanol, lactate, isobutyrate and isovalerate are also predicted by the
model as fermentation products in all cases, albeit in different proportions. Butyrate
appears as a minor product in all the simulations and cultivation experiments, ex-
cept for in the fermentation of L-threonine; in this case, the model predicts butyrate
as a major end product, as previously reported [263]. According to model simula-
tions and in agreement with our experimental data, lactate, an intermediate of the
acrylate pathway, and propanol are produced in minor amounts. In batch cultiva-
tions carried out in this study, isobutyrate and isovalerate were detected as traces
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Figure 4.2: Product profile of the fermentation of different substrates by A. neopro-
pionicum, predicted by the GEM iANEO_SB607 and observed in experiments from
this and previous studies. P: Propionate; A: acetate; B: butyrate; Poh: propanol; L:
lactate; iB: isobutyrate and iV: isovalerate. White spaces indicate the product is not
reported produced. Grey areas indicate no available data.

with ethanol (plus acetate), glucose or xylose as substrates, but not with lactate. The
model predicted both products to be produced as traces with these substrates. Model
simulations predicted enhanced production of isobutyrate and isovalerate with etha-
nol plus L-valine and ethanol plus L-leucine as substrates, respectively (not shown),
as observed in one study [263]. The model also predicted the production of isovaler-
ate when L-alanine or L-serine are co-substrates with ethanol, which is in agreement
with observations from a recent work [269].

H2 was not detected as product in any of the fermentations of A. neopropionicum
carried out in this study (with substrates: ethanol (plus acetate), lactate, glucose, xy-
lose). In addition, H2 was not utilised nor affected the growth or the product profile
of A. neopropionicum cultures growing on ethanol (Additional file 1, Fig. S4.3). Pre-
vious works reported the same observations [271, 301]. A ferredoxin hydrogenase is
annotated in the genome of A. neopropionicum (CLNEO_18070; EC 1.12.7.2; model
id:‘rxn05759_c0’); yet, given the collected evidence, this reaction was blocked in the
model.

4.4.5 Quantitative assessment of iANEO_SB607 through dFBA

The iANEO_SB607 model of A. neopropionicumwas evaluated quantitatively by sim-
ulating the dynamics of batch fermentation using dFBA. Three conditions were con-
sidered, with regard to the substrates present: 25 mM ethanol, 25 mM ethanol plus
10 mM acetate, and 25 mM ethanol plus 25 mM acetate. To constrain the model,
we used empirical data of ethanol consumption, product formation and cell growth
from cultivation experiments. The fermentation profiles obtained by dFBA were
contrasted with the experimental data of batch incubations. Across cultivations, car-
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bon balance was 85 - 96 %, not completely closed likely due to the difficulty to accu-
rately quantify CO2 and to slight evaporation of ethanol in the bottles, as reported
by others [302].

For the condition with only ethanol (and CO2) as substrate, the time-course data
obtained through dFBA accurately reproduced the fermentation profile, with only
small deviations (Fig. 4.3). Exponential growth of A. neopropionicum began after a
relatively short lag phase of ≈ 13 hours. During the exponential phase, ethanol was
uptaken (together with CO2; not shown) at an empirical maximum consumption
rate (qS,max) of 36.2 ± 5.5 mmol ethanol gDW-1 h-1. Modeled ethanol consumption
fitted the experimental data with a small margin of error. Propionate and acetate
were produced simultaneously during the exponential phase, at empirical maximum
production rates (qP,max and qA,max) of 12.0 ± 0.1 mmol propionate gDW-1 h-1 and 8.6
± 0.5 mmol acetate gDW-1 h-1, respectively. The production profile of propionate was
well predicted by dFBA, estimating a final propionate concentration (10.9 mM) close
to the experimental value (9.5 mM). However, dFBA predicted a final concentration
of acetate (11.5 mM) moderately higher than experimentally observed (8.6 mM).
The empirical maximum specific growth rate of A. neopropionicum (µmax) was 0.082
± 0.006 h-1 (duplication time = 8.4 h), which was used to constrain the model. In
incubations, the biomass concentration peaked (44.7 ± 1.3 mgDW L-1) at ≈ 47 hours,
and decreased afterwards. The simulation predicted a slightly deviated pattern of
biomass formation during the exponential phase, and it did not predict the observed
drop in the stationary phase. Yet, the predicted maximum biomass concentration
(44 mgDW L-1) matched the empirical value. Propanol (1.3 mM) and butyrate (1
mM) were detected as minor products in batch incubations; the evolution of both
products was predicted correctly by the dFBA simulations. Traces of isobutyrate
and isovalerate were also detected and predicted by dFBA (not shown).

To further evaluate the ability of A. neopropionicum to upgrade dilute ethanol
streams from syngas fermentation, we considered a scenario with ethanol and ac-
etate as co-substrates. Acetate is produced by acetogens as a major product of au-
totrophic metabolism, and it is therefore found in variable proportions in syngas fer-
mentation effluent. A. neopropionicum can utilise acetate in the presence of propanol
[264] or ethanol [271] as electron donors. To investigate the effect of acetate as co-
substrate on ethanol-fermenting cultures of A. neopropionicum, incubations were set
up with ethanol (25 mM) and acetate (10 and 25 mM) as susbtrates, and dFBA was
used to simulate the dynamics of these fermentations. dFBA reproduced with high
accuracy the fermentation profile of incubations containing ethanol plus 10 mM ac-
etate (Fig. 4.4). In this condition, the observed µmax was 0.098 ± 0.005 h-1 (dupli-
cation time = 7.1 h); 19 % higher than in the incubations without acetate. However,
less biomass was formed in comparison; the maximum biomass concentration was
41.1 ± 0.8 mgDW L-1 (≈ 9% lower), which was also predicted by dFBA. The presence
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Figure 4.3: Fermentation of ethanol (25 mM) by A. neopropionicum in batch cultivation. Dots
indicate experimental data and solid lines indicate the result of dFBA. Background colours
distinguish fermentation phases: lag (blue), exponential (green) and stationary (orange).

of 10 mM acetate also affected the consumption and production rates; ethanol con-
sumption was faster than in the absence of acetate; the qS,max was 43.3 ± 4.3 mmol
ethanol gDW h-1, a 20 % increase. The qA,max in this condition dropped to 3.1 ± 0.6
mmol acetate gDW h-1. The biggest difference was in the qP,max, which was 16.4 ±
0.8 mmol propionate gDW h-1, a 37 % increase compared to the condition without
acetate. The final propionate concentration was also slightly higher, 11.3 mM (vs.
9.5 mM). Here, again, the simulation predicted a similar propionate concentration
to the observed value (12.2 mM), and a higher final acetate concentration (18.3 mM)
than observed (16.7 mM). The incubations containing 25 mM acetate at the start
followed a different trend than the incubations with 10 mM acetate (fermentation
profile not shown). In batch bottles, the biomass concentration reached a similar
value to that obtained in the condition with 10 mM acetate, but the µmax, qP,max
and qA,max were similar to the condition without acetate (data not shown). The final
propionate concentration was 12.5 mM, the highest of the three conditions tested.

The presence of acetate had an effect on the utilisation of ethanol by A. neopropi-
onicum, which is reflected in the fermentation yields. The biomass yield (YX/S) was
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Figure 4.4: Fermentation of ethanol (25 mM) and acetate (10 mM) by A. neopropionicum in
batch cultivation. Dots indicate experimental data and solid lines indicate the result of dFBA.
Background colours distinguish fermentation phases: lag (blue), exponential (green) and sta-
tionary (orange).

slightly lower in the presence of both 10 and 25 mM acetate (1.4 gDW mol ethanol-1

vs. 1.6 gDW mol ethanol-1 when no acetate was present). With acetate present at the
start of incubations, more ethanol was invested in propionate production, as indi-
cated by the propionate yields (YP/S, mol mol-1), which were 0.33, 0.38 and 0.42 for
the conditions with no acetate, 10 mM acetate and 25 mM acetate, respectively. The
production of acetate followed the inverse trend; acetate yields (YA/S, mol mol-1)
were 0.29, 0.18 and 0.06 for the conditions with no acetate, 10 mM acetate and 25
mM acetate, respectively. Similarly, lower yields were obtained for propanol and
butyrate when acetate was present (data now shown).

4.4.6 Ethanol fermentation via the acrylate pathway

The reconstructed iANEO_SB607 model describes the metabolism of ethanol fer-
mentation and propionate production via the acrylate pathway in A. neopropionicum
(Fig. 4.5). Model simulations provided new insights into the enzymatic reactions
involved in propionate formation, cofactor regeneration and the energy metabolism
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of the cell.

Figure 4.5: Proposed metabolism of ethanol fermentation to propionate via the acrylate path-
way in A. neopropionicum. Coloured areas designate the following modules: ethanol oxidation
(blue), acetate production (green), pyruvate synthesis (yellow), lactate production and acry-
late pathway (purple), redox cofactor regeneration and ATPase (red). Numbers in reactions
correspond to the following enzymes and reaction ids in the model: 1,2, aldehyde-alcohol de-
hydrogenase (rxn00543_c0 and rxn00171_c0); 3, phosphate acetyltransferase (rxn00173_c0);
4, acetate kinase (rxn00225_c0); 5, pyruvate:ferredoxin oxidoreductase (PFOR; rxn05938_c0);
6, NAD-dependent D-lactate dehydrogenase (rxn00500_c0); 7, propionate-CoA:lactoyl-CoA
transferase (rxn01056_c0); 8, lactoyl-CoA dehydratase (rxn02123_c0); 9, acryloyl-CoA reduc-
tase (rxn40050_c0); 10, ATPase (rxn10042_c0); 11, Rnf complex (Rnf_c0).

Ethanol is oxidised to acetyl-CoA via acetaldehyde through alcohol and acetalde-
hyde dehydrogenases. The genome of A. neopropionicum harbours a bifunctional
NAD+-dependent alcohol-aldehyde dehydrogenase (AdhE; CLNEO_13930) that can
catalyse this two-step conversion. According to our model, two other alcohol de-
hydrogenases, encoded by adh (CLNEO_16910) and adhB (CLNEO_00480), could
also drive the oxidation of ethanol to acetaldehyde. Initially, the model also pre-
dicted this reaction to be catalysed by NAD(P)H-dependent butanol dehydroge-
nase (BdhA), encoded by bdhA (CLNEO_09740; rxn00536_c0). However, the well-
characterised BdhA of C. acetobutylicum, which shares 60.7 % identity with that of
A. neopropionicum, is known to contribute primarily to butanol production and it
is the alcohol dehydrogenase least involved in ethanol metabolism [303]. Thus, we
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reasoned that BdhA would likely not be involved in ethanol oxidation in A. neopro-
pionicum and excluded this reaction from model simulations.

Acetyl-CoA is partly used in the reductive reactions of the metabolism and partly
invested in the formation of acetate, an energy-generating step. Acetate is syn-
thesised via phosphate acetyltransferase (Pta; CLNEO_28570) and acetate kinase
(Ack; CLNEO_28580), yielding ATP via substrate-level phosphorylation (SLP). In
the reductive path, acetyl-CoA is converted to pyruvate through the CO2-fixating
reaction catalysed by pyruvate:ferredoxin oxidoreductase (PFOR; CLNEO_15240 or
CLNEO_19010 or CLNEO_17780 or CLNEO_03040 or CLNEO_04330 or CLNEO_-
24550). This conversion requires reduced ferredoxin (Fd2-) as electron carrier. Our
hypothesis, supported by model predictions, is that Fd2- is produced in the Na+-
translocating ferredoxin:NAD+ oxidoreductase (Rnf) complex. The Rnf complex is
a membrane-bound respiratory enzyme involved in energy conservation in anaer-
obic microorganisms [304]. During growth on high-energy substrates, it catalyses
the exergonic reduction of NAD+ with electrons from Fd2- coupled to the transloca-
tion of two cations (H+ or Na+) across the membrane. The electrochemical potential
established by the Rnf complex can then be used by a membrane-bound ATP syn-
thase for energy generation. The Rnf complex can also operate in the reverse direc-
tion to produce Fd2- at the expense of ATP [305]. The genome of A. neopropionicum
harbours a complete rnf cluster, composed of the genes rnfA (CLNEO_01390), rnfB
(CLNEO_01400), rnfC (CLNEO_01350), rnfD (CLNEO_01360), rnfE (CLNEO_01380)
and rnfG (CLNEO_01370). With ethanol as substrate, our assumption is that the
Rnf complex of A. neopropionicum operates in reverse, generating Fd2-. The ender-
gonic reduction of ferredoxin (Eo’= - 500 to - 420 mV) with NADH (Eo’= - 320 mV)
is driven by reverse electron transport across the membrane which, in turn, is an
energy-driven process. A membrane-bound V-type ATPase is present in the genome
of A. neopropionicum, encoded by the genes atpA/ntpA (CLNEO_280), atpB/ntpB
(CLNEO_290), ntpC, (CLNEO_260), atpD/ntpD (CLNEO_23400), atpE (CLNEO_250),
ntpG (CLNEO_270), ntpK (CLNEO_240) and ntpI (CLNEO_23330). We theorise that
ATP is hydrolysed in the ATPase to create a proton- or sodium-motive-force that is
used by the Rnf complex to catalyse the reduction of ferredoxin. The production of
Fd2- is an energy costly process, the implications of which are addressed later in this
section.

Pyruvate produced by the PFOR is subsequently reduced to lactate with NADH
via D-lactate dehydrogenase (CLNEO_28010). We assumed NADPH is not used as
electron carrier in this reaction, since lactate dehydrogenases have a strict specificity
for NAD+/NADH [306, 307]. Lactate then enters the acrylate pathway, a cyclic chain
of reactions involving the intermediates lactoyl-CoA, acryloyl-CoA and propionyl-
CoA. The characteristic enzyme of this pathway is propionate-CoA:lactoyl-CoA trans-
ferase (Pct, EC 2.8.3.1), which exchanges the CoA moiety between propionyl-CoA
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and lactate, generating lactoyl-CoA and propionate as end product [308, 309]. Our
first annotation of the genome of A. neopropionicum did not include Pct. However,
an acetate CoA-transferase was present, encoded by the gene ydiF (CLNEO_17700),
that shared 96 % identity with the purified and well characterised Pct of A. propi-
onicum [309]. Thus, we deduced that ydiF encodes for Pct in A. neopropionicum and
included this reaction in the model. Lactoyl-CoA dehydratase (CLNEO_17710 and
CLNEO_17720) catalyses the dehydration of lactoyl-CoA to acryloyl-CoA, which is
subsequently reduced to propionyl-CoA by acryloyl-CoA reductase. Our genome
annotation revealed that the acryloyl reductase of A. neopropionicum forms an en-
zymatic complex with an electron-transferring flavoprotein (EtfAB). The complex,
hereafter named acryloyl-CoA reductase-EtfAB (Acr-EtfAB), is also present and has
been well characterised in A. propionicum [310]. Three gene clusters predicted to
encode for acryloyl-CoA reductase (acrC) or EtfAB (acrA,acrB) were found in the
genome: (i) CLNEO_21740 (acrC), CLNEO_21750 (acrB_1) and CLNEO_21760 (acrA);
(ii) CLNEO_26130 (acdA_1) and CLNEO_26120 (acrB_2); and (iii) CLNEO_29850
(acdA_2) and CLNEO_29840 (acrB_3). The acdA_1 and acdA_2 genes encode for
acyl-CoA dehydrogenases that share low identity (46 and 54 %, respectively) with
the acryloyl-CoA reductase encoded by acrC; thus, we assumed that the former two
enzymes are not responsible for acryloyl-CoA reductase activity. The first cluster is
the only complete one, composed of acryloyl-CoA reductase (acrC) and the A (acrA)
and B (acrB_1) subunits of EtfAB. The proteins encoded by these three genes share
an identity of 92.9 %, 89.7 % and 89.1 %, respectively, with their homologues from
the Acr-EtfAB complex of A. propionicum. The Acr-EtfAB of A. propionicum is a non-
bifurcating soluble enzyme that catalyses the irreversible reduction of acryloyl-CoA
to propionyl-CoA with NADH via electron transfer to a flavin moiety and appears
not to be involved in energy conservation [310, 311]. Given their high similarity,
we deduced the same features apply to the Acr-EtfAB of A. neopropionicum. To our
knowledge, this is the first time that the Acr-EtfAB complex is identified in this mi-
croorganism.

According to the theoretical stoichiometry, the fermentation of ethanol yields
propionate and acetate in a 2:1 ratio (Eq. 4.1). However, this ratio is not observed
in cultures of A. neopropionicum; rather, ethanol fermentation resulted in a ≈ 1.2:1
propionate to acetate ratio (Fig. 4.3 and Additional file 1, Table S4.2). We reasoned
that the theoretical ratio cannot be achieved in A. neopropionicum due to energetic
constraints of the cell, specifically, due to the requirement of Fd2-. Model simu-
lations were performed to confirm this. The oxidation of three moles of ethanol
generates six moles of NADH and three moles of acetyl-CoA. To fit the theoreti-
cal 2:1 propionate to acetate ratio, two moles of acetyl-CoA would have to be used
in the reductive part of the metabolism, and one mole of acetyl-CoA should be in-
vested in acetate, with the concomitant production of one mole of ATP (via SLP).
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The synthesis of two moles of pyruvate from acetyl-CoA would require two moles
of Fd2-, which is produced at the RnF complex at the expense of ATP. However, the
hydrolysis of one mole of ATP (∆Go = -32 kJ mol-1; [312]) could drive the reduc-
tion with NADH of no more than ≈ 1.3 moles of ferredoxin (∆Go = -25 kJ mol-1;
[313]). Moreover, two other issues arise: i) even if this one mole of ATP would solely
be invested in the reduction of ferredoxin, this would leave no net ATP for growth,
and ii) such a scenario would result in excess reducing equivalents from ethanol
oxidation that could not be recycled in the production of propionate. Our model
predictions confirmed this inconsistencies and are in agreement with the hypothesis
that the propionate to acetate 2:1 ratio cannot be achieved in A. neopropionicum dur-
ing the fermentation of ethanol. Instead, cells must invest more than one mole of
acetyl-CoA in acetate production to obtain net ATP to support growth. This leaves
less than two moles of acetyl-CoA available for propionate production and, overall,
a propionate to acetate ratio lower than the theoretical 2:1. The actual propionate
to acetate ratio (close to 1.2:1, based on the fermentation balance) depends on how
much Fd2- can be produced per hydrolysed ATP, which in turn depends not only
on the Gibbs free energies of ATP hydrolysis and ferredoxin reduction with NADH
under physiological conditions but also on the coupling ratio of the ATPase (number
of cations translocated per ATP hydrolised). While the Rnf complex can be assumed
to translocate two cations per ferredoxin reduced/oxidised, the coupling ratio of the
ATPase remains unknown for A. neopropionicum. Our model fitted with a coupling
ratio of the ATPase of 3 to 3.5 H+/Na+ translocated per ATP.

4.4.7 Propanol and butyrate production pathways

A. neopropionicum produces propanol and butyrate as minor products of the fermen-
tation of several substrates (Fig. 4.2). Propanol is formed from propionyl-CoA via
propionaldehyde in a two-step reductive conversion catalysed by AdhE (Fig. 4.6).
Reduction of propionaldehyde could also be catalysed by NAD+-dependent alcohol
dehydrogenases adh (CLNEO_16910) and adhB (CLNEO_00480).

Butyrate production inA. neopropionicum takes place via the acetyl-CoA pathway
(Fig. 4.6). In this pathway, acetyl-CoA is first converted to butyryl-CoA, which
eventually yields butyrate. Most enzymes of the pathway were either present in the
genome, were assigned during the re-annotation or were identified through protein
sequence alignment. Only one enzyme was not found: acetoacetyl-CoA thiolase (EC
2.3.1.9), which catalyses the condensation of two molecules of acetyl-CoA to form
acetoacetyl-CoA. However, since the rest of genes of the pathway were identified
(see Additional file 2), we added this reaction to the model during the gap-filling
process. A key enzyme of this pathway is the butyryl-CoA dehydrogenase/electron-
transferring flavoprotein complex (Bcd-EtfAB). Bcd-EtfAB is an electron-bifurcating
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Figure 4.6: Putative pathways for the production of propanol (blue) and butyrate (orange)
in A. neopropionicum. Numbers in reactions correspond to the following enzymes as anno-
tated in the genome, and reaction ids in the model: 1 and 2, aldehyde-alcohol dehydro-
genase (rxn09944_c0 and rxn01710_c0); 3, acetoacetyl-CoA thiolase (rxn00178_c0); 4, 3-
oxoacyl reductase (rxn03861_c0); 5, 3-hydroxyacyl dehydratase (rxn03874_c0); 6, acryloyl-
CoA reductase-EtfAB (rxn00868_c0) or acyl-CoA dehydrogenase-EtfAB; 7, propionate-
CoA:lactoyl-CoA transferase (rxn00875_c0).

enzyme that couples the reduction of crotonyl-CoA to butyryl-CoA (Eo’= -10 mV) by
NADH to the endergonic reduction of Fd by NADH [304]. Our model predicts that,
inA. neopropionicum, reduction of crotonyl-CoA could be catalysed by the Acr-EtfAB
complex or by either of the two acyl-CoA dehydrogenases that cluster with subunits
of the EtfAB complex (acdA_1-acrB_2 and acdA_2-acrB_3). Among the three, the
acyl-CoA dehydrogenase encoded by acdA_2 showed the highest identity with the
butyryl-CoA dehydrogenases (Bcd) of C. acetobutylicum and of C. kluyveri (64 and
63 %, respectively). It remains a question whether, in A. neopropionicum, the latter
two complexes could be involved in the reduction of ferredoxin.

Two distinct routes have been described for the last step of the pathway, the con-
version of butyryl-CoA to butyrate. The first route, identified in C. acetobutylicum
[314], involves phosphate butyryltransferase (Ptb; EC 2.3.1.19) and butyrate ki-
nase (Buk; EC 2.7.2.7) and yields ATP via SLP. The second route relies on butyryl-
CoA:acetate CoA-transferase (But; EC 2.8.3.8). Co-occurrence of both pathways is
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rare among butyrate producers [315]. The genome of A. neopropionicum does not
encode for Ptb nor Buk, yet our annotation initially assigned these activities to
phosphate acetyltransferase (Pta) and acetate kinase (Ack). The Ack of A. neopro-
pionicum is significantly similar to the well-characterised Buk (71 % identity) of C.
acetobutylicum. We have considered this similarity to arise from the fact that the
two enzymes belong to the same family, yet it has been established that they do not
have the same function, since differences in the substrate binding site ultimately
determine substrate specificity [316–318]. Thus, we assumed that Pta and Ack are
not involved in butyrate production in A. neopropionicum. Instead, we hypothesise
that butyrate production in A. neopropionicum takes place via butyryl-CoA:acetate
CoA-transferase activity. Our model predicts that the propionate-CoA:lactoyl-CoA
transferase (Pct) encoded by the gene ydiF catalyses this reaction. The Pct of A.
propionicum exhibits broad substrate specificity for monocarboxylic acids, including
butyrate, supporting the model prediction [309].

4.4.8 Identification of the NADH-dependent reduced ferredoxin:
NADP+ oxidoreductase (Nfn)

During the genome re-annotation and manual curation process, we identified the
enzyme NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (Nfn). Nfn
is an iron-sulfur flavoprotein complex with electron-confurcating/bifurcating ac-
tivity that reversibly catalyses the endergonic reduction of NADP+ by NADH cou-
pled with the exergonic reduction of NADP+ by Fd2- [319]. Nfn is composed of
two subunits, NfnA and NfnB, whose coding genes were both found in the genome
of A. neopropionicum under the locus tags CLNEO_00270 and CLNEO_00280, re-
spectively. In the initial automatic annotation, these two genes were assigned to
ferredoxin:NADP+ oxidoreductase and glutamate synthase, respectively. It has been
reported that NfnA/B share sequence similarities with these two enzymes [319].
Upon manual inspection, we observed that the protein complex showed a significant
identity (60 - 66 %) with the Nfn complexes of C. kluyveri [320] and of C. autoetha-
nogenum [321], which lead us to the re-assignation of the two proteins as NfnA and
NfnB.

We used modelling to look into the role of the Nfn complex in the metabolism
of A. neopropionicum during growth on ethanol. The model shows that the Nfn
generates NADPH from NADH and Fd2- for NADPH-dependent reactions of the
cell. For instance, NADPH is required during butyrate production in the reduction
of acetoacetyl-CoA to 3-hydroxybutyryl-CoA, a reaction catalysed by a NADPH-
dependent 3-oxoacyl reductase. NADPH is also required in the biosynthesis of
amino acids and biomass precursors. In our model, the Nfn complex does not func-
tion in the reverse direction, the production of Fd2-, during growth on ethanol; this
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would require NADPH, and ethanol oxidation is assumed to occur only via NAD+-
dependent reactions.

4.4.9 Fermentation of other carbon sources: the case of lactate

Besides ethanol, A. neopropionicum can grow on lactate, sugars and some pyruvate-
derived amino acids (Table 4.2). The fermentation of these carbon sources proceeds
with key differences compared to the fermentation of ethanol. To illustrate this with
an example, we used the model to describe the case of lactate fermentation, since
lactate is a typical substrate of propionate-producing bacteria and, in particular, of
species that use the acrylate pathway [270, 308].

Lactate is metabolised in both oxidative and reductive reactions. In the oxidative
branch, lactate is oxidised to pyruvate via lactate dehydrogenase, generating NADH.
PFOR then catalyses the decarboxylation of pyruvate to acetyl-CoA and CO2, a re-
action that generates Fd2-. The PFOR reaction is reversible; here, it functions in the
opposite direction to what occurs with ethanol as substrate. This enables the utilisa-
tion of lactate, sugars and pyruvate-derived amino acids. This implies that, contrary
to the fermentation of ethanol, the oxidation of these substrates generates directly
Fd2-, which can contribute to energy conservation. Acetyl-CoA is used for acetate
production via Pta and Ack, yielding ATP via SLP. In the reductive branch, lactate
is converted to propionate via the reactions of the acrylate pathway. In this con-
version, NADH is needed for the reduction of acryloyl-CoA to propionyl-CoA, but
the amount of NADH obtained in the oxidation of lactate is insufficient. Our model
predicts that additional NADH is produced in the Rnf complex. Opposite to the
scenario with ethanol as substrate, here the Rnf catalyses the exergonic reduction of
NAD+ with electrons from Fd2-. This reaction is coupled to the translocation of two
cations across the membrane, generating an ion-motive force that can be used by
the ATPase to produce ATP. Thus, in the fermentation of carbon sources other than
ethanol, ATP is generated both by SLP via acetate production and by chemiosmosis
driven by the oxidation of Fd2-.

4.5 Discussion

In this study we have presented iANEO_SB607, the first GEM of the propionate-
producer A. neopropionicum. The overall Memote score of 72 % indicates the high
quality of the model. The low score of gene annotation per database (33 %) was ex-
pected, since there were almost no available annotations of the genome of A. neopro-
pionicum in public databases recognised by Memote. A limitation of the GEM is the
lack of an organism-specific biomass composition and GAM/NGAMmeasurements.
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Our sensitivity analysis showed a maximum deviation of 10.8 % of the growth rate
when varying the composition of biomass components or the GAM. NGAM has a
more limited impact on growth rate predictions, given that it does not directly relate
to the biomass synthesis reaction, still dedicated measurements of these parameters
could furthe improve the predictive power of the model. Here, our focus has been
on gaining insight into the metabolism of ethanol fermentation to propionate, which
in this bacterium occurs via the acrylate pathway.

We have also addressed an important issue regarding the energetic metabolism
of A. neopropionicum. During growth on ethanol, Fd2- is required to reduce acetyl-
CoA to pyruvate. In the earliest description of the metabolism of A. neopropionicum,
authors suggested that the oxidation of acetaldehyde proceeded with ferredoxin as
electron carrier, thus fulfilling this demand [271]. However, at the present time
it is acknowledged that aldehyde dehydrogenases are NAD(P)-dependent enzymes
[322], which invalidates that theory. Theoretically, the Acr-EtfAB complex could
drive the reduction of Fd (Eo’= - 500 to - 420 mV) with NADH (Eo’= - 320 mV) via
electron bifurcation, given the high reduction potential of the acryloyl-CoA/propion-
yl-CoA pair (Eo’= + 70 mV). Yet, this complex appears not to be involved in the
reduction of ferredoxin [310], most likely to prevent transient accumulation of the
very reactive intermediate acryloyl-CoA [323, 324]. Instead, our model predicted
that Fd2- is produced in the Rnf complex, as previously reported for other anaerobes
during growth on low-energy substrates [305]. The Rnf complex had been previ-
ously pa present in the close relative A. propionicum [278]. Here, through the re-
annotation an a thorough manual curation process, we identified all its subunits
(rnfA-E, rnfG) and via modelling we verified its involvement in the metabolism of
the cell.

Our annotation of the genome of A. neopropionicum revealed the presence of an-
other key enzyme of the metabolism of anaerobes: the Nfn complex. Our model
showed that the Nfn generates NADPH for NADPH-dependent reactions of the
metabolism, which is essential during growth on ethanol. Further investigation is
needed to define the instances in which the Nfn operates in the reverse direction,
bifurcating electrons from NADPH to produce Fd2- and NADH. The directionality
and role of Nfn will depend on the cofactor requirements of the cell.

Butyrate and propanol are produced by A. neopropionicum as minor products
during the fermentation of several substrates (Fig. 4.2), probably as a means to
dispose of excess reducing equivalents generated during substrate oxidation. Our
model showed that propanol is produced from propionyl-CoA with propionalde-
hyde as intermediate via NAD+-dependent reactions, as Tholozan et al. suggested
[271]. The butyrate production pathway had not been described yet in this microor-
ganism and further research is needed to confirm whether Pct is indeed involved in
this pathway as observed in vitro in A. propionicum [309] and E. coli K-12 [325].
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Another aspect of the metabolism that we aimed to clarify was the ability of A.
neopropionicum to produce and consume H2. In our batch cultivations on differ-
ent substrates, H2 was not produced nor consumed, as previously reported [271].
Our results also confirm that neither the product profile nor the growth of ethanol-
growing cultures of A. neopropionicum are affected by the presence of H2 (Additional
file 1, Figure S3). This is an advantageous trait when considering this strain for its
application in syngas-fermenting co-cultures, since syngas contains H2. Interest-
ingly, H2 tolerance is manifested differently in functionally-related strains. While
P. propionicus and D. propionicus both use the methylmalonyl pathway to metabolise
ethanol, the first is not affected by the presence of H2 while the second is strongly
inhibited by it [268].

The GEM iANEO_SB607 accurately reproduced observed growth phenotypes on
typical substrates (ethanol, sugars, lactate and amino acids). For glucose and xy-
lose, model predictions agree with our batch incubations that A. neopropionicum can
utilize these sugars (Additional Table S4.2). These analyses solve contradictions in
literature most likely attributable to differences in media compositions across stud-
ies [263, 265, 271, 326]. Our results also indicate that D-lactate, and not L-lactate,
support growth of A. neopropionicum, as previously observed [271]. Yet, the latter
authors reported lactate dehydrogenase activity in cell-free extracts with D-, L- and
DL-lactate, and hypothesised the presence of a lactate racemase which is absent in
our annotated genome. However, A. neopropionicum has both L- and D-lactate dehy-
drogenases, so it cannot be excluded that L-lactate is also metabolised, perhaps at a
much slower rate [327].

dFBA simulations showed good agreement with the dynamics of ethanol (and
ethanol plus acetate) fermentation byA. neopropionicum in batch cultivation (Fig. 4.3
and Fig. 4.4). With ethanol as substrate, the theoretical 2:1 molar ratio of propionate
to acetate (Eq. 4.1) was not achieved; instead, this ratio was ≈ 1.2:1 (Fig. 4.3 and
Additional file 1, Table S4.2), matching previous observations [263, 271]. The model
helped clarify this aspect. During growth on ethanol, ATP is solely produced via SLP.
Net ATP generation required to sustain growth and to drive ferredoxin reduction
needed by PFOR appear as the main cause of the observed propionate to acetate
ratio of 1.2:1. In addition, cells might favour acetate over propionate synthesis to
prevent accumulation of acryloyl-CoA [308]. Finally, propanol production at the
end of the fermentation, likely to halt further acidification of the environment, also
contributes to decrease the propionate to acetate ratio.

Interestingly, we observed that a low acetate concentration (< 25 mM) or low ac-
etate:ethanol ratio (< 1) at the start boosted the growth rate and propionate produc-
tion rate of A. neopropionicum during growth on ethanol. However, despite higher
rates, final biomass concentrations in batch cultivations were slightly lower in the
presence of acetate (10 or 25 mM). Our model showed increase flux through ac-
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etate:CoA ligase (acs; EC 6.2.1.1) in the presence of acetate (10 mM). This reaction
assimilates acetate consuming ATP, which would explain the lower biomass con-
centrations observed. Model predictions showed that, in this scenario, more acetyl-
CoA is converted to pyruvate through PFOR, which is another energy-consuming
step. We also observed a higher flux through butanoyl-CoA:acetate CoA-transferase
(catalysed by Pct). Batch cultivation experiments did not show a noticeable increase
in butyrate concentration when acetate was present, rather lower. Therefore, we hy-
pothesise that, in vivo, most acetate consumed is assimilated via acetate:CoA ligase,
as our model predicts, or via reverse direction of PTAr and ACKr, instead of Pct.
This deviation to the model is likely due to the fact that biomass synthesis was set as
maximization objective in dFBA which would be achieved by a higher flux of acetate
towards butyrate instead of assimilating it, saving ATP.

Overall, this work shows the advantages of using a model-driven approach to
gain insight into the metabolism of microorganisms. The new findings fill in knowl-
edge gaps and unravel key metabolic features of A. neopropionicum. As a result,
this study means a step forward to further exploit this species as a cell factory for
propionate production in mono-culture or in co-cultivation from sustainable feed-
stocks, e.g., syngas, as recently stated by Moreira et al. [269]. Additionally, A. neo-
propionicum can act as an intermediate species to extend the range of products from
propionate to longer odd-chain carboxylic acids.

4.6 Conclusions

In this study, we have constructed iANEO_SB607, the first GEM of A. neopropi-
onicum. Combining experimental data with a manual curation of the annotated
genome and a comprehensive network reconstruction, we have gained insight into
the central carbon and energetic metabolism of this microorganism. The model pre-
dicted the metabolic capabilities of A. neopropionicum with high accuracy, which
allowed us to investigate with detail the enzymatic routes involved in the fermenta-
tion of ethanol to propionate. Our analysis showed that A. neopropionicum produces
propionate via propionate-CoA:lactoyl-CoA transferase, the characteristic enzyme
of the acrylate pathway. Our in silico analysis revealed, for the first time in this mi-
croorganism, the presence of the electron-bifurcating Nfn complex. This model pro-
vides the basis to explore the capabilities of A. neopropionicum as microbial platform
for the production of propionate from dilute ethanol as substrate. While beyond the
scope of this study, the construction of this model signifies a step closer towards the
development of multi-species models that describe syngas-fermenting co-cultures
comprised of acetogens with ethanol-consuming propionigenic bacteria. Follow-up
studies that integrate, e.g., omics analyses with data from steady-state fermentations
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should help improve this GEM.
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Supplementary information

Figure S4.1: Sensitivity analysis of the biomass reaction. Effect of varying the composition
of main biomass building blocks on the growth rate and product formation. Growth rate
and product formation are represented as the difference between the values obtained when
the new biomass reaction is defined as objective function and the values obtained when the
original biomass synthesis reaction is defined as objective function.
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Figure S4.2: Effect of varying the growth-associated maintenance (GAM) of the biomass com-
position on the growth rate. The effect is represented as the difference between the values
obtained when the new biomass reaction is defined as objective function and the values ob-
tained when the original biomass synthesis reaction is defined as objective function.

Figure S4.3: Effect of H2 on ethanol-growing cultures of Anaerotignum neopropionicum. A)
Cell growth profiles, determined by optical density at 600 nm (OD600). B) End products
and ethanol consumed at the end of batch fermentations. Error bars indicate the standard
deviation of biological triplicates.
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Table S4.1: Parameters used to simulate batch fermentations through dFBA. Column ‘Source’
indicates whether the parameter was constrained based on the experimental value (consider-
ing standard deviation error) or by model fitting.
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Table S4.2: Fermentation balance of batch cultures of A. neopropionicum cultivated on dif-
ferent substrates. Note that CO2, present in the headspace of bottles, is consumed but not
included in this table. iBut: isobutyrate; iVal: isovalerate. Traces are concentrations ≺ 0.2
mM. The hyphen symbol indicates undetected products. ND indicates not determined.
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Chapter 5

Model-driven evaluation of the
feasibility of Clostridia
communities to produce even
and odd-chain fatty-acids from
syngas

Sara Benito-Vaquerizo*, Ivette Parera Olm*, Vitor Martins dos Santos, Diana Z.
Sousa, Maria Suarez-Diez
* Contributed equally

5.1 Abstract

The valorization of biomass-derived C1 feedstocks through microbial conversion is
gaining momentum. An example is the gasification of biomass into syngas (CO, H2
and CO2) and further conversion to medium-chain fatty acids and alcohols. Ace-
togens can uptake syngas converting it into acetate and ethanol, mainly. How-
ever, energy barriers limit the production of longer molecules by acetogens. Co-
cultivation of acetogenic species with species that can grow on the acetogen prod-
ucts, has been shown to produce longer molecules, and thus, expand the product
range. Anaerotignum neopropionicum and Clostridium kluyveri are two microbes that
can grow on acetogen products. A. neopropionicum grows on ethanol and CO2 pro-
ducing acetate and propionate, whereas C. kluyveri grows on acetate and ethanol
producing butyrate and caproate. Furthermore, C. kluyveri can grow on propionate
and acetate producing odd-chain fatty-acids. Considering their metabolic capabili-
ties, we used community metabolic modeling to explore the feasibility of a synthetic
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tri-culture combining the acetogen Acetobacterium wieringae strain JM, the propi-
onate producer A. neopropionicum and the chain elongator C. kluyveri for the fer-
mentation of syngas. First, we built a genome-scale metabolic model of A. wieringae
iAWJM_SB617, and validated it with experimental data obtained from this and pub-
lished studies. This allowed the subsequent construction of both, the co-culture
model formed by A. wieringae JM and C. kluyveri, and the final community with
all three species. Model predictions suggested a range of conditions under which
these communities were feasible, and how the product range changed from even to
odd-chain fatty acids by the incorporation of A. neopropionicum into the commu-
nity. Additional operating conditions, such as the addition of H2, were proposed
that doubled the production of medium-chain fatty-acids reducing acetate accumu-
lation.

5.2 Introduction

The use of microbial gas fermentation for the production of high-value chemicals is
emerging as a promising technology to reduce carbon emissions. These technologies
can convert syngas (a mixture of CO, CO2 and H2) coming from the gasification of
wastes and biomass, or directly from gaseous side-streams from industrial factories
converting them into biofuels. In fact, the production of ethanol [262], acetone and
isopropanol [59] from the fermentation of waste-derived carbon is now at industrial
scale, or at industrial pilot scale.

Acetogens are gas fermenting microbes that can naturally grow on one-carbon
molecules (C1), such as C1 gases (e.g CO, CO2 + H2), formate, and methanol via the
CO2-fixating Wood-Ljungdahl pathway (WLP) [328]. Acetogenic gas fermentation
is hampered by the low solubility of gases and thermodynamic constraints, which
limits the range of products to small molecules such as acetate, ethanol, lactate or
2,3-butanediol (2,3-BDO). Nevertheless, genetic engineering of acetogenic strains
has made possible the production of around 50 products of molecules of up to 6
carbons (such as caproate, hexanol, aromatic compounds, or terpenes.) [262].

Over the pass decades, the use of synthetic microbial communities has brought
attention as an additional strategy to overcome the energy limitations linked to gas
fermentation [329]. Synthetic microbial communities can lead to a wider range of
products than with pure acetogenic cultures due to their co-cultivation with mi-
crobes that can use the products of syngas fermentation (i.e., ethanol, acetate, CO2)
to make products of longer carbon chain and higher value. This has been proven, for
instance, by the co-cultivation on each of the following acetogens: Clostridium auto-
ethanogenum, Clostridium ljungdahlii, Clostridium aceticum with Clostridium kluyveri
[65, 68, 330]. C. kluyveri is a strict anaerobe that uptakes the gas fermentation prod-
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ucts (acetate and ethanol) and produces the medium-chain fatty acids (MCFA) bu-
tyrate and caproate via chain-elongation. Alternatively, one could choose an alter-
native species that can shift the range of products to molecules of different chain
lengths. This was demonstrated by the co-cultivation of two acetogens: Acetobac-
terium wieringae strain JM and Acetobacterium wieringae DSM 1911T with two pro-
pionigenic species: Pelobacter propionicus and Anaerotignum neopropionicum [269],
which can ferment ethanol and CO2 producing propionate via the acrylate path-
way [82]. Furthermore, A. neopropionicum was recently used to drive production of
longer odd-chain fatty-acids from ethanol and CO2 through its co-cultivation with
C. kluyveri [331]. C. kluyveri can ferment ethanol and propionate producing valerate
(C5), pentanoate (C7), and thus, shifting again the product range.

The establishment of the latter communities suggests a modular approach to
shift the product range from the fermentation of C1 gases from even- to odd-chain
fatty-acids. Such an approach would entail the incorporation of a propionate pro-
ducing species to a community formed by an acetogen and a species performing
chain-elongation. Among the acetogens, Acetobacterium wieringae strain JM has been
cultivated in a pH range (≈ 6.8-7.2) [332, 333] similar to C. kluyveri’s optimal pH
for chain elongation (6.5-7.5) [334], and the pH reported for the cultivation of A.
neopropionicum (≈ 7) [82]. Thus, A. wieringae JM seems to be a good candidate for
establishing a community with A. neopropionicum and C. kluyveri.

Establishing such community is laborious and difficult, as a large range of oper-
ating conditions needs to be explored. An effective way to explore both the feasibil-
ity of such community and the product profile is to use computational approaches
that can mimic these metabolic processes. This can be achieved through the use
of genome-scale constrained-based metabolic models (GEMs). GEMs are mathe-
matical representations of the genome-encoded metabolic potential of an organism.
Constraint-based approaches can be used to explore GEMs, unravel new metabolic
functions and to predict growth and production under specified conditions [56, 74,
82]. GEMS of single organisms have been combined using dedicated computational
approaches [51, 70, 99] and used to drive experimental designs in microbial com-
munities.

In this study, we followed a modeling framework to study the feasibility of a
tri-culture for the production of odd-chain fatty acids from syngas. For that, we
first built the GEM of the acetogen A. wieringae JM, iAWJM_SB617. Then, we con-
structed the community GEM with the new GEM of A. wieringae JM, the recent de-
veloped GEM of A. neopropionicum [82] and the existing GEM of C. kluyveri [220].
Consecutively, we assessed the feasibility of both, the co-culture of A. wieringae and
C. kluyveri, and the tri-culture of A. wieringae, A. neopropionicum and C. kluyveri to
produce even and odd-chain fatty acids on CO, respectively. Community Flux Bal-
ance Analysis (FBA) was used to explore the feasibility on a wide range of biomass
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species ratios and growth rates. cFBA with Flux sampling was following used to ex-
plore the range of products where the co-culture and the tri-culture were feasible
at a fix growth rate, both on CO and CO/H2, suggesting potential designs for the
optimization of MCFAs.

5.3 Materials and methods

Reconstruction of the GEM iAWJM_SB617

The genome-scale metabolic network of A. wieringae JM, iAWJM_SB617, was recon-
structed using the GEM of the acetogen C. autoethanogenum, iCLAU786, as scaffold
[219] and adapted according to the genomic information of A. wieringae JM. An or-
thology based approach was followed. First, the genome sequence of A. wieringae
JM (GCA_008107585.1) and the reference annotation were retrieved (in GFF for-
mat) from the National Center for Biotechnology Information (NCBI) under acces-
sion number VSLA00000000 [332]. Then, the genome of A. wieringae JM was func-
tionally annotated using eggNOG-mapper 2.1.7 [286], and structurally annotated
using the reference annotation, and can be found in the public GitLab repository:
https://gitlab.com/wurssb/Modelling/triculture_aw_an_ck/-/tree/master/. The
genome sequence of C. autoethanogenum DSM 10061 (GCA_001484725.1) was re-
trieved (in FASTA format) from NCBI [335]. Ortholog genes between both species
were identified using OrthoFinder 2.5.4. [336]. The scaffold model of C. autoethano-
genumwas adapted to A. wieringae JM. Model reactions with a gene-protein-reaction
(GPR) association related to genes with predicted ortholog(s) in A. wieringae were
kept . A new GPR was associated to those reactions by replacing the C. autoethano-
genum locus tag of the form ‘CAETGH_RSXXXXX’ by the correspondingA. wieringae
protein ID ‘TYCXXXXX’. Reactions for which no homologous genes were identified
were further inspected. Enzyme Commision (EC) number describing these reac-
tions were retrieved from the template model and gene(s) associated to these EC
numbers in A. wieringae were retrieved either from the genome annotation file or
from PATRIc [290] or UniProt [291] database. Reactions without an annotated EC
number in the template model were searched by their ModelSEED [77], KEGG [289],
MetaCyc [287], or BIGG [288] identifier in the corresponding databases. From the
databases -ModelSEED, KEGG,MetaCyc, BIGG-, the EC numbers were obtained and
then used to retrieve the genes from either the genome annotation file, or PATRIC or
UniProt. The stoichiometry and mass balances of the reactions was also verified in
the previously cited databases. Finally, the draft model was transformed into SBML
(xml) using python and COBRApy [235].

Consecutively, we maximized growth on CO and CO2/H2 using FBA in CO-
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BRApy [235] for both conditions. We fixed the CO uptake to 30mmol gCDW-1 h-1 and
CO2 and H2 to 20 and 40 mmol gCDW-1 h-1, respectively. Then, we removed one by
one the reactions with non-associated GPR (orphan reactions), except extracellular
and transport reactions, and checked whether the growth rate and the production of
acetate were affected from their original values in the two conditions. To eliminate
the reactions, we used the functionsingle_reaction_deletionReactions in COBRApy.
Reactions that predicted the same growth rate and acetate production rate in both
CO and CO2/H2 were removed from the model as they were considered not essen-
tial and they were not found in A. wieringae. The biomass reaction was kept as the
one in the GEM of C. autoethanogenum. Metabolites only involved in the removed
reactions, were also removed.

Additionally, the model was amended with reactions and metabolites whose re-
lated proteins were annotated in the genome of A. wieringae and reported to be
present in others Acetobacterium species [337], but not in Clostridium. The GEM of
Acetobacterium woodii (‘CNA_AW’) was used as additional support since it is a close
related species [338]. Reactions were added by keeping the same information and
namespace of the scaffold model usingModelSEED. Once new reactions were added,
the previous procedure was repeated to identify possible non-essential orphan reac-
tions. The final model version in xml was translated into SBML Level 3 Version 1
using KBase [78]. The model was validated using MEMOTE [299] and SBML Val-
idator [298]. The GEM, iAWJM_SB617, can be found in the git repository in Table
format, json and SBML L3V1 [227] standardization together with aMEMOTE report.

5.3.1 Qualitative validation of the GEM iAWJM_617

The model was qualitatively validated by assessing growth on carbon sources re-
ported to support growth in otherA. wieringae strains [337]. Model simulations were
done using FBA in COBRApy version 0.24.0 [235], and Python 3.9. For each assessed
carbon source, the lower bound of the substrate uptake rate per time point was con-
strained to -30 mmol gCDW-1 h-1 to assess growth on a single carbon source, and
to -30 mmol gCDW-1 h-1 in total to assess growth on more than one carbon source,
unless specified otherwise. The biomass synthesis reaction was used as the objective
function. Growth was considered when the growth rate was higher than 0.0001 h-1.

5.3.2 Quantitative validation of the GEM iAWJM_617 with mono-
culture experiments of A. wieringae JM

The GEM was quantitatively validated by comparing the production rate of acetate
and ethanol predicted by the model with the production rate measured in dupli-
cate continuous bioreactors of A. wieringae JM growing on CO. The hydraulic reten-
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tion time (HRT) of the reactor was used to determine the growth rate of the culture
(1/HRT). Fluxes were expressed as environmental fluxes instead of as specific fluxes
following [221]. The biomass reaction was constrained with the growth rate mul-
tiplied by the average measured biomass in the reactor. The lower bound of the
CO uptake rate reaction was constrained to -3.5 mmol h-1, and the upper bound to
1 mmol h-1. The NGAM value of the ATP maintenance reaction (‘rxn00062_aw’)
was adjusted based on the CO consumed in the experiments and used to constrain
the lower bound of this reaction. The solution space and the set of fluxes compat-
ible with the measured constraints was sampled using the sample function in the
flux_analysis submodule COBRApy. The results shown are the average and stan-
dard deviation of 10000 iterations.

5.3.3 Simulations with the GEM of A. wieringae JM

We simulated the effect of H2 as additional energy source on the production of ac-
etate and ethanol with the GEM of A. wieringae. The lower bound of the CO uptake
reaction was constrained to -3.5 mmol h-1, and the upper bound to -3 mmol h-1. H2
uptake rates were varied from 0 to 7 mmol h2. The growth rate was constrained to
0.021 h-1 and the total biomass was fixed to 0.32 g. The solution space and the set
of fluxes compatible with the measured constraints were sampled using the sample
function in the flux_analysis submodule of COBRApy. Presented results show the
average and standard deviation based on 5000 iterations generated at each condition
(gitrepository).

5.3.4 Construction of a co-culture model of A. wieringae + C. kluy-
veri and a tri-culture model of A. wieringae + A. neopro-
pionicum + C. kluyveri

The tri-culture model of A. wieringae, A. neopropionicum and C. kluyveri was gen-
erated by combination of single species models: iAWJM_617 (introduced here), iA-
NEO_607 [82], and iCKL708 [220], respectively, and following the same approach
reported in our previous studies [51, 70]. In brief, every single species is associated
to an internal compartment: ‘Cytosol_AW’, ‘Cytosol_AN’ and ‘Cytosol_CK’, with
‘aw’, ‘an’ and ‘ck’ as their respective identifiers (id). In addition, there is an extra-
cellular compartment common for the three species whose identifier is ‘e’. Intra-
cellular metabolites were formed by the id of the metabolite and the corresponding
compartment id (e.g acetate_aw) and extracellular metabolites were formed by their
metabolite id followed by ‘_e’. Metabolites that were defined as extracellular (‘_e’)
in each single species model, were also defined in the common extracellular com-
partment of the tri-culture model. Extracellular metabolites present in more than
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one species were modified to follow the same naming system (namespace) in the
three species. Similarly extracellular reactions were also adapted. Extracellular reac-
tions present in single models, were also present in the tri-culture model. Again, re-
peated reactions were unified to be unique in the tri-culture model. Each species has
its own biomass synthesis reaction represented by the following id: ‘Biomass_aw’,
‘Biomass_an’ and ‘Biomass_ck’. Additionally, one extra reaction was created repre-
senting the community biomass (‘EX_Biomass_e’) formed by the combination of the
three biomass contributions represented by metabolites ‘cpd11416_aw’,
‘cpd11416_an’ and ‘Biomass_ck’. Finally, the tri-culturemodel was transformed into
SBML level 3 version 1 (git repository).

The co-culture model of A. wieringae and C. kluyveri was not created perse. In-
stead, we blocked flux through all the reactions associated to A. neopropionicum in
the tri-culture model.

5.3.5 Co-culture and tri-culture modeling framework

The co-culture and tri-culture model simulations were run using a steady-state ap-
proach that considers balanced growth of microbial species resembling Community
FBA (cFBA) [221] and was implemented in our previous work [51, 70]. Species rel-
ative abundance was taken into account by the incorporation of the species ratio
(relative abundance) and total biomass in the respective biomass synthesis reaction.
Following this new notation, specific fluxes (mmol gCDW−1 h−1) were substituted by
environmental fluxes (mmol h−1), taking into account the biomass of each species (g
L-1) and the total working volume of the reactor (L).

5.3.6 Co-culture and tri-culture model simulations

We assessed the feasibility of the co-culture and the tri-culture on CO in a wide
range of biomass species ratio combinations and growth rates. The biomass of the
community was estimated based on the biomass measured in mono-culture exper-
iments of A. wieringae (0.32 g). We studied growth rates from 0.005 to 0.05 h -1,
and (biomass) species ratio between 0.1 and 0.9 for each species for the co-culture
model and from 0.1 to 0.8 for the tri-culture model. For each community biomass,
we assessed growth with all the growth rates and species ratio combinations on CO.
The biomass of each species was calculated based on the indicated species ratio and
the community biomass. The biomass of each species was multiplied by the indi-
cated growth rate, and the value was used to constrain the flux through the biomass
synthesis reaction of each species. Species growth rates were set to be equal and
equal to the community growth rate. The lower bound of the CO uptake reaction
was constrained to -3.5 mmol h-1, and the upper bound to -1 mmol h-1, based on
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the total CO inflow rate measured in mono-culture experiments of A. wieringae. We
defined the community biomass reaction (‘EX_Biomass_e’) as the objective function
for maximization and we performed FBA to assess the feasibility of each condition.
Subsequently, we explored the metabolic profile of the fermentation of CO at a fix
growth rate (0.02 h -1) and the biomass species ratios that led to feasible solutions,
both in the co-culture and the tri-culture. The solution space and the set of fluxes
compatible with the measured constraints were sampled using the sample function
in the flux_analysis submodule of COBRApy. Presented results show the average
and standard deviation based on 5000 iterations generated at each condition (git
repository).

We also simulated the effect of H2 as additional energy source on the produc-
tion of MCFA. For that, we selected a specific biomass species ratio and growth rate,
and calculated the fluxes at several H2 uptake rates. We selected a 6-to-4 ratio (A.
wieringae/C. kluyveri) and 0.02 h -1 for the co-culture model, and 4/3/3 ratio (A.
wieringae/A. neopropionicum/C. kluyveri) and 0.02 h -1 for the tri-culture model. The
total biomass was again fixed to 0.32 g. The lower bound of the CO uptake reac-
tion was constrained to -3.5 mmol h-1, and the upper bound to -3 mmol h-1. H2
uptake rates were varied from 2 to 5 mmol h2. The fluxes were computed using flux
sampling with 5000 iterations as in the previous simulations.

The materials and methods related to the cultivation of A. wieringae strain JM,
the bioreactor setup and operation, and the analytical techniques are described in
the supplementary material.

5.4 Results

5.4.1 Reconstruction and characteristics of the GEM of
A. wieringae JM, iAWJM_617

The GEM of A. wieringae JM was constructed based on the annotation of the genome
sequence of this microorganism (GCA_008107585.1) [332], and using the GEM of
C. autoethanogenum, iCLAU786, as scaffold [219]. The biomass synthesis reaction
(‘bio2’) was kept the same as the biomass reaction in the GEM ofC. autoethanogenum.
OrthoFinder was used to retrieve orthologue genes between the two species; 2047
genes of C. autoethanogenum were identified as orthologues to A. wieringae JM. Part
of these genes were present in the GEM of C. autoethanogenum and were replaced
by the orthologous genes of A. wieringae JM. A total of 175 reactions did not have
orthologous genes. After a thorough manual curation, we identified genes for 99 ad-
ditional reactions. In order to decide whether to keep reactions with non-associated
genes (orphan), we removed each of these reactions and assessed the variation in
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growth and acetate production with CO and CO2 + H2 as substrates. This analysis
identified 72 reactions that were considered non-essential, at least for the assumed
conditions and, thus, were removed from the model. Lastly, we corrected the stoi-
chiometry of 11 reactions and amended the model with 29 reactions, whose genes
were found to be present in the genome of A. wieringae JM. These reactions belong
to energy generation and the degradation of 1,3-propanediol (1,2-PDO), 2,3-BDO,
glycine betaine, caffeate and alanine. The model contains pathways associated to
acetogenic metabolism (i.e., the WLP) and the production of acetate, ethanol, lactate
and 2,3-BDO; central carbon metabolism; energy generation; biosynthesis of amino
acids, lipids, carbohydrates and the rest of biomass components.

Table 5.1: Composition of iAWJM_SB617

Features Number

Genes 617
Metabolites 1065

Intracellular metabolites 915
Extracellular metabolites 152

Reactions 1081
Conversion reactions 832
Transport reactions 159
Exchange reactions 76

Reactions associated with genes 775
Reactions non-associated with genes 306

The final GEM, iAWJM_SB617, consists of 617 genes, 1065 metabolites and 1081
reactions (Table 5.1). Three types of reactions can be distinguished; conversion,
transport and exchange reactions. Metabolites are transported through transport
reactions from the intracellular compartment (id:‘aw’) to the extracellular compart-
ment (id:‘e’), and viceversa. Exchange reactions represent the uptake or production
of metabolites, into and outside the cell. 72 % of reactions are associated with genes.
Reactions non-associated with genes correspond mostly to: i) transport reactions
that, depending on the type, do are enzyme-independent (e.g., diffusion reactions);
and ii) exchange reactions that are artificial representations and, thus, without en-
zymes.

The final model was correctly defined in SBML, level 3 and version 1, and ob-
tained a score of 73 % in MEMOTE. The annotation of metabolites and reactions
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received a very high score (≈ 82 %). However, the annotation of genes scored only
33 % , since neither KBase nor MEMOTE recognized the protein IDs (TYCXXXXX)
or locus tags (FXB42_XXXXX) associated to A. wieringae JM. The lowest score ob-
tained was for consistency (56 %), due to the lack of stoichiometry introduced into
the model for the use of artificial metabolites to represent biomass building blocks
(e.g., protein, DNA, RNA). The model can be found in SBML, JSON and Table for-
mats together with a MEMOTE report in the git repository.

5.4.2 Qualitative validation of the GEM iAWJM_SB617 by assess-
ment of growth phenotypes

The GEM iAWJM_SB617 was qualitatively validated by assessing growth on sev-
eral carbon sources and comparing the model output with experimental data gener-
ated in this study and from literature [332] [337], on both A. wieringae JM and the
type strain. We evaluated growth on C1 feedstocks (CO, CO2 + H2, formate and
methanol), ethanol, 1,2-PDO, glycerol, lactate, alanine, fructose and glucose (Fig.
5.1).

Figure 5.1: Growth phenotypes of A. wieringae JM predicted by the constructed GEM in this
study (iAWJM_SB617) and reported in experimental studies (this work and [332]). For com-
parison, growth phenotypes reported in literature for the type strain, A. wieringaeDSM 1911T

[337], are also included. Green: growth; grey: no growth; ND: no data available.

A. wieringae JM has been reported to grow on all the C1 feedstocks tested [332].
The model predicted these phenotypes except for growth on methanol, which could
not be assessed due to incompleteness of the methanol assimilation pathway in the
annotation and databases. The type strain of A. wieringae can grow on CO but only
in the presence of formate [332], similarly to the close relative A. woodii, which also
uses CO with formate or H2+CO2 as co-substrates ([339]). In contrast to its close rel-
atives, A. wieringae strain JM grows on CO as sole substrate [332], which our model
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predicted. The model predicted growth with the rest of substrates tested, including
1,2-PDO and the amino acid alanine, which both had not been tested before on the
JM strain but are predicted substrates of the genus Acetobacterium [337]. The two
strains of A. wieringae (type and JM) can grow on fructose. The same does not hold
true for glucose: while the type strain has been reported unable to ferment this sugar
[340], our model predicted that the strain JM can grow on glucose, as corroborated
by cultivation experiments [332].

5.4.3 Product profile from the fermentation of CO and CO/H2 by
A. wieringae JM

To quantitatively validate the model of A. wieringae JM, we simulated the fermenta-
tion of CO and compared the results with experimental data from bioreactor ex-
periments under steady-state conditions (HRT = 48 h). For model simulations,
the growth rate was fixed as determined by the HRT (growth rate = dilution rate
(D) = 1/HRT). The validation also served to adjust the non-growth associated with
biomass term (NGAM) into the ATP maintenance reaction (‘rxn00062_aw’) in the
GEM; model fitting led to a NGAM of 1.5 mmol gCDW-1 h -1 (0.48 mmol h -1).

Figure 5.2: A: Steady-state production rates of acetate and ethanol by A. wieringae JM growing
on CO as predicted by the model (’_m’) and observed in bioreactors (‘_e’) (two biological
replicates). B: Effect of CO/H2 uptake ratios on steady-state production rates of acetate and
ethanol in A. wieringae JM, as predicted by model simulations. A growth rate of 0.021 h-1

(HRT = 48 h) and a biomass of 0.32 g were assumed, based on experimental values. The
maximum uptake rate of CO was set to 3.5 mmol h-1, and the minimum to 3 mmol h-1 in all
scenarios. Model predictions show the average and standard deviation of 5000 samples.
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Acetate and ethanol production rates obtained by the model simulations fitted
the experimental values with high approximation (Fig. 5.2A). In the bioreactor ex-
periments under steady-state, A. wieringae JM consumed ≈ 3.3 mmol CO h-1, pro-
ducing mostly acetate (≈ 0.52 mmol h-1) and traces of ethanol (≺ 0.01 mmol h-1).
The steady-state biomass concentration was 0.8 g L-1. The slightly higher produc-
tion rates of acetate (0.66 mmol h-1) and ethanol (0.02 mmol h-1) resulting from the
simulation can be linked to a higher predicted CO uptake rate (3.5 mmol h-1) than
observed.

Besides CO, A. wieringae JM can use H2 as electron donor, and both gases are
commonly found in varying proportions in syngas streams. Here, we carried out
simulations with the model to predict the effect of different CO/H2 uptake ratios
(3.5 - 0.5) on the production of acetate and ethanol under steady-state conditions.
For that, the CO uptake rate, the HRT and the total biomass were assumed as in
the bioreactor experiment with CO. The predicted production rates of acetate and
ethanol are shown in Fig. 5.2B. With CO as sole substrate, virtually only acetate
was produced, and ethanol was produced at a very low rate, as specified above.
The acetate production rate increased moderately with the addition of H2 up to a
CO/H2 uptake ratio of 1, where it reached the highest value (1.36mmol h-1). Ethanol
production rates remained low (< 0.1 mmol h-1) in this range of CO/H2 ratios (>=
1). By contrast, when CO/H2 ratios were < 1, that is, when the uptake rate of H2 was
higher than that of CO, solventogenesis was significantly boosted. With a CO/H2
ratio of 0.5, acetate production was negligible compared to an ethanol production
rate of 1.56 mmol h-1, the highest obtained in the simulations.

5.4.4 Model of a co-culture of A. wieringae JM and C. kluyveri

Before constructing the tri-culture, we evaluated the feasibility of a co-culture of A.
wieringae JM with C. kluyveri, simpler in structure and similar to other modelled co-
cultures [51]. The co-culture model resulted in a total of 2032 reactions and 1804
metabolites (git repository). With it, we assessed the feasibility of a co-culture of A.
wieringae JM and C. kluyveri converting CO to medium-chain fatty acids in a range
of biomass species ratios (relative abundances) and growth rates.

Simulations predicted feasible solutions in a wide range of species ratios with
growth rates ≤ 0.015 -1 (Fig. 5.3A). At 0.02 h-1, the co-culture was only feasible
with species ratios between 4/6 and 6/4 (A. wieringae JM/C. kluyveri). At growth
rates higher than 0.03 h-1, the co-culture was feasible only when both species were
equally abundant.

In view of these results, we explored the range of product profiles predicted by
the co-culture model for a fixed growth rate of 0.02 h -1 at the biomass species ratios
that led to feasible solutions (4/6, 5/5 and 6/4). Model predicted mainly production
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of caproate (≈ 0.18 mmol h-1) (Fig. 5.3B) followed by butyrate in the three scenarios.
Longer-chain products (e.g., octanoate) were not predicted. The predicted produc-
tion rate of acetate was 0.13 - 0.14 mmol h-1 in all scenarios. This represents the
acetate produced only by A. wieringae JM. In our model, the acetate transport reac-
tion was constrained to acetate consumption (by C. kluyveri). However, C. kluyveri
also produces acetate, specifically 1/6th of the ethanol that it consumes, according
to theoretical stoichiometry [230]. Thus, the actual accumulation of acetate is ex-
pected to be higher than in model predictions. Ethanol production by A. wieringae
JM was ≈ 0.33 mmol h-1 in the three scenarios, and it was almost fully consumed
by C. kluyveri. Traces of formate, lactate and 2,3-BDO were also produced by the
acetogen according to the model.

Figure 5.3: A: Predicted feasible solution space of the co-culture of A. wieringae JM and C.
kluyveri fed on CO. Green squares indicate the conditions when the co-culture is feasible. The
maximum uptake rate of CO was set to 3.5 mmol h-1, and the minimum to 1 mmol h-1. The
total biomass was 0.32 g. B: Production rates of the main fermentation products from CO
predicted for the co-culture model of A. wieringae JM and C. kluyveri. C4+C6: Butyrate and
caproate. The growth rate was fixed to 0.02 h-1, the total biomass was fixed to 0.32 g, and the
CO uptake rate was constrained between 3 and 3.5 mmol h-1

.

The co-culture model was used to explore the fluxes through the metabolic path-
ways involved in the fermentation of CO to MCFA (butyrate and caproate). An
overview of the metabolic pathways is given below within the description of the
tri-culture model (Section 5.4.5) and a representation of it can be consulted in Fig.
S5.1.
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5.4.5 Tri-culturemodel ofA. wieringae JM,A. neopropionicum and
C. kluyveri

The model of the tri-culture was constructed by combining the GEMs of A. wieringae
JM (this study), A. neopropionicum [82] and C. kluyveri [51]. The resulting model was
composed of 2893 reactions and 2547 metabolites.

The model was used to assess the feasibility of the tri-culture in a wide range of
biomass species ratios and growth rates during growth on CO. With a low growth
rate (0.005 h-1), the tri-culture was feasible at all biomass species ratios tested (Fig.
5.4). With growth rates higher than 0.005 h-1, very low or high abundance of any
of the species resulted in infeasibility of the tri-culture. A wider range of feasible
solutions was found when A. wieringae JM dominated the community (e.g., 40 - 50%
abundance) and C. kluyveri’s presence was between 30% - 40%, or the other way
around. At growth rates higher than 0.03 h-1, no combinations were found that
would result in a feasible tri-culture.
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Figure 5.4: Predicted feasible solution space of the A. wieringae JM-A. neopropionicum-C.
kluyveri tri-culture fed on CO, with 0.32 g total biomass. Each panel presents a fix A. wieringae
JM abundance. CO uptake rate was set between 1 and 3.5 mmol h-1.

.

Next, we explored the production rates predicted by the tri-culture model for
growth on CO at a rate of 0.02 h -1 at the biomass species ratios that resulted in
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feasible solutions (2/4/4, 3/3/4, 3/4/3, 4/2/4, 4/4/2). The tri-culture produced a
mixture of odd- and even-chain carboxylic acids (up to C7), with acetate being a
main product in the majority of scenarios (5.5). The highest production rate of odd-
chain MCFAS (valerate and heptanoate) was predicted for a rather balanced biomass
species ratio of 3/3/4 (A. wieringae JM/A. neopropionicum/C. kluyveri). In all scenar-
ios, the production rate of valerate (0.07 - 0.14 mmol h-1) was higher than the pro-
duction of heptanoate, except for a the species ratio 4/2/4, in which the heptanoate
production rate has higher than that of valerate (0.09 vs 0.032 mmol h1, respec-
tively). As expected, even-chain MCFAs were most abundant when the presence of
A. neopropionicum was low (≈ 20%), that is, with a species ratio of 4/2/4. The pro-
duction rate of caproate was higher than that of butyrate (0.03 vs. 0.01 mmol h-1,
respectively). Still, in the latter scenario, odd-chain MCFAs together accounted for
the majority of products.

Figure 5.5: Production rates of the main fermentation products from CO by the A. wieringae
JM-A. neopropionicum-C. kluyveri tri-culture, predicted by the community model for different
species ratios. C5+C7: valerate and heptanoate; C4+C6: butyrate and caproate. The growth
rate was fixed to 0.02 h-1, the total biomass was fixed to 0.32 g, and the CO uptake rate was
constrained between 3 and 3.5 mmol h-1

.
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Propionate (produced solely by A. neopropionicum) was produced the fastest (≈
0.14 mmol h-1) when the presence of A. neopropionicum was dominant in the com-
munity (40%; species ratios of 2/4/4, 3/4/3 and 4/4/2) (5.5). As for acetate, its pro-
duction rate was the highest when A. wieringae JM and A. neopropionicum were most
dominant (40% each). In turn, consumption of acetate by C. kluyveri was higher
when A. neopropionicum’s abundance was 20-30%. The rate of acetate production
by A. wieringae JM was ≺ 0.01 mmol h-1, and by A. neopropionicum it was 0.17-0.25
mmol h-1 in all scenarios. Ethanol production (by A. wieringae JM) was higher (0.17
mmol h-1) when the presence of A. neopropionicumwas low (20%). However, ethanol
was almost fully consumed by A. neopropionicum and C. kluyveri.

Metabolic fluxes predicted by the tri-culture model of A. wieringae JM, A. neo-
propionicum and C. kluyveri during CO fermentation

The tri-culture model was used to explore the fluxes through the keymetabolic path-
ways involved in the fermentation of CO to MCFAs. The model combines the three
central carbon metabolism pathways of the three interacting microorganisms: the
WLP (A. wieringae JM), the acrylate pathway (AcrP) (A. neopropionicum) and the re-
verse β-oxidation pathway (r-β-ox; C. kluyveri). A schematic representation of the
relevant pathways and interactions taking place in the tri-culture is shown in 5.6.

A. wieringae JM oxidizes CO to CO2 via the activity of carbon monoxide dehy-
drogenase (CODH), which generates reduced ferredoxin as electron carrier. Fixation
of CO2 with electrons derived from CO takes place in the WLP, which ultimately
yields acetyl-CoA via CODH/acetyl-CoA synthase. In the annotated genome of A.
wieringae JM, four subunits were identified to be involved with CODH activity (TYC
86630, TYC87912, TYC87913, TYC87914; genes textitcooS, cooS1, cooC and cdhC, re-
spectively) and three other subunits with acetyl-CoA synthase activity (TYC87909,
TYC87910, TYC87911; acsD, acsC and acsE, respectively). Some of these genes were
also identified by [332]. In addition, C. kluyveri produces H2 that is partly consumed
by A. wieringae JM as additional electron donor. According to the model, H2 is me-
tabolized via the complex hydrogen-dependent carbon dioxide reductase (HDCR),
yielding formate that enters the methyl branch of the WLP. Our annotation data
indicates that the HDCR would comprise the following two subunits: a formate de-
hydrogenase (TYC86388; fdh) and a Fe-hydrogenase (TYC85752; hydA), however fur-
ther analyses would be needed to confirm this. Acetyl-CoA is converted to acetate,
coupled to the production of ATP via substrate-level phosphorylation. Ethanol can
be produced from acetyl-CoA via a bifunctional alcohol-aldehyde dehydrogenase, or
via acetate involving acetaldehyde:ferredoxin oxidoreductase (AOR) (TYC88292 or
TYC84206). As is the case in acetogens, additional energy is obtained through the
coupling of a Na+-translocating ferredoxin:NAD+ oxidoreductase (Rnf) complex and
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a membrane-bound ATP synthase, producing ATP driven by the oxidation of ferre-
doxin. The genome of A. wieringae JM contains two distinct Rnf clusters (TYC84275-
80; rnfB, rnfA, rnfE, rnfG,rnfD, rnfC and TYC88316-21; rnfC, rnfD, rnfG,rnfF, rnfA,
rnfB). The model predicted the production of 2,3-BDO by A. wieringae JM. 2,3-BDO
was derived from pyruvate via the activities of acetolactate synthetase (Acs), aceto-
lactate decarboxylase (Alcd) and 2,3-BDO dehydrogenase (Bdh).

Figure 5.6: Schematic representation of the fermentation of CO by the A. wieringae JM-A. neo-
propionicum-C. kluyveri tri-culture. WLP: Wood–Ljungdahl pathway; AcrP: acrylate pathway;
r-β-ox: reverse β-oxidation pathway. Arrows indicate the direction of the flux. Ticker arrows
show production or consumption of the indicated metabolites in the specified species. For
simplicity, additional interactions predicted by the model (see main text) are not shown here.

The model showed that part of the CO2 and ethanol produced by the acetogen
were consumed by A. neopropionicum. Ethanol is oxidized to acetyl-CoA via bifunc-
tional alcohol-aldehyde dehydrogenase. Part of the acetyl-CoA is then used for ac-
etate production coupled to the formation of ATP, and the rest is carboxylated to
pyruvate via pyruvate:ferredoxin oxidoreductase (PFOR). Pyruvate is then reduced
to lactate, which enters the acrylate pathway, which we described elsewhere [82]
(AcrP in Fig. 5.6). A. neopropionicum also produces lower amounts of propanol, bu-
tyrate, lactate, isobutyrate and isovalerate (not shown in the figure). Besides CO2
and ethanol, the model indicated that 2,3-BDO (produced by A. wieringae JM) was
also consumed by A. neopropionicum, which had not been reported before. In the
model, consumption of 2,3-BDO takes place via the enzymes Bdh, Alcd and Acs.

C. kluyveri also takes up part of the ethanol, CO2 and acetate produced by the
acetogen, as well as the propionate, acetate and traces of propanol produced by A.
neopropionicum. The uptake of propionate and ethanol results in the production of
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odd-chain MCFAs by C. kluyveri. Ethanol oxidized to acetyl-CoA, which is used for
chain elongation together with propionyl-CoA (derived from propionate), ultimately
yielding valerate via the reverse β-oxidation pathway (r-β-ox in Fig. 5.6). In turn,
valerate can be cycled through the r-β-ox pathway, producing heptanoate. Acetate is
also used for chain elongation, generating butyrate and caproate. According to the
model, traces of propanol produced by A. neopropionicum were also consumed by C.
kluyveri.

The tri-culture model predicted transport of amino acids between species. For
instance, A. wieringae JM produces traces of alanine which are consumed by A. neo-
propionicum (see git repository). While not explored in this study, we hypothesized
that traces of secondary alcohols (e.g., butanol, pentanol) could be produced by as-
similation and reduction of the respective MCFAs by A. wieringae JM, as observed in
other acetogens [64].

5.4.6 Modeling the effect of H2 on the production of MCFAs by the
co-culture and the tri-culture

Similarly to what was done for the mono-culture of A. wieringae JM, here we did
simulations to study the effect of different CO/H2 uptake ratios on the production of
MCFAs by both, the co-culture of A. wieringae JM and C. kluyveri and the tri-culture
with the addition of A. neopropionicum. For these simulations, we chose to study a
ratio of 6/4 (A. wieringae JM/C. kluyveri) and a ratio of 4/3/3 (A. wieringae JM/A.
neopropionicum/C. kluyveri) for the co-culture and the tri-culture, respectively. This
ratio was chosen based on the feasibility study of the tri-culture (Fig. 5.4), since
conditions with higher presence of A. wieringae led to a wide range of feasible so-
lutions, and the total biomass of A. weringae obtained in mono-culture experiments
was high. Three CO/H2 uptake ratios were tested: 1.75, 1 and 0.7 (Fig. 5.7).

With H2, the production of even-chain MCFAs in the co-culture increased up
to 0.46 mmol h-1 with a CO/H2 ratio of 0.7 (Fig. 5.7A). Likely, this is driven by a
higher ethanol production by the acetogen (up to 1 mmol h-1; not shown), that is
in turn, almost fully consumed by C. kluyveri. Acetate production by A. wieringae
JM also increased with addition of H2 (up to 0.37 mmol h-1; not shown),but was
further consumed by C. kluyveri. A CO/H2 ratio < 0.7 led to infeasible solutions,
since almost no acetate was produced, and C. kluyveri requires acetate for chain
elongation.

In the tri-culture with H2 supplementation, production of odd-chain MCFAs
reached 0.35 mmol h-1 (Fig. 5.7B). The addition of H2 gradually increased the pro-
duction of even chain MCFAs (up to a CO/H2 < 1). With H2, ethanol production
(by the acteogen) increased (up to 0.78 mmol h-1) and, thus, more ethanol was avail-
able for its conversion to propionate and odd-chain MCFAs. Acetate production by
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Figure 5.7: Effect of different CO/H2 uptake ratios on the production of MCFAS by the co-
culture of A. wieringae JM and C. kluyveri (A) and by the tri-culture of A. wieringae JM, A.
neopropionicum and C. kluyveri (B). The biomass species ratio of the co-culture was fixed to
6/4 (A. wieringae JM/C. kluyveri). The biomass species ratio of the tri-culture was fixed to
4/3/3 (A. wieringae JM/A. neopropionicum/C. kluyveri). The growth rate was fixed to 0.02 h-1,
the total biomass was fixed to 0.32 g, and the CO uptake rate was constrained between 3 to
3.5 mmol h-1

.

A. wieringae JM and A. neopropionicum increased up to 0.34 mmol h-1 at a CO/H2
= 1. Propionate production decreased with addition of H2; more propionate was
consumed (by C. kluyveri) in this case (up to 0.36 mmol h-1).

The production of CO2 decreased with increased H2 uptake up to values < 0.1
mmol h-1, both in the co-culture and the tri-culture.

5.5 Discussion

In this study, we have used a systematic computational approach to assess the feasi-
bility of two synthetic microbial co-cultures converting CO to even- and odd-chain
MCFAs (C4 - C7). The two co-cultures had in common the presence of the aceto-
gen A. wieringae JM, for which we have constructed the first GEM. One co-culture
was composed of A. wieringae JM with the chain-elongator C. kluyveri, and the other
comprised the same two species with the addition of the propionigenic bacterium
A. neopropionicum (tri-culture). Model simulations have also allowed us to study the
effect of H2 addition on the final product spectrum of the co-cultures.

Our reconstructed GEM of A. wieringae JM, iAWJM_SB617, scored sufficiently
high in the MEMOTE report (73%) and predicted well the reported phenotypes of

114



5

this strain for the fermentation of C1 feedstocks and other substrates (Fig. 5.1).
In addition, the simulations with the model for the fermentation of CO fitted well
the experimental values obtained in bioreactors under steady-state conditions (Fig.
5.2A), supporting the validity of the GEM. The model was reconstructed based on
the available model ofC. autoethanogenum [219], a well-studied acetogen, and taking
into consideration genomic information of A. wieringae JM. To refine the model, we
used the GEM of A. woodii [338], the only one that was available of an Acetobacterium
species. The reason we did not use the latter model as scaffold to reconstruct the
GEM of A. wieringae JM is that it is a core model with reduced genomic information,
and therefore was not that suitable for the reconstruction of a full model (as it was
the case here).

The re-annotation of the genome of A. wieringae JM contributed to the identifi-
cation of key enzymes of the central carbon and energetic metabolism of this strain,
such as the CODHs, the different subunits of the Rnf complex, or the AOR, in-
volved in ethanol production, supporting the previous annotation by Arantes et.
al [332]. In addition, our analysis expanded the understanding of the physiology of
this novel acetogen and of the Acetobacterium genus. A. wieringae JM was isolated
from a syngas-converting enrichment culture [332], which might explain why this
strain evolved to be able to utilise CO as sole substrate (as our model corroborated),
as opposed to the type strain [332]. How this change occurred, though, was un-
clear. It was hypothesized that the hydrogen-dependent carbon dioxide reductase
(HDCR) complex, present in both A. wieringae type strain and A. woodii, was sensi-
tive to high CO concentrations and, therefore, would make formate a requirement
during growth in the presence of CO by these two strains [332, 339]. However, as
Arantes et. al [332] hinted and was corroborated by our re-annotation, A. wieringae
JM presumably also contains an HDCR complex, composed of a formate dehydro-
genase (TYC86388; fdh) and an Fe-hydrogenase (TYC85752; hydA). A similar case is
that of the acetogen Thermoanaerobacter kivui, which also employs the HDCR com-
plex and, after an adaptation period, was able to grow exclusively on CO [341]. CO
inhibition of the HDCR complex has been shown to be fully reversible [342]. Thus,
it is possible that prolonged exposure to CO (i.e., via enrichment or adapdative lab-
oratory evolution) reverses CO inhibition in the HDCR, enabling acetogens that use
this formate dehydrogenase to grow on CO in the absence of formate.

The community model of A. wieringae JM - C. kluyveri was used to explore the
effect of different growth rates and species abundances on the viability of the co-
culture and the production of MCFAs from CO under steady-state conditions. Since
the biomass ofA. wieringae JM inmono-culture experiments was high (Section 5.4.3),
we hypothesized that the presence of this strain would be dominant (60 - 65%) in a
viable co-culture. The model predicted the co-culture to be viable with growth rates
up to 0.03 h -1 (HRT ≈ 33 h). While mono-culture simulations with A. wieringae JM
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led to mostly acetate, there was a clear shift to solventogenesis upon the addition
of C. kluyveri to the model (Fig. 5.2A). This metabolic shift was also reported in a
co-culture of C. autoethanogenum and C. kluyveri [68]. The authors stated that it was
mainly thermodynamics driving the shift from acetate to ethanol production, which
might be also the case here. Cross-feeding of H2 between C. kluyveri and the aceto-
gen might also contribute to increase ethanol production, although H2 production
should be sufficiently high for this to be noticeable. Indeed, our simulations showed
that H2 supplementation promoted solventogenesis in A. wieringae JM (Fig. 5.2). In
turn, in co-culture with C. kluyveri, H2 supplementation yielded a higher MCFA pro-
duction, specifically when decreasing the CO/H2 ratio from 1.75 to 0.7 (Fig. 5.7A).
A similar phenomenon was observed empirically in a co-culture of C. autoethanoge-
num andC. kluyveri, although in that study the CO/H2 ratios tested were higher than
1 [68], which in our simulations lead to mostly acetate production by the acetogen
(Fig. 5.2B).

The co-culture model predicted a higher production of caproate than butyrate.
This is expected to be the case for C. kluyveri growing at neutral pH and with high
ethanol/acetate ratios[330, 343], which was the case here (ethanol/acetate ratios
higher than 1). That said, acetate production is expected to be slightly higher than
what was predicted by the model, since, according to stoichiometry of chain elonga-
tion, 1/6th of ethanol is converted to acetate by C. kluyveri [230]. In the model, this
reaction only indicates consumption of acetate. Besides, A. wieringae JM produces
mostly acetate at neutral pH (Fig. 5.1), and it should be experimentally confirmed
how much more ethanol is produced with addition of C. kluyveri and H2, to favour
caproate production rather than butyrate.

In this study we also studied the viability of a tri-culture of A. wieringae JM,
A. neopropionicum and C. kluyveri converting CO to odd- and even-chain MCFAs.
The tri-culture was predicted not to be feasible at growth rates higher than 0.03
h-1. The range of feasibility was enlarged when A. wieringae JM was dominant in
the community, which fitted with observations of high biomass obtained in mono-
culture experiments. However, with abundances higher than 50% of A. wieringae
JM, the tri-culture was only feasible at growth rates lower than 0.02 h-1. C. kluyveri
was dominant in a co-culture with C. autoethanogenum at pH 6 - 6.2 [51]. Hence, one
could argue that C. kluyveri’s presence in co-cultivation with A. wieringae JM and A.
neopropionicum could also be noticeable (30 to 40%), since the pH range of the three
species is within the optimal pH for chain elongation [334].

The addition of A. neopropionicum to the co-culture shifted the product range
from fully even- to a mix of even- and odd-chain MCFAs, the latter (valerate and
heptanoate) being favoured in the conditions we tested. The production of odd-
chain products increased with supplementation of H2 as energy source, as the avail-
ability of ethanol increased. A. neopropionicum produced more propionate (and ac-
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etate) that was consumed by C. kluyveri, therefore increasing the production of odd-
chain MCFAs. With CO/H2 < 1, acetate production decreased slightly and, conse-
quently, the production of even-chain MCFAs also did. Mono-culture simulations
with A. wieringae JM also showed decreased acetate production with higher H2 pres-
ence (Fig. 5.3B). Interestingly, the model reported cross-feeding of 2,3-BDO between
A. wieringae JM and A. neopropionicum, which had not been observed in a study of
this co-culture [269]. It is possible that the tri-culture model required additional
ATP to be established and to meet the constraints, and that the production of alter-
native products resolved ATP availability [74, 344]. For instance, A. woodii obtains
1.6 ATP per 2,3-BDO on CO, and C. autoethanogenum between 1.3-1.9 ATP per 2,3-
BDO, which is slightly higher than the net ATP per acetate produced (1 - 1.5/ATP
per acetate) [54].

Accumulation of acetate was very noticeable from the fermentation of CO by the
tri-culture, which limits the product yield of MCFA. While acetate production by A.
wieringae JM was decreased in the presence of C. kluyveri, the incorporation of A.
neopropionicum increased the production of acetate in the community, since it pro-
duces it as one of the main products from ethanol next to propionate [82, 271]. Here,
A. wieringae JM was cultivated at pH 7, which led to production of mostly acetate.
However, lower pH favours ethanol production in acetogens [345]. Thus, a good
strategy could be reducing the pH up to values still optimal for chain elongation (up
to 6.5) [334]. While completely blocking acetate production in A. neopropionicum
would lead to no growth on ethanol, the addition of threonine could decrease the
production of acetate by A. neopropionicum, as it was previously reported [82, 263].
A. neopropionicum produces mostly propionate and butyrate during growth on thre-
onine. In that scenario, butyrate could be in turn used by C. kluyveri and/or taken
up by A. wieringae JM resulting in butanol production. On the other hand, one could
use an alternative acetogen that produces more ethanol under the same conditions.
For instance, Clostridium aceticum was shown to shift to solventogenesis at pH close
to neutral (≈ 6.9) [330]. Another alternative to boost solventogenesis would be to
supplement with H2, (i.e., to feed syngas) as model predictions showed that CO/H2
ratios lower than 1 led to a decrease in acetate production in favour of ethanol pro-
duction, both in mono-culture of A. wieringae JM (Fig. 5.2B) and in co-cultivation
(Fig. 5.7).

In this work, metabolic modeling was shown to be a powerful tool to gain under-
standing into the feasibility and characteristics of synthetic co-cultures, evaluating
community designs for the production of even or odd-chain MCFAs, and suggesting
operational strategies for their optimization. Community models were constructed
and assessed following a modular approach, where microbes were removed/added
from/to the community targeting products of different chain lengths (even/odd).
Furthermore, following this strategy, each of these microbes could be replaced by
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another one of the like or by other type of microbes targeting alternative products.
Follow-up experimental studies should be carried out to support model predictions.
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Supplementary information

Cultivation of A. wieringae strain JM

A. wieringae strain JM is an isolate from our own culture collection [332]. A. wieringae
JMwas cultivated anaerobically in definedmedium containing (per litre): 1 g NH4Cl,
0.7 g NaCl, 2.8 g KH2PO4, 1.3 g Na2HPO4, 0.2 g MgSO4 x 7H2O, 0.04 g CaCl2
x 2H2O, 10 mL trace element solution from DSMZ medium 318, 0.5 g yeast ex-
tract, 0.75 g L-cysteine-HCl as reducing agent and 0.5 mg resazurin as redox indi-
cator. Vitamins were added to a final composition of (per litre): 0.5 mg pyridoxine,
0.2 mg thiamine, 0.2 mg nicotinic acid, 0.1 mg p-aminobenzoic acid, 0.1 mg D-Ca-
pantothenate, 0.1 mg cobalamin, 0.1 mg riboflavin, 0.05 mg folic acid, 0.05 mg lipoic
acid and 0.02 mg biotin. The pH of the medium was adjusted to 7. Pre-cultures for
bioreactor experiments were set up in anaerobic bottles of 120 mL filled with 50 mL
medium and with CO in the headspace (100 % v/v; 170 kPa) as substrate. Bottles
were incubated at 30◦C.

Bioreactor setup and operation

A. wieringae JM was cultivated in duplicate chemostat bioreactors under CO limita-
tion. Two 0.55 L bioreactors vessel (BioXplorer 400P®, H.E.L Group, Borehamwood,
United Kingdom) with a working volume of 0.4 L were operated anaerobically in
continuous mode. The composition of the medium was as described above with the
addition of 0.005 % (v/v) Antifoam 204. The reactor was equipped with pH, redox
and temperature sensors. The system was operated at 30◦ C and pH 7, the latter
controlled by the addition of 3 M KOH. Mass flow controllers regulated the inflow
of N2 and CO separately. Start-up of the reactor operation was done as follows: the
autoclaved reactor vessel, containing only mineral medium, trace elements and re-
sazurin, was connected to the system and flushed with N2 (5 L h-1) for ≈ 3 hours to
establish anaerobic conditions. Next, the gas inflow was switched to CO/N2 (70:30
v/v) at a total gas flowrate of 4 mL min-1 (0.01 vvm). The following supplements
were added aseptically to the vessel from anaerobic, sterile stock solutions: yeast
extract, vitamins and L-cysteine-HCl. When the redox potential dropped below -
300 mV, the reactor was inoculated with 5 % (v/v) of an exponentially-growing pure
culture of A. wieringae JM. Agitation was set at 350 rpm for the initial batch phase,
which lasted 3.8 days, and afterwards it was progressively increased to 700 rpm for
continuous operation. Fresh medium was continuously supplied aseptically from
a 20-L tank via a peristaltic pump (Masterflex, Germany). The medium tank was
flushed with N2 thorough the whole operation to ensure anaerobic conditions. The
medium inflow pump was adjusted to give an hydraulic retention time (HRT) of 48h
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(dilution rate, D = 0.021 h-1). Liquid samples were routinely taken for analyses of
ethanol and carboxylic acids, cell density and cell dry weight (CDW). Gas samples
of the headspace were taken for determination of gas composition. Gas and liquid
outflow rates were regularly measured during operation.

Analytical techniques

Gaseous compounds (CO, CO2, H2) were analysed in a gas chromatograph (Com-
pact GC 4.0, Global Analyser Solutions, The Netherlands) equipped with two chan-
nels and a thermal conductivity detector (TCD). CO and H2 were detected using
a Molsieve 5A column operated at 100◦ C and coupled to a Carboxen 1010 pre-
column. Determination of CO2 was done in a Rt-Q-BOND column operated at 60◦

C. In both channels, argon was used as carrier gas. Concentrations of soluble com-
pounds in liquid samples were determined by high-performance liquid chromatog-
raphy (HPLC; LC-2030C, Shimadzu, Japan). The apparatus was equipped with a
Shodex SH1821 column operating at 55◦ C. 0.01 NH2SO4 was used as eluent and the
flow rate set at 1 mLmin-1. Amounts detected in a concentration < 0.3 mM could not
be accurately quantified and are considered traces. The Chromeleon™ data analysis
software (Thermo Fisher Scientific), version 7.2.9, was used for both GC and HPLC
peak analysis. Microbial growth was estimated based on the measurement of optical
density at 600 nm (OD600) using a spectrophotometer (UV-1800, Shimadzu, Japan).
CDWwas determined by gravimetric analysis: pellets from a known culture volume
( 50 mL) were washed twice in deionized water, resuspended and transferred into
pre-weighed aluminium trays. These were dried overnight at 103◦ C and weighed
again the day after.
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Figure S5.1: Schematic representation of the fermentation of CO by A. wieringae and C.
kluyveri. WLP: Wood–Ljungdahl pathway; r-β-ox: Reverse β-oxidation pathway. Arrows indi-
cate the direction of the flux. Ticker arrows shows production or consumption of the indicated
metabolites. Additionally, part of CO2 produced by A. wieringae is consumed by C. kluyveri.
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Chapter 6

Model-driven approach for the
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6.1 Abstract

One-carbon (C1) compounds are promising feedstocks for the sustainable produc-
tion of commodity chemicals. CO2 is a particularly advantageous C1-feedstock since
it is an unwanted industrial off-gas that can be converted into valuable products
while reducing its atmospheric levels. Acetogens are microorganisms that can grow
on CO2/H2 gas mixtures and syngas converting these substrates into ethanol and
acetate. Co-cultivation of acetogens with other microbial species that can further
process such products, can expand the variety of products to, for example, medium
chain fatty acids (MCFA) and longer chain alcohols. Solventogens are microorgan-
isms known to produce MCFA and alcohols via the acetone-butanol-ethanol (ABE)
fermentation in which acetate is a key metabolite. Thus, co-cultivation of an ace-
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togen and a solventogen in a consortium provides a potential platform to produce
valuable chemicals from CO2.

In this study, metabolic modelling was implemented to design a new co-culture
of an acetogen and a solventogen to produce butyrate from CO2/H2 mixtures. The
model-driven approach suggested the ability of the studied solventogenic species to
grow on lactate/glycerol with acetate as co-substrate. This ability was confirmed
experimentally by cultivation of Clostridium beijerinckii on these substrates in batch
serum bottles and subsequently in pH-controlled bioreactors.

Community modelling also suggested that a novel microbial consortium consist-
ing of the acetogen Clostridium autoethanogenum, and the solventogen C. beijerinckii
would be feasible and stable. On the basis of this prediction, a co-culture was ex-
perimentally established. C. autoethanogenum grew on CO2/H2 producing acetate
and traces of ethanol. Acetate was in turn, consumed by C. beijerinckii together with
lactate, producing butyrate.

These results show that community modelling of metabolism is a valuable tool
to guide the design of microbial consortia for the tailored production of chemicals
from renewable resources.

6.2 Introduction

The energy crisis and the effects of climate change have emphasised the need to ac-
celerate the transition towards a circular bio-based economy [346]. Current circular
approaches focus on the application of microbial conversion to convert low-value
carbon feedstocks, such as biomass waste streams, into commodity chemicals [347].
Recalcitrant lignocellulosic biomass can be pretreated and hydrolysed into sugars
[348] or gasified to produce synthesis gas (syngas), a one-carbon (C1) feedstock con-
sisting of a mixture of CO, CO2 and H2 [349]. In addition, C1-rich industrial waste
gases from steel and thermal power plants can be directly used as microbial feed-
stocks [350]. In this regard, CO2 is an advantageous one-carbon feedstock (C1) since
it can be obtained from natural and industrial sources, and can be converted into
valuable products reducing the release of contaminant gases to the environment.

Acetogens are strict anaerobes that can grow on CO2/H2 and syngas as their
sole carbon source using the Wood-Ljungdahl metabolic pathway [131, 328]. Aceto-
genic fermentation of C1 gases leads mainly to the production of acetate and etha-
nol, as well as, 2,3-butanediol or lactate [56, 351], and the production of ethanol
has been comercialised recently [49, 352]. Acetogens that grow autotrophically on
these slightly soluble gases are energy limited and produce a constrained product
spectrum and low product titres. This can be overcome by exploring alternative
strategies, such as mixotrophic growth or co-cultivation [353].
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Solventogenic Clostridia have been widely applied to ferment sugars into mix-
tures of the solvents acetone, butanol and ethanol (ABE) [354] or in some cases iso-
propanol, butanol, ethanol (IBE) [355]. These fermentations consist of an acidogenic
phase followed by a solventogenic phase. During acidogenesis, solventogens pro-
duce carboxylic acids (mainly acetate and butyrate), and CO2 and H2. Accumulation
of carboxylic acids and the concomitant lowering of the pH trigger solventogenesis
during which solventogens reduce the carboxylic acids into solvents [356].

Cross-feeding strategies have been used to establish synthetic microbial com-
munities that produce a wider product range [64, 68, 269, 357]. Therefore, co-
cultivation of an acetogen and a solventogen has the potential to overcome the draw-
backs associated to acetogens by increasing the product spectrum. Charubin and
Papoutsakis [69] recently established a co-culture of the solventogen Clostridium
acetobutylicum and the acetogen Clostridium ljungdahlii. In this setup, glucose was
metabolised by C. acetobutylicum to butanol, ethanol, acetone, acetoin, CO2 and H2.
Subsequently, CO2 and H2 were fixed, and acetone and acetoin were reduced to iso-
propanol and 2,3-butanediol, respectively, by C. ljungdahlii.

Acetate is one of the most abundant products in acetogens [358], and while
solventogenic strains cannot grow on acetate as sole carbon source, they can reas-
similate acetate and convert it into carboxylic acids such as butyrate, or solvents
when glucose is used as co-substrate [359–361]. Therefore, in a co-culture of ace-
togens/solventogens on CO2/H2, butyrate could be produced as main product. Bu-
tyrate is a valuable product as it is used in many commercial applications, as a sol-
vent, cosmetic, food, animal feed or as a precursor of pharmaceuticals [362, 363].

In this study, we followed a model-driven approach to find an alternative route
for production of butyrate. We produced butyrate from CO2 using a co-culture of
two strains, one acetogen producing acetate from CO2/H2, and one solventogenic
strain that co-metabolised acetate with an alternative carbon source into butyrate.
To select the solventogenic strain, we systematically assessed growth on several car-
bon sources using the genome-scale metabolic models (GEMs) of C. acetobutylicum
and Clostridium beijerinckii. The most promising carbon sources were experimen-
tally tested and validated. On the basis thereof, we constructed a community model
of C. autoethanogenum and C. beijerinckii, and qualitatively assessed the fermenta-
tion of CO2/ H2 and the new carbon source through scenario simulations. Model
predictions guided the experimental work and led to the successful establishment
of this new co-culture.
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6.3 Materials and Methods

6.3.1 GEM availability and curation

The GEM of C. autoethanogenum DSM 10061, iCLAU786 [219] was downloaded in
sbml and table format and used without modification.

The GEM of C. acetobutylicum ATCC 824, iCac802 [364] was downloaded in
sbml and table format, and modified as follows: Two reactions were defined as re-
versible: ATP:3-phospho-d-glycerate 1-phosphotransferase (with model identifier
R0239), and Hydrogenase (R1563). Formate dehydrogenase (R1562) was removed
since it was not found in the genome of C. acetobutylicum. Three new reactions were
added in the model: Pyruvate transport (pyrt), Pyruvate exchange (EX_PYR_e), and
glycerol kinase (R0426), the latter reaction was found to be present in the genome of
C. acetobutylicum (EC 2.7.1.30; locus tag: CAC1321). Finally, we replaced the ethanol
transport reaction (R1708), expressed as a proton (H+) symport reaction, by a diffu-
sion transport reaction. The modified version of the model (iCac803) is available at:
https://gitlab.com/wurssb/Modelling/coculture_cacb.

The GEM of C. beijerinckii NCIMB 8052, iCM925 [295] was downloaded in sbml
and table format and modified as follows: Ferredoxin-NAD+ reductase (FDXNRx)
and ferredoxin-NADP+ reductase (FDXNRy) reactions were removed, and
Na+-translocating ferredoxin:NAD+ oxidoreductase (Rnf) complex and electron-bi-
furcating, ferredoxin-dependent transhydrogenase (Nfn) complex, were added to
the model. Transport of hydrogen reaction (Habc) was replaced by the ATPase re-
action (ATPase). The EC number and genes of (S)-3-Hydroxybutanoyl-CoA:NADP+
oxidoreductase reaction (HACD1y) were modified and the EC numbers of butyryl-
CoA dehydrogenase (ACOAD1) and 3-hydroxybutyryl-CoA dehydrogenase (HACD1x)
as well. Finally, the reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolysing)
reaction (DNOR) was stoichiometrically balanced. The updated version of the model
(iCM943) is available in the git repository.

6.3.2 In-silico carbon source screening in C. acetobutylicum and
C. beijerinckii

We systematically assessed growth capabilities on the updated versions of the GEMs
of C. acetobutylicum and C. beijerinckii on a wide range of carbon sources. Model sim-
ulations were done using COBRApy, version 0.15.4 [235], and Python 3.9. Growth
capabilities were assessed using Flux Balance Analysis (FBA). The biomass synthesis
reaction (termed ‘Biomass’ or ‘biomass’ in the respective C. acetobutylicum and C.
beijerinckiimodels), was defined as the objective function for maximisation. Growth
was considered when the growth rate was higher than 0.0001 h-1. For each assessed
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carbon source, themaximumuptake (corresponding tominus the lower bound of the
associated exchange reaction denoted ‘EX_xx’) was constrained to 20 mmol gDW-1

h-1, and the minimum uptake (corresponding to minus the upper bound of the as-
sociated exchange reaction) was constrained to 0.1 mmol gDW-1 h-1. In addition,
uptake of small metabolites and ions was allowed by setting the lower bound of the
corresponding exchange reaction to -1000 as described in the corresponding script
in the git repository.

6.3.3 Co-culture GEM reconstruction

A compartmentalised co-culture model of C. autoethanogenum and C. beijerinckiiwas
obtained by combining single species models iCLAU786 [219] and iCM943 [295],
following a previous approach [51]. In this approach, each species is considered a
single compartment. The compartment associated with C. autoethanogenum was de-
fined as ‘cytosol_ca’ and the compartment associated with C. beijerinckiiwas defined
as ‘cytosol’. Intracellular metabolites were assigned to their respective compartment
and the flag ‘_ca’ was added to the identifier of metabolites belonging to ‘cytosol_ca’
to distinguish them from the C. beijerinckii metabolites. In addition, the combined
model included an extracellular compartment, defined as ‘extracellular’, common
to both species. Metabolites in this compartment are either secreted, metabolised or
exchanged by both species, and separated from metabolites present in the cellular
compartments by adding the ‘_e’ flag to the identifier. All extracellular metabo-
lites follow the same naming system (namespace) for both species. Therefore, the
same namespace was applied to metabolites secreted by both species. All metabo-
lites present in both intracellular compartments and the extracellular compartment
can be exchanged between species if favoured by the directionality. Interchanged
metabolites are assumed to be first transported into the extracellular compartment,
before taken up by the other species using the corresponding exchange reaction.
The co-culture GEM contains one biomass synthesis reaction per species, termed
‘biomass_auto’ and ‘biomass_beije’ for C. autoethanogenum and C. beijerinckii, re-
spectively. Additionally, themodel contains a community biomass synthesis reaction
(‘Community_biomass’), which incorporates the biomass of C. autoethanogenum and
C. beijerinckii in the form of metabolite ‘biomass_ca’ and metabolite ‘biomass’, re-
spectively. The combined model incorporates a transport reaction of butyrate (‘BU-
Tex_au’) from the extracellular compartment to the intracellular compartment of C.
autoethanogenum, and the reaction to produce butyraldehyde from butyrate (‘but-
tobuta’) in C. autoethanogenum. In addition, we incorporated the transport reaction
of acetone (‘ACETONE_ca’) from the extracellular compartment to the intracellular
compartment of C. autoethanogenum; an alcohol dehydrogenase to convert acetone
into isopropanol (‘ISOBIO’); a transport reaction of isopropanol from the intracel-

127



lular compartment of C. autoethanogenum to the extracellular compartment (‘ISO-
PRO_ca’), and an exchange reaction of isopropanol (‘EX_IPRO_e’).

The final three-compartment co-culture model was translated into SBML level 3
version 1 (see git repository).

6.3.4 Co-culture modelling framework

Co-culture model simulations were carried out using a previously described mod-
elling framework [51], similar to SteadyCom [365], and based on Community FBA
(cFBA) [221]. Specific fluxes (mmol gDW−1 h−1) were substituted by environmen-
tal fluxes (mmol L−1 h−1), and thus, the biomass synthesis reaction of each species
was changed accordingly accounting for the growth rate and biomass of each species
(gDW L−1 h−1). The relative contribution of each species to the community biomass
was calculated from the total biomass of the community and the species ratio.

6.3.5 Co-culture model simulations

In this study, we simulated hypothetical scenarios varying biomass species ratios,
growth rates, and substrates environmental fluxes to explore the feasible solution
space of the co-culture. We selected a community biomass of 0.22 gDW L-1 based
on the average value measured for a similar co-culture of C. autoethanogenum and
Clostridium kluyveri on syngas [68]. The biomass of each species was calculated
based on the indicated species ratio and the community biomass. The biomass of
each species was multiplied by the indicated growth rate, and the value was used
to constrain the flux through the biomass synthesis reaction of each species. We as-
sessed conditions with C. autoethanogenum - C. beijerinckii ratios ranging from 0.1-
0.9 to 0.9-0.1, and growth rates from 0.005 to 0.1 h-1. For this exploratory analysis,
we assumed equal growth rates for each species and steady-state. For each condi-
tion, we fixed the uptake rate of CO2 and H2 to 5 mmol L-1 h-1 or to 2.5 mmol L-1

h-1, covering values found in literature for a similar co-culture [68]. The maximum
lactate uptake rate was constrained to 2.5 or 5 mmol L-1 h-1 and a minimum uptake
rate of 0.1 mmol L-1 h-1 was imposed. We defined the community biomass reaction
(‘Community_biomass’) as the objective function and we performed FBA to assess
the feasibility of each condition. For a selected number of feasible conditions, the
solution space and the set of fluxes compatible with the measured constraints were
sampled using the sample function in the flux_analysis submodule of COBRApy.
Presented results show the average and standard deviation based on 5000 iterations
generated at each condition (git repository).

128



6

6.3.6 Bacterial strains

The laboratory strains C. beijerinckii NCIMB 8052 and C. acetobutylicum ATCC 824
were stored as spore suspensions in 20% glycerol at -20 oC. Spores of C. beijerinckii
and C. acetobutylicum were heat-activated for 1 min at 95 oC and 10 min at 70 oC,
respectively, before inoculation. C. autoethanogenum DSM 10061 was kindly pro-
vided by Professor Diana Z. Sousa from the Laboratory of Microbiology, Wagenin-
gen University and Research, Wageningen, the Netherlands, and was stored as veg-
etative cells suspended in 25% glycerol buffered with phosphate and reduced with
Ti(III)citrate under anoxic conditions at -80 oC.

6.3.7 Experimental carbon source screening of C. acetobutylicum
and C. beijerinckii

Cultures were prepared in serum bottles containing CM2 medium consisting of
the following components: 2.5 g L-1 yeast extract (Duchefa Biochemie), 1.0 g L-1

KH2PO4 (Fischer Scientific), 0.61 g L-1 K2HPO4 (Sigma-Aldrich), 1 g L-1 MgSO4·7H2O
(Roth), 2.9 g L-1 ammonium acetate (USB), 0.10 g L-1 4-aminobenzoic acid (Duchefa
Biochemie), 6.6mg L-1 Fe(II)SO4·7H2O (Sigma-Aldrich), and 0.5mg L-1 Na-resazurin
(Sigma-Aldrich). Acetic acid (Sigma-Aldrich), l-lactic acid (∼90%, Merck), ethanol
(Merck) and glycerol (Sigma-Aldrich) were added to final concentrations of 40 mM.
pH was set to pH 6.1-6.2 with KOH and/or HCl. Media were made anoxic with
N2(g) and autoclaved. d-Glucose was made anoxic and autoclaved separately and
added to a final concentration of 40 mM. Media were inoculated with 4% (v/v) cul-
ture made from heat-activated spore suspension grown overnight at 37 oC in CM2
medium supplemented with 40 g L-1

d-glucose (Duchefa Biochemie). Cultures were
incubated at 37 oC and sampled at t0 and after 4 d. Cell density was measured
as optical density at 600 nm (OD600), extracellular metabolites were analysed with
high-performance liquid chromatography (HPLC) as described in section 6.3.9, and
pH was measured. Acetate co-assimilation was determined by calculating the frac-
tion of the total converted carbon coming from consumed acetate.

6.3.8 Cultivation experiments in pH-controlled bioreactors

pH-controlled bioreactor experiments were performed in a working volume of 2
L in Infors HT Labfors 5 bioreactors (Infors HT, Switzerland). The stirrer, set at
150 rpm, consisted of at equidistance from top to bottom a pitch-blade and two
Rushton impellers. Temperature was controlled at 37 oC and pH at pH 5.5 ± 0.1
using 3MKOH and 2MH3PO4. Foaming was controlled with Antifoam 204 (Sigma-
Aldrich). 2.9 g L-1 ammonium acetate in the CM2 medium was replaced by 2.5 g L-1
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ammonium sulfate (Merck). 0.75 g L-1 anoxic and sterilized l-cysteine HCl·H2O
(Merck) was added after autoclaving.

In pH-controlled batch fermentations of C. beijerinckii growing on different con-
centrations of acetate and lactate, the adapted CM2mediumwas supplemented with
acetic acid and l-lactic acid prior to autoclaving. 10 mL min-1 N2(g) was flushed
across the head space to keep anoxic conditions. Reactors were inoculated with 1%
(v/v) C. beijerinckii culture growing overnight at 37 oC in CM2 medium supple-
mented with 20 g L-1

d-glucose and 0.75 g L-1
l-cysteine HCl·H2O. Cultures were

sampled at regular time intervals for analysis of cell density, extracellular metabo-
lites, and morphology with phase-contrast microscopy. The overall stoichiometry
was calculated by scaling the difference of the concentrations of the main extra-
cellular metabolites between t0 and tend to the difference in the measured lactate
concentration.

In pH-controlled fed-batch co-cultivation experiments of C. autoethanogenum
and C. beijerinckii, reactors were equipped with sinter spargers to flush 40 mL min-1

H2(g) and 10 mL min-1 CO2(g) through the medium. At t0, reactors were inocu-
lated with <1% (v/v) C. autoethanogenum culture growing at 37 oC in CM2 medium
supplemented with 10 g L-1

d-fructose (VWR Chemicals) and 0.75 g L-1
l-cysteine

HCl·H2O. After establishment of growth and acetate production by C. autoetha-
nogenum, reactors were inoculated with <1% (v/v) C. beijerinckii culture growing
overnight at 37 oC in CM2medium supplemented with 20 g L-1

d-glucose and 0.75 g
L-1

l-cysteine HCl·H2O. Furthermore, the continuous l-lactic acid feed was started.
Cultures were sampled at regular time intervals for analysis of cell density, extra-
cellular metabolites, and morphology with phase-contrast microscopy. Theoretical
acetate production from CO2 was calculated for each time point after the start of the
l-lactic acid feed as follows: The amount of lactate converted was calculated from
the difference in the amount of lactate fed and calculated amount of lactate remain-
ing in the reactor. The conversion of lactate via pyruvate yields the intermediate
metabolite acetyl-CoA and CO2 in a 1:1 ratio. The fraction of the amount of carbon
from lactate available for the formation of products was subtracted from the amount
of carbon present in the produced (iso)butyrate to obtain a theoretical amount of
carbon coming from a difference source than lactate, i.e., from converted acetate.
This theoretical amount of converted acetate was added to the calculated amount
of acetate in the reactor to get a theoretical amount of acetate produced from CO2.
Subsequently, the stoichiometry for the production of (iso)butyrate from lactate and
acetate was calculated by scaling the difference of (iso)butyrate produced, theoreti-
cal acetate converted, and lactate converted between t0 and the selected time points
to lactate converted.
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6.3.9 Analysis of extracellular metabolites

Concentrations of acetate, acetone, butanol, (iso)butyrate, ethanol, fructose, glyc-
erol, glucose, and lactate were analysed with HPLC. Supernatant was mixed with an
equal volume of 1 M H2SO4 with 30 mM 4-methylpentanoic or 100 mM pentanoic
acid as internal standard. This was filtered through a 0.2 µm regenerated cellulose
filter followed by analysis on a Waters HPLC system with a Shodex KC-811 column
at 65 oC, 1 mL/min 3 mM H2SO4 mobile phase, and a refractive index and UV de-
tector.

6.4 Results

Fig. 6.1 shows the steps for the model-driven approach followed to establish a novel
co-culture of C. autoethanogenum and C. beijerinckii for the production of butyrate
from CO2/H2. GEMs of solventogens were used to evaluate candidate species and
possible carbon sources. After the experimental validation of the model predictions,
the co-culture was successfully established.

6.4.1 Updated GEMs of C. autoethanogenum, C. acetobutylicum
and C. beijerinckii

The GEM of C. autoethanogenum, iCLAU786 was used as the original version [219]
with no modification. The updated version of the GEM of C. acetobutylicum, iCac803
[364], had 1254 reactions, 1465 reactions and 803 genes, and the GEM of C. beijer-
inckii, iCM943 [295], had 881 metabolites, 941 reactions and 943 genes.

Regarding the GEM of C. beijerinckii, we included the Na+-translocating ferredo-
xin:NAD+ oxidoreductase (Rnf) complex (EC 7.2.1.2) in the model of C. beijerinckii.
Rnf is formed by the following gene cluster: rnfC, rnfD, rnfG, rnfE, rnfA, rnfB, (lo-
cus_tag: Cbei_2449, Cbei_2450, Cbei_2451, Cbei_2452, Cbei_2453 and Cbei_2454,
respectively). Additionally, we have identified an electron-bifurcating, ferredoxin-
dependent transhydrogenase (Nfn) complex that catalyses NADH-dependent reduced
Ferredoxin:NADP+ oxidoreductase activity in C. beijerinckii. The Nfn complex has
two subunits: NAD(P)-binding subunit, and a glutamate synthase subunit. These
two subunits showed 56% to 79% identity with the Nfn subunits of C. kluyveri, C.
autoethanogenum, C. difficile [366], and of the recently annotated Anaerotignum neo-
propionicum [82], forming two possible complexes: (Cbei_2182 and Cbei_2183) or
(Cbei_0661 and Cbei_0662). To our knowledge, this is the first time the Nfn complex
is reported in C. beijerinckiiNCIMB 8052. Ferredoxin NAD+ reductase (EC 1.18.1.3)
is not found in the genome of C. beijerinckii, and the ferredoxin NADP+ reductase
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Figure 6.1: Overview of the followedmethodology to establish a co-culture of an acetogen and
a solventogen to produce butyrate from CO2/H2. We used genome-scale metabolic models
of two solventogens to assess growth on several carbon sources and to find the alternative
carbon source that sustained growth on the solventogen with acetate. The predicted carbon
sources were experimentally validated and growth was confirmed in one of the solventogens.
After that, we assessed the feasibility of the co-culture of the acetogen C. autoethanogenum
and the selected solventogen using community modelling, and finally, the co-culture was
experimentally established.

(EC 1.18.1.2) showed lower percentage identity to the FNR of C. acetobutylicum, and
thus, we hypothesised that the former FNR corresponds to the NADP-binding sub-
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unit of the Nfn complex.

6.4.2 In-silico carbon source screening of C. acetobutylicum and
C. beijerinckii

We explored growth on 25 carbon sources individually and pairs of these carbon
sources with one another in the model of C. acetobutylicum (Fig. 6.2). Growth was

Figure 6.2: Growth capabilities predicted for C. acetobutylicum. The color scale shows growth
rates in h-1. Squares on the diagonal correspond to single carbon sources. Squares below the
diagonal correspond to the combination of the carbon source presented on the x-axis with
the carbon source presented on the y-axis. Non-colored squares show that no growth was
predicted for the specified carbon source(s). Meth: Methionine; Etha: Ethanolamine. The
maximum uptake rate for each carbon source was set to 20mmol gDW-1 h-1 and the minimum
to 0.1 mmol gDW-1 h-1.

predicted on sugars, glycerol, lactate, serine and pyruvate as single carbon sources,
reaching the highest growth rates on cellobiose, sucrose and maltose. As expected,
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Figure 6.3: Growth capabilities predicted for C. beijerinckii. The color scale shows growth
rates in h-1. Squares on the diagonal correspond to single carbon sources. Squares below the
diagonal correspond to the combination of the carbon source presented on the x-axis with
the carbon source presented on the y-axis. Non-colored squares show that no growth was
predicted for the specified carbon source(s). The maximum uptake rate for each carbon source
was set to 20 mmol gDW-1 h-1 and the minimum to 0.1 mmol gDW-1 h-1

acetate did not sustain growth as the sole carbon source and neither was sustained on
acetone, succinate, acetoin (not shown here). Pairwise combinations of most carbon
sources that led to growth as single carbon source, also led to growth in combination
with an alternative carbon source. However, l-methione, l-cysteine and CO2 did not
show growth in combination with carbon sources that sustained growth alone since
the model was forced to uptake a minimum amount of each carbon source, leading
in some cases, to infeasible solutions. The highest growth rates were obtained with
cellobiose, sucrose or maltose in combination with serine, glycine or ethanolamine;
the combination of glucose or fructose with glycerol, and xylose, or arabinose with
ribose. Interestingly, acetate, in combination with lactate or glycerol, could sustain
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growth in C. acetobutylicum, as previously described for other solventogens [367,
368].

Additionally, we assessed growth on glucose, glycerol, ethanol, formate, butyrate,
lactate and acetate in the model of C. beijerinckii (Fig. 6.3). As observed for C. ace-
tobutylicum, C. beijerinckii only sustained growth on glucose, glycerol and lactate as
single carbon sources. Pairwise combinations of the latter carbon sources sustained
growth in combination with the rest of carbon sources. The highest growth rates
were obtained with glucose in combination with glycerol or lactate. Here, acetate
with lactate or glycerol also sustained growth, being the growth rate higher with
addition of acetate in both scenarios.

6.4.3 Growth of C. acetobutylicum and C. beijerinckii on lactate
and acetate

The substrate space provided by the model was used in an initial screening to assess
growth and co-assimilation of acetate on various carbon sources by the solventogens
C. acetobutylicum and C. beijerinckii (Fig. 6.4). On all assessed carbon sources C.
beijerinckii grew to higher cell densities after 4 days than C. acetobutylicum, which is
known to produce autolysins towards the end of the exponential growth phase [369].
As predicted by the models (Fig. 6.2 and Fig. 6.3), neither strain grew on acetate
alone (Fig. 6.4; Condition 4), as both strains only converted the residual metabo-
lites from the inoculum, i.e., glucose. This showed the need for an additional carbon
source to co-assimilate acetate. Contrary to the model predictions (Fig. 6.2), C. aceto-
butylicum did not grow on acetate with lactate, glycerol and ethanol as co-substrates
under the tested conditions. However, the model predictions for C. beijerinckii (Fig.
6.3) were confirmed, and acetate was co-assimilated using all lactate and part of the
glycerol into butyrate (Fig. 6.4; Condition 1). Both solventogens further reduced
butyrate to butanol with the addition of glucose (Fig. 6.4; Condition 2). The fraction
of carbon coming from acetate in the products produced by C. beijerinckii was not
improved by the addition of glucose to the medium, and was highest in the medium
containing only acetate, ethanol, glycerol and lactate (Fig. 6.4; Condition 1-3, Table
S1).

Growth of C. beijerinckii on lactate and acetate was further explored in a biore-
actor at a controlled pH of 5.5 (Fig.S1). This pH is close to the optimal pH of C.
autoethanogenum [211], and acid re-assimilation and ABE production in C. beijer-
inckii [359, 370]. Butyrate was the most abundant product and the stoichiometry
was as follows: consumption of one mol lactate and 0.4-0.5 mol acetate produced
0.6-0.7 mol butyrate. This was similar to the stoichiometry reported for Clostridium
saccharobutylicum NCP 262, previously known as Clostridium acetobutylicum P262
[371], growing on lactate and acetate [367].
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The screening of the solventogens C. acetobutylicum and C. beijerinckii on various
carbon sources showed that the combination of C. beijerinckii and lactate was most
promising for the re-assimilation of acetate produced from CO2/H2 by C. autoetha-
nogenum in a future co-culture.

6.4.4 Fermentation of lactate and acetate by C. beijerinckii

In C. beijerinckii, lactate is oxidised to pyruvate via NAD-independent l-lactate de-
hydrogenase (EC 1.1.1.27) encoded by the following isoenzymes: Cbei_4072, Cbei_-
4903 or Cbei_2789 (Fig. 6.5). Pyruvate is decarboxylated to acetyl-CoA via pyru-
vate:
ferredoxin oxidoreductase (PFOR; EC 1.2.7.10, encoded by Cbei_1853, Cbei_4318
or Cbei_1458), generating reduced ferredoxin and CO2. Model predictions showed
that reduced ferredoxin is partly spent to produce H2 and oxidised ferredoxin via
ferredoxin hydrogenase (EC 1.12.7.2, Cbei_0327, Cbei_4000 or Cbei_3796), and
partly spent to regenerate oxidised ferredoxin and NADH via the Rnf complex (EC
7.2.1.2, Cbei_2449-55), translocating Na+/H+ [372]. The Rnf complex is coupled
to an ATPase (EC 7.1.2.2) encoded by the cluster Cbei_0412 to Cbei_0419, that
pumps in Na+/H+ for energy generation. Model predictions suggested that acetate
is converted into acetyl phosphate (acetyl-P) investing ATP by acetate kinase (EC
2.7.2.1, Cbei_1165), and acetyl-P is converted into acetyl-CoA via phosphate acetyl-
transferase (EC 2.3.1.8, Cbei_3402 or Cbei_1164). As previously mentioned, C. bei-
jerinckii produces butyrate via acetyl-CoA [373]. First, two acetyl-CoA molecules
are converted into one acetoacetyl-CoA by acetoacetyl-CoA thiolase (EC 2.3.1.9,
Cbei_0411 or Cbei_3630). Acetoacetyl-CoA is reduced to 3-hydroxybutyryl-CoA
via (S)-3-Hydroxybutanoyl-CoA:NAD+ oxidoreductase (EC 1.1.1.157, Cbei_0325)
or via NAD(P)-dependent acetoacetyl-CoA reductase (EC 1.1.1.36, Cbei_5834). Then,
3-hydroxybutyryl-CoA is converted into crotonyl-CoA by 3-hydroxybutyryl-CoA
dehydratase (EC 4.2.1.55, Cbei_2034 or Cbei_4544). Crotonyl-CoA is reduced via
the butyryl-CoA dehydrogenase/electron-transferring flavoprotein complex (Bcd-
EtfAB) producing reduced ferredoxin. Two complete clusters were identified in the
genome: Cbei_0322 (Bcd), Cbei_0323 (EtfB) and Cbei_0324 (EtfA) or Cbei_2035
(Bcd), Cbei_2036 (EtfB) and Cbei_2037 (EtfA). An acyl-CoA dehydrogenase (Acd)
showed 79.4% similarity with the Bcd subunit of C. acetobutylicum ATCC 824. Bu-
tyrate can be produced from butyryl-CoA via two routes in C. beijerinckii. The first
route is a linear pathway in which butyryl-CoA is first converted into butyryl phos-
phate via butanoyl-CoA:phosphate butanoyltransferase (Ptb; EC 2.3.1.19, Cbei_0203).
Butyryl phosphate is then converted into butyrate producing ATP via butyrate ki-
nase (Buk; EC 2.7.2.7, Cbei_0204). The second route is catalysed by a butyryl-CoA-
acetoacetate CoA-transferase (EC 2.8.3.9, Cbei_2654 or Cbei_2653 or Cbei_3834 or
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Figure 6.4: Initial screening of C. beijerinckii and C. acetobutylicum for growth on various
combinations of carbon sources. The bars indicate substrate and product concentrations, and
cell density at the time of inoculation and after 4 days. CM2 medium, containing 38 mM
acetate, was supplemented with 40 mM of each of the various carbon sources as follows:
Condition 1: acetic acid, ethanol, glycerol, and l-lactic acid; Condition 2: acetic acid, ethanol,
glycerol, l-lactic acid and glucose; Condition 3: glucose. Condition 4: none. Error bars show
standard deviations between two cultures inoculated with the same inoculum.
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Figure 6.5: Fermentation of lactate and acetate by C. beijerinckii. Coloured areas corre-
spond to the following modules: lactate oxidation (green); H2, CO2, and acetyl-CoA pro-
duction (blue); acetate consumption (red); butyrate production (purple); and redox cofac-
tor regeneration, and ATPase (yellow). Numbers in reactions correspond to the following
enzymes and reaction identifiers in the model: 1, NAD-independent l-lactate dehydroge-
nase (LDH_L); 2, pyruvate:ferredoxin oxidoreductase (POR4); 3, Ferredoxin hydrogenase
(FDXNH); 4, acetate kinase (ACK); 5, phosphate acetyltransferase (PTA); 6, Acetoacetyl-
CoA thiolase (ACACT1); 7, (S)-3-Hydroxybutanoyl-CoA:NAD+ oxidoreductase or NAD(P)-
dependent acetoacetyl-CoA reductase (HACD1x or HACD1y); 8, 3-hydroxybutyryl-CoA de-
hydratase (3HBCD); 9, Butyryl-CoA dehydrogenase/electron-transferring flavoprotein com-
plex (Bcd-EtfAB) (ACOAD1); 10, Butanoyl-CoA:phosphate butanoyltransferase (BCOPBT);
11, Butyrate kinase (BUTK); 12, Butyryl-CoA-acetoacetate CoA-transferase (COAT2); 13,
ATPase (ATPase); 14, Na+-translocating ferredoxin:NAD+ oxidoreductase complex (Rnf).
Dashed lines (reaction 12) indicate that the reaction might not be the main pathway.

Cbei_3833 or Cbei_4614 or Cbei_4612), where the CoA moiety of butyryl-CoA is
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transferred to acetate producing acetyl-CoA and butyrate. However, model predic-
tions showed that butyrate is mostly produced generating ATP via Ptb and Buk.

6.4.5 Community model simulations of C. autoethanogenum and
C. beijerinckii for the fermentation of CO2/H2 and lactate

The GEM of the co-culture consisted of 2005 metabolites, 2107 reactions and 1659
genes. Community model simulations supported the co-existence of the co-culture
of C. autoethanogenum and C. beijerinckii for the fermentation of CO2/H2 and lactate
in a wide range of growth rate and species ratio combinations. Fig. 6.6 shows the fea-
sible solution space for multiple combinations of species ratios, growth rates, CO2,
H2 and lactate feeds. When the maximum uptake rate of lactate is 2.5 mmol L-1 h-1

(Fig. 6.6; green figures), the feasibility of the co-culture becomes more limited. In
these conditions, the co-culture is only feasible at low growth rates (< 0.02 h-1) for
all species ratios, and feasible at higher growth rates (up to 0.07 h-1) when C. auto-
ethanogenum and C. beijerinckii are similarly present in the community for CO2/H2
feed ratio of 0.5. The co-culture is infeasible in all conditions when the CO2/H2
feed ratio is 2, and only feasible when the presence of C. autoethanogenum is low
and the CO2/H2 feed ratio is 1. The range of feasible solutions becomes wider when
the lactate feed rate is 5 mmol L-1 h-1. When C. autoethanogenum and C. beijerinckii
are equally present in the community, the co-culture can be established with all ex-
plored growth rates, except when the CO2/H2 feed ratio is 2, that is only feasible up
to 0.04 h-1. Again, only at lower growth rates (< 0.02 h-1), the co-culture is feasible
for all tested species ratios.

Fig. 6.7 shows the steady-state consumption and production rates observed in
co-culture compared to the consumption and production rates associated to C. au-
toethanogenum or C. beijerinckii. Part of the acetate produced by C. autoethanogenum
is taken up by C. beijerinckii since the steady-state production rates in the co-culture
are lower than the production rates of C. autoethanogenum. The fermentation of
acetate and lactate leads to the production of butyrate in C. beijerinckii. A small
amount of butyrate is reassimilated by C. autoethanogenum and by C. beijerinckii
and converted into butanol (not shown). Furthermore, ethanol is being produced in
smaller amounts by C. autoethanogenum and C. beijerinckii. Model predictions also
showed an exchange of CO2 and H2 from C. beijerinckii to C. autoethanogenum. C.
beijerinckii produces CO2 and H2 that are taken up by C. autoethanogenum, since the
flux through C. autoethanogenum is higher than the flux through the exchange reac-
tion in the co-culture. Model predictions suggested that acetate consumption by C.
beijerinckii varied depending on the lactate feed rate, being lower when the lactate
feed rate was higher than 2.5 mmol L-1 h-1 (≈ 5 mmol L-1 h-1). A higher lactate feed
rate also led to more CO2 and H2 produced by C. beijerinckii, and thus, to more gases
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Figure 6.6: Feasible solution space of the co-culture of C. autoethanogenum and C. beijerinckii
for several species ratio and growth rate combinations under different CO2, H2 and lactate
feed rates. The y-axis shows the biomass species ratio of C. autoethanogenum/C. beijerinckii
and the x-axis shows the growth rate in h-1. Colored areas indicate feasible solutions predicted
by the model. Figures in purple and green show results when the lactate feed rate is set to a
maximum of 5 mmol L-1 h-1, and 2.5 mmol L-1 h-1, respectively. Predictions shown on the
first row were obtained with a CO2 and H2 feed rate of 5, and 2.5 mmol L-1 h-1, respectively.
Predictions shown on the second row were obtained with a CO2 and H2 feed rate of 5 mmol
L-1 h-1, and on the third row, with a CO2 and H2 feed rate of 2.5, and 5 mmol L-1 h-1,
respectively.
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being recirculated and consumed byC. autoethanogenum producingmore acetate (git
repository).

Figure 6.7: Steady-state production and consumption rates of the main substrates and prod-
ucts predicted by the community model of C. autoethanogenum and C. beijerinckii. The x-axis
shows the species associated to the illustrated fluxes. The y-axis shows uptake (negative) or
production (positive) fluxes in mmol L-1 h-1. (A) shows CO2 and H2 production or consump-
tion rates, and (B) shows the production or uptake of acetate, butyrate and ethanol. Modelled
uptake and production rates are shown for C. autoethanogenum, C. beijerinckii and for the co-
culture of C. autoethanogenum and C. beijerinckii (Co-culture CA+CB), respectively. Growth
rate was set to 0.02 h-1; biomass species ratio was set to 1:1; maximum and minimum lactate
uptake rate was set to 2.5 and 0.1 mmol L-1 h-1, and the maximum and minimum uptake of
CO2 and H2 were set to 5 and 0.5 mmol L-1 h-1, respectively

.
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Furthermore, we observed traces of formate, 2,3-butanediol, acetone, isopropanol
and butanol (see git repository).

6.4.6 Fed-batch fermentation of CO2/H2 and lactate by the novel
co-culture of C. autoethanogenum and C. beijerinckii

Figure 6.8: pH-controlled fed-batch fermentation of the C. autoethanogenum - C. beijerinckii
co-culture on 1:4 CO2/H2 with an l-lactic acid feed. Concentrations of the main substrates,
products and cell density are shown. At t0 cultures were inoculated with C. autoethanogenum.
The dotted black line marks inoculation with C. beijerinckii and the start of the l-lactic acid
feed. l-lactic acid was fed at a rate of 3 mL d-1 till 19 d. Traces of ethanol (3 d - 8 d, max.
4.6 mM at 7 d and 13d - 20 d, max. 5.6 mM at 20 d), butanol (14 d - 20 d, max. 3.1 mM at
20 d) and glucose from the C. beijerinckii inoculum (<1 mM at 3 d) were detected. pH was
controlled at pH 5.5 ± 0.1. Results of a single biological replicate are shown here and the
results of a second independent biological replicate are shown in Fig.S2.

Production of butyrate from CO2/H2 and the co-substrate lactate by the mod-
elled co-culture of C. autoethanogenum and C. beijerinckii was experimentally veri-
fied with two biologically independent pH-controlled fed-batch fermentations (Fig.
6.8, and Fig.S2). Both fermentations showed similar trends in biomass production
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andmetabolites profiles. Below, the results are described for the fermentation shown
in Fig. 6.8. Initially, C. autoethanogenum was grown solely on a continuous CO2/H2
feed, and after 3 d, the OD600 had reached a value of 0.29 and the acetate concentra-
tion a value of 34 mM. This acetate concentration was considered sufficient to sup-
port C. beijerinckii. C. beijerinckii was added and the l-lactic acid feed was started.
The rate of the l-lactic acid feed was set lower than the rate of acetate production
fromCO2/H2 by C. autoethanogenum to prevent complete depletion of acetate. Upon
inoculation with C. beijerinckii and the start of the l-lactic acid feed, a continued
growth phase was observed till 10 d in which butyrate was produced up to 28 mM.

A theoretical acetate production from CO2 was calculated from which the corre-
sponding stoichiometry for butyrate production at each time point was calculated
(Fig.S2). Between 4 d and 7 d, during butyrate production in the first growth phase,
for each mol of consumed lactate, 0.2-1 mol acetate was reassimilated, and 0.5-0.6
mol butyrate was produced.

The drop in cell density observed between 10 d and 13 d could be explained
by the accumulation of biomass observed at the reactor wall above the fermentation
medium from 6 d onward (data not shown). No production of butyrate was observed
in this period and microscope observations showed that the consortium consisted
almost entirely of vegetative cells (data not shown). These cells could not be assigned
to either species as the morphologies of C. autoethanogenum and C. beijerinckii could
not be clearly distinguished. As a result, the species ratio in the co-culture was not
determined experimentally. In future studies, the species ratio could be obtained
from transcriptomic [51], amplicon [374] or qPCR data [69].

After this adaptation period, a second growth phase was observed between 13
d and 15 d coinciding with a larger fraction of sporulating cells in the culture and
the co-production of butyrate and isobutyrate to final concentrations of 53 mM and
31 mM, respectively. While measured in both replicates (Fig. 6.8 and Fig.S2), the
production of isobutyrate by the consortium was not predicted by the models, and
will be further investigated in a follow-up research. The calculated stoichiometry
indicated a shift towards the conversion of lactate during this second growth and
production phase (Fig.S2).

6.4.7 Analysis of substrate consumption and product formation by
the co-culture model

C. autoethanogenum takes-up CO2 and H2 through the Wood-Ljungdahl pathway,
where H2 is used as an electron donor for CO2 reduction to acetyl-CoA (Fig. 6.9).
Acetyl-CoA is mainly converted into acetate producing ATP, and ethanol. In addi-
tion, traces of 2,3-butanediol, formate and lactate were predicted by the model (not
shown here). Part of the acetate was in turn taken-up by C. beijerinckii together with
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the external lactate feed, following the metabolism described in section 6.4.3. Etha-
nol was produced by C. autoethanogenum and by C. beijerinckii, as observed in the
experiments. Model simulations suggested the production of butyrate, CO2 and H2
by C. beijerinckii, and traces of acetone and butanol. We observed that most of the
CO2 and H2 produced by C. beijerinckiiwas metabolised by C. autoethanogenum (Fig.
6.7). Furthermore, we observed traces of isopropanol formed from the conversion of
the assimilated acetone by C. autoethanogenum through an alcohol dehydrogenase.
The community model suggested that butanol was produced by C. beijerinckii and
by C. autoethanogenum (Fig. 6.9). As Diender et al. already observed [64], butyrate
could be exchanged between C. beijerinckii and C. autoethanogenum, and converted
into butanol by an alcohol dehydrogenase and the aldehyde ferredoxin oxidoreduc-
tase.

Figure 6.9: Fermentation of CO2/H2 and lactate by the novel co-culture ofC. autoethanogenum
and C. beijerinckii. Metabolites in bold indicate substrates and main products. Metabolites
in smaller letter size indicate minor products. Arrows indicate the flux direction. Dashed
lines display transport reactions of metabolites from the extracellular compartment to the
intracellular compartment of the indicated microbe, and vice versa

.

In addition, the model predicts traces of formate and lactate produced by C.
autoethanogenum being assimilated by C. beijerinckii (not shown here).

Fig.S3 represents the metabolic profile of the novel co-culture with glucose, in-
stead of lactate, as additional carbon source. As observed in Fig. 6.4, the addition
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of glucose would lead to an increase of ABE production by C. beijerinckii, since there
are more reducing equivalents when glucose is converted to pyruvate. Acetate would
still be the main product in C. autoethanogenum and ethanol would be produced in
minor amounts. Part of the acetate could be metabolised by C. beijerinckii, but also
produced together with butyrate during the acidogenic phase. Once the pH drops
enough, the acids could be partly reassimilated during solventogensis to produce
solvents. Acetone and butyrate could be partly taken up by C. autoethanogenum pro-
ducing isopropanol and more butanol. Possibly, part of the CO2 and H2 produced
by C. beijerinckii would be consumed by C. autoethanogenum as described for the
co-culture growing on lactate.

6.5 Discussion

GEMs are mathematical representations of the metabolism and have been success-
fully employed to gain insights into metabolic capabilities of single species [72, 82,
219, 295, 364], and to elucidate possible strategies to optimise the performance of
microorganism(s) in mono- and co-cultivation [51, 107, 375, 376]. In this study,
the use of constrained-based modelling has been key to design an alternative way
to produce butyrate from CO2/H2 and lactate. We have proven the capacity of C.
beijerinckii NCIMB 8052 to grow on lactate and acetate as the sole carbon and en-
ergy source. Moved by the need to upcycle sustainable feedstocks, we have used this
new found capacity of C. beijerinckii to established a novel synthetic co-culture of C.
autoethanogenum and C. beijerinckii for the fermentation of CO2/H2 and lactate into
butyrate.

The use of lactate as alternative carbon source by C. beijerinckii as co-substrate
with acetate creates new possibilities for the production of butyrate. Acetate is the
most abundant product of gas fermentation, and therefore, has an essential role in
the establishment of the co-culture. Lactate is a minor fermentation product of ace-
togens grown on syngas or CO2/H2 [56, 377], but a major fermentation product
of acetogens grown on sugars [378]. Acetogens could be engineered towards au-
totrophic lactate production from CO2/H2 [379] or syngas, thereby facilitating bu-
tyrate production in co-cultivation with C. beijerinckiiwithout the need of adding an
additional carbon source. Alternatively, lactate can be obtained from other sources,
such as side-streams from the dairy industry [380], spoiled agri-food products [381],
ensiled agricultural biomass [382], and fermented grass [383].

C. beijerinckii has wide physiological versatility, which makes this microbe an
ideal candidate to produce butyrate in a co-culture. However, butyrate production
could also be achieved by the co-cultivation of an acetogenwith a butyrate producing
species, such as Clostridium butyricum, whose ability to grow on lactate and acetate
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was also proved recently [384].
Additionally, the use of the newly established co-culture could increase carbon

recycling and electron transport, since model predictions indicated that CO2 and
H2 produced by C. beijerinckii were almost fully reassimilated by C. autoethanoge-
num (Fig. 6.7), which reduces the carbon footprint. Incorporation of an organism
able to produce H2 needed for CO2 assimilation is interesting to consider for fu-
ture approaches. Besides solventogenic Clostridia, other anaerobic bacterial species
have been described that produce H2 from the fermentation of sugars at high yields
[385]. This opens up new alternatives for more efficient co-cultures without the need
of external H2.

Model predictions showed slow growth on lactate and acetate byC. acetobutylicum.
However, this was not confirmed by experiments in which lactate was not con-
sumed, and acetate was produced rather than consumed (Fig. 6.4; condition 1).
Diez-Gonzalez et al. [367] showed growth on lactate and acetate in the solvento-
gen C. saccharobutylicum NCP 262. They analysed extracts of cells grown on lactate
and acetate and observed NAD-dependent lactate dehydrogenase (d-LDH) as well
as NAD-independent lactate dehydrogenase (i-LDH) activity. d-LDH regulated the
conversion of pyruvate to lactate and required fructose-1,6-biphosphate to be active
[367, 386]. i-LDH regulated the conversion of lactate to pyruvate (Fig. 6.5) and
had double the activity over d-LDH. In addition, i-LDH activity decreased fourfold
when glucose was added to cultures growing on lactate and acetate. However, lac-
tate was only converted by C. acetobutylicum ATCC 824 when glucose was added
(Fig. 6.4; Condition 2) suggesting that i-LDH from C. acetobutylicum ATCC 824 is
activated by glucose. Interestingly, the LDH of C. beijerinckii NCIMB 8052 and C.
acetobutylicum ATCC 824 showed 87.7% and 57% similarity with the LDH of C. sac-
charobutylicum NCP 262, respectively. [371] showed that C. saccharobutylicum NCP
262 is more similar to C. beijerinckii NCIMB 8052 than to C. acetobutylicum ATCC
824. Therefore, we hypothesise that C. beijerinckii has an i-LDH activity comparable
to C. saccharobutylicum, whereas i-LDH activity in C. acetobutylicum ATCC 824 is
regulated differently.

Model predictions showed a high production of butyrate, acetate, and traces of
ethanol, acetone, butanol, isopropanol, 2,3-butanediol, and formate. Fed-batch ex-
periments also showed butyrate and acetate as major fermentations products, and
ethanol and butanol as minor fermentation products. Charubin et al. [69] observed
production of 2,3-butanediol from the assimilation by C. ljungdahlii of the acetoin
produced by C. acetobutylicum. However, acetolactate decarboxylase was only anno-
tated in the genome of C. autoethanogenum and not in the genome of C. beijerinckii
[387], and thus, acetoin could not be produced by the solventogen. Lactate degra-
dation results in less NAD(P)H available, and therefore, the production of solvents
is lower compared to the standard ABE fermentation on sugars [69, 388]. In con-
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trast, the co-culture in our study has a relatively high butyrate production (up to 53
mM). Furthermore, mono-culture experiments on lactate and acetate in our study
produced higher concentrations of butyrate (up to 42 mM) than the reported co-
assimilation of glycerol and acetate by C. beijerinckii (≈ 20 mM) [368], and than the
co-assimilation of lactate and acetate by C. saccharobutylicum [367] (≈ 20 mM).

Model predictions indicated that C. beijerinckii could grow on lactate as the sole
carbon and energy source, as was recently observed [389]. However, the growth
rate was improved by the addition of acetate (Fig. 6.3), as was previously shown
[367]. The addition of acetate favours lactate uptake, since the acetyl-CoA pool
increases with addition of acetate as co-substrate, and thus, more acetyl-CoA would
be converted into butyrate producing more ATP. Co-culture fed-batch experiments
showed, however, accumulation of acetate in the fermentation broth. This showed
that not all acetate produced by C. autoethanogenumwas consumed by C. beijerinckii,
as indicated by the model, and possibly that some acetate could also be produced by
C. beijerinckii.

We should note that the deployed modelling approach predicts steady-state pro-
duction or consumption rates, and thus, we cannot compare the results quantita-
tively with bioreactor data, which consist of concentrations over time. Instead, our
study should be seen as an exploratory study assessing the feasibility of the co-
culture. Future optimization of this co-culture could integrate current experimental
data and relative abundance of species into dynamic modelling approaches to gain
better insights into the concentration profiles over time. These results show that
community modelling of metabolism is a valuable tool to guide the design of mi-
crobial consortia for the tailored production of important chemicals from renewable
resources. It thereby expands the space of options to possibly accelerate the transi-
tion to a biobased economy.

6.6 Conclusion

Genome-scale metabolic modelling helped identifying the ability of C. beijerinckii to
co-metabolise acetate and lactate for the production of butyrate. This ability was
experimentally verified in batch serum bottles and pH-controlled batch bioreac-
tor fermentations. A community model of C. autoethanogenum and C. beijerinckii
was then constructed to assess the feasibility of the co-culture to produce butyrate
from CO2/H2 and lactate. Community modelling predicted the feasibility of the
co-culture in several conditions and the interactions between species, especially, the
exchange of acetate. Following model predictions, the co-culture of C. autoetha-
nogenum and C. beijerinckii was established in pH-controlled fed-batch fermenta-
tions. The main products were acetate, butyrate and the newly identifiedmetabolite,
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isobutyrate. Our study shows the strength of amodel-driven approach to explore the
high metabolic flexibility of clostridial species for the production of chemicals from
renewable sources.
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Supplementary information

Table S6.1: Consumption/production of metabolites and co-assimilation of acetate
by C. acetobutylicum and C. beijerinckii growing on various carbon sources. CM2
medium, containing 38 mM acetate, was supplemented with 40 mM of each of the
various carbon sources as follows: Condition 1: acetic acid, ethanol, glycerol, and
l-lactic acid; Condition 2: acetic acid, ethanol, glycerol, l-lactic acid and glucose;
Condition 3: glucose. Condition 4: none. Negative and positive values show conver-
sion and production, respectively. Acetate co-assimilation is shown as the percentage
of carbon converted coming from acetate (C from acetate). NA: Not available.

C. acetobutylicum C. beijerinckii
Condition 1 2 3 4 1 2 3 4

Difference (mM)
Acetate 4 6 13 2 -52 -38 -15 -2
Acetone 0 0 -1 0 1 8 12 0
Butanol 0 11 2 0 2 23 22 0
Butyrate 3 31 30 3 62 51 17 9
Ethanol 2 0 -1 -1 0 0 0 0
Glucose -6 -45 -42 -6 -6 -51 -49 -6
Glycerol 1 -1 0 -1 -34 -11 -3 -3
Lactate 0 -26 -1 0 -39 -37 -2 -2

C from Acetate (%) NA NA NA NA 29 14 9 7
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Figure S6.1: pH-controlled batch fermentations of C. beijerinckii growing on l-lactic acid and
acetic acid at a 1:1 ratio at pH 5.5 ± 0.1. Concentrations of the main substrates, products
and cell density are shown for two biologically independent replicates with different starting
concentrations. Traces of ethanol and butanol (<1 mM), and glucose from the inoculum (1
mM) were detected in both conditions. Overall reaction stoichiometries for lactate, acetate
and butyrate were -1, -0.40 and 0.68 for (A), and -1, -0.47 and 0.67 for (B), respectively.
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Figure S6.2: pH-controlled fed-batch fermentations of C. autoethanogenum - C. beijerinckii co-
culture on 1:4 CO2/H2 with l-lactic acid feed at pH 5.5 ± 0.1. Concentrations of the main
substrates, products and cell density are shown for two biologically independent replicates in
(A) and (B) and corresponding stoichiometries in (C) and (D), respectively. At t0 cultures were
inoculated with C. autoethanogenum. The dotted black line in (A) and (B) marks inoculation
with C. beijerinckii and the start of the l-lactic acid feed. In (A) l-lactic acid was fed at a rate
of 3 ml d-1 till 19 d and in (B) at a rate of 3 ml d-1 till 14 d and 6 ml d-1 from 14 d till 18 d.
A theoretical acetate concentration produced from CO2 was calculated (Calc. Acetate (CO2)).
In (A) traces of ethanol (3 d - 8 d, max. 4.6 mM at 7 d and 13d - 20 d, max. 5.6 mM at 20
d), butanol (14 d - 20 d, max. 3.1 mM at 20 d) and glucose from the C. beijerinckii inoculum
(<1 mM at 3 d) were detected. In (B) traces of ethanol (1 d - 18 d, max. 5.1 mM at 15 d) and
butanol (3 d - 18 d, max. 6.3 mM at 17 d) were detected.
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6Figure S6.3: Hypothetical fermentation of CO2/H2 and glucose by C. autoethanogenum and
C. beijerinckii. Metabolites in bold indicate substrates and main products. Metabolites in
smaller letter size indicate minor products. Arrows indicate the flux direction. Dashed lines
indicate transport reactions of metabolites from extracellular compartment to intracellular
compartment of the indicated microbe, and viceversa.
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7.1 Abstract

Harnessing the power of microbial consortia is integral to a diverse range of sectors,
from healthcare to biotechnology to environmental remediation. To fully realize
this potential, it is critical to understand the mechanisms behind the interactions
that structure microbial consortia and determine their functions. Constraint-based
reconstruction and analysis (COBRA) approaches, employing genome-scale meta-
bolic models (GEMs), have emerged as the state-of-the-art tool to simulate the be-
havior of microbial communities from their constituent genomes. In the last decade,
many tools have been developed that use COBRA approaches to simulate multi-
species consortia, under either steady-state, dynamic, or spatiotemporally varying
scenarios. Yet, these tools have not been systematically evaluated regarding their
software quality, most suitable application, and predictive power. Hence, it is un-
certain which tools users should apply to their system and what are the most urgent
directions that developers should take in the future to improve existing capacities.
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This study conducted a systematic evaluation of COBRA-based tools for micro-
bial communities using datasets from two-member communities as test cases. First,
we performed a qualitative assessment in which we evaluated 24 published tools
based on a list of FAIR (Findability, Accessibility, Interoperability, and Reusability)
features essential for software quality. Next, we quantitatively tested the predictions
in a subset of 14 of these tools against experimental data from three different case
studies: a) syngas fermentation by C. autoethanogenum and C. kluyveri for the static
tools, b) glucose/xylose fermentation with engineered E. coli and S. cerevisiae for the
dynamic tools, and c) a Petri dish of E. coli and S. enterica for tools incorporating
spatiotemporal variation. Our results show varying performance levels of the best
qualitatively assessed tools when examining the different categories of tools. The
differences in the mathematical formulation of the approaches and their relation to
the results were also discussed. Ultimately, we provide recommendations for refin-
ing future GEM microbial modeling tools.

7.2 Author summary

Constraint-based modeling employing genome-scale reconstructions of microbial
species has become one of the most successful approaches for studying, analyzing,
and engineering microbial consortia. Over the past decade, many constraint-based
modeling tools have been published to examine an immense variety of microbial
consortia spanning from the application areas of bioremediation to food and health
biotechnology. However, new potential users lack an overview of the quality and
performance of existing metabolic modeling tools that would guide their choice. To
tackle this issue, we examined 24 tools for genome-scale metabolic modeling of mi-
crobial consortia. After an initial qualitative screening, we quantitatively evaluated
14 adequate tools against published experimental data that included different or-
ganisms and conditions. We conducted simulations and evaluated model features
such as predictive accuracy, computational time, and tractability in capturing criti-
cal physiological properties. We found that, generally, more up-to-date, accessible,
and documented tools were superior in many important aspects of model quality
and performance. Although, in some cases, we observed tradeoffs in older, less elab-
orate tools that can be more accurate or flexible. This work has broad implications to
help researchers navigate the most suitable tools, and suggests to developers oppor-
tunities for improvement of the currently existing capabilities for metabolic model-
ing of multi-species microbial consortia.
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7.3 Introduction

The goods and services provided by microbial consortia have long been harnessed
in biotechnology. Recent years have seen a soar in the use of multi-species microbial
consortia beyond their traditional application in the production of food and bever-
ages [390, 391]. For example, microbial consortia are increasingly applied in the pro-
duction of commodity chemicals [70, 392], pharmaceuticals [108], or biofuels [393–
395]; the valorization of waste and emissions [68, 396, 397], the improvement of sus-
tainable agriculture systems [398–400], and applications in health [401] or bioreme-
diation [109, 402, 403]. Besides the obvious advantage over established industrial
processes in terms of sustainability, multi-species consortia offer a number of ad-
vantages compared to monocultures. These include the reduction of metabolic bur-
den (a major issue) through division of labor [60, 404, 405], an enhanced substrate
versatility, and an increased robustness to fluctuating environments [406, 407]. In
consequence, synthetic ecology – the rational engineering of multi-species microbial
consortia – is emerging as a new frontier in biotechnology and biomedicine. In order
to advance this frontier, it is imperative to build predictive models that will allow us
to design and control the composition and function of microbial communities [408,
409].

Constrained-based metabolic modeling (CBM) is a powerful computational ap-
proach that mechanistically predicts microbial metabolic traits from genomes. In
the past decades, this method has proven invaluable as a guide for microbial ex-
perimental design and for elucidating metabolic engineering strategies [73, 93]. Be-
cause metabolic traits are also a central determinant of ecological interactions in
microbes (e.g. competition for resources or metabolite sharing), CBM also holds
great promise as a predictive and an engineering tool in synthetic ecology [70]. In
a nutshell, CBM use genome-scale metabolic models (GEMs), a mathematical rep-
resentation of the metabolic network encoded in an organism’s genome, to simulate
metabolic fluxes in a given environment [410]. In the case of single organisms, one
of the most popular methods is Flux balance analysis (FBA) [86]. FBA optimizes a
predefined objective function (e.g., biomass production) and assumes steady-state
exponential growth (balanced growth). Dynamic-FBA (dFBA) -an extension of FBA-
is applied to represent non-continuous operations, such as batch or fed-batch reac-
tors, by incorporating differential equations that describe the rate of change of the
extracellular fluxes and the mass balances of the reactor [89, 90]. dFBA assumes
a quasi-stationary state where internal dynamics are supposed to be much faster
than external changes of the medium [222]. Going a step further, another general
methodology has been developed to model microbial systems in which the extracel-
lular environment varies spatially and temporally [106, 411, 412]. This approach
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is known as spatiotemporal FBA. A spatiotemporal FBA framework typically con-
sists of partial differential equations (PDEs) conveyed in terms of time and spatial
coordinates as independent variables [411]. The PDEs mainly characterize extracel-
lular mass balance equations for biomass, metabolite, and potentially other chem-
ical species concentrations. They account for the transport mechanisms that cause
spatial disparities, including metabolite diffusion and liquid/gas phase convection.
Some spatiotemporal FBA approaches choose to represent microbial biomass as in-
dividuals or agents (IBM) [413–415]. In contrast, others opt to represent microbial
biomass at the population level (PLM) [106, 412].

With the continuous development of novel synthetic microbial consortia, con-
siderable efforts have been made to extend CBM to microbial communities [98, 222,
416–418]. In the past decades, many tools have become available with the aim of
studying microbial interactions in the gut microbiome [97, 100, 101] or simulating
the growth of microbial consortia in continuous and non-continuous environments.
The increasing availability of these tools makes the selection process difficult for
the user [419]. A key feature when selecting a tool is to verify whether it follows
the FAIR (Findable, Accessible, Interoperable, and Reusable) principles [420]. In
particular, adhering to the software FAIR guiding principles is best as they assure
quality research maintenance and reproducibility [421, 422]. As such, the findabil-
ity of a tool is based on the capacity of the metadata and software to be easily found
by both humans and computers. Accessibility pertains to the ease of knowledge
available at which a software tool can be accessed, possibly including authentica-
tion and authorization. Interoperability refers to the ability to communicate with
other software via exchanged data (or metadata). The reusability of tools is related
to how well-described (by metadata) and appropriately structured the software is
so that outputs/results can be replicated, combined, reinterpreted, reimplemented,
and/or used in different settings. Many studies have reviewed the state of the art of
steady-state, dynamic, or spatiotemporal tools and followed qualitative assessments
[98, 222, 376, 416–418, 423–425]. However, no study has yet reviewed these tools
quantitatively. Thus, a systematic evaluation of the latter element would be highly
beneficial for the users and developers in the field. In this work, we have followed
an extensive qualitative assessment to evaluate FAIR principles of available tools
and a quantitative assessment to evaluate the performance of a subset of tools re-
producing available experimental data of two-species communities. The following
case studies were selected to quantitatively evaluate the tools: i) syngas fermentation
by Clostridium autoethanogenum and Clostridium kluyveri for the static tools, b) xy-
lose and glucose mixture fermentation with engineered Escherichia coli and Saccha-
romyces cerevisiae for the dynamic tools, and c) a Petri dish of E. coli and Salmonella
enterica for the spatiotemporal tools. In particular, we tested tools that use CBM
and GEMs; based on steady-state, dynamic, or spatiotemporal conditions and suit-
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able to model synthetic microbial communities of two species. Ultimately, we made
recommendations for the best modeling tools to use based on qualitative and quan-
titative performance outcomes and for the future development and improvement of
the tools.

7.3.1 Overview of constrained-based modeling tools/approaches

Most of the community modeling tools available are based on steady-state, dynamic,
and spatiotemporal conditions, describing continuous cultures, non-continuous cul-
tures, and complex liquid and/or solid systems, for instance, a preferred environ-
ment of a Petri dish, respectively (Fig. 7.1). Steady-state approaches are suitable
to describe growth in chemostats or continuous stir batch reactor (CSBR) systems.
These tools require a single GEM of individual species and a community GEM, of-
ten generated by the tool. Extracellular metabolites and reactions of single species
models must be defined by the user in the same namespace (unified identifier) upon
constructing the community model. Most tools require the definition of medium
composition, and some require either the relative abundance (microbial composi-
tion) or the growth rate of individual species. The community growth is often de-
fined as the objective function, and/or the species growth. The objective function
is maximized under the specified constraints by computing the metabolic fluxes,
microbial composition, or species growth rate, thus allowing a solution where mi-
crobial interactions can be inferred.

Tools based on dynamic approaches are suitable to describe non-continuous sys-
tems, such as batch serum bottles, batch or fed-batch reactors as well as some con-
tinuous systems, e.g., temporal dynamics of recovery from a perturbation in a CSBR.
GEMs of species in the community are provided separately as inputs. All the tools
require the medium composition in the form of initial concentration and substrate
uptake rates and the kinetic parameters as inputs. The kinetic parameters are nor-
mally based on Michaelis-Menten-like kinetics, and thus, Michaelis-Menten con-
stant (Km) and maximum uptake rate of substrates (qSi,m) are required parameters.
After optimization of individual species’ growth rate, we can obtain information
on cross-feeding metabolites, concentration dynamics of substrates, products and
biomass, and metabolic fluxes.

Finally, the spatiotemporal tools aim to describe 2D dimensional surface envi-
ronments such as mimicking simple solid-state Petri dish environments. In addition
to the required inputs described for dynamic tools, these tools need information on
the diffusion parameters. The diffusion parameters consist of diffusion coefficients
for biomass and metabolites. The main output in spatiotemporal models is the spa-
tial distribution of extracellular metabolites, biomass of the different species, as well
as growth and uptake rates, at any given time point. This information can be then
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Figure 7.1: Overview of steady-state, dynamic, and spatiotemporal tools to model microbial
communities. The division among steady-state, dynamic, and spatiotemporal tools is not firm
since dynamic tools can be used to describe steady-state systems. Likewise, spatiotemporal
tools can be used to describe dynamic and steady-state systems. However, most tools were
specifically designed to be used for the highest dimensional cases.

used to resolve space-dependent ecological interactions. For instance, we can ob-
serve how growth and competition for substrates occurs at the border of a colony,
but not in the interior.

In this study, we evaluated a total of twenty-four tools/approaches based on
steady-state (9) [97, 100–102, 221, 228, 338, 418, 426, 427], dynamic (8) [103–105,
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428–432] and spatio-temporal (7) [106, 412–415, 433–435] methods according to
their usability to model microbial communities using GEMs. A description of the
tools/approaches is found in Supplementary_File1.

7.4 Results

Both a qualitative and a quantitative assessment were performed to evaluate the
modeling tools and approaches. The assessment workflow began by first construct-
ing a list of 16 essential features for quality constraint-based GEM modeling of mi-
crobial communities. Each tool was rated according to performance on these qual-
itative metrics ranging from 1 for inadequate (Red) to 5 for excellent (Blue). The
qualitative features are strongly related to FAIR Guiding Principles for research soft-
ware which include aspects such as software availability, user support, traceability,
interoperability, etc [422]. These 16 features were evaluated from the perspective of
a fairly experienced user of COBRAmethods and tools. Some features can be subjec-
tive. Thus, a description of the criteria followed to evaluate each qualitative metric
was described in an evaluation rubric (Supplementary File; S2 Table). More specif-
ically, to evaluate the numerical stability and reproducibility of the tools, we relied
on existing literature, tool architecture, and/or their performance in reproducing
the available experimental studies chosen for the quantitative assessment. Not all
features could be examined since some tools were not readily available, there was
no tool developed for those approaches, or there was a lack of related information in
the literature. These features were marked as ‘Not applicable’ (NA; grey square).

From the qualitative examination of the tools, a subset of tools/approaches were
quantitatively evaluated for their potential to directly model microbial consortia un-
der various conditions. For this subsequent evaluation, we needed data pertain-
ing to substrate uptake rates, biomass composition and growth rates for static tools,
substrate and product concentrations and biomass concentrations over time for dy-
namic tools, and media concentrations and spatial distribution of metabolites for
spatiotemporal tools. However, these types of raw data are rarely available along
with their metadata. Therefore, only a few suitable candidate datasets were appli-
cable to the surveyed modeling scenarios. We selected three datasets (Diender et
al.[329], Hanly and Henson [436], and Harcombe et al.[106]), one dataset for each
category of modeling tools to use as case studies to validate the predictive capabili-
ties of the tools. Every case study represents a consortium of two species. To have an
unbiased comparison of the approaches, tools were not modified or augmented to
revise their functionalities. Some tools were also available, but they were not quan-
titatively assessed since they were too specific to a particular application and not
designed for general application.
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In these evaluations, two main points were addressed: the quality of the tool for
modeling microbial communities, and the predictability of the community behavior
by the tool when presented with data from simple test cases.

Qualitative assessment - Static tools/approaches

Fig. 7.2 shows the evaluation of the described features in every tool/approach based
on the rubric (S2 Table). Joint FBA was not assessed since it is the oldest approach
and did not include important parameters such as the relative abundance of species.
cFBA, RedCom, and NECom are methods, and therefore, some features were not
evaluated (grey squares) since there is no tool developed specifically for those meth-
ods. The tools/approaches that best meet FAIR principles areMICOM,MMT, Steady-
Com, and cFBA (see scores in S2 Figure). All tools/approaches are accessible for
external use except CASINO and RedCom. OptCom is freely available for academic
users upon request.

OptCom did not undergo updates throughout the years. SteadyCom is integrated
as part of COBRA Toolbox [437] and has had some updates from the original pub-
lication. Small issues are fixed from time to time in SteadyCom. However, changes
are not documented clearly. MMT and MICOM are routinely updated, and develop-
ers fix issues. Besides, all the modifications applied in every update of MICOM are
described.

OptCom does not have community repository support, and developers only pro-
vide a contact person. SteadyCom and MMT offer good community support within
COBRA Toolbox. MICOM has excellent user support since it has two channels avail-
able for discussions and support. cFBA only needs the installation of CBMPy [438].
SteadyCom and MMT are already available as part of the COBRA Toolbox, whose
installation is fast and easy. MICOM is easy to install as it only needs a sentence of
code and the installation of COBRApy [235]. OptCom was run using the ‘OptCom’
function from MICOM, and thus, they were equally evaluated.

OptCom requires GAMS and BARON as solvers also accessed through GAMS.
GAMS is not a free programming language, and therefore, its use is more limited.
All the dependencies of cFBA and MICOM are freely accessible. SteadyCom, Red-
Com, MMT, and NECom are written in Matlab, which is not free, but licenses are in-
expensive for a wide group of users. Besides, SteadyCom and MMT require COBRA
Toolbox, and RedCom requires CellnetAnalyzer [439] that are both freely available.
Required solvers are either integrated by default or freely accessible to a wide group
of users. CASINO uses the RAVEN Toolbox, a free software suited for Matlab [440].

The developers of OptComprovide a bookwith tutorials to run the tool. Some tu-
torials are included in COBRA Toolbox that explains case studies used with Steady-
Com. However, they merely explain some aspects of the software. MMT has ex-
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Figure 7.2: Qualitative assessment of the static tools/approaches. The colored squares indi-
cate the evaluation of the specified feature in every tool/approach. The color scale (upper
right) goes from excellent (blue) to inadequate (red). When a feature does not apply to the
specified tool/approach or the feature was not evaluated, it is indicated as NA (Not applica-
ble; grey). The metrics contained in the figure were inspired by [419]. Colored squares with
‘*’ indicate features of OptCom evaluated using the OptCom function from MICOM. Colored
squares with ‘**’ indicate that the evaluation is an assumption based on the given information.
Scom: SteadyCom; MMT: Microbiome Modelling Toolbox. The tools/approaches are ordered
by the year of the latest publication (e.g., MMT).

planatory tutorials and includes README files for each main function of the tool,
but it is not completely maintained to have the latest functionality. MICOM contains
an extensive user manual explaining all aspects of the tool, and it is up to date (at
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the time of preparing this manuscript).
All the tools require certain expertise from the user to be run. OptCom is not con-

sidered a user-friendly tool as GAMS is used as the programming language, and it
is not an extended programming language. cFBA, MMT, and MICOM require some
knowledge of programming and constrained-based modeling by the user. Steady-
Com is somehow constrained to the case studies of the original publication, and
thus, extending their use to new cases, and GEMs requires more knowledge by the
user.

Except for CASINO and RedComwhere the source code is unavailable, the source
code is accessible to all users.OptCom, MICOM, and MMT produce the same results
over time. OptCom, cFBA, and MICOM produce consistent solutions without infea-
sibility or non-convergence issues. SteadyCom and MMT can lead, in some cases, to
non-convergence solutions or infeasibilities.

NECom was applied to model a co-culture of two species. OptCom and cFBA
have been used to model small microbial consortia (up to 3). CASINO, MMT, and
MICOM can be used to model large communities (gut microbiota). SteadyCom and
RedCom can be applied to model larger microbial communities than OptCom and
cFBA (≈ 9).

OptCom toolbox used ‘txt’ files as inputmodels that do notmeet any community-
level standard. cFBA, CASINO, SteadyCom, RedCom, MICOM, and NECom meet
SBML or COBRA community-level standards formodel input and output files. Based
on the original publication, we hypothesize that CASINO meets the SBML standard
for model input and output since the RAVEN Toolbox is employed [440]. MMT
meets both SBML and COBRA community-level standards for model inputs and
outputs models in COBRA format. RedCom meets COBRA community-level stan-
dards. OptCom cannot be adjusted to standard GEM formats. cFBA uses CBMPy,
which reads the standard SBML format. MICOM is used with COBRApy, which al-
lows for different GEM formats. CASINO reads models imported in COBRA format.
SteadyCom allows for the translation of GEM models from/to other formats. MMT
allows for the import of SBML, XML, and COBRA models within the tool, and the
user does not need to transform them before running the tool. NECom allows for
the use of COBRA models.

Every tool/approach allows for adapting some parameters and constraints with
more or less difficulty. MMT and MICOM provide a wide set of visualizations for
different analyses. The rest of the tools do not produce visual outputs by default.

7.4.1 Quantitative assessment - Static tools/approaches

cFBA, SteadyCom, MICOM, andMMT scored higher than the other tools in the qual-
itative assessment (Figure in S1 Figure), and thus, they were also evaluated regard-
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ing their performance in reproducing an experimental case study. OptCom was
also assessed because it was available as an additional function in MICOM, and it
is highly cited (Table in S1 Table). The case study consisted of syngas fermentation
to medium-chain fatty acids by a co-culture of C. autoethanogenum and C. kluyveri.
Syngas is a mixture of H2, CO and CO2. C. autoethanogenum can thrive on syngas by
assimilating CO or CO2 and H2 and producing acetate and ethanol as byproducts. C.
kluyveri does not grow on syngas. It needs acetate and ethanol to grow, and therefore,
it depends on the direct cross-feeding of these metabolites by C. autoethanogenum.
The study of Diender et al. [68] reported data on the steady-state consumption and
production rates of CO, acetate, ethanol, butyrate, and caproate. The hydraulic re-
tention time (HRT) of the reactor was fixed in the chemostat, suggesting that the
species growth rates and the community growth rate were equal (Fig. 7.3A).

Figure 7.3: Comparison of tool predictions to experimental data from the study of Diender et
al. [68]. (A) Community and species growth rate and (B) Steady-state production rates of the
main fermentation products obtained in the fermentation of CO by C. autoethanogenum and
C. kluyveri with the assessed tools. cFBA shows the average fluxes and standard deviation of
the samples used with Flux sampling.
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The latter assumption is also considered in cFBA, SteadyCom, and MMT, as il-
lustrated in Fig. 7.3A. cFBA and MMT were run constraining the growth rates to
the experimental values. SteadyCom allows for the definition of the species’ growth
rates and relative abundance. However, SteadyCom was not feasible in those con-
ditions, and the unconstrained parameters resulted in higher growth rates than the
experiments. OptCom and MICOM do not assume equal growth rates of species,
and the predicted growth rates were also higher than the experiments. The use of
additional constraints in OptCom and MICOM to enforce equal growth rates is pos-
sible and would result in a better fit, but tools have been run using the standard
methodology.

In the study of Diender et al., almost all the ethanol produced by C. autoetha-
nogenum on CO was fully consumed by C. kluyveri, whereas the acetate produced
by C. autoethanogenum was only partly consumed by C. kluyveri (Fig. 7.3B) [51].
The fermentation of acetate and ethanol by C. kluyveri led to butyrate (≈ 0.11 mmol
h−1), caproate (≈ 0.035 h−1), and H2 (not showing here). Standard deviations for
experimental values were not reported.

All tools predicted the exchange of acetate and ethanol between C. autoethano-
genum and C. kluyveri, except MMT, which only predicted the exchange of ethanol
(see fluxes in the online repository: https://doi.org/10.5281/zenodo.7573135). Opt-
Com, SteadyCom, and MICOM predicted that the acetate produced by C. autoetha-
nogenum was entirely consumed by C. kluyveri (see fluxes in the online repository:
https://doi.org/10.5281/zenodo.7573135). However, cFBA predicted acetate pro-
duction by the co-culture (Fig. 7.3B) and acetate consumption by C. kluyveri. Yet,
acetate production was lower compared to the acetate measured in chemostat (≈
0.73 mmol h−1). MMT did not predict the production of acetate. Ethanol was dif-
ficult to detect in chemostat (≺0.1 mM), as most of it was consumed by C. kluyveri.
cFBA predicted more ethanol than in chemostat, and in OptCom, SteadyCom, MMT,
and MICOM, ethanol was fully consumed by C. kluyveri. Butyrate production was
only predicted by cFBA and MMT. Caproate production was over-estimated by all
the tools except cFBA, which predicted a value comparable to the experiments, and
MMT, which did not predict caproate production.

Following the procedure of the modeling study of the same co-culture [51], flux
sampling was used to compute the fluxes with cFBA. While the agreement of ex-
perimental data with model predictions is less accurate here than in the previous
computational study for the lack of constraints, the new adaptation of cFBA can
reproduce the experimental data better than the other tools [68]. MICOM, Steady-
Com, and OptCom could also reproduce the cross-feeding of acetate and ethanol,
which is a key feature in this co-culture. MMT only reproduced the exchange of
ethanol, being infeasible for the CO uptake rate reported in the experiments. The
adjustment of the coupling factor (‘c’) or the use of mgPipe pipeline [97] in MMT
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could lead to alternate outputs. Regardless, MMT was mainly designed to model
the gut microbiome using AGORA models, and thus, it is more suitable to model
large communities. The use of FVA as an alternative method to compute fluxes with
the existing tools and approaches could also lead to additional information on cross-
feeding metabolites.

7.4.2 Qualitative assessment - Dynamic tools

Fig. 7.4 shows the evaluation of the described features in every tool based on the
evaluation rubric (S2 Table). From the qualitative assessment of all the dynamic
tools, it was apparent that none were flawless (all features being good or excel-
lent). There were, in fact, compromising aspects in many of the tools where tools
were superior for some features while flawed for other features (see Fig. 7.4 and
supplementary file). For instance, when examining their availability, it was deter-
mined that dyMMM, DAPHNE, MMODES, and surfinFBA were good or excellent.
Still, the tools were considered merely satisfactory when evaluating their interoper-
ability, flexibility, and reproducibility, except MMODES. In addition, tools such as
dMMM, DFBAlab, µbialSim, and MMODES were easy to install and contained ac-
cessible and tractable dependencies, but did not score above satisfactory levels for
the software being traceable (Fig. 7.4). Nevertheless, there was one tool, d-OptCom,
that scored poorly compared with the other methods because the software was not
readily available from the developers (available upon reasonable request). It was
also constructed under an uncommonly utilized GAMS programming language.

Most of the tools received a good or excellent score for some features. For exam-
ple, all the tools, except d-OptCom and DFBAlab, are open source (contain source
code available to all users). DFBAlab also includes source code reachable to some
users, but potential users first need to request the software to gain access as it is not
available in the public domain for all users. All tools were deemed at least satis-
factory regarding their reproducibility and potential to visualize outputs. Further-
more, all the tools other than d-OptCom and DAPHNE adhere to COBRA commu-
nity standards [441] and contain a user-friendly interface, at least to a satisfactory
degree. This meansmost methods consist of relatively simple and direct ways of des-
ignating inputs, such as adding GEMs, setting up media compositions, and defining
model constraints and kinetic parameters. Also, tools that were built incorporat-
ing existing COBRA frameworks, such as COBRApy or COBRA Toolbox, typically
scored well for being user-friendly and following current standards because they as-
similate the current community standards and acquire greater functionality from
the existing infrastructure.

All the dynamic tools received at least a satisfactory score for their interoperabil-
ity except MCM, which got a poor score. This is due to MCM having difficulties han-
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Figure 7.4: Qualitative assessment of the dynamic tools. Colored squares indicate the evalu-
ation of the specified feature in every tool. The color scale (upper right) goes from excellent
(blue) to inadequate (red). When a feature does not apply to the specified tool or the feature
was not evaluated, it is indicated as NA (Not applicable; grey). The metrics contained in the
figure were inspired by [419]. The tools are ordered by year of publication.

dling some GEMs, especially those of eukaryotes with multiple compartments. Also,
MCM utilizes an in-house convention when processing GEMs; thus, issues could
arise when needing to employ the GEM in another tool or database. It is best that
GEMs adhere to SBML standards [442]. Most software except MCM and d-OptCom
earned at least a satisfactory score for dependencies. MCM earned a relatively low
score because of the reliance on a not up-to-date micog.py extension (Python 2.7) for
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using GEMs. Overall, tools such as MMODES, µbialSim, and dyMMM received su-
perior scores because they are readily available, accessible, and inoperable compared
to the other tools.

7.4.3 Quantitative assessment - Dynamic tools

A case study comprising a dataset published by Hanly and Henson [436] was used
to validate and quantitatively evaluate the dynamic tools. The experimental setup
consists of a bioreactor operating in batch mode with a co-culture of E. coli and S.
cerevisiae designed to study the efficient aerobic consumption of glucose/xylose mix-
tures. Each microbe utilizes a specific substrate. S. cerevisiae only consumes glucose,
whereas the engineered E. coli strain ZSC113 only consumes xylose. This was done
to prevent diauxic growth shown in monoculture for S. cerevisiae. The individual
biomasses of the two microbial species as well as the concentration dynamics of the
substrates glucose and xylose, were studied. Moreover, ethanol concentration dy-
namics were also measured because S. cerevisiae produces it during fermentation,
thus, inhibiting the growth of S. cerevisiae and E. coli.

Furthermore, tools that scored 50 or above when summing up the qualitative
scores were deemed of sufficient quality for a further quantitative examination.
These tools were DFBAlab, dyMMM, µbialSim, and MMODES. We evaluated each
tool’s capability of simulating the observed kinetics using the same inputs across
the methods. The error distribution for the different methods was determined (see
Methods Section for a description of the normalized error calculation). S. cerevisiae
and E. coli biomass concentration increases (Fig. 7.5). DFBAlab was the only tool to
predict the biomass formation of E. coli somewhat accurately though the simulation
differed substantially from hours 5 to 12.5, showing no growth while growth was
observed (Fig. 7.5B). µbialSim and MMODES predicted growth for E. coli, but the
biomass formations were at least an order of magnitude below measured biomass
levels (Fig. 7.5B). dyMMM predicted slight growth of E. coli. Overall, µbialSim
and DFBAlab achieved the best predictions for E. coli based on the experimental
data with R2 values of 0.959 and 0.775, respectively. For the S. cerevisiae growth
kinetics, the dyMMM tool most accurately simulated biomass formation (Fig. 7.5D).
While DFBAlab predicted growth for S. cerevisiae, the final biomass concentration
was about 65% less than the experimental value (Fig. 7.5D). µbialSim andMMODES
simulated slight growth for S. cerevisiae. Overall, dyMMM and DFBAlab achieved
the best predictions for S. cerevisiae based on the experimental data with R2 values
of 0.900 and 0.682, respectively (for all R2 values, see supplementary materials).

The measure and predicted kinetics for the consumption of glucose and xylose,
as well as the formation of ethanol, are illustrated in Fig. 7.6. Both sugars’ con-
centration decrease over time, where glucose is completely consumed around 7.6 h
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Figure 7.5: Quantitative assessment of the dynamic tools. Experimental biomass concen-
tration profiles ofE. coli and S. cerevisiae (Panel A and C, respectively). Comparison of tool
predictions of biomass concentration profiles with data for E. coli and S. cerevisiae (Panel B
and D, respectively) from the study of Hanly and Henson. [436]

while xylose remains in the medium longer and is used up entirely by around 13.2
h. This is due to a faster glucose uptake rate from S. cerevisiae compared to xylose’s
consumption rate by E. coli. There is a steady production of ethanol until the 7.5h
duration. Then, there is a decrease in ethanol, perhaps because S. cerevisiae con-
sumes ethanol under aerobic conditions. The co-culture featured a high increase in
ethanol levels due to S. cerevisiae fermentation metabolism; ethanol is an inhibitor
of E. coli growth. This ethanol inhibition from S. cerevisiae on E. coli growth was the
only interspecies interaction identified in this experiment.

For the sugar substrates glucose and xylose, dyMMM and DFBAlab simulated
the kinetics most precisely according to the experimental values (Fig. 7.6A and Fig.
7.6B). However, DFBAlab predicted rapid xylose consumption at the end of fermen-
tation. MMODES simulated a linear glucose consumption with a final concentra-
tion of about 52 mM, while xylose consumption was not predicted. µbialSim did
not simulate glucose consumption, while xylose was consumed slightly with a final
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Figure 7.6: Quantitative assessment of the dynamic tools. Experimental extracellular metabo-
lite concentration profiles of glucose, xylose, and ethanol (Panel A, C, and E, respectively).
Comparison of tool predictions of biomass concentration profiles with data for glucose, xy-
lose, and ethanol (Panel B, D, and F, respectively) from the study of Hanly and Henson. [436]

concentration of about 35 mM. All the tools simulated ethanol production. Never-
theless, none of the tools could accurately estimate the dynamics of ethanol produc-
tion. This is because the diauxic shift from glucose to ethanol by S. cerevisiae cannot
be modeled by simple optimization as done by FBA. dFBAlab predicted the mag-
nitude and kinetic characteristics most accurately, while µbialSim and MMODES
gave an underestimation for the ethanol concentrations and reflected linear profiles
(Fig. 7.6C). Overall, DFBAlab achieved the best predictions for glucose, xylose, and
ethanol kinetics based on the experimental data with R2 values of 0.902, 0.978, and
0.440, respectively (for all R2 values, see supplementary materials).

7.4.4 Qualitative assessment - Spatiotemporal tools

Fig. 7.7 shows the evaluation of the described features in every tool based on the
evaluation rubric (S2 Table). From the qualitative assessment of all the spatiotempo-
ral tools, none of the tools received a perfect score. Many tools were highly rated in
many categories, while several were also deficient in many categories (see Fig. 7.7)
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and supplementary files). For example, COMETS, BacArena, CROMICS received
excellent scores for software availability and being open-source because these tools
and their source codes are readily available via a GitHub repository or a maintained
website, whereas MatNet received an adequate score because neither the tool nor
its source code can be easily accessed online. When evaluating the software main-
tenance, user support, and ease of installation of the software, two tools stood out
as excellent: COMETS and BacArena. In contrast, many of the tools, including In-
diMeSH, MiMoSA, ACBM, and CROMICS were merely rated as being satisfactory
to poor for software maintenance and user support (Fig. 7.7). However, except for
MiMoSA, they were regarded as good for simple installation because of the accom-
panying instructions within the software download. Most of the tools received a
good or excellent score for some features. For instance, for reproducibility, scalabil-
ity, and visualization of results, all tools scored good to excellent, except ACBM and
MatNet (for reproducibility), MiMoSA and MatNet (for scalability), and MiMoSA
and MatNet (for visualization of results) (Fig. 7.7). ACBM did score well for repro-
ducibility because slight changes in the same GEM files caused the tool to be invalid
or inoperable. In general, IBM methods scored lower in terms of scalability because
of the additional computational costs compared to PLM methods. Most of the tools
contained some functionality for visualizing results or rendered outputs which were
easy to use by other software tools. Many of the tools have at least a satisfactory
level of traceability, reliance on available software, and documentation. Only ACBM
scored poorly for traceability because changes to the software cannot be detected,
whereas most other tools contain mechanisms to trace various versions, and updates
are documented.

All the spatiotemporal tools received at least satisfactory scores except MatNet
for their user-friendly interfaces and numerical stability (Fig. 7.7). These relative
scores reflect how well the functionality, design, and incorporation of community-
devised constraint-based modeling infrastructure into the methods. Also, some
tools, such as COMETS and ACBM contain GUI options for novice users who may be
less comfortable using command-line interfaces. Many of the tools were numerically
stable, using examples implying users can start using the software assuming no in-
feasibilities occur under basic conditions. Overall, tools such as COMETS, BacArena,
and CROMICS received superior scores because they are more readily available, up-
to-date, open-source, and contain user-friendlier interfaces compared to the other
tools.

7.4.5 Quantitative assessment - Spatiotemporal tools

A case study comprising a dataset published by Harcombe et al.[106] was used to
validate and quantitatively evaluate the spatiotemporal tools. The experimental
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Figure 7.7: Qualitative assessment of the spatiotemporal tools. Colored squares indicate the
evaluation of the specified feature in every tool. The color scale (upper right) goes from ex-
cellent (blue) to inadequate (red). When a feature does not apply to the specified tool or the
feature was not evaluated, it is indicated as NA (Not applicable; grey). The metrics contained
in the figure were inspired by [419]. The tools are ordered by year of publication.

setup consists of a two-member consortium of two mutant strains of E. coli K-12 and
S. enterica LT2 was designed to study the syntrophy between the two stains. E. coli K-
12 is deficient in methionine production, so it relies on methionine production from
S. enterica LT2. Conversely, S. enterica LT2 relies on the secretion of acetate by E. coli
K-12 because S. enterica LT2 cannot uptake lactose under microaerobic conditions.
This experiment created the optimal condition to observe a mutualistic relationship
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where neither species can grow without the other being present. The two-species
consortium was grown as a lawn on a Petri dish. Furthermore, experimentally, E.
coli and S. enterica were grown overnight in permissive lactose Hypho minimal me-
dia (see Table S2 in [106] for more details) and then mixed at a ratio of 1:99 and
99:1. To examine the impact of time and space on the consortium, on LB, both E. coli
and S. enterica can grow independently, and X-gal (5-bromo-4-chloro-3-indolyl-b-D-
galactopyra- noside) was included in the plates so that blue E. coli colonies could be
distinguished from white S. enterica colonies (see [106] for more details). The indi-
vidual biomasses of the two microbial species were examined and measured over a
48-hour growth cycle by counting colonies. By the end of the cycle, the composition
converged even when the inoculum frequencies varied by two orders of magnitude.
Furthermore, the study also found a relationship concerning the spatial structure
with the metabolite resources being allocated, which caused decreased growth be-
tween the species as they were moved further apart.

Figure 7.8: Quantitative assessment of the spatiotemporal tools. Relative abundance simula-
tion profiles of E. coli and S. enterica from COMETS (Panel A) and BacArena (Panel B). Note
biomasses used per individual organisms were 5 x 109 fg and 3 x 108 fg for E. coli and S.
enterica, respectively. Experimental data used was from the study of Harcombe et al. [106]

From the qualitative assessment, there were four tools considered to be adequate
for a further quantitative survey. Furthermore, from an enumeration of the qual-
itative scores, tools that scored overall 50 or above were deemed requisite quality
(see supplementary material). These tools were COMETS, BacArena, IndiMeSH, and
CROMICS. We evaluated each tool’s capability of simulating the observed biomass
dynamic as well as the spatial composition based on moving the species apart using
similar inputs across the methods. The error distribution for the different methods
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was determined (see Methods Section for a description of the normalized error cal-
culation). Over the 48-hour cycle, the community composition of species converged
regardless of whether the initial frequency was 1% or 99% of E. coli. COMETS pre-
dicted species ratios for the two initial frequency conditions (Fig. 7.8). COMETS
predicted a composition of 79% ± 4% E. coli, which is not significantly different
from the experimental frequency of 78% ± 6% (Fig. 7.9A). However, BacArena pre-
dicted a composition of 63.2% E. coli (Fig. 7.8B). The predictions of the community
composition from IndiMeSH were determined not to be significantly different from
both the experimental and COMETS simulation results (p-value of 0.66 and 0.33,
respectively, two-tailed t-test) (see supplementary material). The CROMICS results
showed that regardless of the initial frequency, the system converged in a species
ratio of 76.3% ± 0.1% for E. coli (see supplementary material).

The two-species consortium was used to examine the influence of spatial struc-
ture on resource allocation and growth within this mutualistic system. Here, we
illustrate the evolution of the colony spatial distribution over time using a PBM
(COMETS) and an IBM (BacArena) for their representations of biomass (Fig. 7.9).
The COMETS simulation shows a rapid rise in the population density of E. coli and a
shift in the location within the grid from E. coli from 9h to 48h (Fig. 7.9A). COMETS
also predicted a moderate increase in population density in S. enterica as well as a
slight shift in position from 9h to 48h (Fig. 7.9A). BacArena takes a different ap-
proach and models each organism individually on a two-dimensional grid to simu-
late a spatial environment. For BacArena, the colony evolved first around the initial
microbial positions of E. coli and S. enterica where E. coli reaches a near-final in-
dividual amount t = 9h (Fig. 7.9B). The simulated S. enterica colony continued to
grow more abruptly, however, from t = 9h to t=48h, filling up most of the remaining
spatial elements (Fig. 7.9B).

As a simple test, we attempted to simulate conditions where the growth of the
species should be affected by increasing distance between them. Consistent with
what was observed experimentally[106], the simulations using COMETS, IndiMeSH,
and CROMICS showed similar degrees of decreased growth as they were initiated
further apart (see supplementary material for output data for all the tools). How-
ever, the BacArena tool could not capture any variation in spatiotemporal growth as
observed during the experiment.

7.5 Discussion

This study provides a survey of the chronicled expansion of GEM modeling meth-
ods for microbial communities throughout the past decade and recommends the
best GEM modeling tools based on qualitative and quantitative assessments. In par-
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Figure 7.9: Quantitative assessment of the spatiotemporal tools. Colony spatial distribution
over time simulation profiles of E. coli and S. enterica from COMETS (Panel A) and BacArena
(Panel B). For Panel B, the red dots represent E. coli and the black dots represent S. enterica.
Experimental data used was from the study of Harcombe et al. [106]

ticular, we assessed tools that used CBM methods and their performance to model
synthetic microbial communities of two species. This study also illustrates the chal-
lenges and brings forth issues and recommendations that should be considered when
developing future tools, so that overall serviceability and performance can best fa-
cilitate potential users.

In general, GEM modeling tools fall into several categories for analyzing micro-
bial communities. They have been used to identify interspecific interactions, which
are embodied in tools such as SMETANA [443]. These tools can also contain exten-
sive functionality, as illustrated in the Community Gap-Filling [444] tool for creating
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draft GEMs from genome assemblies and performing gap filling and, based on the
resolved metabolic gaps, can determine interspecies relationships. There are tools
available such as CommModelPy [445], DOLMN [405], FLYCOP [446], and Com-
munity Opt-yield-FBA [447], which were developed to facilitate the synthetic de-
signing of microbial consortia. However, this study focuses on static, dynamic, and
spatiotemporal Flux-Balance-Analysis-based modeling tools used for simulating ex-
tracellular and intracellular metabolic phenotypes of microbial consortia. Further-
more, the scope of the workwas limited to evaluating GEMmodeling tools formicro-
bial communities where the user needs to provide draft or curated GEMs as inputs
and not tools that are used primarily to create the reconstructions. CommModelPy
[445], DOLMN [405], and FLYCOP [446] likewise were omitted from this study’s as-
sessment because we believe they are outside its scope. For instance, the DOLMN
tool is applicable for investigating the division of labor or interactions among dif-
ferent strains within the same species. Moreover, the FLYCOP pipeline employs the
COMETS version 1 tool, which is already included in this study’s assessment. There-
fore, we feel that FLYCOP is more appropriate as an expansion tool to facilitate the
in-silico design of synthetic microbial communities.

The criteria to qualitatively evaluate the tools was based on the FAIR principles
that we consider, should be applied for data, operating procedures, tools, and mod-
els [420, 422]. Generally, tools that scored the highest in the qualitative assessment
were shown to perform best in the quantitative assessment, highlighting the impor-
tance of following the FAIR principles. Tools that were less ‘FAIR’ could hardly be
accessed nor used in this study. Thus, further information and access to the code
would be required to quantitatively assess the performance of these tools and draw
a conclusion. Nevertheless, a tool needs to be FAIR to be used, to contribute to
the field, and thus, to shed light on the continuous challenges that can be, later on,
tackled in new tools. In fact, this study observed the latter, since the continual pub-
lication of GEMmodeling methods for microbial consortia over the past decade, has
generally improved in performance over time. The first tools have served as a proof
of concept and have established the basis for developing the new tools. However,
there were a few exceptions of tools that had high scores in the qualitative assess-
ment and performed worse than the average in the quantitative assessment.

In this study, the assessment was based on themodeling of two-species co-cultures,
and therefore, the results could have varied when the tools were applied to larger
communities, or to alternative systems. In addition, the limited availability of ex-
perimental data affected the selection of case studies, which might have an effect
on the assessment of tools. By having more publicly available datasets, GEM mod-
eling tools would be able to be more robustly evaluated on a quantitative level in
terms of their scalability and numerical stability. In general, the performance of
these tools would be enhanced if the quality of the GEMs or model architecture was
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improved, and more constraints were applied to fit the experimental studies or to
compute fluxes. However, we ran the tools without augmenting them and follow-
ing the reported standards used to avoid an unbiased evaluation. The quantitative
evaluations should be taken with a degree of awareness about their generality and
projection to other types of systems. Furthermore, the quantitative evaluations here
performed should be carefully considered as indications of tool performance rather
than absolute measures of performance. They represent the behavior of the tools
when confronted with specific datasets with defined biological characteristics. The
syntrophic relationship established in the system used to test the static tools is dif-
ferent from the alleviation of toxicity observed in the dataset used for the dynamic
tools. We can not rule out that tool performance is affected by the nature of the
interactions.

The current status of the array of static, dynamic, and spatiotemporal tools for
GEM modeling microbial consortia presents a substantial barrier to entry for re-
searchers unfamiliar with specific requirements and idiosyncrasies that may arise
within CBM frameworks. Tools should be user-friendly enough for a novice user
who may be familiar with metabolic modeling concepts such as FBA and has some
basic programming knowledge. We believe that user-friendliness is also linked to the
quality of available documentation and the existence of community support. There-
fore, we recommend keeping manuals and related repositories up to date and in-
cluding dependencies amenable to changing computational environments or, alter-
natively, describing which packages are compatible. When the software is open/free,
a possible solution could be to provide a container with the tool and the dependen-
cies. All changes should be equally specified and updated in all places where the
tool can be found unless specified otherwise. It is crucial that the tool is accessible
to the users. Licenses are also important and should be provided because they allow
tools to be incorporated in pipelines such as FLYCOP that build upon and extend
the functionalities of COMETS to design microbial communities. We recommend
the tools can read several GEM formats and namespaces without the need to trans-
late the input models using other packages (e.g., COBRA Toolbox, COBRApy). The
translation of these models often leads to a loss of information and a lack of key at-
tributes that might generate errors when running the tools. The community models
built by some static tools could keep the original bounds of the transport reactions of
a single GEM to avoid the user the re-definition of the bounds once the community
model is built. This would extend the use of these tools to cases with unspecified
mediums/diets. Dynamic tools should allow the possibility of including inhibitory
effects to better predict community behavior.

Tools oriented for modeling small and big communities should incorporate suffi-
cient series of examples featuring a range of application scenarios from small to big
communities. Tools could incorporate case studies with GEMs of non-model organ-
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isms since many case studies are typically proven on communities of several E. coli
species that use the same GEM. Other tools are meant to work with models retrieved
from a specific database and defined namespace (e.g., AGORA [448]). The applica-
bility of these tools to non-model organisms is critical for designing and optimizing
synthetic communities. In the past decades, many synthetic communities have been
established that do not depend on model organisms and have shown a high poten-
tial for producing commodity chemicals [64, 69, 70, 269, 449]. On the other hand,
GEMs require accurate genome annotation and curation to properly account for in-
teractions mediated through pathways, but there is still difficulty identifying these
components in microbial genomes. Therefore, most GEMmodeling efforts have been
restricted in application to high-quality GEMs (E. coli and S. cerevisiae). To extend
the applicability to alternative GEMs, the quality of GEMs of single species and
communities should follow the community standards (e.g standard-GEM [450]) and,
thus, be verified using test suites such as MEMOTE [299].

Some tools are based on approaches that use FBA and, therefore, are limited to
the maximization of the community growth rate or species growth rate. In those
cases, FBA favors growth over production, and cross-feeding metabolites might be
overlooked (7.3B). Objective functions can be improved by using experimental data,
or frameworks can be refined in dynamic tools to use a bi-level objective routine
[451] or a multiphase, multiobjective approach [452]. Yet, these amendments may
still not apply to all growth scenarios [453]. Flux sampling has been proven to be an
effective tool to explore metabolism using GEM [88, 89, 454], and its use can miti-
gate the influence of the objective function. Flux sampling has also been successfully
implemented to model microbial communities [51]. Therefore, we recommend inte-
grating flux sampling methods in current and newly developed tools for modeling
microbial communities in different environments, even though computational costs
are high [455].

Future tools/approaches could consider using enzyme-constrained models to
model microbial communities since they have shown great potential to better un-
derstand microbial phenotypes and phenomena such as overflow metabolism [89].

It is of the utmost importance that static tools/approaches incorporate the biomass
composition of each species in their formulations beyond simply integrating the ra-
tio by changing the stoichiometry of their biomass reaction. There is no clear con-
sensus yet among static approaches on whether the species grow at balanced growth
or whether the community and species growth rates differ. This challenges the se-
lection of the objective function and the optimization approach of static tools. We
believe that static tools best fit the simulation of continuous environments where the
dilution rate is assumed to be constant, and thus, the community growth rate should
be the same as single species [51]. Techniques that predict variable growth rates
among microbes within a community should be incorporated into dynamic tools.
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The drawback, nonetheless, is the inability to account for longitudinal community
composition. An original method for alleviating this limitation is integrating ecolog-
ical models within existing constraint-based frameworks. Some researchers have al-
ready begun employing COBRAmethods and evolutionary game theory [456]. How-
ever, in the future, it would be beneficial to bolster more tools in this direction.

The results of this work suggest there is still much room for improving the overall
quality of GEM modeling tools for microbial communities. Despite the immense
number of proposed tools over the last decade, the availability, user-friendliness, and
overall performance quality of the tools are disparate, and there is no perfect tool for
all scenarios. In addition, although some of the tools were available and accessible
to a moderately novice-level user, there were still some flaws in the quantitative
predictions of those tools. However, we determined some tools were exceptional
and should be preferred starting points for researchers or developers.

For instance, for static systems, cFBA is the approach that achieves the best out-
come, but it largely requires manual adaptation. Moreover, it is not a tool, but
merely a generalized approach or algorithm. However, self-contained tools, such as
MICOM and SteadyCom, produce reasonable results. None of them outperform the
others, so they can be considered as a starting point, and given the usability charac-
teristics, we recommend MICOM. For dynamic systems, the choice is more difficult
to discern, but given our results, we suggest dFBAlab. MMODES is also a solid op-
tion, although discretion is advised when interpreting results fromMMODES as pre-
dictions largely disagree with the measurements. Yet ethanol inhibition should be
taken into account because the case we simulated contains ethanol inhibition. There-
fore, an option or flexibility for augmenting a more complex Michaelis–Menten or
Hill kinetic expression to reflect growth rate suppression at high ethanol concentra-
tions would be desirable in a new tool. For spatiotemporal systems, we recommend
either COMETS or BacArena because of their extensive development, accessible plat-
forms, and documentation. COMETS performed better in simulating a simple co-
culture experiment. However, BacArena is an individual-based method that can be
beneficial when studying heterogeneous cell populations.

Through this qualitative and quantitative survey, we have presented and ana-
lyzed a broad overview of many GEM modeling tools for microbial consortia. These
tools have been successfully applied in various types of systems of microbial com-
munities. In addition, while these constraint-based tools have significantly trans-
formed our understanding of communities by incorporating mechanistic details and
highlighting metabolic interactions, there are still many opportunities for improv-
ing modeling frameworks by making software FAIR, user-friendly, and improving
the accuracy of simulations of various types of systems. The work presented here
can guide researchers in selecting the proper modeling tools and help developers
build upon suitable modeling frameworks for new software tools.
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7.6 Materials and Methods

An extensive literature review was executed to identify the state of the art of tools
for modeling microbial communities in steady-state, dynamic, and spatiotempo-
ral environments that used GEMs. Every tool was rigorously studied to follow a
qualitative assessment. For that, we created an evaluation rubric that described
each of the evaluation levels for every feature (S2 Table). All tools evaluated in
this study are the most up-to-date versions as of December 15, 2022. In addi-
tion, we looked into studies that provided experimental data of synthetic micro-
bial consortia of two species in every environment and assessed the performance
of a set of each type of tool to reproduce them. The code used to produce our re-
ported results can be downloaded from: https://doi.org/10.5281/zenodo.7573135 and
https://gitlab.com/wurssb/Modelling/modelingtools_microbial_consortia. The scripts
can be used by other users as a guide to facilitate the evaluation and use of these
tools.

7.6.1 Evaluation of static tools

The case study chosen to evaluate the static tools was the production of medium-
chain fatty acids from the fermentation of CO by a co-culture of C. autoethanogenum
and C. kluyveri. The GEM of C. autoethanogenum, iCLAU786 [219], and the GEM
of C. kluyveri, ickl708 [220], were downloaded from their original publications in
SBML (xml) format and used as the input files in every tool. Extracellular metabo-
lites (defined in compartment ‘_e’) and exchange reactions (‘EX_XX’) common in
both GEMs were modified to have the same namespace, as required to build the
community model in all tools.

Experimental data was obtained from steady-state concentrations of fermenta-
tion products, total biomass, and hydraulic retention time (HRT) reported in the
study of Diender et al. [68]. In particular, we simulated the condition defined in re-
actor run number three from the latter publication (Table 1 and Table 3; 116 mmol
CO L−1 d-1 and 0 H2). CO feed rate and steady-state concentrations of fermentation
products were converted to mmol h−1, and HRT (d) was converted to the growth
rate (h−1). The biomass species ratios were obtained from the computational study
of the same co-culture [51], 0.4-0.6 C. autoethanogenum-C. kluyveri, respectively. CO
feed rate was constrained to the experimental value in every tool unless stated oth-
erwise. Additional constraints were applied and are specified per tool in the supple-
mentary_File2 (S3 and S4 Tables). Predicted steady-state fluxes of acetate, ethanol,
butyrate, and caproate, as well as the community growth rate, were compared to the
experimental measurements.
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Below, we describe the specific methods applied to run every tool. The links to
access the tools repository can be found in S1 Table of the supplementary_File2.

OptCom

OptCom was run using the OptCom function found within the MICOM module
called ‘micom.optcom’ instead of using the code from the original publication. There-
fore, we first installed MICOM 0.32.2 using pip upon installation of Python 3.7 and
COBRApy 0.24.0. ‘OSQP’ was installed by default with MICOM and was used as
the solver. The community model was created using the ‘Community’ function. The
function requires a ‘taxonomy’ table as an input parameter, which contains informa-
tion about the species, models, and species relative abundance (biomass fraction). In
addition, we included the mass as the input parameter (0.22 g). OptCom function
was run with the generated community model as input, selecting ‘original’ as the
strategy parameter and setting a min_growth of 0.01 h-1 for each species. The com-
munity growth rate was maximized simultaneously with all individual growth rates,
and fluxes were computed. The input fluxes were provided as environmental fluxes
in mmol h-1, and thus, they had to be divided by the total community biomass (0.22
g) to simulate growth and multiplied by the total community biomass to output
again environmental fluxes.

cFBA

cFBA was run using Python 3.7 and COBRApy 0.24.0 following the methodology
implemented in a previous computational study, where a community model of the
same two species was built [51]. ‘GLPK’ was used as the default solver installed
with COBRApy. The community model was built manually, unifying the extracel-
lular metabolites and extracellular reactions common between species in one single
reaction or metabolite. We used the same community model without adding the ex-
tra reactions described in the latter publication. The species biomass reactions were
constrained to the relative abundance multiplied by the growth rate (g h−1), and the
same as the community growth rate (0.021 h−1). The solution space was computed
using the ‘sample’ function in the flux_analysis submodule found in COBRApy. The
results shown here are the average and standard deviation based on 10000 samples
generated under the specified condition.

SteadyCom

MATLAB 2022b was installed using an academic license, and COBRA Toolbox ver-
sion 3.33 was installed following the installation instructions specified in the GitHub
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repository of COBRA Toolbox. SteadyCom was run using the ‘SteadyCom’ subrou-
tine in COBRA Toolbox and ‘GLPK’, the LP solver installed when installing COBRA
Toolbox. The community model was built using ‘createMultipleSpeciesModel.’ The
names and IDs for metabolites and exchange reactions in the shared compartment
of the community [u] were added into the community model as ‘infoCom’ and ‘in-
dCom’ fields using ‘createMultipleSpeciesModel.’ The bounds of the reactions de-
fined in the [u] compartment (e.g.,‘autoIEX_MG[u]tr, ‘EX_MG[u]’) were imported
from an excel file. SteadyCom was run using the built community model and the
following options as input parameters: GRguess=0.5; algorithm=1; feasCrit=1 and
BMweight=0.2. The community growth rate was maximized, and fluxes were com-
puted.

Microbiome Modelling Toolbox (MMT)

MATLAB 2022b was installed using an academic license, and COBRA Toolbox ver-
sion 3.33 was installed following the installation instructions specified in the GitHub
repository of COBRAToolbox. MMT 2.0 was run fromCOBRAToolbox using ‘GLPK,’
the LP solver installed when installing COBRA Toolbox. The community model was
created using the ‘joinModelsPairwiseFromList’ function. The coupling factor ‘c’
and threshold ‘u’ wasmaintained at their default values, 400 and 0, respectively. The
bounds of the reactions defined in the [u] compartment of the generated community
model were imported and defined from an Excel file. The interactions and fluxes of
the co-culture were next explored using the function called ‘simulatePairwiseInter-
actions.’ The species biomass reactions were constrained to the relative abundance
multiplied by the growth rate (g h−1). To run the latter function, the community
model and the pairedModelInfo.mat file created by ‘joinModelsPairwiseFromList’
were used as the input parameters. Besides, ‘saveSolutionsFlag’ was selected to out-
put the fluxes.

MICOM

MICOMwas run using Python 3.7 and COBRApy version 0.24.0. MICOM 0.32.2 was
installed using pip as described in the GitHub repository of MICOM. ‘OSQP’ was
installed by default with MICOM and was used as the solver. The community model
was created using the ‘Community’ function following the procedure described to
run OptCom. ‘The cooperate tradeoff’ algorithm was used with a fraction of 0.5 to
simulate growth. The input fluxes were provided as environmental fluxes in mmol
h-1, and thus, they had to be divided by the total community biomass (0.22 g) to
simulate growth, and multiplied by the total community biomass to output again
environmental fluxes.
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7.6.2 Evaluation of the dynamic tools

Similar to what was done byHanly and coworkers [436], S. cerevisiae S288C (iND750)
[457] and E. coli K-12 substr. MG1655’s (iJR904) [458] GEMs, acquired from the
BiGG database [459], were used to perform the model simulations with DyMMM,
DFBAlab, MMODES, and µbialSim. Furthermore, the E. coli model(iJR904) was
modified by constraining flux bounds for glucose exchange and glucose kinase at
zero to mathematically reflect the associated gene deletions. The simulations were
based on an aerobic xylose co-culture of S. cerevisiae and the engineered E. coli strain
ZSC113 fermentation experiment. In this experiment, glucose and xylose concen-
trations are expected to decrease over time, while the ethanol concentration is ex-
pected to increase. Simultaneously, S. cerevisiae and E. coli biomass concentrations
are expected to increase over time. For all simulations, any constraints and param-
eters given in the original tools were modified according to the experimental values
from the respective dataset from Hanly and coworkers [436]. Please see the sup-
plementary_File2 (S6 and S7 Tables) for specific inputs. The simulated growth and
metabolite concentration curves of E. coli and S. cerevisiae, as well as from glucose,
xylose, and ethanol were compared to the experimental measurements.

The coefficient of determination, also known as R-squared (R2) was calculated
to quantitatively estimate the quality of the model fits and performance with the
experimental data as in the work of Montgomery [460] for the dynamic and spa-
tiotemporal cases.

The equation for R-squared is:
R2 = 1− SSE

SST
where: R2 is the coefficient of determination, SSE is the sum of squared residuals,

and SST is the total sum of squares, and SSE
SST represents the ratio of the sum of

squared residuals to the total sum of squares.
The equation for the sum of squared residuals:
SSE =

∑n
i=1(yi − ŷi )2

where: SSE is the sum of squared residuals, yi is the actual value of the de-
pendent variable for the ith observation, ŷi is the predicted value of the dependent
variable for the ith observation, and n is the number of observations.

The equation for the total sum of squares:
SST =

∑n
i=1(yi − ȳ)2

where: SST is the total sum of squares, yi is the actual value of the dependent
variable for the ith observation, ȳ is the mean of the dependent variable, and n is the
number of observations.
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dyMMM

An implementation for this method is provided by the developers on sourceforge.net:
https://sourceforge.net/p/dymmm/wiki/Home/. This method requires a working instal-
lation of COBRA Toolbox [84] version 3.33 was used in this study with MATLAB
2022b. The provided formulation allows users to add initial concentrations of limit-
ing or important substrates as well as products of interest. There is also a field to add
initial biomass concentrations of microbes. We followed as instructed in the source
code by the developers to add the proper inputs regarding initial concentration val-
ues of substrates and microbial biomasses, as well as GEMs, where needed. These
inputs we added as presented in the supplementary table (S6 and S7 Tables).

DFBAlab

An implementation for this method is provided by the developers via the website
https://yoric.mit.edu/software. This method requires a working installation of IBM
CPLEX (version 20.1.0 was used in this study with MATLAB 2022b) or Gurobi (we
used Gurobi version 10.0). A similar example is supplied in the tutorial to the user as
the case study used in this work. Although the original formulation of this method
uses values directly from the literature [105], in the implementation, the values are
not exactly as reported for our chosen case study. Therefore, the initial concentra-
tions of glucose, xylose, and microbial biomasses were adapted (S6 and S7 Tables),
and the time span of the simulation was modified from 10 to 14 hours.

µbialSim

An implementation for this method is supported via the website: https://github.

com/fcentler/microbialSim. This method requires a working installation of COBRA
Toolbox (version 3.33 was used in this study with MATLAB 2022b) or CellNetAna-
lyzer (version 2022.1 was used in this study). The provided example 2, based on a
batch-culture growth of a binary syntrophic community, served as a starting point
for employing our dynamic case study conditions. The reactor was defined accord-
ing to initial substrate concentrations (see supplementary table). The GEMs (iJR904
and iND750) were loaded and adapted according to the COBRA Toolbox protocol
within µbialSim. In addition, reaction indices for the non-growth associate main-
tenance (NGAM) and biomass reaction were provided. Exchange reactions were
defined that link compounds in the reactor to cellular uptake and secretion. The
models were parameterized according to the kinetic parameters provided in the lit-
erature (S6 and S7 Tables). The simulation duration and time step size chosen were
14 and 0.02 h, respectively. dFBAwas selected as the solver type between the options
ODE and dFBA. However, GPLK was used as the COBRA solver.
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MMODES

An implementation for this method is supported via the website: https://mmodes.

readthedocs.io/en/latest/index.html. MMODES was installed via pip (using Python
3.9 in this study as well as COBRApy version 0.24.0). The example script and the
documentation were used for instructions. First, the medium file was defined ac-
cording to the medium composition given and initial conditions from the work of
Hanly and Henson (see supplementary table). Next, the kinetic parameters were
defined and set according to values used by Hanly and Henson (see supplementary
table). Then, the GEMs (iJR904 and iND750) of the microbes, along with their re-
spective initial biomasses and substrates they consume, were added to the model
framework. The FBA optimization routine using the GPLK solver was selected. We
chose a simulation time of 14 h with 0.02 h timesteps. Also, finite element analysis
was used for the ordinary differential equation integrator.

7.6.3 Evaluation of the spatiotemporal tools

Similar to what was done by Harcombe et al. [106], simulations were performed
using the GEMs for E. coli (iJO1366) [461] and S. enterica (iRR1083) [462]. We com-
pared BacArena, IndiMeSH, and CROMICS, which were designed to studymicrobial
communities using FBA and IBMs, with COMETS which was mainly designed to in-
vestigate the interrelationships of bacterial communities in space using FBA and
PLMs. The goal was to compare the methods with one another for their potential
in simulating trophic dependences of multispecies bacterial communities without
making prior assumptions. Therefore, simulations mimicked the two-member con-
sortium experiment studied in the original publication [106]. This consortium was
composed of two mutant strains, S. enterica LT2 and E. coli K-12. S. enterica LT2 can-
not metabolize and consume lactose, and E. coli K-12 cannot produce methionine.
Hence, these two species participate in a mutualistic relationship because S. enterica
relies on the secretion of acetate for a substrate by E. coli while E. coli needs S. en-
terica to produce methionine. Stoichiometric models of each species were modified
to incorporate known genetic constraints according to the method of Harcombe and
coworkers [106]. For instance, in the E. coli strain, the metB mutation was accounted
for by constraining to zero the flux through the corresponding reaction (cystathio-
nine γ-synthase). In S. enterica, methionine necessitated that we added a gain-of-
function mutation in metA (homoserine transsuccinylase). This secretion was mod-
eled as coupled to biomass where lactose is utilized by E. coli, so that as cells grew,
they produced appropriate amino acid levels. A summary of boundary conditions,
constraints, and parameters for all GEMS for spatiotemportal methods can be found
in the Supplementary_File2 (S10 and S11 Tables).
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COMETS

The in silico experiment was set up as reported in the work of Harcombe et al.[106]
(for more detail, see experimental procedures in the original work). The developers
provide an implementation for this method via the website: https://www.runcomets.
org/. This method requires a working installation of Java and Gurobi (we used Java
20 in this study as well as Gurobi version 10.0). The Python version of the COMETS
Toolbox (we used Python version 3.9 in this study as well as COMETS v0.4.1) was
installed using the Anaconda distribution.

BacArena

The developers provide a tutorial to help implement this method via https://bacarena.
github.io/. This method requires a working installation of R and Sybil (we used
R version 4.2.2 in this study as well as Sybil version 2.2.0). Both GEMs of E. coli
(iJO1366) and S. enterica (STM v1multistrain) were retrieved from the BiGG database
[459]. The S. entericamodel wasmodified to ensuremethionine production using the
method of Harcombe et al.[106]. The biomass reaction was updated to include the
production of 0.5 mmol gDW-1 of excreted extracellular methionine, which was bal-
anced by an equal amount of intracellular methionine consumed. The methionine
transporter (METtex, METabcpp) were set to export only (upper bounds set to 0).
The E. coli model was modified to block flux through the corresponding reaction,
cystathionine γ-synthase (CYSTL). To model metabolic exchanges between the mi-
crobes and compare the results of BacArena with the other methods, we performed
the simulations with our method using a setup similar to COMETS [106]. The sim-
ulations were carried out on a 50 times 50 grid environment for 48 hours. In the
setups, a minimal medium stated in Harcombe et al.[106] was added to the environ-
ment with 1 mmol of lactose per grid position, oxygen, and several co-factors (cal-
cium, chlorine, cobalt, potassium, iron, magnesium, ammonium, manganese, nickel,
phosphate, zinc, and sulfate). To ensure the growth and mimic the preculture envi-
ronment, an initial amount of 1.0 mmol methionine and acetate was added to each
grid position. The amounts and biomasses of the initial species were also set accord-
ing to initial frequencies used in Harcombe et al. [106]. The diffusion of metabolites
was calibrated to the standard diffusion of glucose.

IndiMeSH

The developers provide an implementation for this method in the supporting ma-
terials of the original paper [415]. This method requires a working installation of
MATLAB (we used MATLAB version 2022b in this study). The in silico experiment
was performed to simulate microbial life on a two-dimensional surface in IndiMeSH,
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a rectangular, saturated pore network (coordination number: 4) was created with the
same topology as in the COMETS simulations (for details, see S1A Fig in the supple-
mentary material of the original paper). Each pore has dimensions of 500x250x70
microns (LxWxH), as specified in the paper. Furthermore, we followed the setup as
reported in the work of Borer et al. [415] (for details, see the Methods section in the
original paper).

CROMICS

The developers provide an implementation for this method via a GitHub repository:
https://github.com/EPFL-LCSB/cromics. This method requires a working installation
of MATLAB and CPLEX solver (version 20.1.0 was used in this study with MATLAB
2022b). We used the setup detailed in the original paper [435], which mimics the
setup of Harcombe and coworkers [106] for the two-species consortium of S. enterica
and E. coli (for details, see the Methods section in the original paper [435]).

Supporting information

The code used to produce our reported results can be downloaded from: https:

//doi.org/10.5281/zenodo.7573135 and
https://gitlab.com/wurssb/Modelling/modelingtools_microbial_consortia. Additional
information can be found in Supplementary_File1 and Supplementary_File2 of the
gitlab repository.
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Chapter 8

Discussion

The goal of this thesis was to explore, optimize and guide novel designs for the mi-
crobial upcycling of C1 feedstocks to added-value chemicals by means of genome-
scale, constraint-based metabolic modeling methods. This underpins the aim to con-
vert C1 compounds to a wide range of products/molecules (and chain lengths) by
assembling different combinations of microbes in synthetic microbial communities.
Thereby, this research contributes to the ultimate goal of society to become carbon
neutral by closing the carbon cycle.

8.1 Investigation on the conversion of C1 feedstocks
through synthetic microbial communities

First, the state-of-the-art of C1 conversion was investigated and a potential approach
was selected for bioconversion of C1 feedstocks. In chapter 2, we contrast the en-
ergetic efficiency of converting different C1 substrates into biomass aerobically and
anaerobically. Anaerobic conversion by acetogens leads to a higher energy efficiency
than aerobic conversion, which gave rise to our subsequent studies with acetogens.
However, acetogens grow at the edge of thermodynamics [54], as only 0.3 ATP are
produced per each CO2/ H2 or 1.5 ATP per 1 CO converted [54]. The lack of addi-
tional energy and the low solubility of the gases limit the product range of acetogens
to simple molecules: acetate, ethanol, low amounts of formate, 2,3-butanediol and
lactate, or in few exceptions, butyrate, butanol, caproate and hexanol [353, 463].
The energetic barriers acetogens face can be partly overcome using miscible C1 sub-
strates such as formate or methanol, as they showed superior energetic efficiency
(chapter 2). However, the ATP yield reported in Acetobacterium woodii for formate
conversion was 0.3 ATP per mol of acetate produced in absence of ethanol [464],
as compared to 0.4 and 1 ATP mols per mol of acetate produced from CO2/H2 and
CO, respectively [54]. On the other hand, co-utilization of formate or methanol with
C1 gases (e.g., CO) warrants further investigation, since these compounds can act as
electrons donors leading to increased ethanol production, as we have seen to be the
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case with the addition of H2 (chapter 5).
Through several studies in this thesis, I have demonstrated the potential of syn-

thetic microbial communities as a means to expand the range of products obtained
from acetogenic fermentation of C1 gases. Following a modular approach (Fig. 8.1),
microbes were replaced or added to steer the product range from even- to odd-chain
fatty acids. This is possible due to division of labour among community members
[465], which allows them to perform complex tasks for mutual benefit that would be
seldomly achieved in pure acetogenic cultures [353, 463].

As a proof of concept, the co-culture ofClostridium autoethanogenum andClostrid-
ium kluyveri was first experimentally established for the fermentation of CO to
medium-chain fatty acids (MCFAs) of even number of carbon and their respective
alcohols [64, 68]. Here, the acetogenic products served as substrates for C. kluyveri
to produce even-chain MCFAs. In this thesis, I extend the latter study by modeling
the aforementioned co-culture using and expanding cFBA with sampling methods
to further explore (intra)cellular fluxes (Fig. 8.1) (chapter 3). The study enlight-
ened the effect of the species ratio on their metabolism, and suggested strategies to
optimize the production of MCFAs.

Acetobacterium wieringae JM is an acetogen usually cultivated at pH close to neu-
tral (6.8-7.2) [332, 333], similar to C. kluyveri’s optimal pH for chain elongation (6.5-
7.5) [334]. Thus, in chapter 5 we computationally assess the feasibility of an alter-
native co-culture where the acetogen C. autoethanogenum studied in co-cultivation
with C. kluyveri is replaced by A. wieringae JM. Modeling of this community re-
quired the reconstruction of the model of A. wieringae JM (chapter 5) (Fig. 8.1).
A. neopropionicum grows on ethanol and ethanol/acetate (chapter 4) in the presence
of CO2 producing propionate, and it also thrives at a pH range around neutrality
(chapter 4). In co-cultivation, propionate can be taken up by C. kluyveri shifting the
product spectrum from even- to odd-chain fatty acids [331]. Thus, I construct the
model of A. neopropionicum (chapter 4) (Fig. 8.1), and assemble the models of these
three microbes to assess the feasibility of the tri-culture for the production of odd-
chain fatty acids from syngas (Fig. 8.1). In this study, metabolic modeling is used
to further explore hypotheses and to drive experimental designs thereby reducing
experimental efforts.

In chapter 6, I demonstrate the use of modeling to guide new experimental
designs by assembling the model of C. autoethanogenum with two solventogenic
species. Following a model-driven approach, we found that lactate and acetate were
co-metabolized and sustained growth as well as butyrate and isobutyrate produc-
tion by the solventogen C. beijerinckii. This demonstrated that the addition of a new
carbon source can enable the establishment of a community and produce valuable
products overcoming the limitations of acetogens as well. Furthermore, this study
highlighted the importance of the biomass species ratios for the establishment of the
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Figure 8.1: Modular approach followed throughout chapters 3-5 to shift production from
even- to odd-chain fatty-acids by the incorporation of A. neopropionicum (orange microbe) in
a CO-fermenting co-culture . Grey microbe: C. autoethanogenum; green microbe: A. wieringae
JM; blue microbe: C. kluyveri. In the bottom part, squared areas indicate different commu-
nities or single microbes. Orange square: A. wieringae JM is modelled and characterized as
single species. Purple square: production of even-chain MCFA. Green square: production of
odd-chain MCFA. The computer and the flask symbols indicate whether the specified chapter
describes computational and experimental approaches, respectively.
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co-culture and their effect on cross-feeding metabolites.
Throughout this thesis I use cFBA upon manual construction of the community

models by combining single species models. Even tough this approach has been
positively evaluated (chapter 7), it is laborious and difficult to implement. However,
there are several tools that automatically construct community models and scale the
fluxes to account for relative abundance, which facilitates initial reconstructions.
Thus, I followed a systematic approach to evaluate those tools by ascertaining their
strengths and limitations (chapter 7).

Thereby, through metabolic modeling, I have achieved the primary goals of this
thesis of: a) assessing the feasibility of building synthetic microbial communities,
b) getting insights into their combined and individual metabolisms, c) unraveling
new metabolic capabilities, and d) guiding experimental designs and suggesting po-
tential strategies for the optimization of MCFA for C1 conversion by synthetic mi-
crobial communities. However, during the realization of this thesis, I faced several
challenges and identified the main limitations that hinder the potential of synthetic
microbial communities as an additional solution for the conversion of C1 feedstocks.
The following sections address some of these challenges and limitations, suggesting
possible solutions to overcome them. Finally, I reflect on the future perspectives of
C1 conversion by synthetic microbial communities.

8.2 Low ethanol availability hampers MCFAs produc-
tion in CO-fermenting synthetic communities

Recurrent challenges found to limit the establishment of synthetic microbial com-
munities were the accumulation of unwanted products (chapter 3, chapter 5, chap-
ter 6), the selection of pH for cultivation, and substrate competition. Acetate was the
main fermentation product obtained from syngas fermentation by the studied ace-
togens. Ethanol was also produced, but generally in lower amounts. C. kluyveri
consumes 6 ethanol and 4 acetate to produce 5 butyrate and 2 H2 [320]. Thus,
ethanol:acetate ratios >1 promote chain elongation. Even though the addition of
C. kluyveri shifted the acetogenic metabolism to solventogenesis (chapter 3, chap-
ter 5) [68], acetate accumulation was still significant. Strategies are sought to in-
crease ethanol production by acetogens. Ethanol production increases substantially
at acidic pH (≈ 5) in C. autoethanogenum [345]. However, C. kluyveri grows optimally
at a higher pH (≈ 6.5-7.5), therefore, in a co-culture of these two species, a trade-off
exists between ethanol and MCFAs production [65].

In chapter 5, we replaced the acetogen C. autoethanogenum by the acetogen A.
wieringae JM, since the latter grows optimally at pH neutral pH, closer to that of the
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other two community members, A. neopropionicum and C. kluyveri. Cross-feeding of
ethanol is again essential in this community. Both A. neopropionicum and C. kluyveri
require ethanol for the production of propionate and for chain elongation, respec-
tively. This substrate competition between the two members affected the feasibility
of the community in some conditions, when ethanol production was not high enough
to sustain growth of both species. While the acetogen produced mostly acetate in
mono-culture, in co-cultivation with A. neopropionicum and C. kluyveri, acetate pro-
duction decreased in favour of ethanol. However, ethanol availability was still low
in some conditions, leading to increased accumulation of acetate and propionate,
which ultimately limited the production of odd- and even-chain MCFAs (chapter 5).
Thus, modeling was used to identify possible strategies to increase ethanol produc-
tion. The supplementation of H2 was shown to increase ethanol production by A.
wieringae JM reducing the accumulation of acetate and propionate, and positively
impacting the final product output (chapter 3, chapter 5).

Metabolic engineering strategies have also shown potential for increasing the
production of ethanol in Clostridia (co)-cultures [50]. In chapter 3, metabolic mod-
eling led to the suggestion of genetic modifications in C. autoethanogenum that could
increase ethanol production up to 150%. Some of these strategies have been in fact
demonstrated in previous studies [50, 345]. In chapter 6, we investigated endoge-
nous lactate production as electron donor instead of ethanol to drive the production
of MCFA [466]. Yet, the production of lactate from syngas was very low, and lac-
tate had to be externally supplemented. Again, metabolic engineering strategies can
tackle this issue as they have already been applied to increase lactate production in
acetogens [379]. Alternatively, one could use an acetogen that shifts to solventoge-
nesis at a higher pH, as it seems to be the case for Clostridium aceticum, in which
ethanol production is triggered at pH 6.9 [330].

8.3 Determining biomass composition in microbial
communities: a must-do

The amount of experimental data available determines to which extend community
modeling tools can be implemented (chapter 7). In chapter 3, chapter 5, and chap-
ter 6 we saw how the relative contribution of each species to the biomass of the
community affected the feasibility and product profile of the co-cultures. I believe
that measurement and integration of relative biomass abundance data in community
modeling tools is key for more accurate predictions. However, these measurements
are often not available.

In chapter 3, we relied on microscopic observations of cells and RNAseq reads to
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estimate the abundances to be considered in the overall biomass composition. Both
measurements resulted in similar ratios for the conditions where data was collected.
The measurements reflected microbial relative abundances, so these had to be com-
plemented with estimates on bacterial weight to obtain the corresponding biomass
species ratios. An estimate of the proportion of each strain was based on detailed
microscopy observations, and information from literature was used to calculate the
volume of each cell and derive the dry weight. The dry weight of each cell was es-
timated and the final biomass species ratio was retrieved based on the proportion
observed under the microscope. This step was critical, since the proportion of cells
observed was 10/1, and the biomass species ratio was 4/6 (C. autoethanogenum/C.
kluyveri). Thus, determination of the composition of the community and the cell
weight is key.

Since data reflecting variation of the species ratio under different conditions was
not available, we made the assumption that the ratio remained constant. How-
ever, the operational and environmental conditions (e.g., pH, substrate availabil-
ity, growth rates) do have an effect on the biomass formation of each species. In
future studies, I recommend to obtain experimental data on biomass composition
under a variety of conditions of interest, e.g., growth on CO and CO/H2 and at dif-
ferent growth rates. In addition, the use of alternative methodologies to quantify
cell populations, such as qPCR, flow cytometry, florescence microscopy [69, 467] or
metagenomic analyses [468] should be considered. Tackling the effect of biomass
composition in the absence of experimental data is a challenge for modelers and
therefore, the predictability of models can be affected.

That being said, when cultivating a microbial community in bioreactors, the
biomass species ratio is not a parameter that can be as easily imposed as operational
parameters such as the dilution rate or the pH. In fact, the ratio is partly determined
by the latter factors. However, the information from the modeling can help at least
in tuning the process towards a specific ratio or avoiding another, or evaluating the
capabilities/uncapabilities of the community at a given ratio. Besides, this insight
could drive the development/implementation of techniques to establish certain ra-
tios, such colloid biology [469, 470] or the use of hydrogels [471].

8.4 Modeling the impact of pH in microbial (commu-
nity) behaviour

As we have observed, the pH has a crucial role on the stability, product spectrum
and, thus, the potential of the synthetic microbial communities. However, meta-
bolic models have only very rarely accounted for the role of pH thus far [472]. The
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pH is defined as the negative log 10 of the proton concentration (H+) expressed in
mol L-1. Microbes can endure changes of extracellular pH, and very often the ex-
tracellular pH is different than the intracellular pH. As a response to changes in the
external pH, homeostasis mechanisms are triggered in the cell. Rather than main-
taining a constant intracellular pH, maintaining a constant pH gradient across the
cell membrane (∆pH = pHin - pHout) seems to be essential for growth of Clostridia
[473].

The ∆pH is generated and maintained by the ATPase, which translocates protons
and generates a transmembrane difference in electrical potential (∆ψ). The ∆pH and
the ∆ψ determine the proton motive force (PMF), which drives ATP synthesis [473].
The PMF is maintained constant. This means that the ATPase is also involved in
the de-acidification of the cytosol. In some solventogenic species, the ∆pH does not
seem to be constant for acidic external pH (≈ 4.5), since the intracellular pH seems to
not change once the pH drops from 5.5. In these circumstances, an additional mech-
anism to the ATPase might also be involved for extrusion of H+ in deacidification of
the cytosol [474].

The direct extrapolation of thesemechanisms intometabolic models is difficult to
achieve. In GEMs, the flux of H+ is typically indicated by the artificial exchange re-
action ‘EX_H+_e’, which directly depends on the production or consumption flux of
metabolites in the form of extracellular reactions (‘EX_XX_e’) and the ATPase reac-
tion. Consequently, varying the flux through the H+ exchange reaction (‘EX_H+_e’),
might give us a correlation with the pH, as Sánchez-Clemente et al. showed [472].
Fig. 8.2 shows the effect of changing the flux of H+ on the fermentation of CO by
C. autoethanogenum (8.2A), and on the fermentation of acetate and ethanol by C.
kluyveri (8.2B). The optimal pH of C. autoethanogenum is in the 5.8 - 6 range, being
acetate the main product under this condition [211]. Thus, I hypothesize that the
conditions reached within the green band would correspond to a situation where the
extracellular pH is close to the optimal pH in C. autoethanogenum (Figure 8.2A). The
production of acetate acidifies the medium. Consequently, acetate is re-assimilated
and ethanol is produced. At this moment, pH is lower, which could indicate that
the yellow band corresponds to situations where the pH is lower than the optimal.
Allaart et al. showed how the pH affected the product profile in the fermentation of
acetate and ethanol in C. kluyveri [343]. At pH 7 (≈ optimal pH), caproate produc-
tion was higher than butyrate production, and at pH 5.5, butyrate production was
higher than caproate for ethanol:acetate ratios > 1. Extrapolating this information
to the graph, the colored bands might represent conditions where the pH is close or
lower than the optimal. I hypothesize that the maximum growth rate obtained using
FBA, would likely indicate conditions close to the optimal pH, as it can be derived
from the figure. However, we cannot directly relate H+ flux and pH values, as the
latter refer to concentrations.
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Figure 8.2: Effect of varying the flux of H+ on the growth rate and product profile of C.
autoethanogenum (A) and C. kluyveri (B) on CO and acetate + ethanol, respectively. CO uptake
was fixed to 10 mmol gDW-1 h-1 and uptake of acetate and ethanol to 5 and 8 mmol gDW-1

h-1, respectively. For each possible value of the H+ uptake or production rate (negative and
positive values respectively), the growth rate was maximized using FBA.

This information suggests a range of H+ flux in order to simulate steady-state
conditions at a pH lower or similar to the optimal pH of each species. In continuous
environments where the pH is controlled, one does not expect great variations in the
intracellular pH, as the ∆pH is to be kept constant. Thus, one could correlate H+ flux
with pH using measured experimental uptake rates, growth rate and products rates
at one specific pH as constraints in the model, and retrieve the compute H+ flux.

Concentration of H+, on the other hand, could directly be investigated using
dFBA. For instance, one could run batch experiments at different initial pH on CO
with one of the acetogens here studied, and measure the pH change, CO uptake rate,
concentration of substrates and products, production rates, initial and final biomass,
and the maximum growth rate. Besides CO, H+ concentration can be studied as a
metabolite that is being consumed, so that we see the H+ concentration at every pH
over time. One could then retrieve a relation between the difference in concentra-
tion of H+ from one pH to another which, in turn, is translated in the translocation
of H+ through the ATPase. I do not expect the models to precisely predict the im-
pact of pH changes, as homeostasis requirements are introduced through the NGAM
contributions in the models, which is a very general method. Still these adaptations
would allow better predictions on a range of concentrations where the model better
correlates with the experimental data.

Based on the previous investigation, communities of species cultivated at a pH
different than their optimal pH will potentially lead to product profiles different
to the ones obtained at optimal conditions with pure cultures (e.g., butyrate vs.
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caproate production in chapter 3). The differences in product profile might im-
pact the biomass of each species and, thus, the intracellular fluxes. These effects
could be analyzed in a combined experimental and in-silico approach. One could
extrapolate the H+ flux/concentration range derived from the previously described
experiments at specific pH and use them as constraints for each of the species in-
volved in the community. However, community models have a unique H+ exchange
reaction. Thus, experiments should be run for the community following the same
approach proposed for single species and derived the H+ flux/concentration of the
community as a whole to constraint the model.

Alternatively, thermodynamic models (e.g., pyTFA, matTFA) could be used in
combination with the previously described experimental approaches to inform on
the energy metabolism in acetogens [475], where production of acetate and ethanol
seems to be controlled by thermodynamics rather than by enzyme expression [68,
344]. Acidify-ME is another framework to study acid stress through ME-Models,
but it is still limited to the explanation of some mechanisms (e.g protein stability)
and it cannot be directly used yet to fully model the pH effect [249].

8.5 Modeling approaches to study synthetic microbial
communities

When modeling microbial communities, it is important to use the right tool and
approach for the environment being represented or the type of information that is
sought. In this thesis, we used mainly static approaches to represent chemostat op-
erations (chapter 3, chapter 5) and to evaluate co-culture feasibility (chapter 6 and
chapter 5). At industrial scale, continuous operations are often preferable for prod-
ucts that require amassive production (e.g, bulk chemicals), since they can be run for
longer periods of time avoiding product toxicity. Production of MCFAs would likely
follow the latter procedure, which emphasizes the need of model those operations.
In chapter 7, we reviewed available static tools and their respective assumptions in
regard of their objective function. Some static tools do not assume equal growth
rates of the species in the community, and their objective function is often the com-
munity growth rate. Static tools are based on steady-state assumptions, which are
assumed to be reached in continuous environments (e.g., chemostat cultivation). In
a chemostat, the growth rate of cells is fixed and controlled via the dilution rate of
the reactor. Thus, the growth rate of each species should be the same and equal to
the community growth rate when the community is stable. In the latter situation and
using methods that require the definition of an objective, one could choose the max-
imization of the community growth rate at the same time as the species growth rate
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as a linear problem (e.g., SteadyCom) [228]. An alternative would be to maximize or
optimize the production of a specific metabolite, or to use Flux sampling that does
not require an objective function. Flux sampling gives information of the exchange
of amino acids or other secondary metabolites that might be, in some cases, key to
establish the community. In chapter 7, results proved the ability of Flux sampling to
predict cross-feeding interactions, while some approaches that rely on FBA did not.

At industrial scale, the production of secondary metabolites or products with
lower/seasonal demand (e.g pharmaceuticals) are produced in non-continuous op-
erations. At laboratory scale, non-continuous operations (e.g batch, fed-batch) are
used for instance in growth experiments and characterization of products at differ-
ent conditions, etc. In this thesis, batch operations were used for the establishment
of a novel synthetic community (chapter 6) and for the characterization of A. neopro-
pionicum (chapter 4). In the latter examples, non-continuous operations were used
to analyze the concentration of biomass, substrates, products and maximum growth
of these species. To model cultivation in batch or fed-batch, dynamic approaches
are required to follow the consumption and production of metabolites over time
(chapter 4). These approaches require additional data, such as initial concentrations,
maximum uptake rates, growth rates and kinetic parameters. This data is often not
available, andmore assumptions would need to be taken in detriment of trustworthy
predictions. This was the case when modeling was used to drive the establishment
of a novel co-culture of C. autoethanogenum and C. beijerinckii (chapter 6). Here,
there was not data available and we used a static approach to study the co-culture
feasibility.

8.6 Future perspectives of microbial C1 conversion to
valuable products

Despite the drawbacks associated to the low solubility of gases, the production of
over 50 products from gas fermentation has already been demonstrated [262]. One
of the most successful examples is the production of ethanol at industrial scale by
acetogenic Clostridia [49, 50, 59, 476]. Lanzatech has already deployed two indus-
trial plants with an annual production of more than 90,000 metric tons of ethanol.
Furthermore, they have recently reported the production of acetone and isopropanol
by gas fermentation at industrial pilot scale with recombinant acetogenic strains
[59]. The feasibility of Lanzatech’s technology is a stepping stone towards the tran-
sition to a circular bio-based economy and opens new possibilities for alternative
technologies that focus on the valorization of renewable C1 feedstocks through mi-
crobial conversion. Here, we highlighted the potential of synthetic microbial com-
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munities to produce MCFAs and alcohols from syngas. MCFAs have great potential
for their use in the production of animal feed, food, pharmaceuticals, cosmetics or
antimicrobials [477]. Furthermore, their market size is expected to increase due to
an expected growing demand of food, pharmaceuticals and cosmetics. The global
butyric acid market was over 175 USD Million in 2020 and it is estimated to grow ≈
13.2% in the next seven years [478], while the global market for caproic acid was es-
timated at USD 176.7 Million in 2020 and it is projected to reach USD 283.6 Million
by 2027 [479].

The production ofMCFAs fromwaste-derived carbon by synthetic microbial con-
version is not yet feasible at industrial scale. However, there is an interest for the
recovery of these metabolites produced during the anaerobic digestion, due to their
higher economic value than methane or biogas [480, 481]. The conversion of food-
waste to biogas via anaerobic digestion processes in open-mixed cultures is at indus-
trial scale [482], but it is estimated that only a tonne of food waste leads to biogas
€ 76 worth [483]. In fact, the production of MCFAs could become the main source
of income in such process, and biogas production by bioaugmentation with aceto-
clastic methanogens could be regarded as a secondary process and a way to reduce
acetate accumulation. As a rule of thumb, the production of MCFAs needs to exceed
1 g L-1 h-1 to be economically feasible [28], and many factors have an impact on
productivity, such as feedstock use, reactor design, downstream processing, etc. An
open-mixed culture produced 0.1 g L-1 h-1 of caproate from food waste [484], still
an order of magnitude lower than the target. However, a co-culture of C. kluyveri
and C. saccharolyticum already reported up to ≈ 0.9 g L-1 h-1 of caproate production
during growth on sugars [485]. While microbial conversion of syngas to MCFAs at
industrial scale is not there yet, the continuous efforts foresee an optimistic future.
A few years ago, a continuous culture of C. autoethanogenum and C. kluyveri on syn-
gas achieved a production of 1.1 and 0.8 g L-1 of butyrate and caproate, respectively.
The co-culture of C. autoethanogenum and C. beijerinckii on CO2/H2 (chapter 6) led
to 4.4 g L-1 of butyrate. Last year, a continuous culture of C. aceticum and C. kluyveri
on syngas reached a production of 7.0 and 8.2 g L-1 of butyrate and caproate, respec-
tively [330]. Despite this being a relatively new technology, production yields from
syngas will likely reach competitive values in the coming years due to biotechno-
logical advances. Continuous developments in metabolic engineering and synthetic
biology strategies shall potentially increase production yields of MCFAs, as it has
been demonstrated in pure cultures with acetogenic species [50, 59, 262, 486–488].

Furthermore, the use of electrodes has also shown potential as additional elec-
tron donor with ethanol to improve chain elongation [489]. The selection of the
separation technique is also important. The use of in-line extraction or pertrac-
tion -reactor recirculation stream- might increase the productivity of MCFAs, since
it avoids accumulation of the products and, thus, the reduction of activity due to
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toxicity events [62, 477]. Sequential fermentation is envisioned as a promising ap-
proach for the conversion of C1 feedstocks to lipids, isopropanol, polyhydroxybu-
tyrate [488], and could be coupled with synthetic co-cultivation for increased eco-
nomical value. This could include aerobic fermentation of C1 feedstocks using nat-
ural or engineered strains (e.g., E.coli, C. necator) that can already convert these
feedstocks using efficient routes as the reductive glycine pathway (rGly) [38]. Fur-
thermore, the use of alternative technologies such as colloid biology [469, 470] or
hydrogels [471] might allow the control of microbial compositions and, thus, the se-
lection of the most optimal design for increasing production of MCFAs. The future
development of gas fermentation through synthetic microbial communities needs to
be coupled to computational approaches for generating testable hypotheses, driv-
ing designs, shading light into the metabolism and following DBTL cycles (Design,
Build, Test, Learn). Bioprospecting should be considered as a tool to identify traits
and new microbial platforms that could potentially outperform the species men-
tioned here or perform alternative tasks producing other valuable products.

In addition, techno-economical analysis are needed to ascertain the future of this
technology and set the goals. Furthermore, governments can play an important role,
through regulation and incentives, in nudging and fostering new technologies and
economic models that better align to global sustainable development goals.
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Summary

Human-induced climate change caused by the emission of contaminant gases has
led to a global crisis affecting society and nature all over the world. Therefore, we
urgently need solutions to mitigate these emissions and their effects. This requires a
radical change on the way we manage our resources, produce and use our products,
and treat our wastes. Gasification of biomass and waste into syngas and further mi-
crobial conversion of syngas or industrial off-gas to valuable chemicals is envisioned
as a promising strategy. In this thesis, using metabolic modeling, I work on a circu-
lar approach to produce medium-chain fatty-acids (MCFAs) and alcohols from the
upcycling of biomass-derived C1 feedstocks through synthetic microbial communi-
ties.

Synthetic microbial communities can expand the range of products obtained by
pure cultures on syngas to molecules of longer and different chain lengths. Here, I
have constructed metabolic models of single species and of communities to assess
the feasibility and potential of these microbial communities for the production of
even- and odd-chain fatty acids and alcohols from C1 gases. For that, I have used
a battery of computational methods such as Flux balance analysis (FBA), Flux Sam-
pling, community modeling (with FBA, Flux Sampling), model-reconstruction tools,
and experimental data from continuous and non-continuous environments.

In chapter 2, we compared the energetic efficiency of the conversion of several
C1 feedstocks by several pathways in both, aerobic and anaerobic conditions, being
the latter the most efficiency way. Following these observations, we focused on the
anaerobic conversion of C1 feedstocks and, in particular, of C1 gases. Acetogens are
anaerobic microorganisms that can grow on C1 gases as the sole carbon and energy
source. However, their energetic barriers limit their products to small molecules;
mainly acetate and ethanol. Thus, the co-cultivation of an acetogen with a microor-
ganism capable of chain elongation, which can grow on the products of acetogenic
metabolism, extends the range of products of gas fermentation.

In chapter 3, chapter 4 and chapter 5, a modular approach was followed to es-
tablish microbial communities targeting molecules of different chain lengths (even-
/odd-chain fatty acids) by the replacement or addition of microbes to the commu-
nity. In chapter 3, using community modeling, I first modeled a previously es-
tablished co-culture of the acetogen Clostridium autoethanogenum and the chain-
elongator Clostridium kluyveri producing even-chain MCFAs from CO/syngas. In
this study I used metabolic modeling to find possible strategies to increase the pro-
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duction of MCFA, and lower the accumulation of acetate. Several genetic interven-
tions for increasing ethanol production in detriment of acetate production by C.
auetoethanogenum could potentially increase the production of MCFA. Yet, the co-
culture presented some limitations, such as the difference in optimal pH between
community members, which limited the chain elongation activity in C. kluyveri and,
thus, the production of the target products. A solution to this was the replacement
of C. autoethanogenum by an acetogen whose optimal pH was similar to the one of
the chain-elongating species. For this, we chose Acetobacterium wieringae strain JM,
an isolate from our own culture collection. Thus, upon construction of the model of
A. wieringae JM, I modeled the co-culture of A. wieringae JM and C. kluyveri to study
the feasibility of such co-culture, and its potential to produce even-chain MCFAs
(chapter 5).

The next target was the production of odd-chain fatty-acids from syngas. The
combination of the construction of the model of Anaerotignum neopropionicum and
the experimental observations in chapter 4, led to the identification of key meta-
bolic features and increased understanding of this microbe. A. neopropionicum was
shown to produce propionate from ethanol and ethanol/acetate in the presence of
CO2 through the acrylate pathway, themechanism of which was clarified here. Thus,
we hypothesized that the addition of A. neopropionicum to the previous co-culture of
A. wieringae JM and C. kluyveriwould potentially shift the product range from even-
to odd-chain MCFAs due the presence of propionate. To assess the feasibility of this
tri-culture, we used community modeling (chapter 5). Model predictions suggested
the feasibility of the tri-culture and the partial shift of products from even- to odd-
chain MCFAs (chapter 5). Furthermore, the model predicted that CO/H2 ratios < 1
could increase ethanol production, in favour of MCFAs.

In chapter 6, I used a model-driven approach for the establishment of a co-
culture ofC. autoethanogenum and the solventogenClostridium beijerinckii producing
MCFAs from CO2 and H2. Here, I assessed the growth capabilities of two solvento-
genic species by using metabolic modeling to find a carbon source that could lead to
growth together with acetate, since this is the main product produced by C. autoe-
thanogenum. Model predictions suggested lactate as additional carbon source. Sub-
sequent growth experiments with lactate and acetate as co-substrates led to growth
of C. beijerinckii producing butyrate and traces of butanol. I then used community
modeling to assess the feasibility of the co-culture, which was later established in
fed-batch bioreactors. Furthermore, isobutyrate was a newly identified product in
this co-culture.

Acknowledging the disparity in scope and capabilities of community modeling
tools, I concluded the primary work of my thesis by reviewing and assessing the
state of art of said tools (chapter 7). Together with my co-authors, I qualitatively
evaluated twenty-four tools, and quantitatively tried fourteen of them and assessed
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their capability to predict case studies of microbial communities of two species. Fi-
nally, we identified the strengths, challenges and limitations of these tools and gave
a wide range of recommendations for future development of the field. In the general
discussion (chapter 8), I discussed the challenges and limitations of using micro-
bial communities for the upcycling of C1 feedstocks, both from the laboratory and
computational perspectives. Furthermore, I discussed the future perspectives of this
technology and I suggested strategies to overcome their limitations.
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Resumen

El cambio climático, causado por la emisión de gases contaminantes debido a la ac-
tividad humana, ha provocado una crisis global que afecta tanto a la sociedad como
a la naturaleza a nivel mundial. Por tanto, es necesario encontrar soluciones ur-
gentes para mitigar las emisiones y minimizar sus efectos. En definitiva, se requiere
un cambio radical en nuestra forma de gestionar nuestros recursos, utilizar y pro-
ducir productos, así como en el tratamiento de nuestros desechos. La gasificación de
biomasa y residuos en gas de síntesis (syngas), seguida de la conversión microbiana
del syngas o de gases industriales en productos químicos valiosos, es una estrategia
prometedora. En esta tesis, utilizamos modelos metabólicos de comunidades micro-
bianas sintéticas para estudiar la producción de ácidos grasos de cadena media y
alcoholes a partir de la conversión de gases de un carbono.

La conversión de syngas mediante el uso de comunidades microbianas sintéticas
puede ampliar la gama de productos obtenidos por cultivos de una sola especie. Un
ejemplo es la producción de ácidos grasos con cadenas más largas. En este proyecto,
he construido modelos metabólicos de especies individuales y de comunidades para
evaluar la viabilidad y el potencial de dichas comunidades para producir ácidos gra-
sos y alcoholes de cadena par e impar a partir de gases de un carbono (CO, CO2).
Para ello, he utilizado una serie de métodos computacionales como Flux Balance
Analysis (FBA), Flux Sampling, community modeling (con FBA y Flux Sampling),
herramientas de construcción de modelos y datos experimentales de operaciones en
continuo y discontinuo.

En el capítulo 2, comparamos la eficiencia energética de la conversión de varias
materias primas de un carbono a través de varias rutas metabólicas tanto en condi-
ciones aeróbicas como anaeróbicas, siendo esta última la forma más eficiente. Sigu-
iendo estas observaciones, nos enfocamos en la conversión anaeróbica de compuestos
de un carbono y, en particular, de gases como el CO y CO2. Los acetógenos son
microorganismos anaeróbicos que pueden crecer utilizando gases de un carbono
como única fuente de carbono y energía. Sin embargo, sus limitaciones energéti-
cas reducen sus posibles productos a moléculas pequeñas, principalmente acetato y
etanol. Por lo tanto, el co-cultivo de un acetógeno con un microorganismo capaz de
crecer utilizando los productos generados por este microorganismo, puede ampliar
la gama de productos en la fermentación de gases de un carbono.

En los capítulos 3, 4 y 5, seguimos un enfoque modular para establecer comu-
nidades microbianas dirigidas a producir moléculas de diferentes longitudes de ca-

209



dena (ácidos grasos de cadena par/impar) mediante la sustitución o adición de mi-
croorganismos a la comunidad. En el capítulo 3, modelé una comunidad establecida
previamente del acetógeno Clostridium autoethanogenum y el alargador de cadena
Clostridium kluyveri que produce ácidos grasos de cadena par a partir de CO/syngas.
En este estudio, utilicé el modelado metabólico para encontrar posibles estrategias
para aumentar la producción de ácidos grasos de cadena par y reducir la acumu-
lación de acetato. Observamos que varias intervenciones genéticas para aumentar
la producción de etanol en detrimento de la producción de acetato por parte de C.
auetoethanogenum podrían aumentar potencialmente la producción de ácidos grasos
en la comunidad. Sin embargo, la comunidad presentaba algunas limitaciones como
la diferencia de pH óptimo entre los miembros de la comunidad, lo cual limitaba
la actividad de alargamiento de cadena en C. kluyveri y, por lo tanto, la produc-
ción de ácidos grasos. Una solución fue la sustitución de C. autoethanogenum por un
acetógeno cuyo pH óptimo fuera similar al de C. kluyveri. Para ello, elegimos la cepa
JM de Acetobacterium wieringae de nuestra propia colección de cultivos. Así, tras la
construcción del modelo de A. wieringae JM, modelé la comunidad de A. wieringae
JM y C. kluyveri para ver si la comunidad se podía establecer y si podía producir
ácidos grasos de cadena par (capítulo 5).

El siguiente objetivo fue la producción de ácidos grasos de cadena impar a partir
de syngas. La combinación de la construcción del modelo de Anaerotignum neopro-
pionicum y las observaciones experimentales en el capítulo 4 condujeron a la iden-
tificación de características metabólicas clave y a un mayor entendimiento de este
microorganismo. Se demostró que A. neopropionicum produce propionato a partir
de etanol y etanol/acetato en presencia de CO2 a través de la vía del acrilato, cuyo
mecanismo se aclaró en este trabajo. Por lo tanto, planteamos la hipótesis de que la
adición de A. neopropionicum a la comunidad previa de A. wieringae JM y C. kluyveri
podría potencialmente cambiar el rango de productos de ácidos grasos de cadena
par, a ácidos grasos de cadena impar debido a la presencia de propionato. Para
evaluar la viabilidad de la comunidad de tres especies utilizamos modelado de co-
munidades (capítulo 5). Las predicciones del modelo sugirieron la viabilidad de la
nueva comunidad y el cambio parcial de productos de ácidos grasos de cadena par
a cadena impar (capítulo 5). Además, el modelo predijo que con ratios de CO/H2 <
1, la producción de etanol podría aumentar en favor de una mayor producción de
ácidos grasos.

En el capítulo 6, el uso de modelos ayudó a establecer una comunidad compuesta
por C. autoethanogenum y el solventógeno Clostridium beijerinckii para producir áci-
dos grasos a partir de CO2/H2. Se evaluaron las capacidades de crecimiento de dos
especies solventogénicas utilizando modelado metabólico para encontrar una fuente
de carbono que permitiera al solventógeno crecer con acetato, ya que este es el prin-
cipal producto producido por C. autoethanogenum. Las predicciones del modelo su-
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girieron el lactato como fuente adicional de carbono al acetato, lo cual se confirmó
experimentalmente en C. beijerinckii junto con la producción de butirato y trazas de
butanol. A continuación, se construyó un modelo de la comunidad de C. autoethano-
genum y C. beijerinckii para estudiar la viabilidad de la comunidad y posteriormente,
se estableció en biorreactores operados como batch. El crecimiento de la nueva co-
munidad en CO2/H2 y lactato condujo a la producción de butirato e isobutirato, un
producto que no se había observado previamente en ninguna de las especies de la
comunidad.

El alcance y capacidades de las herramientas de modelado de comunidades es
muy diverso, por lo tanto, esta trabajo de tesis concluyó con la evaluación del estado
actual de dichas herramientas (capítulo 7). Junto con otros autores, evaluamos vein-
ticuatro herramientas de forma cualitativa y catorce herramientas de forma cuanti-
tativa comparando las predicciones de las herramientas con resultados de estudios
experimentales de comunidades microbianas de dos especies. Finalmente, identifi-
camos las fortalezas, desafíos y limitaciones de estas herramientas y propusimos una
amplia gama de recomendaciones para el futuro desarrollo de este campo.

En la discusión general (capítulo 8), se han analizado los desafíos y las lim-
itaciones de utilizar comunidades microbianas para la conversión de materias pri-
mas de un carbono, tanto desde la perspectiva de laboratorio como computacional.
Además, se han evaluado las perspectivas futuras de esta tecnología sugiriendo es-
trategias para superar dichas limitaciones.
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