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Abstract
Amazonian forests function as biomass and biodiversity reservoirs, contributing to 
climate change mitigation. While they continuously experience disturbance, the ef-
fect that disturbances have on biomass and biodiversity over time has not yet been 
assessed at a large scale. Here, we evaluate the degree of recent forest disturbance 
in Peruvian Amazonia and the effects that disturbance, environmental conditions and 
human use have on biomass and biodiversity in disturbed forests. We integrate tree-
level data on aboveground biomass (AGB) and species richness from 1840 forest plots 
from Peru's National Forest Inventory with remotely sensed monitoring of forest 
change dynamics, based on disturbances detected from Landsat-derived Normalized 
Difference Moisture Index time series. Our results show a clear negative effect of 
disturbance intensity tree species richness. This effect was also observed on AGB 
and species richness recovery values towards undisturbed levels, as well as on the 
recovery of species composition towards undisturbed levels. Time since disturbance 
had a larger effect on AGB than on species richness. While time since disturbance 
has a positive effect on AGB, unexpectedly we found a small negative effect of time 
since disturbance on species richness. We estimate that roughly 15% of Peruvian 
Amazonian forests have experienced disturbance at least once since 1984, and that, 
following disturbance, have been increasing in AGB at a rate of 4.7 Mg ha−1 year−1 dur-
ing the first 20 years. Furthermore, the positive effect of surrounding forest cover 
was evident for both AGB and its recovery towards undisturbed levels, as well as for 
species richness. There was a negative effect of forest accessibility on the recovery 
of species composition towards undisturbed levels. Moving forward, we recommend 
that forest-based climate change mitigation endeavours consider forest disturbance 
through the integration of forest inventory data with remote sensing methods.

K E Y W O R D S
aboveground biomass (AGB), disturbance intensity, National Forest Inventory (NFI), species 
richness, time since disturbance, tropical forests
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1  |  INTRODUC TION

Tropical forests are a major terrestrial component of the carbon 
cycle, functioning as carbon reservoirs and sinks (Pan et al., 2011). 
Over the last 20 years, it is estimated that tropical forests in the 
Amazon Basin have been functioning as a net carbon sink of 
approximately −0.1 Gt CO2e year−1, considering removals from 
forest growth and emissions from deforestation and other dis-
turbances (Harris et al., 2021 but also see Gatti et al., 2021). This 
estimate suggests that, while forests in Amazonia are being af-
fected by disturbances, overall they are actively removing CO2 
from the atmosphere, and therefore contributing to climate 
change mitigation. This mitigating role is underpinned by the rich 
biodiversity found in Amazonian forests, making them resilient to 
disturbances and climate change (Levine et al., 2016; Thompson 
et al., 2009).

Tropical forests are intrinsically dynamic, and thus experience 
disturbance constantly. Disturbance, which has previously been de-
fined as “a relatively discrete event causing a change in the phys-
ical structure of the environment” (Clark,  1990), is often divided 
into natural and human disturbances. On the one hand, natural 
disturbances in forests originate from events such as proliferation 
of pathogens, droughts, strong winds, lightning or hurricanes, caus-
ing tree damage and/or tree mortality, which lead to the creation 
of canopy gaps with varying size in forest ecosystems (Asner, 2013; 
Chambers et al., 2013; Espírito-Santo et al., 2014; Gora & Esquivel-
Muelbert, 2021). On the other hand, human disturbances in forests 
originate from anthropogenic activities which range from selective 
logging practices to human-induced fires and clear-cuts, leading 
to the partial or complete removal of trees (Chazdon, 2014; Lewis 
et al., 2015; Malhi et al., 2014; Rappaport et al., 2018). However, in 
reality forest disturbances cannot be easily divided into these two 
distinct categories, as human and natural disturbances tend to be 
intertwined and difficult to separate (Chazdon, 2014). For example, 
disturbances such as droughts, wildfires, and the spread of patho-
gens are amplified by human-induced climate change through the 
increase of warmer and drier conditions (Seidl et al., 2017; Van Loon 
et al., 2016).

Another way to categorise forest disturbances is by the mag-
nitude of their effect on a forest's physical structure (Pickett & 
White, 1985). For example, a disturbance of high intensity, such as 
a clear-cut, results in the total (or near-total) loss of tree living mass 
(that is, biomass). Other events are less intense, such as selective log-
ging or a drought event which leads to the mortality of a few trees, 
and result in a partial loss of forest biomass. Similar to the classifica-
tion of forest disturbances by their origin, their classification by their 
intensity is not discrete. For example, forest degradation—defined 

as the reduction of a forest's ability to provide ecosystem services 
(FAO, 2011), is difficult to quantify and often overlooks what hap-
pens after ecosystem services are reduced (Ghazoul et al.,  2015; 
Vásquez-Grandón & Donoso, 2018).

After a disturbance, forests generally have the ability to recover in 
terms of biomass and biodiversity, towards pre-disturbance levels or 
alternative states (Anderson-Teixeira et al., 2013; Didham et al., 2005). 
Both disturbance and recovery dynamics are essential components 
of tropical forest ecosystems where natural and human disturbances 
are predominant across large forest landscapes (Bullock, Woodcock, 
Souza, et al., 2020; Espírito-Santo et al., 2014; Phillips et al., 2009; 
Pugh et al., 2019). Forest stands recovering from lower-intensity dis-
turbances, such as selectively-logged forests, have the potential to 
recover in biomass (de Avila et al.,  2018; Rutishauser et al.,  2015). 
But also secondary forests, which are forests that recover after 
larger-intensity, stand-replacing disturbances, have the potential to 
recover in biomass and biodiversity towards pre-disturbance levels 
(Chazdon, 2014; Poorter et al., 2016; Rozendaal et al., 2019).

While disturbance/recovery cycles in secondary forests are ac-
counted for in climate change mitigation schemes such as REDD+, 
the effect of lower-intensity disturbance/recovery cycles on car-
bon stocks and biodiversity in degraded forests remains seldom 
accounted for (Berenguer et al.,  2014; Bustamante et al.,  2016; 
Edwards et al.,  2010; Gardner et al.,  2012; Sasaki et al.,  2011), 
given the challenge of characterizing forest degradation (Ghazoul 
et al., 2015; Goslee et al., 2020).

Furthermore, we currently do not know to what extent local fac-
tors such as environmental conditions and human use have an effect 
on biomass, biodiversity and their recovery across forests experi-
encing varying levels of disturbance intensity in the Amazon Basin. 
In managed, logged and secondary forests, disturbance intensity has 
a negative effect on biomass and biodiversity (de Avila et al., 2018; 
Gibson et al., 2011; Rutishauser et al., 2015; Vidal et al., 2016). In 
logged and secondary forests, time since disturbance has a positive 
effect on biomass (Heinrich et al., 2021; Meli et al., 2017; Poorter 
et al.,  2016; Rutishauser et al.,  2015) as well as on biodiversity 
(Rozendaal et al., 2019). In secondary forests, biomass is driven by 
environmental conditions, generally increases with increasing water 
availability and soil fertility (Heinrich et al.,  2021; Li et al.,  2017; 
Poorter et al., 2016) and is generally lower at higher intensities of 
previous and current land use and at higher levels of human acces-
sibility (Chazdon, 2003; Crk et al., 2009; Jakovac et al., 2015). In un-
disturbed and degraded forests, slope and distance to nearest forest 
edge also had a positive effect on biomass (Berenguer et al., 2014). 
In parallel, biodiversity in secondary forests is larger at higher levels 
of surrounding forest cover, as well as with higher levels of water 
availability (Rozendaal et al., 2019).
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One of the main challenges of assessing forest disturbance and 
recovery in the Amazon Basin lies in data availability. Repeated 
measurements of permanent plots in seemingly undisturbed and 
logged forests have elucidated the effects of disturbance on bio-
mass accumulation in these forests (Berenguer et al., 2018; Phillips 
et al., 2009; Rutishauser et al., 2015). However, the assessment of 
the effects of disturbances in large-scale studies of Amazonian for-
est is limited (Chambers, Negrón-Juárez, et al., 2009; Espírito-Santo 
et al., 2014; Fisher et al., 2008). A robust and representative setup 
of permanent forest plots in disturbed forests in the Amazon Basin 
would enable assessing forest recovery from partial to complete tree 
loss across large scales while at the same time accounting for the ef-
fect of broad gradients in environmental conditions and degrees of 
human use. While several efforts are currently underway (Laurance 
et al., 2011; Málaga et al., 2021; Poorter et al., 2016; Sist et al., 2015), 
such information does not fully capture fine-scale variations in dis-
turbance intensity as well as gradients in environmental conditions 
and human use.

In the tropics, national forest monitoring capabilities have greatly 
improved in quality and extent over the last years, with 62 countries 
using National Forest Inventory (NFI) data obtained within the last 
10 years for greenhouse gas (GHG) reporting, and when possible re-
porting at Tier 2 or Tier 3 level (Nesha et al., 2021). One of these 
countries, Peru, is currently carrying out an NFI led by its Forest and 
Wildlife Service (SERFOR). Using a consistent methodology, Peru's 
NFI plots are a representative sample of the country's forests, cover-
ing broad environmental and human use gradients. However, infor-
mation on time of disturbance or disturbance intensity has not been 
quantitatively recorded in these plots.

Remote sensing has enabled the study of forest disturbance and 
recovery across large scales. However, while it has enabled the de-
tection of deforestation events, detecting forest degradation has 
been a recurrent challenge (DeVries, Decuyper, et al., 2015; Herold 
et al., 2011). Dense satellite time series have proved useful in the 
detection of small-scale disturbances, including forest degradation 
(Bullock, Woodcock, & Olofsson, 2020; Bullock, Woodcock, Souza, 
et al.,  2020; DeVries, Decuyper, et al.,  2015; DeVries, Verbesselt, 
et al., 2015; Hamunyela et al., 2020). However, these methodologies 
require an initial training period to establish an undisturbed forest 
baseline and detect only one disturbance event, therefore not fully 
capturing longer-term forest change dynamics. Recent remote sens-
ing methods (Decuyper et al., 2022) have shown that it is possible to 
continuously monitor forest change dynamics by using nearby for-
ests throughout the entire period as a reference baseline. In addition 
to accounting for the natural variability of the annual phenological 
cycle in a given forest, this baseline enables the quantification and 
analysis of disturbance intensity by comparing the baseline vegeta-
tion index with that present at the time of disturbance. Thus, while 
the differentiation of disturbance types remains an ongoing chal-
lenge, the integration of current advancements in remote sensing 
with plot data provides the opportunity to assess general forest 
disturbance intensity as well as forest recovery across large scales 
(Bustamante et al., 2016; Requena Suarez et al., 2021).

In this study, we evaluate the degree of general forest distur-
bance in Peruvian Amazonia during the years of 1984–2019, by in-
tegrating forest plot data from Peru's NFI with Landsat-based time 
series analysis of forest change dynamics. Next, we assess the ef-
fects that disturbance intensity, time since disturbance, environmen-
tal conditions and human use have on aboveground biomass (ABG) 
and on tree species richness. We address the following questions:

1.	 What is the degree of general forest disturbance in Peruvian 
Amazonia?

2.	 What are the effects of disturbance intensity and time since dis-
turbance on ABG, tree species richness and their relative recov-
ery towards undisturbed levels?

3.	 In disturbed forests, what are the effects of environmental condi-
tions and human use on ABG, tree species richness and their rela-
tive recovery towards undisturbed levels?

2  |  METHODS

To address our research questions, we (1) calculated AGB and tree 
species richness for all NFI plots in Peruvian Amazonia; (2) derived 
metrics of disturbance intensity and time since disturbance for plot 
locations, using the Landsat archive for the period of 1984–2019 
and available high-resolution imagery; (3) estimated the percentage 
of recovery for AGB and tree species richness in disturbed forest 
plots, using levels of AGB and tree species richness in nearby forests 
plots that were not disturbed during the study period, based on a 
chronosequence approach; and (4) applied a mixed-effects model-
ling framework to assess the effect of disturbance intensity, time 
since disturbance, and gradients in environmental conditions and 
human use on disturbed forests in Peruvian Amazonia.

2.1  |  Forest plot data

Forest plot data are part of SERFOR's ongoing Peruvian National 
Forest and Wildlife Inventory. The Inventory considers six forest 
types, four of which are located in Peruvian Amazonia: lowland for-
ests, accessible montane forests, inaccessible montane forests and 
tropical wetlands (Figure 1a). These forest types were defined based 
on biophysical and accessibly criteria (MINAGRI, 2016). Peru's NFI 
follows a non-aligned systematic sampling design, where clusters 
are randomly located within grid cells whose size varies per forest 
type. Approximately, 30% of the total sample had been completed 
by the time of our study, with samples being uniformly distributed 
along each forest type. The sampling strategy has been explained 
in detail by MINAGRI and MINAM  (2016) and further elaborated 
by Málaga et al. (2022). Given that the Peru's NFI is a probabilistic 
sample of the entire Peruvian Amazonian forest lands, it captures a 
wide range of natural and human disturbance histories. Of the plots 
used in this study, 66% had signs of human disturbance, and 34% had 
signs of natural disturbance. Quantitative information on the time 
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or intensity of disturbance was not available. No re-measured plots 
were included in this study.

Plot cluster configuration varied per forest type. Clusters within 
the lowland forests consisted of seven rectangular 0.1 ha plots ar-
ranged in the form of a L (Figure 2a). In the remaining forest types, 
L-shape clusters consisted of ten 0.05-ha circular plots (Figure 2b). 
For the purpose of this study, we consistently focused on the sam-
pling units where all trees with a diameter at breast height (DBH) of 
≥10 cm were measured. Hence, within the lowland forests we used 
only half of the seven plots (0.05 ha) and for the remaining forest 

types, 5 out of 10 plots (0.05 ha) within a cluster. A total of 1840 
0.5-ha plots embedded in 306 clusters were included in this study.

For all included plots, the DBH was measured and their taxo-
nomic identification was recorded. Taxonomic identification was 
done by trained botanists acquainted with the tree flora of region 
under evaluation, aided by botanical collections and photographic 
documentation of unknown species, as specified in the Inventory 
field guide (SERFOR, 2019). When possible, trees were identified up 
to species level. Tree species data consisted of 58% trees identified 
up to species level, 32% trees up to genus level, and 6% up to family 

F I G U R E  1  Cluster locations in Peruvian Amazonia and overview of the L-shaped cluster design. (a) Distribution of clusters in lowland 
forests, accessible montane forests, inaccessible montane forests, and tropical wetlands in Peruvian Amazonia. (b) Inset of map showing the 
L-shaped disposition of plots. Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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    |  3605REQUENA SUAREZ et al.

level. When present, DBH (or diameter at ground level) for dead 
standing trees and stumps with a DBH of ≥10 cm was measured.

2.2  |  Estimation of disturbance intensity and time 
since disturbance

For each plot cluster, data on forest disturbance were obtained 
through satellite time series analysis of Landsat-derived Normalized 
Difference Moisture Index (NDMI) spatio-temporal cubes for the 
study period of 1984–2019 (Figure 3). Time series analysis was per-
formed using the Anomaly Vegetation Change Detection algorithm 
(coined AVOCADO; Decuyper et al., 2022).

We chose NDMI (Gao, 1996; Wilson & Sader, 2002) due to its 
high sensitivity for canopy moisture content (Jin & Sader,  2005), 
and therefore its reliability for detecting forest disturbance events 
(Goodwin et al.,  2008; Jin & Sader,  2005; Wilson & Sader,  2002). 
NDMI was calculated by combining Landsat's near-infrared (NIR) 
and shortwave infrared (SWIR) spectral bands (Equation 1),

NDMI accounts for the moisture content of canopy vegetation, 
and thus is sensitive to changes in forest structure. Because of this, 
NDMI has previously been used to quantify disturbances at differ-
ent levels of intensity, ranging from non-stand replacing disturbances, 
such as beetle outbreaks, to stand-replacing disturbances, such as 
harvesting (Goodwin et al., 2008). In tropical forest ecosystems, in-
cluding Peruvian Amazonia, this index has been used to reliably quan-
tify disturbance-regrowth dynamics (Chen et al.,  2021; Decuyper 

et al., 2022; DeVries, Decuyper, et al., 2015; Hayes, 2007; Murillo-
Sandoval et al., 2018). Due to the nature of our method and the afore-
mentioned complexities related to distinguishing natural and human 
disturbances, we were unable to classify disturbances by type.

Year and intensity of disturbance were determined for square-
shaped areas of interest per plot cluster (Figure  3a). To begin this 
process, NDMI spatiotemporal cubes using the entire Landsat ar-
chive at the time (1984–2019) were pre-processed and downloaded 
from Google Earth Engine for a 6.5 km × 6.5 km area around each 
cluster (Figure 3b). In order to construct a local phenological refer-
ence baseline, small undisturbed forest patches with similar charac-
teristics to the forests coinciding with the plot centre points were 
delineated within the square-shaped areas (Figure 3c). For this, we 
visually assessed historical imagery available in Google Earth Pro 
for each square-shaped area from 1984 until 2019. These patches 
were used in combination with the full Landsat NDMI time-series 
to construct robust probabilistic estimations of the annual phenol-
ogy (i.e. reference phenological baseline) for each square-shaped 
area (Figure  3d), using kernel density estimations of NDMI across 
space and time within the reference area (Decuyper et al.,  2022). 
Following this, the reference phenological baseline was used over 
the spatiotemporal NDMI time series in the square-shaped area to 
detect forest disturbance over the entire timeframe. A disturbance 
was detected when three or more consecutive NDMI values were 
located out of the reference baseline (including likelihood boundar-
ies), which was set as 95% of the reference frequency distribution 
(yellow, orange and red band in Figure 3d). The two main outputs of 
this process were (1) year of most recent disturbance and (2) NDMI 
anomaly at the time of disturbance (Figure  3e). The latter corre-
sponds to the difference between the NDMI value at the time of 

(1)NDMI =
NIR − SWIR

NIR + SWIR
.

F I G U R E  2  Cluster configuration for (a) lowland forests and (b) accessible montane forests, inaccessible montane forests and tropical 
wetlands, adapted from MINAGRI and MINAM (2016). Red cross-shaped marks indicate cluster initial points (I.P) and blue x-shaped 
marks indicate plot center points (C.P.). Rectangular plots in (a) are divided into two units. For both (a) and (b), only areas in grey (with a 
DBH ≥ 10 cm) were included in this study. DBH, diameter at breast height.
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    |  3607REQUENA SUAREZ et al.

disturbance and its corresponding temporal value within the refer-
ence phenological baseline (red line in Figure 3d).

The resulting spatially explicit information was overlaid with the 
locations of plot center points (C.P. in Figure 2) to distinguish dis-
turbed forest plots from undisturbed forest plots. For the purpose 
of this study, we define disturbed forests as forests plots located in a 
pixel with at least one disturbance detected during the study period 
(from 1984 until the year of field measurement) and undisturbed for-
ests as forests plots located in a pixel with no detected disturbance 
during the study period. In disturbed forest plots, disturbance inten-
sity was estimated as the absolute NDMI anomaly (ΔNDMI) and time 
since disturbance was calculated as the number of years between 
the latest disturbance and the year of plot measurement.

2.3  |  Estimation of AGB, tree species 
richness and their recovery

To evaluate biomass and its recovery, we calculated AGB and percent 
recovery of AGB towards values found in nearby undisturbed forests 
(hereafter AGB [%r]). DBH and species-specific wood density (WD) 
were used to calculate AGB, using the pantropical allometric equation 
of Chave et al. (2014). WD estimates were extracted from the Global 
Wood Density database (Chave et al., 2009; Zanne et al., 2009) on 
August 2022. Species-level WD was assigned for 38% of all trees, 
genus-level WD estimates were assigned to 47%, and plot-level means 
were used for the remaining 16%. This was done in R v.3.6.1 (R Core 
Team, 2019), using BIOMASS (Réjou-Méchain et al., 2017). Next, we 
calculated AGB (%r) as the percentage of AGB present in a disturbed 
forest plot in comparison with undisturbed forest plot(s) in the same 
cluster. If more than one undisturbed forest plot was present within 
the same cluster, AGB (%r) was calculated using the average AGB of all 
undisturbed forest plots in that cluster. AGB (%r) was not calculated 
for disturbed forest plots in clusters with no undisturbed forest plots.

To evaluate species richness and its recovery, rarefied tree spe-
cies richness (hereafter species richness; i.e. number of species per 10 
stems) was calculated, and percent recovery of species richness to-
wards values found in nearby undisturbed forests (hereafter species 

richness [%r]). For species richness, we calculated rarefied richness 
in R using vegan (Oksanen et al., 2019) for all plots with ≥10 stems. 
Next, species richness (%r) was calculated as the percentage of spe-
cies richness present in a disturbed forest plot in comparison with 
species richness in undisturbed forest plot(s) in the same cluster. If 
more than one undisturbed forest plot with ≥10 stems was present 
within the same cluster, species richness (%r) was calculated using 
the average value of species richness in all undisturbed forest plots 
with ≥10 stems in that cluster. Species richness (%r) was not calcu-
lated for disturbed forest plots in clusters with no undisturbed forest 
plots with ≥10 stems.

In addition, to evaluate the recovery of species composition 
towards undisturbed levels (hereafter species composition [%r]), we 
calculated similarity in species composition between disturbed and 
undisturbed forests. For this, we calculated Chao's dissimilarity 
index (Chao et al., 2004), which uses species abundance information 
to identify shared species between two locations and evaluate how 
dissimilar these locations are in species composition. This index was 
obtained for the differences between each disturbed forest plot and 
each undisturbed forest plot in the same cluster using vegan, ob-
taining dissimilarity values ranging from 0 to 1, which we then sub-
tracted from 1 to obtain similarity values. Average similarity values 
were calculated for disturbed plots with more than one undisturbed 
plot in the same cluster. To account for the natural dissimilarity 
among nearby undisturbed forests, we averaged the within-cluster 
similarity in 268 clusters with at least two undisturbed forest plots, 
obtaining an overall average of 0.37 (SD = 0.17). The similarity value 
of 0.37 was therefore considered as the maximum attainable refer-
ence value and thus, as 100% recovery of species composition.

2.4  |  Data on environmental conditions and 
human use

To identify the main environmental and human use drivers of 
AGB, AGB (%r), species richness, species richness (%r) and spe-
cies composition (%r), we included predictors of climate, topog-
raphy, soil and human use for all plot locations (Table  1). The 

TA B L E  1  Summary of environmental and human use predictors for all disturbed forest plots.

Covariate Unit Minimum Maximum Mean SD
Original 
source Original resolution

Climatic water deficit 
(CWD)

mm year−1 −588.5 0 −111.7 124.1 2.5′ Chave et al. (2014)

Slope ° 0.0 15.5 1.7 3.4 90 m Jarvis et al. (2008)

Total nitrogen (N) 
content

g kg−1 223.0 608.0 335.3 88.9 250 m ISRIC (2020)

Surrounding tree 
cover

% 31.7 100.0 92.0 9.8 30 m Hansen et al. (2013)

Distance to nearest 
navigable 
waterway or road

km 0.0 27.2 5.8 6.7 - OpenStreetMap 
Contributors (2020), 
Schielein (2017)

 13652486, 2023, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16695 by W

ageningen U
niversity and R

esearch B
ibliotheek, W

iley O
nline L

ibrary on [16/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3608  |    REQUENA SUAREZ et al.

effect of climate was evaluated by including Climatic Water 
Deficit (CWD, in mm year−1; Chave et al., 2014), which is the an-
nual evaporative demand during dry months, and thus includes 
both precipitation and temperature during dry periods. Given 
that CWD is one of the parameters used for calculating AGB 
using the allometric equation developed by Chave et al.  (2014), 
we tested for correlations between CWD and AGB. Considering 
both plot and tree-level AGB estimates, correlations with CWD 
were no higher than 0.2. The effect of topography was evalu-
ated by including slope (°), calculated from 90-m resolution el-
evation data (Jarvis et al.,  2008). Soil fertility was assessed by 
including total Nitrogen (N) content, through extracted gridded 
predictions from SoilGrids250m 2.0 (in g kg−1; ISRIC,  2020). In 
line with previous studies (Poorter et al., 2016; Requena Suarez 
et al.,  2021; Rozendaal et al.,  2019), we included surround-
ing tree cover and human accessibility as proxies for degree of 
human use. Surrounding tree cover was calculated as the mean 
percent tree cover in 2010 (Hansen et al.,  2013) within 0.5, 1 
and 5 km radii around each plot. Ideally, using tree cover per-
centage values at the year of disturbance would have been pre-
ferred, however such information is only available for 2000 and 
2010. The later year was ultimately chosen as it is closer to the 
years in which the plots where measured. Accessibility was cal-
culated as the Euclidean distance (km) of each plot to the nearest 
navigable waterway (Schielein,  2017) or road (OpenStreetMap 
Contributors,  2020). Predictor values were extracted or cal-
culated for all plot locations using raster, spatialEco and rgeos 
(Bivand & Rundel, 2017; Evans, 2018; Hijmans, 2019) in R.

2.5  |  Statistical analysis

Linear mixed-effects models were used to test whether there was 
a significant difference between disturbed and undisturbed for-
est plots, with plot category included as a fixed effect. To further 
evaluate this difference, we tested whether there was a signifi-
cant difference in the relative number and basal area of dead trees 
and stumps, including plot category as a fixed effect (Figure S1). 
We also used linear mixed-effects models to identify the drivers 
of (1) AGB, (2) AGB (%r), (3) species richness, (4) species richness 
(%r) and (5) species composition (%r). Per variable, we included 
disturbance intensity, time since disturbance, CWD, slope, soil N 
content, surrounding tree cover and distance to nearest road or 
navigable waterway as fixed effects. To select the final surround-
ing tree cover radius (0.5, 1 or 5 km), we compared models using 
Akaike's information criterion. Models that included surrounding 
tree cover based on a 5 km radius performed best; therefore, we 
included surrounding tree cover within a 5 km radius in the final 
models. Time since disturbance was ln-transformed for AGB and 
AGB (%r), to account for the nonlinear increase in AGB and AGB 
(%r) over time.

In all models, plot clusters were included as random intercepts, 
to account for the effect of proximity between plots within a cluster. 

Predictors were standardised and model fits were evaluated based 
on the conditional (fixed and random effects) and marginal (only 
fixed effects) R2 (Nakagawa & Schielzeth, 2013). We used lme4 and 
lmerTest (Bates et al., 2015; Kuznetsova et al., 2017) to fit all mixed-
effects models in R.

3  |  RESULTS

3.1  |  Levels of disturbance

Out of all plots considered in this study (1840), 283 were in areas 
with detected disturbance. Within these plots, disturbance inten-
sity skewed towards lower disturbance intensities (Figure 4b). The 
majority of disturbed forest plots (241) had one disturbance event, 
38 plots had two events and 4 plots had three events of distur-
bance during the study period. Time since the latest disturbance 
in these plots ranged from 1 to 34 years, with a mean of 14.5 years 
(Figure 4d).

Overall, mean AGB and species richness were lower in disturbed 
forest plots than in undisturbed forest plots. Mean AGB (Figure 5a) 
in disturbed forest plots across all clusters was 165.3 Mg ha−1 
(SD = 177.9), which approximately 60.7% of the mean biomass in un-
disturbed forest plots across all clusters (272.5 Mg ha−1, SD = 355.5). 
Overall, species richness in disturbed forest plots with ≥10 stems 
(213 plots) was 87.5% of what was observed in undisturbed for-
est plots with ≥10 stems (1488 plots), with a mean value of 7.2 
(SD = 2.0) in comparison to 8.2 (SD = 1.2) in undisturbed forest plots 
(Figure  5c). Both the relative number as well as the relative basal 
area of dead trees and stumps were higher in disturbed forests than 
in undisturbed forests (Figure S1).

Two-hundred and eight disturbed forest plots had at least one 
undisturbed forest plot in the same plot cluster, which enabled eval-
uating percent recovery of AGB (AGB [%r]) and recovery of species 
composition relative to undisturbed levels (species composition 
[%r]). For percent recovery of species richness (species richness 
[%r]), 165 plots with ≥10 stems had at least one undisturbed forest 
plot with ≥10 stems for comparison. When compared to nearby un-
disturbed forest plots (i.e. within the same cluster), disturbed forests 
had on average 100.7% of the AGB (%r) (Figure  5b) and 98.4% of 
species richness (%r) (Figure 5d) of undisturbed forests, and a 68.7% 
recovery of species composition relative to undisturbed forests 
(Figure 5e).

3.2  |  Effects of disturbance intensity and time 
since disturbance on AGB and species richness

We found a significant negative effect of disturbance intensity on 
species richness, but not on AGB (Figure 6a,c). AGB tended to de-
crease with disturbance intensity (Figure 6a). Rarefied species rich-
ness decreased throughout the entire disturbance intensity range 
from 8.0 to 5.9 species per 10 stems.
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There was a positive significant effect of time since distur-
bance on AGB (Figure 6b). AGB increased by 7.6 Mg ha−1 per year, 
during the first 10 years after disturbance, slowing to an increase 
of 2.0 Mg ha−1 per year between 11 and 20 years after disturbance, 
1.2 Mg ha−1 per year between 21 and 30 years, and 0.9 Mg ha−1 per 
year between 31 and 34 years after disturbance. According to our 
AGB model, and keeping all other variables constant at the mean, 
AGB at 34 years since disturbance would be 243.4 Mg ha−1, 89% of 
the overall mean AGB in undisturbed forests. There was a small but 
significant inverse effect of time since disturbance on species rich-
ness (Figure 6d), indicating that species richness decreased slightly 
with time during the first 34 years since disturbance. Species rich-
ness declined at a rate of −0.02 species per 10 stems per year, 
from 8.1 to 7.3 species per 10 stems after 34 years following a 
disturbance.

There was a significant effect of disturbance intensity on 
AGB (%r), species richness (%r) and species composition (%r) 
(Figure 7a,c,e). Across the range in disturbance intensity that was 
observed, AGB (%r) decreased from 127.1% to 11.2% of AGB in 

nearby undisturbed forests; species richness (%r) decreased from 
100.9% to 69.3% of species richness in nearby undisturbed forests; 
and species composition (%r) decreased from 79.0% to 40.2%. There 
was no significant effect of time since disturbance on AGB (%r), 
species richness (%r) nor species composition (%r) (Figure 7b,d,f).

3.3  |  Effects of gradients in environmental 
conditions and human use

When looking at the combined effect of all potential drivers, AGB was 
significantly, in order of increasing importance, positively associated 
with time since disturbance and surrounding tree cover (Figure 8a). 
In the same order of importance, AGB (%r) was significantly nega-
tively associated with disturbance intensity and positively associ-
ated with surrounding tree cover and with slope (Figure 8b). Neither 
CWD, soil N content, nor distance to nearest waterway or road were 
significantly associated with AGB or with AGB (%r). Species rich-
ness was, in order of increasing importance, significantly negatively 

F I G U R E  5  (a) Aboveground biomass (AGB), (b) its recovery (AGB [%r]), (c) species richness (rarefied species richness up to 10 stems), 
(d) its recovery (species richness [%r]), and (e) recovery of species composition (species composition [%r]). AGB values for six plots in 
undisturbed forests plots (1634.5, 1790.7, 2243.6, 6811.3, 6983.8 and 7702.5 Mg ha−1) are not shown in (a), but included in further analysis. 
Star signs in (a) and (c) indicate significant differences between disturbed and undisturbed forest plots (p < .05).
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associated to time since disturbance, disturbance intensity and 
CWD; and significantly positively associated to surrounding tree 
cover (Figure 8c). Species richness (%r) was significantly, negatively 
associated to disturbance intensity only (Figure 8d). Species compo-
sition (%r) was significantly negatively associated to disturbance in-
tensity, positively associated to distance to nearest waterway/road, 
and negatively associated to slope (Figure 8e).

The amount of variation explained by the predictors (fixed ef-
fects) and by cluster-to-cluster variation (random effects) varied. 
For AGB and AGB (%r), fixed effects explained 11% and 12% of the 
variation, respectively. Large part of the variation was explained by 
cluster-to-cluster variation, as fixed and random effects together ex-
plained 52% and 29% of the variation, respectively. For species rich-
ness and species richness (%r), fixed effects explained 36% and 8% 
of the variation, respectively. Similarly, large part of the variation in 

species richness and species richness (%r) was explained by cluster-
to-cluster variation, as fixed and random effects together explained 
76% and 58% of the variation, respectively. For recovery of species 
composition, fixed effects explained 16% of variation and 61% was 
explained by fixed and random effects together.

4  |  DISCUSSION

4.1  |  Extent and degree of disturbance in Peruvian 
Amazonia

We found that 283 of the evaluated forest plots were located in 
forests recovering from recent human or natural disturbances, with 
210 of them having a disturbance intensity lower than 0.2 ΔNDMI 

F I G U R E  6  Effect of disturbance intensity and time since disturbance on aboveground biomass [AGB; (a, b)] and species richness [Rarefied 
richness; (c, d)] in disturbed forest plots. Solid lines indicate significant effects, and bands indicate confidence intervals (CI, 95%). For all 
panels, all other predictors were kept at the mean. Symbols represent observed AGB and species richness in disturbed forest plots. For (a), 
the AGB value of two points (1301.5 and 1326.7 Mg ha−1) were excluded from this graph but kept in the analysis.
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3612  |    REQUENA SUAREZ et al.

(Figure 4). By extrapolating our results to the reported forest extent 
of 2019 (Plataforma Geobosques, 2021), taking into consideration 
the forest types defined by SERFOR, approximately 15% (roughly 
105,306 km2) of Peruvian Amazonia has experienced natural and/
or human disturbances at least once during the study period of 
34 years, with a rate of 0.45% per year. Our results include disturbed 
forests recovering from varying intensities of disturbance (i.e. partial 
to full removal of forest cover), and thus account for the combined 

effect of human and natural disturbances (Easterling & Apps, 2005; 
Fischlin et al., 2009).

Both AGB and species richness were significantly lower in dis-
turbed forest plots than in undisturbed forest plots (Figure 5a,c). 
AGB (%r) and species richness (%r) had mean values close to 
100%, suggesting that the differences between disturbed and un-
disturbed values for AGB and species richness were not evident. 
This is expected, given the predominance of natural and human 

F I G U R E  7  Effect of disturbance intensity and time since disturbance on (a, b) AGB (%r), (c, d) species richness (%r), and (e, f) species 
composition (%r). Disturbance intensity and time since disturbance values are indicated in red and blue, respectively. Solid lines indicate 
significant effects, and bands indicate confidence intervals (CI, 95%). For all panels, all other predictors were kept at the mean. AGB, 
aboveground biomass.
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disturbances noted in the Inventory, and in the Amazon Basin in 
general (Chambers et al., 2013; Clement et al., 2015; Espírito-Santo 
et al., 2010; Levis et al., 2017). Therefore, while no disturbance was 
detected through remote sensing during the last 34 years in areas 
where undisturbed plots were located, these could likely still be 
recovering from undetected disturbances before the study period. 
The absence of differences in AGB (%r) and species richness (%r) 
could also be due to the chronosequence approach employed in 
this study, which we used in the absence of data from repeatedly 
measured plots (discussed further in Section 4.5). For the clusters 
with disturbed plots, 86% of them had two or more undisturbed 
plots, which were averaged to constrain local variability.

4.2  |  Effect of disturbance intensity

The significant, negative effect of disturbance intensity on AGB 
(%r) coincides with previous studies in logged forests in the region 

(de Avila et al.,  2018; Rutishauser et al.,  2015; Vidal et al.,  2016), 
where silvicultural practices with low disturbance intensities, such 
as reduced-impact logging (RIL), resulted in forests with higher re-
maining biomass compared to forests under higher-impact silvicul-
tural practices, such as conventional logging (Karsten et al., 2013; 
Longo et al.,  2016; Rutishauser et al.,  2015; Vidal et al.,  2016). In 
a similar manner, the intensity of human-induced fires was also 
found to have a negative effect on forest structure (Rappaport 
et al., 2018). Furthermore, the intensity of natural disturbances, such 
as windthrow severity, has been found to result in tree damage and/
or mortality (Brando et al., 2019; Negrón-Juárez et al., 2011, 2018; 
Rifai et al., 2016; Urquiza Muñoz et al., 2021).

Disturbance intensity also negatively influenced species richness 
and species richness (%r), however both measures remained relatively 
high even at the highest disturbance intensities (Figures 6c and 7c). 
There was also a negative influence of disturbance intensity on the 
recovery of species composition towards undisturbed forest levels 
(Figure 7e). Our results coincide with studies in logged forests under 

F I G U R E  8  Effects of disturbance, environmental conditions and human use on (a) AGB, (b) AGB (%r), (c) species richness, (d) species 
richness (%r) and (e) species composition (%r) in disturbed forests. Significant predictors are shown as filled, black symbols; non-significant 
predictors are shown as open symbols. Whiskers represent confidence intervals (CI, 95%). AGB, aboveground biomass.
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silvicultural practices of varying intensities (Putz et al., 2012), and 
studies on effects of disturbance in human-disturbed forests (Gibson 
et al., 2011), as well the effects of natural disturbances of varying 
intensities (Chambers, Robertson, et al.,  2009; Rifai et al.,  2016; 
Slik, 2004). While not explored here, many studies have looked into 
the effects of natural and human disturbances on species richness 
in various animal taxa (Barlow et al., 2016; Burivalova et al., 2014; 
França et al.,  2017; Gibson et al.,  2011; Moura et al.,  2013; Perry 
et al., 2016; Viljur et al., 2022), showing that higher disturbance in-
tensities lead to higher reductions in animal species richness when 
compared to undisturbed levels. Assessments of taxa more sensitive 
to disturbances can provide insights into the effect of minor distur-
bances on biodiversity which cannot be fully captured by evaluating 
only tree species (Gibson et al., 2011; Putz et al., 2012).

The range of disturbance intensity was broad (Figure  4b), but 
the high frequency of lower disturbance intensity values suggests 
that minor-intensity disturbances were the more predominant dis-
turbance events. This is supported by the larger effects of distur-
bance intensity on AGB (%r) in comparison to the effects on species 
richness, species richness (%r) and recovery of species composition 
(Figures 6 and 7). The larger relative effects of disturbance intensity 
on AGB (%r) compared with its smaller effects on species richness 
(%r) are in line with studies in logged forests, which suggest that 
these disturbances affect structure more than tree species richness, 
with high percentages of tree and animal diversity remaining (Gibson 
et al., 2011; Putz et al., 2012).

4.3  |  Effect of time since disturbance

Our results show that, as expected, after disturbance forests have 
been increasing in AGB over time; however, unexpectedly, this effect 
was not captured when recovery in AGB towards values in nearby 
undisturbed forests (AGB [%r]) was evaluated. This could be due to 
the high AGB variability in undisturbed forest plots (Figure 5a), al-
though variation was constrained by the cluster average of undis-
turbed plots as reference value. Additionally, while no disturbance 
was detected for undisturbed plots since 1984, undisturbed forest 
plots could still be recovering from disturbances prior to 1984. This 
is supported by the qualitative data on human and natural distur-
bance collected. However, this data did not provide the exact time of 
disturbance, and thus could not be included in our analysis.

Until now, large-scale studies of ΔAGB in disturbed forests had 
not been carried out throughout Peruvian Amazonia. During the 
first 20 years after disturbance, ΔAGB rates were 4.7 Mg ha−1 year−1. 
Our rate is consistently lower compared to rates found in forests 
recovering from stand-replacing disturbances, that is secondary 
forests: 20% lower than the 2019 IPCC rate for young secondary 
forests in North and South America (5.9 Mg ha−1 year−1; Requena 
Suarez et al., 2019), 23% lower than for Neotropical secondary for-
ests (6.1 Mg ha−1 year−1; Poorter et al.,  2016), and 22% lower than 
for secondary forests in western Brazil (6.0 Mg ha−1 year−1; Heinrich 
et al., 2021). When comparing to ΔAGB in forests recovering from 

forest degradation, this result is consistently greater: 74% larger than 
in logged forests across the Brazilian Amazon (2.7 Mg ha−1 year−1; 
Rutishauser et al., 2015) and 370% and 96% larger than in forests 
under conventional logging and RIL respectively in Para, Brazil (1.0 
and 2.4 Mg ha−1 year−1; Vidal et al., 2016). Our ΔAGB estimate is 18% 
greater than what was found for terra-firme forests recovering from 
windthrows in the Central Amazon (4.0 Mg ha−1 year−1; Magnabosco 
Marra et al.,  2018). While previous studies have looked at ΔAGB 
rates in secondary forests or degraded forests, we have quantified 
ΔAGB in forests recovering from disturbances ranging in intensity 
and representative for Peruvian Amazonia. In this respect, we pro-
vide a broader context of net AGB change in Amazonian disturbed 
forests.

Previous large-scale studies suggest that recovery of tree spe-
cies richness is a slower process than biomass recovery (Martin 
et al., 2013; Meli et al., 2017), with secondary forests often taking 
more than 50 years to recover in species richness following major 
disturbances (Rozendaal et al., 2019). Windthrow events, which are 
common in northwestern Amazonia (Chambers et al., 2013; Negrón-
Juárez et al., 2018; Urquiza Muñoz et al., 2021), tend to have a pos-
itive effect on tree species richness (Marra et al., 2014). However, 
recovery of species richness over time is not observed in disturbed 
forests in Peruvian Amazonia. The significant but weak inverse ef-
fect of time since disturbance on absolute species richness suggests 
a slight impoverishment of tree species richness during the first 
34 years following a disturbance (Figure 6d). This degradation in spe-
cies richness could be due to the combination of different stressors, 
such as fragmentation and windthrows (Silvério et al., 2019), or to 
the long-term disturbance history prior to 1984 (McMichael, 2021), 
which was not assessed in this study. Furthermore, the absence 
of recovery in species richness could be due to the predominance 
of disturbances that had a larger effect on AGB (%r) than on spe-
cies richness (%r) (Figure  7a,c). Thus, forests recovering from 
disturbances—which had no large effects on species richness—did 
not recover in species richness over time. The negative effect of time 
of disturbance was not observed on species richness (%r).

Across neotropical secondary forests, Rozendaal et al.  (2019) 
found an increase of similarity in species composition over time, as 
well as Meli et al. (2017), pantropically. Thus, we expected to find a 
positive effect of time since disturbance on recovery of species com-
position towards undisturbed levels, however this effect was not ob-
served. This could be due to the limited number of stems per plot 
(which was constrained by plot size), which limited us to calculate 
recovery of species composition in plots with a low number of stems.

4.4  |  Effects of climate, topography, soil and 
human use

While higher values of AGB and AGB (%r) in disturbed forests were 
expected in areas with higher water availability during dry periods 
(Álvarez-Dávila et al., 2017; Heinrich et al., 2021; Poorter et al., 2016, 
2017; Sullivan et al., 2017), our results were not significant. This could 
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be due to a low variability in CWD within our study area. Slope, which 
ranged from 0 to 16° in the studied plots (Table 1), had a positive sig-
nificant effect on AGB (%r), which could perhaps be associated with 
accessibility. Other possible drivers, such as the distance to nearest 
waterway or road, did not have a significant effect on AGB or on AGB 
(%r). The mean distance to nearest navigable waterway or road was 
large, 5.8 km (Table 1), which could be why we did not find an effect. 
However, the absence of an effect could also relate to the absence 
of smaller roads in the spatial dataset, even though we included pri-
mary, secondary and tertiary roads. Similarly, our results suggest that 
soil nitrogen content—a proxy for soil fertility—had no significant 
effect on AGB nor AGB (%r). Previous studies have shown AGB to 
be positively related to soil fertility in undisturbed forest (Sullivan 
et al., 2017). However, this effect has not been consistently observed 
in secondary nor disturbed forests (Poorter et al., 2016), which also 
employed gridded soil data that may not be representative of local 
values. Surrounding tree cover had a significant positive effect on 
AGB and AGB (%r). These results were expected, as surrounding for-
ests foster natural regeneration processes by acting as a source of 
propagules, necessary for tree recruitment (Chazdon, 2003; Rocha 
et al., 2016). Moreover, though not explored here, biotic factors such 
as species and functional diversity have been found to influence 
AGB to a lesser extent in regrowing forests (Capellesso et al., 2020; 
Manuel Villa et al., 2020; Pyles et al., 2018).

Surrounding tree cover had a large, positive effect on species 
richness, but not on species richness (%r) nor on recovery of spe-
cies composition. This was unexpected, but could be due to the 
consistently high tree cover percentages (Table  1), in combination 
with the effect of undetected disturbances, which could also have 
affected surrounding forests. Similar to AGB and AGB (%r), no effect 
of soil N content was observed on species richness, species richness 
(%r) nor species composition (%r), which also coincides with results 
from Rozendaal et al.  (2019), who found no effect of soil fertility 
on species richness and its recovery, but a positive effect of water 
availability on species richness, to which we found opposing results. 
This could be due to the generally high water availability through-
out the year in our study region, which may have limited our anal-
ysis in respect to water availability gradients. Distance to nearest 
waterway or road had a significant negative relationship to species 
composition (%r), suggesting that disturbed forests in less accessible 
areas tend to be more similar to nearby undisturbed forests. This 
is possibly related to higher levels of deforestation and logging in 
areas closer to roads and waterways (Barber et al., 2014; Laurance 
et al., 2009). Lastly, there was a negative effect of slope on species 
composition (%r), suggesting that steep slopes may slow down tree 
establishment and growth.

4.5  |  Methodological challenges

Working on the combination of NFIs with remote sensing of forest 
change dynamics in the tropics brings forward several challenges. 
For example, the geo-location error of the handheld GPS receptors at 

the time of defining plot locations might contribute to misalignment 
between the cluster plots and Landsat pixels. Geo-location error 
was on average 5.8 m; thus, 0.05-ha plots with a minimum spacing 
of 60 m were somewhat constrained within a 0.09-ha Landsat pixel. 
Furthermore, given that our forest change analysis can only date 
back to 1984, plots classified as undisturbed could be forests recov-
ering from disturbances prior to this year. This could be why we did 
not find major differences when comparing AGB and species rich-
ness in disturbed forests to values found in seemingly-undisturbed 
forest plots in the same cluster. Another potential reason lies behind 
the limitations of using Landsat imagery, which can omit small-scale 
and understory disturbances (Lima et al., 2019).

In addition, although cluster and plot configuration varied per 
forest type, we do not think that this influenced our results as plots 
were of the same size. Large variability of AGB and species richness 
values were observed among both disturbed and undisturbed for-
est plots, partially as a consequence of the small size of NFI plots 
(McRoberts & Tomppo,  2007; Requena Suarez et al.,  2021). The 
limitations of working with small plots has been discussed in extent 
(Chave et al., 2004; Málaga et al., 2022; Mauya et al., 2015; Réjou-
Méchain et al.,  2014); therefore, we expect that the presence of 
large trees will lead to the overestimation of AGB, and high vari-
ability in our plot-level AGB and species richness estimates. Thus, 
our results should be confirmed by future studies, which use larger, 
repeatedly-measured plots. The use of NFI plots in this case should 
be regarded as an initial step towards exploring forest disturbance in 
regions where limited plot data is available.

Even though the comparability among plots within the same clus-
ter is hindered by the high levels of AGB variation due spatial variability 
among plots within the same cluster, we consider plots within the same 
cluster to be comparable. Previous studies have highlighted high local 
variability in AGB (Réjou-Méchain et al., 2014; Wagner et al., 2010), 
which may result in a lack of spatial correlation among nearby plots 
(Chave et al., 2004). Within our plot data, spatial correlations for AGB 
in two of our most data-rich forest types (lowland forests and acces-
sible montane forests) were found in plots separated up to 30 km 
(Supplemental Material S.2 in Málaga et al., 2022). This assumption is 
supported by our results, which show that large part of the variation 
for all variables was explained by cluster-to-cluster variation, with clus-
ters explaining 41% of the variation observed for AGB and 40% of the 
total variation observed for species richness (Section 3.3).

We chose to work with NDMI; however, future studies could as-
sess the performance of different indices (e.g. Schultz et al., 2016), 
as well as the possibility of characterising forest disturbance through 
the use of a combination of indices. Our remote sensing derived re-
sults could not be systematically validated using high-resolution im-
agery, given that frequent high-resolution images are not available 
for all sites and for the whole study period. Future studies can evalu-
ate the performance of our RS approach in areas for which informa-
tion on time and intensity of disturbance has been recorded. When 
looking at the relative predominance of dead trees and stumps for 
all plots, there was a significant difference between disturbed and 
undisturbed forest plots (Figure S1). While we do not know the date 
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of tree mortality or extraction, these observations align with our RS-
derived results. Furthermore, disturbance intensity had a strong neg-
ative influence on the recovery of AGB and species richness, which 
is an expected result that argues for the feasibility of this approach. 
Previous studies have stated the challenges of accounting for phenol-
ogy in tropical humid forests (Negrón-Juárez et al., 2020; Verbesselt 
et al., 2010), which are minimised in our approach by defining highly-
local phenological baselines prior to detecting forest change.

4.6  |  Integration of NFI forest plots and 
remote sensing

Previously, no large scale study of forest disturbance and recovery 
using forest plot data has been undertaken in Peruvian Amazonia. 
By combining consistent data on biomass and tree species richness 
from forest plots with remote sensing of forest change dynamics, our 
results offer insight into the extent of disturbed forests, their ABG 
and species richness and recovery therein, as well as their variation 
across environmental and human use gradients. These insights are 
much-needed, not only for enhancing ecological understanding, but 
also for climate-change mitigation efforts (Bustamante et al., 2016). 
From this perspective, NFIs, providing a snapshot of a country's for-
ests, are a valuable source of data in combination with remote sens-
ing. NFI data are valuable not only for GHG reporting and national 
forest management practices, but also for ecological research, as 
they provide forest plot data representative of large areas, while em-
ploying a consistent methodology throughout (see Requena Suarez 
et al.,  2021). As time passes and the Landsat archive increases in 
time, analyses of forest disturbance frequency and intensity, and re-
covery will be possible at a longer temporal scale. Moreover, as de-
tection methods of forest disturbance improve, we might be able to 
assess forest recovery from different disturbance types. Finally, as 
countries advance in tropical forest monitoring (Nesha et al., 2021) 
and more NFIs become available, the opportunity to assess distur-
bance and recovery in other regions arises.

5  |  CONCLUSIONS AND IMPLIC ATIONS

Our results highlight the negative effect of disturbance intensity on 
ABG and tree species richness and composition. We found a direct 
effect of time since disturbance on AGB, and a small but significant 
inverse effect of time on species richness, suggesting an increase 
in biomass and slight impoverishment in species richness over time. 
Thus, our methods show a way forward in which ongoing efforts 
such as NFIs can be used to explore forest disturbance and recovery 
throughout large areas in the tropics.

Here, we have explored the paths of forests following a dis-
turbance in Peruvian Amazonia: for a mean-intensity disturbance, 
AGB increased from 131.3 Mg ha−1 at the time of disturbance to 
243.4 Mg ha−1 at 34 years after a disturbance event. During the first 
20 years after a disturbance, AGB has been increasing at 4.7 Mg ha−1 

per year. Disturbance intensities were relatively low, with 74% of 
disturbed plots with a disturbance intensity of up to 0.2 ΔNDMI. 
These insights, in conjunction with more information on type of dis-
turbance (natural or human), can contribute towards improving GHG 
inventories in forest ecosystems. As a way forward, we recommend 
forest-based mitigation endeavours to be cognizant of the role of 
disturbance intensity on forest biomass and biodiversity and their 
potential recovery over time. Given that disturbed forests and their 
recovery are often overlooked in mitigation policies (Bustamante 
et al., 2016; Edwards et al., 2010), as well as the role of biodiversity 
in climate change mitigation (Gardner et al., 2012), large-scale analy-
ses of biomass and biodiversity in disturbed forests, as well as their 
recovery, are an important step towards their inclusion.
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