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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Wastewater with high nutrient and COD 
favored the removal of 11 tested OMPs. 

• Poor nutrient concentrations in waste-
water lead to poor removal of 13 tested 
OMPs. 

• Biomass concentration and wastewater 
COD predominantly affected the 
removal of OMPs. 

• Carbon uptake rate significantly 
affected the removal of OMPs.  

A R T I C L E  I N F O   

Keywords: 
Emerging contaminants 
Microalgae technologies 
Wastewater strength 
Dry weight reduction 
Redundancy Dimensional Analysis 

A B S T R A C T   

Microalgae-based technologies can be used for the removal of organic micropollutants (OMPs) from different 
types of wastewater. However, the effect of wastewater characteristics on the removal is still poorly understood. 
In this study, the removal of sixteen OMPs by Chlorella sorokiniana, cultivated in three types of wastewater 
(anaerobically digested black water (AnBW), municipal wastewater (MW), and secondary clarified effluent 
(SCE)), were assessed. During batch operational mode, eleven OMPs were removed from AnBW and MW. When 
switching from batch to continuous mode (0.8 d HRT), the removal of most OMPs from AnBW and MW 
decreased, suggesting that a longer retention time enhances the removal of some OMPs. Most OMPs were not 
removed from SCE since poor nutrient availability limited C. sorokiniana growth. Further correlation analyses 
between wastewater characteristics, biomass and OMPs removal indicated that the wastewater soluble COD and 
biomass concentration predominantly affected the removal of OMPs. Lastly, carbon uptake rate had a higher 
effect on the removal of OMPs than nitrogen and phosphate uptake rate. These data will give an insight on the 
implementation of microalgae-based technologies for the removal of OMPs in wastewater with varying strengths 
and nutrient availability.  
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1. Introduction 

Organic micropollutants (OMPs) are only partially removed by 
conventional wastewater treatment plants (WWTP), resulting in their 
accumulation into surface water [21,45]. Since many OMPs, consisting 
of pharmaceuticals, personal care products and pesticides, are biologi-
cally active and persistent, they can negatively affect aquatic organisms, 
such as zooplankton, aquatic vertebrates and invertebrates [2,62]. It is 
therefore crucial to develop technologies for removing OMPs from 
wastewater, that are effective and sustainable (i.e. low requirement of 
energy and materials). Microalgae-based technologies fit these re-
quirements [27,47]. 

Microalgae-based technologies can efficiently remove a wide range 
of OMPs from different types of wastewater under various environ-
mental conditions [27,40]. In batch experiments where Chlorella sor-
okiniana was grown on diluted anaerobically digested black water 
(AnBW; 683 mg CODsoluble/l; 24.5 mg PO3-

4 - P/l; 540 mg NH+
4 - N/l), 

60–100% of metoprolol, paracetamol, diclofenac, and ibuprofen were 
removed [57]. A pilot high-rate algal pond (HRAP), inoculated with 
Chlorella vulgaris, removed 51–90% of ibuprofen, methylparaben, and 
oxybenzone from municipal wastewater (MW; 247.3 mg TOC/l; 1.4 mg 
PO3-

4 - P/l; 20.1 mg NH+
4 - N/l; 0.4 mg NO-

3 - N/l) under semi-batch mode 
[46]. Batch reactors inoculated with Chlorella sp. and Scenedesmus sp., 
removed 99% and 95% of caffeine and ibuprofen respectively from 
mixed wastewater (25% urban wastewater + 75% groundwater; 60.3 
mg CODsoluble/l, 0.4 mg PO3-

4 -P/l; 11.8 mg NH+
4 -N/l; 28.5 mg NO-

3-N/l) 
[33]. Ferrando & Matamoros [7] showed that an immobilised 
microalgae-based system removed 64–94% of sulfamethoxazole and 
43–73% of mecoprop from modified ground water (5 mg PO3-

4 -P/l; 200 
mg NO-

3-N/l) under continuous conditions. This shows that besides 
microalgae species, OMPs concentrations and operation conditions of 
reactors, wastewater characteristics might play an important role in the 
removal of OMPs. 

Most studies on microalgae technologies for wastewater treatment 
focused on the removal of OMPs in one type of wastewater [36,42,54]. 
However, only very few studies have investigated the effect of waste-
water characteristics on OMPs removal [57]. In our previous work 
where Chlorella sorokiniana was cultivated in batch bottles, it was shown 
that the dissolved organic matter (DOM) in AnBW can act as a photo-
sensitizer, therefore inducing more ibuprofen removal by photo-
degradation than in artificial urine [57]. DOM can also influence the 
OMPs removal via enhancing or supressing microalgal biodegradation 
[10,56,61]. For example, Wang et al.[56] found that 0.3 g/l of glucose 
increased the removal of carbamazepine from 30% to 50% via the 
enhancement of carbamazepine biodegradation in the batch experi-
ments with Spirulina platensis. Gatidou et al. [10] showed that 1 g/l of 
sodium acetate in artificial medium decreased benzotriazole removal 
from 20% to 80% via the suppression of benzotriazole biodegradation in 
the batch experiments with Chlorella sorokiniana. Compounds with 
similar structures in wastewater DOM might also affect the OMPs 
removal by similar mechanisms. On the other hand, many studies on the 
removal of OMPs from wastewater using microalgae and 
microalgae-bacteria consortium technologies have been conducted 
under batch mode [33,4,6]. Biological processes in WWTP are operated 
under continuous or semi-continuous modes [15]. Operational mode 
(batch, semi-batch or continuous mode) can remarkably affect the effi-
ciency of microalgae-based OMPs removal [51]. Previous study showed 
that continuous mode (2–8 d HRT) achieved 50% higher removal of 
chlorpyrifos and pentachlorobenzene than batch mode for 14 days, 
when a microalgal consortium dominated by Chlorella sp. and Scene-
desmus sp. was applied [32]. The authors proposed that the continuous 
mode of operation (2–8 d HRT) increased the contact time between 
OMPs and biomass, thus increasing the removal of OMPs. Therefore, 
understanding the removal of OMPs under continuous mode of opera-
tion is crucial for scaling up microalgae-based technologies for waste-
water treatment and completing the picture of the potential of such 

technologies for OMPs removal. 
In this study, the growth of Chlorella sorokiniana in three types of 

wastewater was followed and the effect of sixteen OMPs on its growth 
was assessed under batch and continuous mode of operation. Further, 
the removal efficiencies of these sixteen OMPs were investigated. 
Wastewater characteristics, biomass growth, and the overall removal of 
OMPs were correlated to elucidate which parameters predominantly 
affect the removal of OMPs. 

2. Materials and methods 

2.1. Cultivation medium 

AnBW, MW and secondary clarified effluent (SCE) were selected as 
the cultivation media for the experiments since they have distinct 
characteristics in terms of soluble COD, nitrogen, phosphorus, and C/N/ 
P molar ratio (Table 1). Dissolve inorganic nitrogen (DIN) in all waste-
water only consist of ammonia and nitrate due to the absence of nitrite. 

AnBW was collected from a UASB reactor treating vacuum-collected 
black water of a two-person household in Wageningen, The Netherlands. 
MW and secondary clarification effluent (SCE) were collected from the 
WWTP of Bennekom, The Netherlands. In this WWTP, municipal 
wastewater is treated by conventional activated sludge technology, 
followed by a settling tank and a sand filtration. Municipal wastewater 
refers to the influent of the WWTP, while secondary clarified effluent 
refers to the effluent of the settling tank. 

After collection, all three types of wastewater were autoclaved at 
121 ℃ for 90 min to remove potential human pathogen contamination. 
AnBW was further centrifuged at 4500 rpm for 5 min to remove sus-
pended solids and prevent clogging of the tubings feeding the photo-
bioreactors. All wastewater were stored at 4 ℃ under anaerobic 
conditions until use. 

2.2. Microalgae species 

Chlorella sorokiniana originated from the culture collection at the 
Netherlands Institute of Ecology (NIOO- KNAW), The Netherlands. It 
was maintained in M8a medium [23] at 35 ◦C under continuous average 
irradiation of 80 μmol m− 2 s− 1. 

2.3. Target OMPs 

Sixteen OMPs were selected based on the diversity of therapeutical 
class, the measurability, the persistency in wastewater and aquatic 
ecosystems, and the guideline list of OMPs released by the Dutch 
Foundation for Applied Water Research (STOWA) [12,38]. The OMPs 
are caffeine (CAF), trimethoprim (TRI), propranolol (PRO), carbamaz-
epine (CBZ), sulfamethoxazole (SUL), benzotriazole (BTZ), 4/5-methyl-
benzotriazole (MeBT), clarithromycin (CLA), irbesartan (IRB), 

Table 1 
Average characteristics ( ± standard deviation) of the three types of wastewater 
(n = 3).   

AnBW MW SCE 

pH 10.1 ± 0.5 7.6 ± 0.2 8.5 ± 0.4 
CODsoluble (mg/l) 1570 ± 31 681 ± 5 31 ± 3 
TSS (mg/l) 206 ± 21 168 ± 4 < DL 
VSS (mg/l) 191 ± 19 158 ± 3 < DL 
Alkalinity (mg CaCO3/l) 875 ± 13 185 ± 2 94 ± 0 
TN (mg/l) 1912 ± 18 83 ± 2 4 ± 0 
NH+

4 -N (mg/l) 1291 ± 31 63 ± 3.1 0.2 ± 0.0 
NO-

3-N (mg/l) <DL < DL 2 ± 0 
DIN (mg/l) 1291 ± 31 63 ± 3 2 ± 0 
TP (mg/l) 152 ± 4 9 ± 0.2 0.2 ± 0.0 
PO3-

4 -P (mg/l) 100 ± 4 8 ± 0.2 0.2 ± 0.0 
N/P molar ratio 29/1 17/1 23/1 

DL = Detection limit. 
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metoprolol (MET), diclofenac (DCF), ibuprofen (IBU), furosemide 
(FUR), hydrochlorothiazide (HYD), mecoprop (MCPP), and 2-methyl-4--
chlorophenoxyacetic acid (MCPA). The OMPs were spiked in waste-
water according to Wu et al. [58]. We spiked each OMP in the 
cultivation media to a final concentration of 6 µg/l. Caffeine was already 
present in the non-spiked AnBW and MW, thus reaching a final con-
centration of respectively 183 ± 3 and 25 ± 0 µg/l. 

2.4. Experimental set-up 

Four 380 ml flat panel photobioreactors (PBRs) were inoculated with 
133 ± 4 µg chlorophyll a/l of C. sorokiniana. Two replicate PBRs were 
fed with OMPs spiked wastewater (treatment reactors), while the other 
two replicate PBRs were fed with non-spiked wastewater (control re-
actors). Each PBR had a light path of 14 mm, and an illuminated area of 
0.027 m2. Optimal temperature (35 ◦C) and pH (6.8 ± 0.1) for the 
growth of C. sorokiniana were automatically controlled [52]. The con-
tent of each PBR was homogeneously mixed by bubbling air enriched 
with 10% CO2 at a flow rate of 400 ml/min. During the AnBW and MW 
experiments, the light regime followed a sinus curve with a maximum 
average light intensity (400–800 nm) of 150 μmol m− 2 s− 1 and a 16:8 
(light: dark) cycle. In the SCE experiment, the maximum average light 
intensity was 100 μmol m− 2 s− 1 to prevent light inhibition on microalgal 
growth. 

The PBRs were initially operated in batch mode until the end of the 
exponential growth phase of microalgae. Then a continuous mode of 
operation (0.8 d HRT) was applied until the end of the experiment, when 
a steady state was reached. Steady state is defined as the period when the 
dry weight and chlorophyll a are stable for a minimum of five consec-
utive days, with a maximum standard deviation up to 5%. 

2.5. Analytical methods 

Algal biomass was daily quantified by dry weight and chlorophyll a 
during the continuous mode of operation. Dry weight was measured by a 
standard method of Rice & American Public Health Association [44], 
and chlorophyll a was measured by a PhytoPAM fluorometer (Heinz 
Walz GmbH, Effeltrich, Germany). Both measurements were performed 
in duplicate. 

The elemental composition of dried biomass was determined in 
duplicate during steady state. For the analysis of biomass C and N 
content, a dried biomass sample was placed into a small tin cup and 
measured in an organic elemental analyzer (Flash 2000, Interscience 
Breda). For the analysis of P, the dried biomass was combusted at 550 ℃ 
for 30 min and digested with 10 ml persulfate (2.5%) at 121 ℃ for 30 
min. The digested supernatant was used for P measurement by a 
PhosVer® 3 Phosphate Reagent Powder Pillow (Hach Lange, The 
Netherlands). For dissolved inorganic nutrients (NH+

4 -N, NO-
3-N, NO-

2-N, 
and PO3-

4 -P), 2 ml of AnBW or MW samples, or 10 ml of SCE samples, 
were filtered with a 0.2 µm cellulose acetate filter (VWR, The 
Netherlands), diluted with demi water to a final volume of 10 ml, and 
measured using a Seal QuAAtro39 AutoAnalyzer (SEAL, Analytical Ltd., 
Southampton, UK). 

Prior to OMPs measurement, 5 ml of microalgal biomass samples 
were daily collected from the PBRs. After centrifugation (4500 rpm, 10 
min), 3 ml of supernatant was used for solid phase extraction [58]. Solid 
phase extraction recoveries of sixteen OMPs were 40–103% with a 
standard deviation up to 10% (Table S1). 

OMPs, except for IBU and FUR, were measured by a liquid chro-
matograph coupled to a triple quadruple mass spectrometer (LC-MSMS) 
as described in Wu et al. [58]. CAF (transition; 195.0 -> 138.0), TRI 
(291.0->230.0), PRO (260.0 -> 116.0), CBZ (237.0 -> 194.0), SUL 
(254.0 -> 92.0), BTZ (120.0 -> 65.3), MeBT (134.0 -> 77.2), CLA (748.5 
-> 158.0), IRB (429.2 -> 207.1), MET (268.0 -> 116.0), DCF (296.0 ->
214.0), and HYD (296.0 -> 268.8) were measured in positive ionisation 
model, while MCPP (213.0 -> 141.0) and MCPA (199.0 -> 141.0) were 

measured in negative ionisation mode. 
IBU and FUR were measured by an ultra-high performance liquid 

equipped with a tandem mass spectrometer as described in van Gijn 
et al. [13]. IBU (205.0 ->161.2) and FUR (328.9 -> 285.0) were 
measured in negative ionisation mode. 

The measurement error was 10% for MCPA and 5% for other OMPs 
in our study (data not shown). Thus, removal lower than 10% was 
regarded as negligible for MCPA, and lower than 5% for all other OMPs. 

2.6. Statistical analyses 

The statistical analyses were conducted to elaborate on the effect of 
wastewater characteristics (CODsoluble, DIN, and PO3-

4 -P), kinetic pa-
rameters (chlorophyll a, dry weight and growth rate), and nutrient (C/ 
N/P) uptake rate of the biomass on the removal of OMPs during steady 
state. Since the removal of MET, CBZ, MCPP, MCPA, and DCF was 
negligible in all wastewater, these five OMPs were not included in the 
statistical analyses. 

The nutrient uptake rate of the biomass was calculated based on the 
C/N/P ratios of biomass: the C/N/P ratios were 179/22/1 for AnBW, 
265/26/1 for MW, and 675/26/1 for SCE, respectively. The Principal 
Component Analysis (PCA) showed the dimension reduction of the 
OMPs data. The first two principal components PC1 and PC2 were used 
to represent the OMPs removal data. To determine the limiting condi-
tions on OMPs removal, the Redundancy Dimensional Analysis (RDA) 
was used with PC1 and PC2 of OMPs removal. Similarly, RDA was 
performed with the nutrient uptake rate of the biomass and PC1 and PC2 
of OMPs removal. All the statistical tests were conducted using Origin-
Pro, Version 2022b, OriginLab Corporation, Northampton, MA, USA. 

3. Results and discussion 

3.1. Microalgal growth 

The experiments with C. sorokiniana were started in batch mode to 
achieve exponential growth and therefore high biomass. When growth 
rate decreased mostly due to nutrient depletion, continuous mode was 
applied therefore continuously supplying nutrients at an HRT of 0.8 d. 
After a few days steady state was achieved, indicating that the growth 
rate of C. sorokiniana was constant. 

The dry weight of C. sorokiniana in AnBW in the treatment (with 
OMPs) reached 4367 ± 42 mg/l at the end of the batch mode (day 6), 
and 1714 ± 32 mg/l in continuous mode during steady state (day 
10–15) (Fig. 1a). In comparison with the control (no OMPs), the dry 
weight was 15% higher at the end of the batch mode, but 14% lower 
during steady state. A similar trend was observed for chlorophyll a, even 
though the standard deviation during steady state was much larger (10% 
for control, 11% for treatment, Fig. S1a). 

In MW, the dry weight was 1845 ± 131 mg/l at the end of the batch 
mode in the treatment and 1371 ± 75 mg/l during steady state of 
continuous (day 6–15). The dry weight and chlorophyll a were similar in 
both treatment and control (Fig. 1b, S1b). 

In SCE, a much lower dry weight and chlorophyll a was obtained 
than with AnBW and MW (Fig. 1c, S1c) due to the low nitrogen and 
phosphorus concentrations in the medium (Table 1). During steady state 
(day 5–10), the dry weight in the treatment (573 ± 14 mg/l) was 16% 
lower than control (4% standard deviation), while the chlorophyll a in 
the treatment was only 11% lower and with low deviation (1%). 

OMPs positively affected the microalgal growth in batch mode in 
AnBW, but not in MW and SCE. During steady state, OMPs appeared to 
slightly inhibit the microalgal growth in AnBW and SCE. This is difficult 
to validate due to the large standard deviation between control and 
treatment for both dry weight and chlorophyl a. This was not the case for 
MW, where clearly no inhibition was found. In batch mode, 
C. sorokiniana was exposed to the lower concentration of OMPs due to 
the higher removal efficiency in comparison with steady state in 

K. Wu et al.                                                                                                                                                                                                                                      



Journal of Hazardous Materials 453 (2023) 131451

4

continuous mode (Fig. 2). Mao et al. [29] found that azithromycin 
stimulated the growth of Chlorella pyrenoidosa at low concentration (0.5, 
1 µg/l), while inhibited the growth at high concentration (5–100 µg/l). 
Possibly, this stimulation at low concentration of OMPs also occurred in 

batch mode. During steady state, the higher concentration of OMPs 
inhibited the growth possibly by intervening the synthesis of protein in 
chloroplasts, as it has been demonstrated previously [24,37,59]. In MW, 
DOM may have reduced the bioavailability of OMPs by complexation of 

Fig. 1. Dry weight of Chlorella sorokiniana in time in AnBW (a), MW (b) and SCE (c).  

Fig. 2. Heatmap of OMPs removal (%) in AnBW, MW and SCE. The removal in batch mode refers to the removal at the end of batch mode (day 6, 4 and 3 for AnBW, 
MW and SCE, respectively). The removal in continuous mode refers to the average removal during steady state. The standard deviations of removal in batch and 
continuous mode are shown in Table S2. 
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DOM and OMPs, and further mitigate the potential toxic effect of sixteen 
OMPs. Tong et al. [50] showed that commercial DOM reduced the in-
hibition of tetracycline to Coelastrella sp. by the binding of tetracycline to 
the DOM. In SCE, the poor removal of OMPs in batch mode (Fig. 2) 
resulted in a higher exposure concentration of OMPs than in AnBW, 
thereby allowing for a higher inhibitory effect on the removal of OMPs. 
These results indicate that the effect of OMPs on microalgal growth was 
influenced by both OMPs removal and DOM in wastewater. 

3.2. OMPs removal 

Generally, eleven out of sixteen OMPs were removed from AnBW and 
MW, except for MET, CBZ, MCPP, MCPA, and DCF (Fig. 2). On the 
contrary, only CAF, IBU, PRO, CLA and IRB (five out of sixteen) were 
removed from SCE. 

The compounds (CAF, BTZ, SUL, IBU, FUR, and PRO) showed the 
highest removal (82–99%) in batch mode with AnBW, while a decrease 
was observed for all these compounds after switching to continuous 
mode, except for CAF for which removal remained almost 100%. In MW, 
the removal of these OMPs ranged from 69% to 93% in batch mode. In 
comparison with AnBW, BTZ and PRO removal decreased less, and the 
removal of other OMPs remained constant or showed limited increase 
(<7%) upon changing from batch to continuous mode. The observed 
decrease of the removal of OMPs from batch to continuous mode was 
paralleled with a decrease of biomass, as lower biomass means less en-
zymes and less adsorption surface available for the removal of OMPs. A 
lower decrease in the removal of CAF, BTZ, SUL, IBU, FUR, and PRO was 
observed in MW from batch to continuous mode due to a lower decrease 
(25% in dry weight) of biomass than in AnBW (61% in dry weight). In 
SCE, the removal of most OMPs was negligible in batch mode, and upon 
switching to continuous mode, increased for three compounds (CAF, 
IBU, and PRO) to more than 20%. Most likely, the low biomass in SCE 
resulted in a negligible removal of most OMPs (Fig. 1c), while for CAF, 
IBU and PRO, the removal capacity of Chlorella sorokiniana was 
enhanced by acclimatizing to these OMPs, even at low biomass con-
centrations [18]. Additionally, aromatic compounds containing nitro-
gen, such as CAF and PRO, may serve as extra nitrogen sources for 
maintaining the growth of Chlorella sorokiniana, therefore leading to a 
remarkable removal of DIN in SCE. Luther [28] found that Scenedesmus 
obliquus grew by using nitro- and ammonia substituted aromatic com-
pounds (amino naphthalene, 4- amino naphthalene-1-sulfonic acid, 
4-aminobenzoate, 4-nitroanilene, and 2-nitrobenzoate) as nitrogen 
sources in the absence of inorganic nitrogen sources. The removal effi-
ciencies of these six OMPs in our experiments with AnBW and MW are 
within previously reported removal efficiencies in other 
microalgae-based systems, such as flasks and pilot-scale HRAP [9,10,14, 
19,34,54,4]. 

In comparison, HYD, MeBT, CLA, TRI, and IRB showed less removal 
in batch mode with AnBW. Furthermore, the removal of these OMPs in 
AnBW decreased after switching from batch to continuous mode, except 
for CLA, for which the removal increased. In MW, all these compounds 
showed a decrease of removal when switching from batch to continuous 
mode. HYD and IRB showed less removal than AnBW, and MeBT was 
removed similarly in both wastewater. Specially, CLA in batch mode 
with MW (88%) and SCE (79%) showed higher removal than AnBW. TRI 
removal in batch mode with MW was 35% higher than AnBW. Most 
likely, nutrient limitation (Fig. S2) during the experiment with MW 
stimulated the production of peroxidase and PY450 enzymes [11,48]. 
These enzymes are responsible for TRI removal [1,3], and PY450 en-
zymes can remove CLA by adding hydroxyl group on its cladinose ring 
[49]. A higher removal of CLA and TRI was therefore achieved in batch 
mode with MW. 

MET, CBZ, MCPP, MCPA, and DCF, were poorly removed in all three 
types of wastewater. The poor removal efficiencies of MET, CBZ and 
MCPP were in line with previous studies ([57,9,58]). MCPA has a similar 
recalcitrant structure as MCPP, which includes an aromatic ring with a 

carboxylic side chain [41]. This might explain the poor removal of 
MCPA. Poor removal of MCPA in sewage was also observed in batch 
experiments with four different green algal species (Chlamydomonas 
reinhardtii, Scenedesmus obliquus, Chlorella pyrenoidosa, and Chlorella 
vulgaris) under fluorescent light [63]. In contrast, 89% of MCPA removal 
in agricultural run-off was achieved in a full-scale semi-closed PBR 
inoculated with a mixed community of bacteria, microalgae, protozoa 
and small metazoan, under natural light conditions [8]. This removal 
was attributed to photodegradation and biodegradation. The photo-
degradation of MCPA required the light with wavelength of lower than 
290 nm [39]. MCPA therefore was not removed by photodegradation 
under visible light (400–700 nm) in our study. DCF removal on the other 
hand has been shown to be completely removed by photodegradation 
under white fluorescence light [57,58]. Under natural light conditions, 
20–60% of DCF removal was observed in multiple pilot-scale HRAP [9, 
34,53]. The contradicting results between this study and others are 
because visible light (400–700 nm) in this study is unable to induce DCF 
photodegradation [20,43]. Therefore, applying a light source with the 
same spectrum as sunlight can be a solution for optimising the removal 
of MCPA and DCF in this study. 

3.3. Effect of wastewater characteristics and biomass composition on 
OMPs removal 

RDA was applied to show that OMPs removal was influenced by 
wastewater type (MW, SCE and AnBW), as shown by wastewater char-
acteristics, kinetic parameters of the reactors and biomass characteris-
tics (Fig. 3). 

The coefficients of RDA showed that dry weight (RDA1: 0.96) and 
soluble COD (RDA1: 0.79) had the highest positive impact on the total 
removal of OMPs (Fig. 3a), whereas the concentration of DIN (RDA1: 
0.41 and RDA2: − 0.84) and PO3-

4 -P (RDA1: 0.41 and RDA2: − 0.84) were 
not as effective. The similar tendencies in dry weight and the removal of 
most OMPs in AnBW and MW from batch to continuous mode man-
ifested the positive impact of biomass concentration on the removal of 
OMPs. Therefore, increasing biomass levels in microalgae-based pho-
tobioreactors, either by increasing the HRT or by decoupling HRT from 
SRT, appears to be an important way to further optimize the removal of 
OMPs. Furthermore, soluble COD in wastewater can affect OMPs 
removal by complexation of DOM and OMPs in microalgae-based sys-
tems [50,5]. DOM, such as humic acid, reduced the removal of triclosan 
by Cymbella sp. because the complexation of humic acid and triclosan 
reduced the availability of triclosan to microalgal cells for subsequent 
biodegradation [5]. This negative effect was also observed in the 
removal of tetracycline by Coelastrella sp. [50]. These negative results 
contradicted with the outcome of our study. Possibly, other mechanisms 
induced the positive effect of soluble COD on OMPs removal. Humic 
substances in DOM can function as surfactant and emulsifier [22], which 
can increase the accessibilities of OMPs to the biomass and the subse-
quent intracellular biodegradation [47]. Humic acid contains quinone 
moieties, and can act as electron shuttle to enhance the electron transfer 
between electron donors and electron acceptors [26,31]. He et al. [17] 
found that this mechanism was responsible for enhancing the removal of 
metoprolol, naproxen, and diclofenac (electron donors) by DOM from 
constructed wetland in aerobic enrichment cultures. Due to the simi-
larities of OMP removal pathways by microalgae and bacteria [35], this 
process can play a role in our microalgae-based systems. 

The biomass uptake rate of C/N/P played a significant role in total 
removal of OMPs. The mole of C in the biomass (RDA2: 0.82) showed a 
higher impact than the mole of N (RDA2: 0.76) and PO3-

4 -P (RDA2: 0.74) 
on OMPs removal (Fig. 3b). This is also shown by the variable impor-
tance plot (VIP) of each parameter on the total removal of OMPs 
(Fig. S3a; S3b). The biomass in MW showed higher mole C uptake rate 
than AnBW (Table S3). This was probably because of the accumulation 
of carbohydrate and lipid in Chlorella sp., induced by limited nutrient 
availability in MW [16]. Conjunction with carbohydrate, such as 
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glucose, is an important step of removal of some OMPs, such as IBU and 
BTZ [25,30]. Possibly, the accumulated carbohydrate accelerated this 
procedure and resulted in a higher removal. Carbohydrates, such as 
glucose, can also act as co-substrate for the removal of OMPs (e.g. 
tetracycline and bisphenol A) and lead to a higher removal in the batch 
experiments with Chlorella sorokiniana [55]. However, the addition of 
0.5 g/l glucose completely inhibited the removal of ciprofloxacin in 
flask experiments with Chlamydomonas Mexicana since the easily 
available carbon source (glucose) inhibited the synthesis of enzymes 
available for ciprofloxacin removal [60]. This inhibitory effect of car-
bohydrate might also occur in the removal of some OMPs in our study. 
Overally, a combination of these mechanisms can result in the signifi-
cant impact of carbon uptake rate of the biomass to the overall removal 
of OMPs. 

4. Conclusion 

In batch mode, eleven out of sixteen OMPs were highly removed 
from AnBW and MW, whereas most OMPs showed poor removal (<11%) 
in SCE, except CLA and IRB. The removal of most OMPs decreased in 
AnBW and MW when the operation was switched from batch to 
continuous mode. However, removal percentages remained above 60% 
for most of these 11 OMPs. The reduced biomass concentrations during 
continuous mode seem to be the most important factor in this decrease 
in OMPs removal as less enzymes and adsorption surface are available 
for the removal of OMPs. An increase in the removal of CAF, IBU and 
PRO in SCE was observed when switching from batch to continuous 
mode. It appears that the exposure of microalgae to these compounds 
leads to an acquired removal capacity for these specific chemicals. 

Statistical analyses showed that the total removal of OMPs during 
steady state of continuous mode was directly affected by the wastewater 
type. Specifically, the soluble COD of wastewater, dry weight and car-
bon uptake rate of the biomass positively influenced the total removal of 
OMPs. 

To conclude, wastewater characteristics, such as soluble COD, and 
microalgae nutrient and carbon uptake rate, play an important role in 
the removal of OMPs by microalgae-based technology. To achieve a 
more efficient removal of OMPs, more biomass is needed in the bio-
reactors, which can be achieved by changing operational conditions 
(hydraulic and sludge retention times). 
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Alda, M., Díez-Montero, R., García, J., 2020. Microalgae-based bioremediation of 
water contaminated by pesticides in peri-urban agricultural areas. Environ Pollut 
265, 114579. https://doi.org/10.1016/j.envpol.2020.114579. 

[9] García-Galán, M.J., Arashiro, L., Santos, L.H.M.L.M., Insa, S., Rodríguez-Mozaz, S., 
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