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A B S T R A C T   

Peanut classification based on processing purposes is becoming mainstream. In order to speed up the classifi
cation procedure, near-infrared (NIR) spectroscopy for classifying peanut varieties for their processing into 
peanut butters was assessed for the first time. Peanut varieties were primarily classified by principal component 
analysis (PCA) combined with cluster analysis based on the structural characteristics (texture and rheology) and 
roast characteristics (colour and volatile compounds) of the resulting peanut butters. After the completion of 
spectral collection and subsequent spectral pre-treatments, the performances of classification models built by 
partial least squares discriminant analysis, support vector machine, and random forest were compared. PCA, 
variable importance, and random forest selection by filter were investigated as feature extraction methods. The 
sensitivity, specificity, and accuracy of the filtered cross validation and external validation models were all over 
90%, while the kernel density estimation presented the acceptable distribution results of categories probabilities 
in the selected models. These results showed that NIR spectroscopy combined with machine learning methods is 
a promising approach to provide a reliable evaluation of peanuts for efficient processing.   

1. Introduction 

Peanuts are one of the paramount nuts in the world with the total 
production in 2019 equalling 48.8 million tons (Faostat, 2020). Peanuts 
can be consumed as either raw materials or as processed products, such 
as roasted peanut, peanut oil, and peanut butter, to satisfy consumer 
preferences and nutritional requirements (Wang, 2018). Generally, 
peanuts could be divided based on variety or the size and appearance of 
peanut kernels. In contrast, product-oriented classification can better 
insure the stable characteristics of final products such as peanut butter 
and enhance their market values (Gong et al., 2018). The industrial scale 
manufacture of peanut butter is fully matured through roasting and 
grinding of peanuts (Wang, 2016). Peanuts impact the structural and 
roast characteristics of their resulting peanut butter given that different 
peanut varieties have different chemical compositions (Dhamsaniya 
et al., 2012). Peanut butter with improved L* and rheological qualities 
can be produced by using the varieties with higher levels of tyrosine and 
threonine content (Yu et al., 2021). Some researchers classified peanut 

varieties based on the processing suitability linked with the quality traits 
of peanut products (Wang et al., 2017). Typically, the characteristics of 
peanut butter are evaluated based on its structural characteristics 
(texture and rheology) and roast characteristics (colour and volatile 
compounds) through time-consuming and costly laboratory analyses 
(Yu et al., 2021). Hence, the development of speedy, precise, and stable 
methods is vital to select suitable peanuts for processing to match the 
growing need for high-quality peanut butter production. 

Currently, near-infrared (NIR) spectroscopy based on the vibration of 
hydrogen-containing molecules has been systematically applied for the 
quality evaluation of agricultural products. On one hand, it has obvious 
advantages as it can rapidly collect and analyse spectral data without 
laborious preparations and it is also an environmentally and economi
cally friendly method without chemical waste and high expenditure 
compared with the chemical methods. On the other hand, it initially 
needs stable calibration models built through representative sample 
collection, spectral and reference data analysis, and model establish
ment. Previously, abundant studies have been carried out to analyse the 
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qualities of peanuts, and satisfactory results were obtained for fat (Yu 
et al., 2016), protein and protein subunits (Zhao et al., 2021), amino 
acids (Wang et al., 2013), sucrose (Yu et al., 2020a), and fatty acids (Yu 
et al., 2020b). Meanwhile, NIR spectroscopy was also used to grade 
peanuts (Sundaram et al., 2009) and determine their maturity (Wind
ham et al., 2010). Evidently, NIR spectroscopy can be used to evaluate 
the properties of peanuts, and the quality traits of peanut butter are 
related to the peanuts used. Therefore, it can be hypothesised that the 
spectral data of peanuts could be applied to reflect the characteristics of 
peanut butters at least under the decided preparation process. However, 
the challenge remains in accurately predicting the characteristics of 
peanut butters using only the spectra data of corresponding raw mate
rials. In recent years machine learning algorithms such as random forest 
(RF) and support vector machine (SVM) have been developed to obtain 
better classification and regression models because of their ability to 
deal with complex systems and multi-variables (Monforte et al., 2021; 
Phan and Tomasino, 2021). Therefore, machine learning has the huge 
potential to analyse the spectral data of peanuts and their relationship 
with peanut butters. 

The aim of this study was to develop a rapid and robust method for 
sorting peanut varieties for efficient process of peanut butter using NIR 
spectroscopy combined with machine learning. A low-cost, reliable, and 
efficient method is optimal for the assessment of raw materials to pro
duce products with high quality. Hence, a suitable approach for this 
study was to firstly conduct a cluster analysis of peanut butters based on 
the characteristics analysis results to achieve scientific grouping of the 
corresponding peanut varieties. Secondly, classification models of pea
nuts were built combined with spectral data through chemometrics and 
machine learning. To build better performance classification models, 
partial least squares discriminant analysis (PLS-DA), SVM, and RF as 
modelling algorithms were compared in this study based on the different 
pre-treatment spectral data. Principal component analysis (PCA), vari
able importance (VarImp) (Kuhn, 2008), and random forest selection by 
filter (RFSBF) (Kuhn and Johnson, 2013) were also conducted and 
compared for feature extraction to establish simplified and stable 
models. The sensitivity, specificity, and accuracy were used to assess the 

performances of all models, while the kernel density estimation (KDE) 
assessed the distributions of class probabilities. The flowchart of the 
analysis procedure is presented in Fig. 1. 

2. Materials and methods 

2.1. Peanut and peanut butter 

A total of 40 peanut varieties are listed in Table S1, which includes 
the main-planting varieties and high oleic acid varieties. For each va
riety, about 5 kg of unshelled peanut samples were expressed from 
different provinces to our lab and stored at commercial 4 ℃ cold storage 
(Yuandong Co., Ltd., Tianjin, China). The peanut butters were prepared 
according to a general process (Yu et al., 2021). Concisely, approxi
mately 0.5 kg plump-shelled peanut kernels per variety were placed on a 
steel bakeware and roasted at 160 ℃ for 30 min in an electric oven with 
the top and bottom heating mode. The peeled roasted peanuts were then 
ground in a colloid grinder (Langfang Tongyong Machinery Co., Ltd., 
Hebei, China). The initial 10 min grinding was done to roughly grind all 
peanut kernels, and the subsequent 30 s fine grinding was done to 
achieve 0.4 kg 100% pure peanut butter per variety. Peanut butter per 
variety was separately stored in a glass bottle at room temperature, out 
of direct sunlight. 

2.2. Spectral data collection 

A benchtop spectrometer with a rotating sphere (Bruker Scientific 
Instruments, Karlsruhe, Germany) was used to acquire the spectral data. 
About 100 g kernels were placed in a ring cup (9.7 cm diameter and 
4.5 cm depth) for each sample measurement of which each spectrum 
was the average of 32 scans. Each variety was subsampled five times, 
producing a total of 200 (40 × 5) spectra for the subsequent analysis. 
The reflectance spectra were recorded by an indium gallium arsenide 
(InGaAs) detector where the wavelength ranged from 12489.49 cm-1 to 
3996.02 cm-1. Spectral acquisition and conversion were conducted 
using the OPUS 7.5 software (Bruker Scientific Instruments, Karlsruhe, 

Fig. 1. The flowchart of this research. (KDE) Kernel density estimation; (PLS-DA) Partial least squares discriminant analysis; (RF) Random forest; (SVM) Support 
vector machine. 
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Germany). 

2.3. Physicochemical characteristics of peanut butters 

2.3.1. Texture 
Peanut butter texture was described using firmness (g). A TA-XTplus 

texture analyser (Micro Stable System Co., UK) with the back-extrusion 
penetration model was used to measure the texture characteristics. The 
analyser was coupled with a long roller and a 35 mm diameter 
compression disc. Each sample was put into the cylindrical jar (50 mm 
internal diameter) with the same volume (75%). The trigger pressure of 
penetration was 5 g, and the penetration depth was 30 mm with a speed 
of 1 mm s-1. Samples were analysed in duplicate to measure the force as 
firmness and then averaged to obtain the mean value per sample. 

2.3.2. Rheology 
An HR-2 rheometer (TA Instruments, New Castle, USA) was applied 

to evaluate the rheological characteristics of the peanut butters. 
Approximately 2 g samples were positioned on the crosshatched plate 
(40 mm diameter) with 1 mm gap geometry and subsequently assessed. 
After 2 min of equilibration, steady-state detection was conducted at a 
shear rate range (1–300 s-1) for the shear rate sweep test. The Herschel- 
Bulkley’s model was applied to model the flow behaviour of the peanut 
butters (Ahmed and Ramaswamy, 2006). The yield stress as an impor
tant parameter of the model means the lowest shear stress required to 
trigger peanut butter to flow, which was confirmed for the next analysis. 
The storage modulus (G′) and loss modulus (G′′) were confirmed by 
dynamic oscillatory experiments. All experiments were performed in
side the linear viscoelastic range determined at the 1 Hz frequency. The 
results were collected in the frequency range of 0.1–100 Hz. As indi
cated in Eq. (1) and Eq. (2), the G′ and G′′ were fitted by power function 
law equations of oscillatory frequency (ω), expressing the viscoelastic 
characteristics of peanut butter. 

G
′

= a × ωb (1)  

G′ ′ = c × ωd (2)  

Where a (kPa Hz− b) and c (kPa Hz− d) demonstrate the quantity of G′ and 
G′′ correspondingly at a specific frequency, and b and d (×100) indicate 
the slope of the connections between the modulus and frequency (Liu 
et al., 2019; Resch and Daubert, 2002). Samples were analysed in 
duplicate and then averaged to obtain the mean value per sample. 

2.3.3. Colour 
Peanut butter colour was confirmed using a CS-600 colour spectro

photometer (CHNSpec Technology Co., Ltd, Hangzhou, China). For each 
colour assessment, 2 g samples of each peanut butter were put in a 
circular quartz cell and subsequently the L*(darkness at 0 to lightness at 
100), a*(greenness at − 128 to redness at 127), and b*(blueness at − 128 
to yellowness at 127) colour values were determined. Triplicate mea
surements were performed, and the mean value was calculated for each 
peanut butter sample. 

2.3.4. Volatile compounds 
The volatile compounds measurement of the peanut butter samples 

was based on headspace solid-phase microextraction gas chromatog
raphy mass spectrometry (HS-SPME-GS-MS). The whole analysis pro
tocol could be found in our previous study (Yu et al., 2021). Briefly, 
samples were prepared by weighing 5 g of each peanut butter into a 
20 mL glass vial, and 50 μL internal standard 1,2,3-trichloropropane 
(0.5 mg mL-1 in methanol, Sinopharm Chemical Reagent Co., Ltd., Bei
jing, China) was added to each sample vial for the concentration 
calculation. Each vial was sealed with a Teflon diaphragm and an 
aluminium lid. The samples were put in shaking incubators at 55 ◦C for 
10 min pre-equilibrium after which the SPME fibre was introduced to 

the headspace for 40 min. The absorbed volatiles were transferred in the 
hot injection section (260 ◦C) for 150 s desorption. The splitless mode 
was applied for the GS-MS analysis with helium as the carrier gas and a 
flow rate of 1 mL min-1. The analyser’s temperature was set at 250 ◦C, 
while the oven temperature programme was initiated at 40 ◦C for 5 min 
and subsequently raise at a rate of 5 ◦C min-1 to 250 ◦C with a holding 
time of 5 min. Mass spectra were obtained using the electron impact 
ionization mode (70 eV) in the mass range of 35–500 m z-1. By 
comparing the data to the mass spectral library and calculating the 
retention indices (RI) (Yu et al., 2021), volatile compounds were 
recognized. The calculation of RI, as shown in the Eq. (3), relies on the 
n-alkane standard (C7-C40) (0.5 mg mL-1 in n-hexane, Smart Solutions, 
North Charleston, American) as the reference. 

RIx = 100n+ 100 × (tRx − tRn)/(tRn+1 − tRn) (3)  

Where tR indicates the retention time, n indicates the number of atom 
carbon, and x indicates one of volatile compounds. After that, the 
effective volatile compounds were confirmed by calculating the ratio of 
the concentrations / the odour threshold (>1) (Yu et al., 2021). Dupli
cate measurements were performed, and the mean value was calculated 
for each peanut butter sample. 

2.4. Chemometrics and machine learning 

After all the physicochemical characteristics analyses were per
formed on the peanut butter samples, K-means as unsupervised clus
tering was applied to acquire the distinct groups as the reference values. 
Kruskal-Wallis tests were used to assess whether the structural and roast 
characteristics of the various groups differed significantly. The strength 
of the connections between the characteristics of peanut butters and the 
absorbances of the original spectral data was assessed using correlation 
analysis. Principal component analysis (PCA) was conducted to reduce 
data dimension to explore the relationships of the peanut butter char
acteristics. The outliers of peanut varieties were estimated by the 
Hotelling’s T2 based on the PCA results (Liu et al., 2018). 

All spectral datasets were prior pre-processed in various methods to 
improve the signal-to-noise ratio and uncover more relevant data, 
including standard normal variable (SNV), the first derivative (FD), the 
second derivative (SD), normalization, and multiple scatter correlation 
(MSC). Partial least squares discriminant analysis (PLS-DA), support 
vector machine (SVM), and random forest (RF) were used for mathe
matical modelling. The spectral datasets were split using a 4:1 ratio into 
the training dataset and external validation dataset after deleting out
liers. The repetitive spectra of the same varieties were assigned to one of 
the datasets. The three repeats of 10-fold cross validation as internal 
validation based on the training dataset were used to prevent training 
model overfitting. Since there are 1102 spectral variables, some features 
were extracted by PCA, variable importance (VarImp), and random 
forest selection by filter (RFSBF) to simplify the models. PCA converted 
the original spectral data into new orthogonal and non-overlapping 
principal components (PCs). VarImp scores were generated to deter
mine the feature importance by using the caret package (Kuhn, 2008). 
The variables (score value >1) were selected as the important spectra. 
RFSBF in the caret package with 10-fold cross validation tests were 
applied to select the best feature spectra. 

The performances of all classification models were assessed based on 
the following various parameters: accuracy (ACCU); sensitivity (SENS); 
and specificity (SPEC). The formulas for calculating these parameters 
are indicated in Eq. (4), Eq. (5), and Eq. (6).  

Accuracy = (Number of true assessments) / (Number of all assessments) ×
100%                                                                                             (4)  

Sensitivity = (Number of true group 1 assessments) / (Number of all group 1 
assessments) × 100%                                                                       (5)  

H. Yu et al.                                                                                                                                                                                                                                       
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Specificity = (Number of true group 2 assessments) / (Number of all group 2 
assessments) × 100%                                                                       (6) 

A kernel density estimation function (KDE) was used to generate the 
genuinely positive and negative rate distribution. KDE is a kind of non- 
parametric distribution assessment that is similar to histograms, but 
allows for distribution interpolation and modification (Alewijn et al., 
2016). All calculations were performed by R 4.0.3 software (R Foun
dation for Statistical Computing, Austria). 

3. Results and discussion 

3.1. The cluster results of peanut varieties 

Fig. 2a shows the cluster analysis results of peanut butters except for 
Jihuatian1 based on the textural and rheological characteristics. The 
first two principal components (PCs) explained near 90% of the total 
variance and therefore contained most of the relevant information. 
Group 1 (blue) was in the positive direction of PC1, indicating that it had 
positive relationships with firmness, field stress, G′-a, and G′ ′-c, while 
group 2 (red) was in the negative direction of PC1. Correspondingly, 
group 1 had significantly higher (P < 0.05) values for firmness (43.4 
± 8.0 g), yield stress (11.13 ± 1.81 Pa), G′-a (60.94 ± 14.01 kPa Hz− b), 
and G′ ′-c (48.59 ± 6.99 kPa Hz− d) than group 2 (34.6 ± 5.6 g, 6.12 
± 1.83 Pa, 32.61 ± 9.94 kPa Hz− b, and 24.68 ± 6.34 kPa Hz− d, 

respectively). Firmness is related to the hardness of peanut butters, 
while field stress, G′-a, and G′ ′-c present the flow and deformation of 
peanut butters under stress and strain (Sun and Gunasekaran, 2009). 
The textural and rheological qualities reflect the structural state of 
peanut butter which is connected to the sensory attributes evaluated 
(Shakerardekani et al., 2013). The clustering results clearly show that 
there were two groups of peanut butters based on the texture and 
rheological characteristics. Based on the cluster results, the spectral data 
of raw materials are shown in Fig. 2b. Similarly, the blue lines stood for 
group 1, while the red lines stood for group 2. Overall, the spectral 
absorbance values of group 2 were higher than that of group 1. The 
spectral absorbance values derived from the C-H, O-H group of fat, 
protein, and sucrose in peanuts (Hourant et al., 2000) which is known to 
have a great influence on the texture and rheological characteristics of 
peanut butters (Dhamsaniya et al., 2012; Mohd Rozalli et al., 2015). For 
example, the first overtone of O-H stretching in fat caused 7067 cm-1 

absorption and the first overtone of C-H stretching in protein may lead to 
the absorption from 6173 to 5882 cm-1 (Workman and Weyer, 2012). 
PCA was also used to explore the spectral data of peanut varieties to 
reduce multicollinearity. The sum of PC1 and PC2 was 98%. Group 1 
(blue) was mostly grouped in the right direction of PC1, while group 2 
(red) was in the left direction in Fig. 2c, which had the same trend as 
PCA results in Fig. 2a. Therefore, it shows the potential interrelation 
between peanut butters and the spectra data of peanut varieties. 

Fig. 2. The principal component analysis (PCA) biplot (a), the raw spectral data of peanut varieties (b), and the PCA score plot of the spectral data (c) for the 
structure characteristics of peanut butters. Different coloured polygons indicate the different sample clusters and arrows indicate the contributions (contrib) of 
parameters in a. Vertical axis is absorbance and horizontal axis is the wavelength range from 12489.49 cm-1 to 3996.02 cm-1 in b. (PC1) Principal component 1; 
(PC2) Principal component 2. 
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Fig. 3 presents the strength of the relationship between the charac
teristics of peanut butter (vertical) and the full wavelength (horizontal). 
Compared with the results in Fig. 2a, yield stress, G′-a, and G′-c had a 
similar relationship with the wavelength. Specifically, these three in
dicators had higher negative correlation coefficient values with longer 
wavelength ranges (8786.62 cm-1 - 3996.02 cm-1) and positive correla
tion coefficient values with short wavelength ranges (12489.49 cm-1 - 
11100.92 cm-1). Firmness had positive correlation values with short 
wavelength ranges (12489.49 cm-1 - 11100.92 cm-1). Group 1 had 
higher these indicators, resulting in lower absorbance in longer wave
length ranges shown in Fig. 2b. Wavelengths in these ranges are likely 
derived from the 1st overtone region, the 3rd overtone region, and the 
combination bands of the main chemical compositions (fat, protein, and 
sucrose) in peanuts (Barbin et al., 2014). 

The cluster results of peanut varieties except for zhanyou75, Jin
hua8, and tianfu18 based on the roast characteristics including colour 
and volatile compounds are presented in Fig. 4a. PC1 and PC2 accounted 
for near 72% of the total variance. Group 1 (green) was located in the 
negative direction of PC1, where L* made the great contributions, while 
group 2 (yellow) was located in the positive direction along PC1 where 
the major contributions were derived from most of the roast charac
teristics such as pyrazines, 2-acetylpyrrole, and a*. There were also 
significant differences (P < 0.05) in the roast characteristics between 
group 1 and group 2. Specifically, group 2 had higher 2,5-dimethylpyr
azine (6.19 ± 1.97 mg kg-1), 2,3,5-trimethylpyrazine (2.65 
± 1.01 mg kg-1), 3-ethyl-2–5-dimethylpyrazine (1.79 ± 0.68 mg kg-1), 
furaneol (1.68 ± 0.72 mg kg-1), 2-acetylpyrrole (1.15 ± 0.30 mg kg-1), 
2-methoxy-4-vinylphenol (2.54 ± 0.82 mg kg-1) than group 1 (3.90 
± 1.30 mg kg-1, 1.66 ± 0.71 mg kg-1, 1.00 ± 0.36 mg kg-1, 0.86 
± 0.49 mg kg-1, 0.68 ± 0.31 mg kg-1, and 1.53 ± 0.45 mg kg-1, respec
tively). These volatile compounds, especially pyrazines with nutty and 
roast aromas, are known as some of the primary volatiles of peanut 
products (Baker et al., 2003; Li and Hou, 2018). The L* value (51.40 
± 4.68) of group 1 was lower than that of group 2 (57.04 ± 3.39 and 
8.16 ± 2.06), while the a* value (10.94 ± 2.25) of group 1 was higher 
than that of group 2 (8.16 ± 2.06). Therefore, the manufacturers can 
select peanut varieties from group 2 to manufacture peanut butters with 

rich flavour and bright colour. 
The spectra of different groups based on the roast characteristics 

cluster analysis can be seen in Fig. 4b. The green lines (group 1) and the 
yellow lines (group 2) overlapped on the full wavelength range. The PCA 
results (Fig. 4c) show more distinct relationships between the two 
groups. The total of PC1 and PC2 accounted for 98% of the total variance 
in spectral data. Group 1 and group 2 were intertwined and there was no 
clear separation between them. The main reason for the incomplete 
separation is because Fig. 4a presents that some varieties of group 1 (e.g. 
Huayu917, Shanhua11, and Yuhua9326) and group 2 (e.g. Jihua8, 
Jihua19, Baisha, and Jihuatian1) are close, which has a negative effect 
on the classification. Meanwhile, the roast characteristics of peanut 
butter are determined by raw materials and the roasting process, while 
the spectral data of raw materials only show partial information. 
Therefore, it cannot fully reflect the roast characteristics of peanut 
butters. The correlation heatmap offered more detailed information 
about the relationship between the spectral data of peanut varieties and 
the roast characteristics of the resulting peanut butters. It was found that 
a* value and 2-methoxy-4-vinylphenol had significantly positive corre
lations (correlation coefficient values > 0.15, P < 0.05) with most of the 
whole wavelength. This is because a* value stands for the redness me
chanically linked with the infra-red band where the NIR wavelength 
exists. There were also significant negative correlations (correlation 
coefficient values < − 0.15, P < 0.05) between 2,5-dimethylpyrazine 
and 3-ethyl-2–5-dimethylpyrazine and most of longer wavelength 
ranges (11332.34 cm-1 – 5315.17 cm-1). This could imply that the 
spectral data of raw materials can reflect the characteristics of peanut 
butters. 

3.2. The classification models built based on the full wavelength range 

The PLS-DA, SVM, and RF were used to establish classification 
models for the discrimination of peanut varieties except for Jihuatian 1 
with different structural characteristics based on different pre-treatment 
spectral datasets. The results are shown in Table 1. Overall, all training 
and cross validation models for structural characteristics had good re
sults. The SENS, SPEC, and ACCU of training models were over 97%, 

Fig. 3. The correlation analysis between raw spectral data of peanut varieties (vertical axis) and characteristics of peanut butters (horizontal axis). Positive and 
negative coefficients are coloured red and blue, respectively. Correlation coefficients < − 0.15 and > 0.15 indicate significant correlations (P < 0.05). 
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Fig. 4. The principal component analysis (PCA) biplot (a), the raw spectral data of peanut varieties (b), and the PCA score plot of the spectral data of peanut varieties 
(c) for the roast characteristics of peanut butters. Different coloured polygons indicate the different sample clusters and arrows indicate the contributions (contrib) of 
parameters in a. Vertical axis is absorbance and horizontal axis is the wavelength range from 12489.49 cm-1 to 3996.02 cm-1 in b. (PC1) Principal component 1; 
(PC2) Principal component 2. 

Table 1 
The sensitivity, specificity, and accuracy results for the discrimination of peanut varieties based on the structure characteristics of peanut butters combined with the 
different spectral algorithm and pre-treatment methods.  

Algorithms Pre-treatments Training Cross validation External validation 

SENS (%) SPEC (%) ACCU (%) SENS (%) SPEC (%) ACCU (%) SENS (%) SPEC (%) ACCU (%) 

PLS-DA Original 100 98 99 87 89 88 70 50 60 
SNV 100 100 100 92 93 93 75 65 70 
FD 100 100 100 89 94 91 80 90 85 
SD 100 100 100 83 86 84 70 75 73 
MSC 98 100 99 95 89 92 70 95 83 
Normalization 99 100 99 95 93 94 70 85 78 

SVM Original 98 97 97 93 91 92 80 100 90 
SNV 100 100 100 99 99 99 65 100 83 
FD 100 100 100 96 95 96 70 95 83 
SD 100 100 100 94 97 95 65 95 80 
MSC 100 100 100 98 99 98 65 100 83 
Normalization 98 97 97 95 92 94 75 100 88 

RF Original 100 100 100 89 90 90 80 100 90 
SNV 100 100 100 95 97 96 65 100 83 
FD 100 100 100 93 93 93 80 100 90 
SD 100 100 100 89 94 91 65 100 83 
MSC 100 100 100 94 96 95 85 100 93 
Normalization 100 100 100 91 91 91 85 100 93 

(ACCU) Accuracy; (FD) The first derivative; (MSC) Multiple scatter correlation; (n) Number of samples; (PLS-DA) Partial least square discrimination analysis; (RF) 
Random forest; (SD) Second derivative; (SENS) Sensitivity; (SPEC) Specificity; (SNV) Standard normalization variable; (SVM) Support vector machine. 
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while the results of cross validation models were over 90% except for a 
few models. But in contrast, the performances of external validation 
models were quite unequal that the range of SENS, SPEC, and ACCU was 
65–85%, 50–100%, and 60–93%, respectively. Therefore, the results of 
the external validation models were critical to determine which algo
rithms and pre-treatment methods had the best performances. 

In terms of the modelling algorithms, PLS-DA is an effective, multi
variate regression-based algorithm for peanut classification. Although 
compelling, PLS-DA incurs performance degeneration under complex 
situations such as class imbalance and multiclass, which are common in 
peanut varieties (Song et al., 2018). The full wavelength including 1102 
variables, has nonlinearity effects on the PLS-DA models. Therefore, 
SVM and RF as non-parametric machine learning algorithms have more 
advantages. Although the cross validation results showed that the SVM 
models had better results than the RF models, the external validation 
results of the SVM models had lower performances than the RF models, 
which meant that the SVM models existed overfitting effects. This is 
because when using SVM with high dimensional inputs, there is a risk of 
overfitting which could result in misleading outcomes (Zhang et al., 
2018). Hence, RF had the best prediction capacity compared to other 
algorithms, while the average SENS, SPEC, and ACCU of the RF external 
models were 77%, 100%, and 89%, respectively. Concerning the 
pre-treatment methods, all methods increased the performances of the 
models. Among them, FD pre-treatment had the best improvement in the 
performances of the models. FD pre-treatment can remove undesired 
physical scatter caused by the shape of peanut kernels (Rinnan et al., 
2009). The average performances (SENC, SPEC, and ACCU) of the 
models based on FD pre-treatment were 93%, 94%, and 93% (respec
tively) for cross validation, and 77%, 95%, and 86% (respectively) for 
external validation. The results showed that the models established 
based on the full wavelength have great performances to classify peanut 
varieties to produce different structural characteristics of peanut butters. 

The classification models for classifying peanuts varieties except for 
zhanyou75, Jinhua8, and tianfu18 based on the roast characteristics 
(colour and volatile compounds) are compared in Table 2. The perfor
mances of the classification models for roast characteristics were overall 
not good when compared with the classification models for structural 
characteristics. This is because the roast characteristics of some samples 
of the two groups were similar. Meanwhile, the roast characteristics are 
not only derived from the raw materials, but also are generated by 
brown reactions and caramelisation during the roasting process. 
Therefore, the spectral data of the raw materials lacked information 

about roasting, leading to less control over controlling roasting varia
tion. Among all pre-treatment methods, SNV was the best pre-treatment 
and the average performances (SENC, SPEC, and ACCU) were 88%, 
85%, and 86% (respectively) for cross validation, and 87%, 92%, and 
89% (respectively) for external validation. In respect of the modelling 
algorithms, SVM and RF showed better modelling capability when 
compared to PLS-DA algorithm. Among all models, the SNV-SVM 
models had the best performances (SENC, SPEC, and ACCU) with all 
parameters 100% for the training models, 98%, 97%, and 97% 
(respectively) for the cross validation models, and 100%, 94%, and 98% 
(respectively) for the external validation models. 

3.3. The classification models built based on the extracted features 

The results of the PLS-DA, SVM, and RF models based on the features 
extracted by PCA, VarImp, and RFSBF are presented in Table 3 and  
Table 4. PCA is the conventional method to reduce the dimension of data 
through building new non-linear variables. The retrieved features in this 
research were the sum of the top five PCs, accounting for 99% of total 
variances. The classification models for the structural characteristics are 
shown in Table 3. The top five PCs of the FD spectral data were selected 
as the new variables to build models. The PCA-RF models had the best 
prediction performances compared to the other methods. The ACCU of 
the training, cross validation, and external validation models was 100%, 
95%, and 88%, respectively, which was similar to the results obtained 
for the full wavelength models. For VarImp and RFSBF, 19 wavelengths 
and 719 wavelengths were selected as features, respectively. The Var
Imp method estimated model performances by using the minimum 
number of wavelengths. The ACCU of the external validation models by 
VarImp was 90%, 80%, and 83% for PLS-DA, SVM, and RF, respectively. 
The RFSBF method have already effectively selected the discriminating 
features from images (Longlong et al., 2020). The ACCU of the training, 
cross validation, and external validation models was 100%, 96%, and 
90% for FD-RFSBF-SVM and 100%, 93%, and 88% for FD-RFSBF-RF. 
There are slight differences among the above models. Overall, the 
FD-RFSBF-SVM model had the best performance. RFSBF method main
tained or improved the performances of the corresponding full wave
length models. These results proved that features extracted by PCA, 
VarImp, and RFSBF could be effectively used to build high accuracy and 
belief models for classifying peanut varieties to process different struc
tural characteristics of peanut butters. 

The classification models of the roast characteristics based on the 

Table 2 
The sensitivity, specificity, and accuracy results for the discrimination of peanut varieties based on the roast characteristics of peanut butters combined with the 
different spectral algorithm and pre-treatment methods.  

Algorithms Pre-treatments Training Cross validation External validation 

SENS (%) SPEC (%) ACCU (%) SENS (%) SPEC (%) ACCU (%) SENS (%) SPEC (%) ACCU (%) 

PLS-DA Original 91 96 94 75 70 71 80 88 84 
SNV 99 94 97 76 75 75 85 94 89 
FD 81 79 80 66 63 65 50 76 62 
SD 100 100 100 66 64 65 55 82 68 
MSC 94 88 91 79 72 75 75 88 81 
Normalization 94 91 93 72 69 71 85 88 86 

SVM Original 100 100 100 84 81 82 65 76 70 
SNV 100 100 100 98 97 97 100 94 98 
FD 100 100 100 80 76 78 100 71 86 
SD 100 100 100 75 73 74 65 59 62 
MSC 100 100 100 96 99 98 85 65 76 
Normalization 100 100 100 82 76 80 65 77 70 

RF Original 100 100 100 66 57 62 70 41 57 
SNV 100 100 100 90 84 87 75 88 81 
FD 100 100 100 76 75 75 95 82 89 
SD 100 100 100 76 53 65 65 47 57 
MSC 100 100 100 90 85 88 60 88 73 
Normalization 100 100 100 66 63 64 65 35 51 

(ACCU) Accuracy; (FD) The first derivative; (MSC) Multiple scatter correlation; (n) Number of samples; (PLS-DA) Partial least square discrimination analysis; (RF) 
Random forest; (SD) second derivative; (SENS) Sensitivity; (SPEC) Specificity; (SNV) Standard normalization variable; (SVM) Support vector machine. 
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features are presented in Table 4. The five new variables extracted from 
the SNV spectral data by PCA methods were used to establish the 
models. The SNV-PCA-SVM models had the best prediction performance 
compared to the other methods. The ACCU of the training, cross vali
dation, and external validation models was 99%, 96%, and 89%, 
respectively, which was in line with the full wavelength models. The 
performances of the models built by the 728 feature wavelengths based 
on RFSBF were consistent with the results based on the corresponding 
whole wavelength models. The SNV-RFSBF-SVM models had the best 
performance with 100%, 97%, and 95% for the ACCU of the training, 
cross validation, and external validation models, respectively. Only five 
wavelengths (4528.31 cm-1, 4536.02 cm-1, 10044.05 cm-1, 
10051.77 cm-1, and 10537.77 cm-1) were selected to build models by 
VarImp. VarImp was very helpful and efficient to select the important 
features in the previous research (Dewi and Chen, 2019). Although the 
performances of the VarImp models were relatively poor when 
compared to the other feature extraction methods in this study, VarImp 
greatly simplified the complexity of the models. In summary, it can thus 
be suggested that different feature extraction methods could be used to 
simplify models and SNV-RFSBF-SVM was the best method for peanut 
varieties classification for processing different roast characteristics of 
peanut butters. 

3.4. Kernel density estimation distribution of the selected models 

Fig. 5 presents the kernel density estimation (KDE) distribution of the 
selected models including FD-RF and FD-RFSBF-SVM for structural 
characteristics, and SNV-SVM and SNV- RFSBF-SVM for roast charac
teristics. In contrast with binary analysis, KDE distribution analysis of
fers more content than a single value. The conventional binary analysis 
classifies samples based on a threshold value. Peanuts with probability 
values below the threshold are grouped into one class, while peanuts 
with probability values above the threshold are grouped into the other 
group. Generally, the number of peanuts classified accurately will be 
demonstrated. However, KDE distribution plots further show the dis
tances between probability values to the threshold. The smaller the 
distance, the higher the risk of misclassification (Yan et al., 2019). 

In this study, the default threshold was 0.5. Fig. 5a shows two sub- 
groups in all FD-RF models. Specifically, the main body of the two 
sub-groups was separately located on both sides and the location of the 
peak were far from the threshold value of 0.5 in the training model. KDE 
distribution for cross validation and external validation models were 
similar. Although there was some superposition between the two 
groups, the main body of different groups were separate. The KDE re
sults of the FD-RFSBF-SVM models shown in Fig. 5b had the better 
distribution. Two sub-groups in the training model were completely 

Table 3 
The sensitivity, specificity, and accuracy results for the discrimination of peanut varieties based on the structure characteristics of peanut butters combined with the 
different algorithm methods using features extracted by PCA, RFSBF, and VarImp.  

Algorithms Data type Na Training Cross validation External validation 

SENS (%) SPEC (%) ACCU (%) SENS (%) SPEC (%) ACCU (%) SENS (%) SPEC (%) ACCU (%) 

PLS-DA Full 1102 100 100 100 89 94 91 80 90 85 
PCA 5 88 97 93 87 95 91 80 100 90 
RFSBF 719 94 100 97 91 92 91 80 95 88 
VarImp 19 89 96 93 89 96 92 80 100 90 

SVM Full 1102 100 100 100 96 95 96 70 95 83 
PCA 5 99 99 99 97 98 97 75 100 88 
RFSBF 719 100 100 100 96 96 96 80 100 90 
VarImp 19 98 100 99 94 94 94 65 95 80 

RF Full 1102 100 100 100 93 93 93 80 100 90 
PCA 5 100 100 100 93 96 95 80 95 88 
RFSBF 719 100 100 100 93 93 93 75 100 88 
VarImp 19 100 100 100 93 93 93 65 100 83 

(ACCU) Accuracy; (n) Number of samples; (PCA) Principal component analysis; (PLS-DA) Partial least square discrimination analysis; (RF) Random forest; (RFSBF) 
Random forest selection by filter; (SENS) Sensitivity; (SPEC) Specificity; (SNV) Standard normalization variable; (SVM) Support vector machine; (VarImp) Variable 
importance. 

a N is the number of variables. 

Table 4 
The sensitivity, specificity, and accuracy results for the discrimination of peanut varieties based on the roast characteristics of peanut butters combined with the 
different algorithm methods using features extracted by PCA, RFSBF, and VarImp.  

Algorithms Data type Na Training Cross validation External validation 

SENS (%) SPEC (%) ACCU (%) SENS (%) SPEC (%) ACCU (%) SENS (%) SPEC (%) ACCU (%) 

PLS-DA Full 1102 99 94 97 76 75 75 85 94 89 
PCA 5 69 56 63 69 53 60 60 53 57 
RFSBF 728 91 94 88 80 74 77 85 94 89 
VarImp 5 80 66 74 84 62 70 55 59 57 

SVM Full 1102 100 100 100 98 97 97 100 94 98 
PCA 5 99 99 99 95 97 96 90 88 89 
RFSBF 728 100 100 100 98 97 97 95 94 95 
VarImp 5 96 99 97 89 85 87 75 88 81 

RF Full 1102 100 100 100 90 84 87 75 88 81 
PCA 5 100 100 100 89 85 86 85 77 81 
RFSBF 728 100 100 100 90 82 86 75 88 81 
VarImp 5 100 100 100 86 84 84 70 77 73 

(ACCU) Accuracy; (n) Number of samples; (PCA) Principal component analysis; (PLS-DA) Partial least square discrimination analysis; (RF) Random forest; (RFSBF) 
Random forest selection by filter; (SENS) Sensitivity; (SPEC) Specificity; (SNV) Standard normalization variable; (SVM) Support vector machine; (VarImp) Variable 
importance. 

a N is the number of variables. 
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Fig. 5. The kernel density estimation of probability distributions of different models. (a) FD-RF, (b) FD-RFSBF-SVM, (c) SNV-SVM, and (d) SNV-RFSBF-SVM. (FD) 
The first derivative; (RF) Random forest; (RFSBF) Random forest selection by filter; (SNV) Standard normalization variable; (SVM) Support vector machine. 
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distributed at both ends. Regarding the cross validation and external 
validation models, both tails at the sides were slight and the locations of 
the peaks were far from the threshold value of 0.5. These results 
corroborated the previous results shown in Table 3. 

In respect of the classification models for the roast characteristics, 
Fig. 5c and Fig. 5d show that the training models of SNV-SVM and SNV- 
RFSBF-SVM had the greatest distribution of class probability as the 
different groups located on both ends of the X-axis. For the cross vali
dation models, group 1 and group 2 were mainly separated with a limit 
of the threshold value (0.5) and the principal part of class probability 
were 0.05–0.25 for group 1 and 0.75–1.00 for group 2, respectively, 
which matched the model performances shown in Table 2 and Table 4. 
One could also see that the external validation model of SNV-SVM had a 
great segregation between different groups with very little overlap, 
while the same model of SNV-RFSBF-SVM had a relatively poor distri
bution that each group had a small peak in the wrong position. Despite 
this, the SNV-RFSBF-SVM models only used parts of the full wavelength. 
These results provided further support for the hypothesis that the 
extracted features could be used to simplify models under the premise of 
ensuring the stability of model performances. 

4. Conclusions 

NIR spectroscopy combined with various machine learning ap
proaches was explored in this study to classify peanut varieties for 
efficient processing based on the structural and roast characteristics of 
the resulting peanut butters. To date, manufacturers in the peanut 
processing industry have solely used their inherent knowledge and 
experience to produce blends of peanuts to obtain peanut butter with 
different characteristics. The overall results of the study showed the 
feasibility of using NIR spectroscopy to sort or select peanut varieties 
based on the expected peanut butter qualities. Systematically scanning 
all peanuts could provide some objective data to predict the final 
product characteristics and thus reduce the waste of materials along the 
processing chain. Technically, machine learning algorithms such as RF 
and SVM show their wide application space for improving the accuracy 
of the classification models, especially in the field of food analysis. The 
extracted feature wavelengths could be used to design low-cost classifier 
sensors as part of the Internet of things. Further work is needed to in
crease the sample size and investigate the interactions of the processing 
conditions to provide guidance for adapted processing procedures to 
attain stable peanut butters. 
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