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Abstract
To effectively reduce illegal timber trade, law enforcers need forensic methods to independently
verify claims of wood origin. Multi-element analysis of traded plant material has the potential to be
used to trace the origin of commodities, but for timber it has not been tested at relevant large
scales. Here we put this method to the test, by evaluating its tracing accuracy for three economically
important tropical timbers: Azobé and Tali in Central Africa (22 sites) and Red Meranti on Borneo
(9 sites). Wood samples from 991 trees were measured using Inductively Coupled Plasma Mass
Spectrometry and element concentrations were analysed to chemically group similar sites
(clustering) and assess accuracy of tracing samples to their origin (Random Forest models). For all
three timbers, we found distinct spatial differences in chemical composition. In Central Africa,
tracing accuracy was 86%–98% for regional clusters of chemically similar sites, with accuracy
depending on the tracing question. These clusters were 50–800 km apart and tracing accuracy was
highest when combining the two timbers. Tracing accuracy of Red Meranti on Borneo was 88% at
the site level. This high accuracy at a small scale may be related to the short distances at which
differences in soil type occur on Borneo. A blind sample analysis of 46 African timber samples
correctly identified the origin of 70%–72% of the samples, but failed to exclude 70% of the samples
obtained from different species or outside the study area. Overall, these results illustrate a high
potential for multi-element analysis to be developed into a timber tracing tool which can identify
origin for multiple species and can do so at a within-country scale. To reach this potential,
reference databases need to cover wider geographic areas and represent more timbers.

1. Introduction

Illegal timber trade ranks among the most profitable
wildlife crimes and the false declaration of origin is
one of the main types of timber fraud (Dormontt

et al 2015, Hoare 2015). This harms people, ecosys-
tems and local economies and impairs initiatives to
increase sustainable forest management and timber
trade (Hoare and Uehara, 2022). The lack of methods
to independently verify timber origin limits effective
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law enforcement and full supply chain transparency,
as timber origin is currently verified by external doc-
uments and tags. Therefore, novel methods to trace
timber origin based on intrinsic wood properties,
rather than external documents, can play a crucial
role in stopping illegal timber trade (Lowe et al 2016).

The multi-element analysis of wood is a
promising new method for origin identification
(Boeschoten et al 2022). A large number of elements
(such as Mg, Ca, La) are measured simultaneously
using mass spectrometry and based on this elemental
composition, an origin-specific fingerprint is defined.
By comparing the chemical fingerprint to an estab-
lished geo-referenced dataset, themost likely origin of
a sample can be determined. This can help to answer
two relevant tracing questions: origin verification
and assignment (Deklerck 2022). The verification
question addresses whether a wood sample came
from a certain (claimed) origin. On the other hand,
the assignment question addresses which location
a wood sample most likely originated from in case
sample origin is entirely unknown. Both questions
are relevant in tracing but require a different stat-
istical approach. Multi-element analysis was already
found to be useful for assignment and verification of
a variety of commodities, such as green asparagus,
bananas and tea (Gonzalvez, et al 2009, Ma et al 2016,
Richter et al 2019), and has been successful at both
regional and continental scales (Joebstl et al 2010,
Baroni et al 2015). For timber, further research across
different countries and species is essential to under-
stand how the method operates (Boeschoten et al
2022).

Multi-element analysismay provide advantages in
origin determination compared to other timber tra-
cing methods under investigation, such as stable iso-
topes, genetic or direct analysis in real time - time
of flight mass spectrometry (DART-TOFMS) ana-
lyses (Lee et al 2015, Vlam et al 2018, Deklerck et al
2020). As wood chemical composition is thought to
be influenced by soil chemistry (Boeschoten et al
2022), the chemical profile of multiple species might
overlap. Even if species differ in elemental compos-
ition (Amais et al 2021), the variation between sites
could still be reflected inmultiple species. In that case,
their reference data could be combined, which would
reduce the reference data collection effort drastically
(Gasson et al 2021). This is contrary to othermethods
that need a unique fingerprint for each species.

Challenges are expected in the application of
elemental analysis for timber tracing as the chem-
ical composition of timber is more complex than
most other commodities. First, wood formation is
a process of many years and the traded part of the
tree, the heartwood, is thus influenced by environ-
mental and ontogenetic changes over the tree’s life-
time (Hietz et al 2015, Scharnweber et al 2016, Hevia
et al 2017).Many other commodities are only affected
by the environmental conditions of one year, which

may lead to a more unique fingerprint per region.
Second, the method is only useful for tracing tim-
ber when variation is present with defined differences
between origins (Hevia et al 2017). The applicability
of the method thus depends on natural variation in
elemental composition within a species distribution
range, but limited research is available on this for trace
elements in wood. Wood elemental composition has
been associated with soil physical and chemical prop-
erties (Boeschoten et al 2022), so the method may be
especially successful in regions where soil chemistry
exhibits strong spatial variation.

This is the first study to put multi-element ana-
lysis for timber tracing to practice. We did so by
determining its applicability for three economically
important tropical timber species: two from Cent-
ral Africa, traded as Azobé (Lophira alata) and Tali
(Erythrophleum ivorense and E. suaveolens), and Red
Meranti from Borneo (Shorea spp.). We first analysed
whether the two timbers from Central Africa shared
their variation in elemental composition across the
study region. Then we developed classification mod-
els for all timber species based on the elemental
composition, addressing both origin verification and
assignment accuracy. We also investigated at what
scale we found tracing potential for these three tim-
ber species. In order to understand what determines
elemental variation across a landscape, we visualised
how key elements varied across the study area and
assessed whether wood elemental compositions cor-
related with soil variables that affect element uptake.
Lastly, we simulated a real-life tracing case by apply-
ing the classification models to a set of blind samples,
to determine their most likely origin.

2. Materials andmethods

2.1. Study design
The study was conducted on three valuable inter-
nationally traded tropical timber species: two from
Central Africa (Azobé; Lophira alata, Ochnaceae
and Tali; Erythrophleum ivorense and E. suaveolens,
Fabaceae), and one from South-East Asia (Red Mer-
anti; Shorea spp., Dipterocarpaceae). They represent
a single-species timber, Azobé, and two multi-species
timbers. Tali timber is sourced from two botanical
species and Red Meranti is generally accepted to be
sourced from ten species (Klaassen 2018). The botan-
ical species that make up Tali and Red Meranti are
hard to distinguish in the field, therefore they were
only identified to species level if leaf, flower and/or
fruit material was available. Otherwise samples were
identified at genus level. As many individual trees did
not have branches below three meters and we had
no equipment available for sampling higher branches,
fresh leaves could not be collected at every tree. Fur-
thermore, as the aim of this study was to test chem-
ical differences at the timber level, we did not pursue
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further species-level analysis. All three timbers grow
in evergreen and moist deciduous forests.

Samples in Central Africa were taken from 22
study sites across the main timber exporting coun-
tries: Cameroon (seven sites), Gabon (seven sites)
and the Republic of the Congo (eight sites), between
September 2019 and April 2022 (figure 2(A)).
Samples were taken from both species at all sites
except for three locations: at two sites only Azobé
was sampled and at one site only Tali was sampled
due to low occurrence of the other species. Samples
on Borneo were taken from nine study sites across
the provinces West, East and Central Kalimantan,
Indonesia, between January 2020 and February 2022
(figure 2(B)). All sites were natural forest concessions,
accessed in collaboration with the operating forestry
companies.

2.2. Sample collection
At each site, we sampled heartwood from 20–30 trees
per timber species. Sampled trees within one site were
located between 100 m and 5 km apart. Trees were
either standing or recently felled and were of at least
30 cm diameter at breast height (DBH). A heartwood
sample was collected from each tree as an increment
core (Haglöf Increment borer 350 mm × 5,15 mm;
n = 238), with a FAMAG plug cutter of 15 mm dia-
meter (n = 562), as a wood chunk (n = 23) or as a
wood powder sample obtained with an electrical drill
(n = 170). All samples were taken 10–20 cm into the
tree. Additionally, global positioning system (GPS)
coordinates and DBH were recorded. This resulted in
a geolocated database of 179 Red Meranti, 420 Azobé
and 394 Tali samples. For every tree, we also obtained
soil variables at their growth locations from www.
soilgrids.org (Poggio et al 2021): pH, cation exchange
capacity (CEC), clay content and soil organic matter
content.

2.3. Chemical analysis
Chemical analysis was performed following
Boeschoten et al (2022). In short, a 1.0 g subsample
of heartwood was cut from 3–5 cm of wood and
dissolved in 70% HNO3 by heating in a microwave
(CEM Mars 6). In the resulting solutions, element
concentrations were determined by inductively
coupled plasma mass spectrometry (NexION 350D,
PerkinElmer). Lichen and/or Rye grass were used as
certified reference material to guarantee measure-
ment accuracy. The lowest detection limit per ele-
ment was calculated as three times the intensity of
that element in a blank standard. If elements were
found in quantities below the detection limit in more
than 200 samples (the equivalent of a quarter of the
trees), they were excluded. This resulted in a multi-
elemental composition of 41 elements at concentra-
tions varying between 0.001 µg kg−1 (terbium) and
6 g kg−1 (potassium) in the wood samples.

2.4. Statistical analysis
2.4.1. Species differences across sites
All statistical analyses were performed in R version
4.1.0 (RCore Team2021). Differences in themultiele-
mental composition of Azobé and Tali were tested by
distance based redundancy analysis (db-RDA) using
the vegan package (Oksanen et al 2020), based on
Chord distances. In addition to this multivariate ana-
lysis, we investigated whether individual elemental
concentrations differed between the two species by
constructing mixed effect models for all elements
using site as random factor. These were performed
using the lme4 package (Bates et al 2015).

2.4.2. Random forest (RF) classification of sites and
clusters
We performed multiple RF analyses for site and
cluster classification using the randomForest package
(Liaw and Wiener 2002), see table 1 for an overview.
The two potential tracing questions were addressed:
assignment (where does this sample most likely origin-
ate from?) and verification (does this sample come from
location X?). First we tested origin assignment for the
three timber species separately (three site-level RF
models). Additional to the absolute element concen-
trations we included elemental ratios, based on the
elements that were most important in the RF assign-
mentmodels. All 1:1 ratios for the top ten elements of
each RF model were tested as additional variables in
the RF assignment models, as well as ratios that were
previously described to vary geographically (Hevia
et al 2017). Only ratios that improved assignment
success were included. Assignment success per model
was then calculated as: 100%minus theRF out-of-bag
error rate. We also fitted a fourth RF model to assign
site of origin combining both Azobé and Tali data.

We continued with a cluster analysis to test sim-
ilarities between sites. Sites were aggregated into
clusters based on divisive clustering using the cluster
package (Maechler et al 2021). Site distances were cal-
culated usingMahanalobis distances, based on stand-
ardisedmean elements and elemental ratios, using the
HDMD package (McFerrin 2013).

A second set of RF assignment analyses was then
performed to assign samples to clusters (cluster-level
models). Similar to the site assignment, we developed
three species specific RF assignment models (one for
each species) and a fourth where Azobé and Tali
were combined. As clustering resulted in an imbal-
anced sample design, we applied Synthetic Minor-
ity Over-Sampling Technique (SMOTE) resampling
using the UBL package (Branco, et al 2016) and we
set aside 30% of the samples in each iteration before
resampling to ensure full independence of the test
samples. Assignment success of the final models was
evaluated using 50-fold cross-validation, calculated
as: 100% minus the percentage of incorrect assigned
trees.
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Lastly, a third set of RF classification analyses
was performed to develop verification models rather
than assignment models. Eight RF verification mod-
els were developed, one model per cluster for both
Azobé and Tali. These models each classified two
groups: one group included all reference samples
from that cluster and the other group included all
other reference samples. Before fitting the models,
SMOTE resampling was applied to each reference
dataset and 30% was set aside per iteration to ensure
full independence of the test samples.

2.4.3. Soil drivers of chemical composition
To test which soil variableswere linked towood chem-
ical variation, we focused on the top five elements
or ratios of the cluster level RF models. Soil data
from Soilgrids was centred and scaled (Poggio et al
2021). For each of the five top variables, a full model
was dredged to generate a list of candidate models
ranked by Akaike information criterion (AICc) using
the MuMIn package (Barton 2020). Full model aver-
aging was performed using candidate models within
the top two ∆AICc units (Burnham and Anderson
2002).

2.5. Blind sample collection and classification
Parallel to the main sampling campaign, a second set
of samples was arranged by a third party. They collec-
ted additional samples of which 46 were anonymised
and labelled as Azobé and Tali. No blind samples were
taken of Meranti. Each sample fitted one of three cat-
egories: (1) sampled within the same reference sites
during the main sampling campaign, (2) sampled
within 20 km of the reference sites but not from the
same campaign, (3) sampled outside the reference
sites and/or from species not covered in the reference
samples. Multi-element composition was measured
in the same way as the reference samples.

Using the RF classificationmodels of the reference
dataset, both tracing questions were addressed for all
blind samples (origin verification and assignment, see
section 2.4.2). Origin verification was tested based
on the eight RF cluster verification models (V1–V8,
table 1). Then, before origin assignment, it was tested
whether the blind samples should be assigned at all
or whether they should be excluded based on their
chemical composition usingmultiple outlier statistics
(univariate, principle component analysis, Chord dis-
tances and isotree distances). Subsequently, all blind
samples were assigned to their most likely cluster
(model A4 for both Azobé and Tali) and site (A5 for
Azobé and A8 for Tali) of origin (table 1). After veri-
fication and assignment, we performed two robust-
ness tests, to take into account uncertainty in the clas-
sifications because of (1) a small measurement error
or (2) uncertainty in the RF models themselves. If the
result of one of the robustness tests was that a blind

sample was not classified to a single origin in more
than 80%of the cases, the sample was recorded as ‘not
assigned’. A detailed description of the blind samples
analysis is attached in supplementary note S1.

3. Results

3.1. Species and site differences in Central Africa
The two timbers from Central Africa, Azobé and
Tali, had a significantly different chemical finger-
print (figure 1). This was also reflected in indi-
vidual mixed effect models: 35 of the 41 element
concentrations were significantly different (table S1).
Across our study area, 28 elements were more abund-
ant in Azobé, whereas 7 were more abundant in
Tali. However, the second db-RDA axis also reflec-
ted a significant common origin pattern. Both tim-
bers shared high or low concentrations of certain ele-
ments (such as As, Co or Y) at the same sites. This
reflects a common spatial pattern across the study
area.

3.2. Origin verification and assignment models
In Central Africa, the cluster analysis identified
eight chemical clusters, including 1–7 sites each
(figure 2(A)). The distances between sites from the
same cluster were 20–340 km, whereas some sites that
were assigned to different chemical clusters were also
as close as 50 km. Furthermore, all chemical clusters
of sites were geographically well defined, i.e. there was
no spatial mixing of clusters. On Borneo there were
five chemical clusters of 1–4 sites each (figure 2(B)).
However, in contrast to Central Africa, on Borneo the
sites that were chemically similar were not always geo-
graphically close: one cluster consisted of one site in
East, one in Central and two sites inWest Kalimantan.
Additionally, from three sites inWest Kalimantan that
were located within 40 km, one was chemically dis-
tinct from the other two.

The eight RF verification models for clusters
in Central Africa were successful in verifying ori-
gin (table 1). They yielded a verification accuracy
between 91.6% (green cluster, Republic of the Congo,
model V7) and 97.6% (darkblue cluster, west Gabon,
model V4, table 1), with 96.0% accuracy on average.
Because of the lack of geographical correspondence
in the clusters on Borneo, no cluster-level verifica-
tion was performed. Accuracy was slightly lower in
the RF assignment analysis (table 1). The individual
model for Red Meranti performed best at assigning
the site (model A7, 87.6% correct assignment) and
cluster of origin (model A3, 92.6%). As expected, the
cluster assignments were better than the site assign-
ments, because the grouping into clusters with high
similarity increases the chance of correct classifica-
tion. Successful site pairwise assignment in the RF
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Figure 1. Distance based redundancy analysis (db-RDA) of heartwood elemental composition of the African timber species Azobé
and Tali. Green and yellow dots indicate relative position of the wood samples, based on Chord distances of square root
transformed element concentrations, coloured by timber species. Grey squares indicate weight and direction of the element
concentrations in the wood. Vectors indicate the weight and the direction of the significant explanatory variables: timber species
and sites of origin. Percentages in axis labels denote the percentage of total variance explained by this component. The Indonesian
Red Meranti was not included as it does not co-occur with the other two species.

models went up with increasing distance in Central
Africa but not on Borneo (figure S1).

We tested two more assignment models for the
samples from Central Africa, in which we com-
bined Azobé and Tali in one model to check their
combined accuracy. The model that assigned the
eight clusters yielded a correct assignment rate of
88.0% (model A4), which was comparable to the
individual models (model A1 and A2). Interestingly,
the variable timber species was not included in the
most important distinguishing variables of the com-
bined models (model A4 and A8). This again indic-
ates that for certain elements, which are apparently
distinguishing, the differences between sites were lar-
ger than the species differences.

3.3. Soil chemistry and wood elemental
concentrations across the study area
In the RF assignmentmodels, both essential and non-
essential elements as well as some ratios were most
important for site classifications (figure 3). There was
no overlap in the set of key elements in Central Africa
and Borneo. All multiple regression models associ-
ated wood element concentrations with soil variables
but model fit was low overall (av.adj. R2 between
0.11 and 0.47, figure 4). The low model fit likely res-
ults from the variation of wood chemical composi-
tion within a site, which is not covered at the same

resolution in the gridded soil data. As the soil data ori-
ginates from interpolated maps, small-scale variation
is not well represented in the explanatory variables.
Therefore the models mostly describe the large-scale
patterns across the study areas.

3.4. Blind sample verification and assignment
Regarding the first question of verification, 70% of
the blind samples was included in the correct cluster.
Only five samples were included in the incorrect
cluster (false positives). From these five, four samples
were from a different species (figure 5(A) and table
S2) and the fifth was a Tali sample that was included
in the correct cluster but also in a neighbouring
cluster, both in Cameroon. However, the incorrect
exclusion error of the verification analysis was higher
(false negatives): 9 of the 36 blind samples originating
within the reference clusters were excluded from their
own cluster. The cluster in south-west Cameroon
stood out as four out of the five samples (80%)
were incorrectly excluded from that cluster, whereas
in the other clusters a maximum of 30% (3 out of
10) of the blind samples was incorrectly excluded,
with an average of 14% of incorrect exclusions per
cluster.

As for the second question, blind sample assign-
ment, the first step of exclusion went well for the
blind samples that originated from within the sites
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Figure 2. Confusion charts of the random forest assignment models for (A) the 22 study sites in Central Africa, model A8 in
table 1, and (B) the 9 study sites on Borneo, model A7. Colours in the inner circle indicate the colour of the unique site. Colours
in the outer circle indicate to which site the trees of that location were allocated, clusters from the cluster analysis are grouped and
indicated in the different colour shades. No cluster-level verification was performed on Borneo because of the lack of geographical
correspondence in the clusters. Primary tropical forest extent from Global Forest Watch in light grey (Turubanova et al 2018).

Figure 3. Site mean relative wood elemental concentrations of the five most important variables in the random forest models A4
(A, Central Africa) and A3 (B, Borneo) respectively. Site mean concentrations are scaled within each element, therefore the size of
the circles indicates relative abundance per element at each site. Primary tropical forest extent from Global Forest Watch in light
grey (Turubanova et al 2018).

with reference samples (category 1; correct exclu-
sion of 90% for Azobé and 77% for Tali; Table S2).
However, it did not exclude samples from outside
the study area or from different species well, seven
out of ten were not excluded (category 3). Further-
more, about half of the samples (6/13) that were col-
lected close to the reference sites (<20 km; category
2) were excluded based on their chemical compos-
ition even though they should have been included.
After exclusion, assignment to cluster level was of

similar success as the RF self-assignment: 72% of the
blind samples was correctly assigned to its cluster
of origin (figure 5(B) and table 1). Similar to the
verification analysis, most incorrect assignments were
from the cluster in south-west Cameroon: none of
the five samples was correctly assigned. Furthermore,
assignment success at the site level was considerably
lower compared to that at cluster level: only 30% of
the blind samples was assigned to the correct site of
origin.
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Table 1. Success rates of the random forest cluster verification (model V1–V8), cluster assignment (model A1–A4) and site assignment
models (model A5–A8). The verification models included both Azobé and Tali reference data and are presented per country (Rep o/t
Congo as Republic of the Congo). The assignment models included reference data of each species individually and a combined model
with both Azobé and Tali. Clusters are depicted in figure 2. The number of clusters, sites and trees indicate their respective totals as
included in the models.

1. Verification models

Country Cluster-level success # sites # trees

Cameroon (V1) Khaki 97.8% 3 120
(V2) Lightblue 96.4% 2 79
(V3) Red 98.1% 2 79

Gabon (V4) Darkblue 97.6% 2 40
(V5) Orange 94.4% 3 120
(V6) Lightbrown 94.8% 2 60

Rep o/t Congo (V7) Green 91.6% 7 280
(V8) Yellow 97.5% 1 36

Average 96.0%

2. Assignment models

Cluster-level success # clusters Site-level success # sites # trees

Azobé (A1) 85.7% 8 (A5) 80.1% 21 418
Tali (A2) 87.2% 7 (A6) 68.8% 20 394
Red Meranti (A3) 92.6% 5 (A7) 87.6% 9 179

Azobé and Tali (A4) 88.0% 8 (A8) 74.4% 22 812

Figure 4.Multiple regression models of the five most important elements in the random forest assignment models in (A) Central
Africa, model A8, and (B) Borneo, model A7. Element concentration was tested as a function of: soil organic carbon content
(g kg−1), pH, clay content (g kg−1) and cation exchange capacity (mmol(c) kg−1; all from Poggio et al 2021), plus timber species
(in Central Africa only). Coefficient plots include slope estimates (mean and 95 CI), averaged across top-ranked models. The CI
of the red (negative) and green (positive) circles does not overlap with zero and therefore denotes a strong effect. A positive
species effect indicates a higher value in Tali compared to Azobé. The grey circles were included in the top models but their CI
overlaps with zero, therefore they do not indicate a strong effect on the response variable. Numbers in the panels represent av. adj.
R2 of the best models.
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Figure 5. Blind sample origin and results of (A) the sample origin verification (does this sample come from cluster X?) and
(B) origin assignment (where does this sample come from?), both at the cluster level. To avoid overlap, blind sample symbols were
scattered around their site of origin and this does not reflect distance to that site. Origin verification was based on the eight RF
models per cluster (models V1–V8, table 1). Origin assignment was based on RF model A4. The total number of samples that was
correct or incorrect is indicated in the legend, compared to the total per group: 36 samples originated from<20 km of a site
(category 1+ 2), 10 blind samples originated from>20 km of a site or were another species (category 3). For percentages per
species and blind sample category see table S2. Primary tropical forest extent from Global Forest Watch in light grey (Turubanova
et al 2018).

4. Discussion

4.1. What drives variation in timber
multi-elemental composition?
This study provides insights into the drivers of wood
multi-elemental composition formultiple species and
continents. As expected, co-occurring timber species
differed in their chemical composition (figures 1 and
S1, Amais et al 2021). Nevertheless, they also shared
a spatial pattern for many essential and non-essential
elements (figure 1). This overlapping spatial variation
was reflected in the combined RF assignmentmodels:
their assignment success was similar to the individual
models (table 1) and timber species was not amongst
the most important variables.

In tracing studies on other commodities, ele-
mental composition was mostly associated with soil
type and soil chemistry (Baroni et al 2015, Wang
et al 2020), but studies investigating this are lim-
ited. In wood, the important variables for assignment
in the RF models were associated with soil phys-
ical and chemical properties (figure 4). The direc-
tion of the effects mostly reflected the buffer capa-
city of the soils: a positive effect of pH and cation
exchange capacity on the wood elemental concentra-
tions reflects that chemical concentrations in wood
are higher on soils with a high nutrient retention
capacity (figure 4). These results underline that soil
chemistry is an important driver of wood elemental
composition (Boeschoten et al 2022).
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4.2. What is the performance of multi-elemental
analysis for timber tracing?
The RF classification models confirmed that there
is potential for multi-elemental tracing of timber
(figure 2). In Central Africa, distinct chemical pat-
terns were found in two timber species (Azobé and
Tali) within the three most important timber export-
ing countries. The scale at which tracing performed
best was not the site level (assignment accuracy of
74.4%) but the cluster level (assignment accuracy
of 88%), which were between 50 and 800 km apart
(figures 2 and S1). On Borneo, site-level assignment
accuracy was already high (87.6%), with distinct
chemical patterns across provinces. Even though
accuracy increased at the cluster level on Borneo as
well (92.6%), these clusters overlapped geographic-
ally and are thus unlikely to improve tracing results.
This difference between Central Africa and Borneo
could arise from the spatial scales at which soil char-
acteristics differ, which is especially clear when com-
paring the soil types in our study areas. Whereas our
study area in Central Africa almost exclusively con-
sists of ferralsol, the area on Borneo consists largely
of nitisol which alternates with cambisol and ferralsol
even at 10 km (Poggio et al 2021).

To put elemental tracing in perspective, we com-
pare its performance to that of othermethods, such as
genetics and stable isotope ratios. Genetic studies at
the population level reported self-assignment success
rates between 55% (Ng et al 2017) and 88% (Chaves
et al 2018), which is comparable to the site level
accuracy of 68.0%–87.6% presented here (table 1).
For a Red Meranti species, genetic site-level assign-
ment accuracy in Western Malaysia was lower than
our chemical site-level assignment accuracy of Red
Meranti on Indonesian Borneo (60.60% vs 87.6%,
Chin Hong et al 2017). Overall, genetic studies that
were applied at the same scales reported similar suc-
cess rates to this study (Low et al, 2022). Compared
to the genetic literature, much less work has been
done on other chemical methods for tracing pur-
poses. Site-level assignment success based on stable
isotope ratios varies between studies, mostly illus-
trating that the method has more potential at large
geographical scales such as the state or country level
(Vlam et al 2018, Watkinson et al 2020, Paredes-
Villanueva et al 2022). Therefore our results suggest
a higher potential for elemental tracing compared to
stable isotope ratios at finer spatial scales.

In addition to performance of the RF classifica-
tion models, the blind sample tests in Central Africa
provided a proof of principle for multi-elemental tra-
cing. Verification accuracy was 72% (does this sample
come from cluster X?) and assignment accuracy was
70% (where does this sample come from?; table S2).
Yet, the blind sample exclusion showed that methods
to identify samples from outside the area or from spe-
cies not covered by the reference database had a low
success rate (63%, table S2). Additionally, the 25% of

false negatives in the blind sample verification ana-
lysis (exclusion of timber that should be included;
table S2) are especially sensitive as they can lead to
erroneous accusations of timber fraud. Better exclu-
sion criteria are needed, which can be achieved by
increased sampling effort but also by combining it
with other methods such as wood anatomy for spe-
cies identification.

Blind sample test results based on other meth-
ods are limited, but those available showed a compar-
able accuracy. In Central Africa, higher successes were
reported for genetic tracing of Tali (92%, Vlam et al
2018) as well as when assigning batches of samples of
E. cylindricum (86%, Jolivet andDegen 2012). Assign-
ment of those same Tali blind samples based on stable
isotope ratios was unsuccessful however (Vlam et al
2018). Other studies verifying blind sample origin
based on stable isotope ratios had mixed results. The
predicted area of origin of oak samples in the US
encompassed the true origin for 78% of the blind
samples (Watkinson et al 2020). Furthermore, two
investigations on tropical timbers reported a country-
level verification accuracy of 87% (Förstel et al, 2011)
and 50%–70% (Degen et al 2015), and 20%–50%
(Degen et al 2015) at the region-level. Based on those
comparisons, multi-elemental tracing of timber is
a novel method that seems to achieve sub-country
level origin identification at an accuracy that ranges
between isotopic and genetic analyses.

4.3. The next steps for timber tracing with
multi-element analysis
Based on these results we identified key points to
be addressed in order to make multi-element ana-
lysis operational. Origin verification analysis must be
improved, specifically the exclusion of samples from
a specific origin. This can be achieved by increased
sampling within clusters, to better cover the spread
in chemical composition per cluster, as well as by
sampling additional trees from different species and
origins, to improve cluster specificity. New opportun-
ities could also emerge with the addition of more spe-
cies to the reference dataset. With site differences lar-
ger than differences between species (figure 1), data
collection efforts could be reduced by combining the
information ofmultiple species into a single reference
dataset. This is a great advantage over other tracing
methods that require a species-specific reference set,
such as genetic tracing methods, but should be tested
with more species.

Lastly, the statistical analyses can be developed
further to enable large-scale application of the
method. Adding samples to the reference database
in a more scattered sampling design allows for inter-
polating spatial analyses, similar to isoscapes in stable
isotope tracing (Bowen 2010). That would open up
opportunities to move forward from site- or cluster-
oriented verification of a blind sample towards identi-
fying a potential region of origin.
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5. Conclusions

This study illustrates a high potential for multi-
element analysis to be developed into a timber tra-
cing tool, because (1) wood origin could be identi-
fied at a sub-country scale in Central Africa and on
Borneo (from 50–800 km), (2) overall cluster verific-
ation success is high, even though it varied per cluster
(96.0% in the RF self-assignment and 70% for the
blind samples) and (3) the spatial variation in Cent-
ral Africa included non-species specific patterns. This
is a first indication that it may be possible to com-
bine multiple species in one reference dataset from
which to build classification models. Furthermore,
wood chemical composition was associated with soil
chemistry, which can help to identify regions where
this method may be most promising. However, the
methods to exclude samples originating from outside
of the reference dataset must be improved to apply
elemental tracing in a forensic context. These find-
ings should be confirmed for other sites and species in
order to implement multi-element analysis as a tim-
ber tracing tool.
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