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Simple Summary: The global trade system is contributing to the spread of invasive species, like
the raisin moth (Cadra figulilella), causing significant damage to agriculture and the environment, as
well as stored food products. The potential distribution of the raisin moth may become even more
widespread due to climate change. We newly assessed the potential distribution of the raisin moth
globally, under current and future climate scenarios using a climate dataset projected with 23 climate
models under two emissions scenarios, and using both CLIMEX and MaxEnt niche modeling tools.
Our results indicated that the area of suitable distribution for the raisin moth could increase by 5.24
to 36.37% by the end of the century. Analysis of single predictors showed that excessive precipitation
and a temperature range of 0–18 ◦C during the wettest quarter of the year may impact the species’
establishment. The study highlights the need for using a combined modeling approach, such as
CLIMEX and MaxEnt, in future research and the results could be used to inform international trade
decisions and environmental risk assessments.

Abstract: Global trade facilitates the introduction of invasive species that can cause irreversible
damage to agriculture and the environment, as well as stored food products. The raisin moth
(Cadra figulilella) is an invasive pest that poses a significant threat to fruits and dried foods. Climate
change may exacerbate this threat by expanding moth’s distribution to new areas. In this study, we
used CLIMEX and MaxEnt niche modeling tools to assess the potential global distribution of the
raisin moth under current and future climate change scenarios. Our models projected that the area of
suitable distribution for the raisin moth could increase by up to 36.37% by the end of this century
under high emission scenario. We also found that excessive precipitation decreases probability of
raisin moth establishment and that the optimum temperature range for the species during the wettest
quarter of the year is 0–18 ◦C. These findings highlight the need for future research to utilize a
combined modeling approach to predict the distribution of the raisin moth under current and future
climate conditions more accurately. Our results could be used for environmental risk assessments,
as well as to inform international trade decisions and negotiations on phytosanitary measures with
regards to this invasive species.
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1. Introduction

The raisin moth, Cadra (=Ephestia) figulilella (Gregson) (Lepidoptera: Pyralidae), is
one of the most economically important worldwide pests of fresh and stored fruits [1].
The raisin moth can attack ripening or overripe fruits (e.g., freshly harvested carobs, dates,
figs, grapes) as well as stored dried fruits and nuts (e.g., cashew kernels, cacao beans,
apricots kernels, raisins) [1–3]. In addition to the damage caused by direct feeding, raisin
moth larvae can also cause indirect damage by leaving many crumbs and webs in the
fruit, which in combination can negatively affect 50% of fruit production, causing serious
economic losses [1]. In some areas, the raisin moth has been reported to cause 90% of fruit
damage and contamination, such as in Shadad, Kerman province of Iran [4].

The raisin moth has a relatively short adult life (approx. 16 days) and feeds only
during larvae [5]. It undergoes up to 4–5 generations per year [4], and its development rate
is greatly affected by temperature and humidity [3]. The thermal biology of the raisin moth
was recently summarized by Burks and Johnson [5] and Perring et al. [6]. Under natural
conditions, the raisin moth overwinters as fully developed larvae and in the top soil or
under the loose bark of the host plants while younger larvae usually do not successfully
overwinter [7]. In contrast, all development stages can overwinter in the stored fruit [4].
The longevity of adults is 11–26 days, and they are generally nocturnal and egg-laying.
The average number of eggs laid by an adult female is 350, with a maximum of 690 eggs [8].
Several control strategies have been used to control the raisin moth, including cultural
control (e.g., early fruit harvesting), physical control (e.g., covering with plastic nets during
early ripening season), chemical control (e.g., applying chemical insecticides), reproductive
control (e.g., mating disruption), and biological control (e.g., deploying natural enemies
like parasitoids, including Venturia canescens and Habrobracon hebetor) [1,6].

The raisin moth was first recorded as a pest of raisins in California in 1928 and since
then it has spread throughout tropical areas around the world [7]. The raisin moth is likely
to be present in areas with hot, dry summers and mild winters, such as Mediterranean,
North Africa, Middle East, Middle Asia, and some areas which have similar climates in the
Americas and Australia [5,8,9]. In recent decades, with the increase in international fruit
trade activities and ongoing global warming, the dispersal of the raisin moth is expected to
expand into areas where it has not previously established, including several developing
countries and regions that possess favorable climates for fruit production characterized
by high temperatures and low humidity. These areas include regions such as middle Asia,
west Asia, basin regions in northwestern China, and low-lying areas in southwestern China,
such as Yuanmou County in Yunnan Province [10,11]. Currently, no efforts have been made
in predicting the potential geographic distribution of the raisin moth, under the current
and future scenarios of climate change.

Species distribution models (SDMs) are widely used for predicting past, current,
and the future species distributions in many ecological, biological and biogeographical
studies, especially in the context of climate change. Generally, two types of SDMs, namely
correlative approaches and mechanistic approaches are commonly used [12]. Correlative
models (e.g., MaxEnt) solely integrate species occurrence data with their environmental
variables to forecast species’ potential distribution [13]. In contrast, mechanistic models
(e.g., CLIMEX), can incorporate prior biological knowledge of how species respond to
environmental limits from laboratory or field studies [14]. These two types of SDMs have
their own advantages and disadvantages [12,15,16]. Correlative models need less informa-
tion but have difficulty in predicting novel environmental conditions, while mechanistic
models can constrain species ranges by capturing biological knowledge but cannot directly
simulate the processes such as which environments are most favorable for species distri-
bution [12,17]. Both types of SDMs have been widely used to predict potential spreading
patterns of invasive species, such as the codling moth (Cydia pomonella) [18], the yellow-
legged hornet (Vespa velutina) [19], and tomato pests (e.g., Tuta absoluta) [20].
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Here we aimed to (1) assess the global potential distribution of raisin moth under
current and future climate scenarios using two different SDMs (i.e., MaxEnt and CLIMEX),
and (2) explore the key environmental drivers associated with the potential distribution
and suitable habitat changes of the raisin moth. Distribution predictions resulting from
this study will provide useful information to help developing region-specific quarantine
measures for better monitoring, prevention and control of the raisin moth.

2. Materials and Methods
2.1. Data Collection
2.1.1. Distribution Data

Distribution records of the raisin moth (Figure 1) were compiled from four online
databases, namely (1) Global Biodiversity Information Facility, (GBIF, www.gbif.org (ac-
cessed on 23 May 2022)), (2) Moth Photographers Group at the Mississippi Entomological
Museum (http://mothphotographersgroup.msstate.edu (accessed on 23 May 2022)), (3)
Biodiversity Information Serving Our Nation (BISON, https://bison.usgs.gov (accessed
on 23 May 2022)), (4) Integrated Digitised Biocollections (iDigBio, www.idigbio.org (ac-
cessed on 23 May 2022)) as well as from published studies [4,8,21]. In total, 109 occur-
rence records were collected. After removing duplicates, erroneous points and records
without geographic coordinates, we used a data filtering process by using “spThin” R-
package [22] and occurrence data were further reduced to a total of 69 records. We
obtained latitude and longitude values from GEOLocate Web Application (see https:
//www.geo-locate.org/web/WebGeoref.aspx (accessed on 24 May 2022)) for those lo-
cations which were not given by the published studies.
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Figure 1. Current worldwide distribution (red dots) of the raisin moth, Cadra figulilella. Grey areas
represent the distribution of the raisin moth from https://www.afromoths.net/species/show/11662
(accessed on 3 March 2023). These areas were excluded in the model fitting process due to insufficient
spatial data (i.e., their precise geographic coordinates could not be determined).

2.1.2. Climate Data

Climate data for the CLIMEX model: historical climate data (1951–2020) with the
0.5◦ × 0.5◦ resolution were extracted from the monthly gridded Climate Research Unit
(CRU, University of East Anglia), Time-series data version 4.0.5 [23]. We extracted five types
of meteorological data (monthly average maximum and minimum air temperature (◦C),
average monthly rainfall (mm) and average relative humidity (%), at both 9 a.m. and 3 p.m.,
from the dataset to meet the requirements of CLIMEX.

The climate dataset used to run climate change scenarios came from the Coupled
Model Intercomparison Project (CMIP) phase 6 models in projections. We extracted the
same five groups of meteorological data as above by calculating a multi-model ensemble

www.gbif.org
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mean climate dataset, which covers twenty-three Global Climate Models (GCMs) available
in the WorldClim database (www.worldclim.org (accessed on 7 June 2022); Table A1).
To account for uncertainty in the climate change projections, we present our results based
on the averaged GCM outputs. We chose two shared socioeconomic pathways scenarios
(SSP1-2.6 and SSP5-8.5) for two target time periods (mid-century: 2041–2060 and the end of
century: 2081–2100), which represent the “best” and the “worst” warming future. SSP1-2.6
represents a low-emission scenario with a warming projection of 2 ◦C, and SSP5-8.5 rep-
resents a high-emission scenario with a warming projection of 5 ◦C (relative to the years
1880–1900), respectively.

Climate Data for MaxEnt Model: two types of environmental variables were used to
parameterize the MaxEnt Model: (1) 19 bioclimatic variables (the average for the years
1970–2000) at 0.16◦ × 0.16◦ spatial resolution (∼18 km); (2) topographic variables rel-
ative to land morphology, such as elevation (ELEV), aspect (ASPE) and slope (SLOP)
(see Table A2 for details). Elevation data (ELEV) was obtained from the WorldClim website
(available at https://www.worldclim.org/data/worldclim21.html (accessed on 7 June
2022)) and was used to generate the variables slope (i.e., the incline or steepness of the
surface), and aspect (i.e., the compass direction that a topographic slope faces), using the
terrain() function in “raster” R-package. These variables were selected on the basis of
their potential biological relevance to the raisin moth and on their use in previous niche
modelling studies of insect pests [19]. Additionally, we also considered a latitude layer
(generated by using the raster.lat() function in “red” R-package) as one of the environmental
variables, since latitude together with seasonality determines photoperiod [24], which is
the common cue to induce insect diapause together with decreased temperatures) [25].
Predicted data for all bioclimatic variables selected were generated by using twenty-three
Global Climate Models (GCMs) available in the WorldClim database (www.worldclim.org
(accessed on 7 June 2022)) for the two selected scenarios, SSP1-2.6 and SSP5-8.5 in the two
time periods, 2041–2060 and 2081–2100.

To assess the multicollinearity between all pairs of environmental variables, we firstly
run MaxEnt model with all the environmental variables 10 times to obtain the contribution
of each environmental variable, which was used as the criteria for variable selection. Next,
we calculated a Pearson correlation coefficient (r) using findCorrelation() function in “caret”
R-package. Variables with high correlation coefficient (|r| > 0.8) and both low biological
relevance and low contribution to explaining the distribution of raisin moth were removed
from the model. As a result, a total of twelve variables were selected to establish the final
model: bio2, bio4, bio8, bio13, bio15, bio17, bio18, bio19, ELEV, SLOP, ASPE and latitude
(see Table A2; Figure A1).

2.2. Bioclimatic Modelling
2.2.1. CLIMEX Model

To calculate species distributions, CLIMEX generates monthly and annual growth
indices and four annual stress indices (wet, dry, cold and hot) based on temperature, soil
moisture, light, diapause indices and other covariables. It further produces an integrative
index, the Ecoclimatic Index (EI), to measure climatic suitability for each given species,
which ranges from 0–100, where 0 indicates a location where the climate is totally unsuitable
for the species whereas 100 is a location where the climate is optimal in every respect [14,26].
The “Compare Locations” function in CLIMEX was then used to estimate the climatic
suitability for the raisin moth. Parameter estimation for the CLIMEX model was based on
physiological tolerances of the raisin moth from published laboratory studies. The initial
values of parameter were obtained from the built-in Mediterranean template based on the
CLIMEX User’s Guide [14] and were modified best to fit the model according to the current
distribution of the raisin moth.

To better represent the potential distribution of raisin moth populations in agricultural
scenarios, we included an irrigation scenario into our model. A top-up irrigation value of up
to 1.5 mm day−1 all year round was applied in our model [27]. The top-up scenario would

www.worldclim.org
https://www.worldclim.org/data/worldclim21.html
www.worldclim.org


Biology 2023, 12, 435 5 of 24

first judge the amount of rainfall. If a given week at any location had more than 10.5 mm of
rainfall, no irrigation was added. However, if there was less than 10.5 mm, CLIMEX would
make up the deficit by adding irrigation up to the 10.5 mm weekly threshold. The composite
potential distribution model was built based on an updated version of global irrigation
areas provided by Siebert et al. [28]. If a location was irrigated, the EI accounting for
irrigation was used; otherwise, the EI accounting only for natural rainfall was used.

Temperature index: lower temperature threshold (DV0) was set to 11 ◦C based on the
previous study showed that none of eggs hatched at 10 ◦C or 12.5 ◦C [3]. According to the
results for development and survival of the raisin moth under different temperatures [25,29],
we set the lower optimum temperature threshold (DV1) as 15 ◦C, the upper optimum
temperature threshold (DV2) as 30 ◦C, and the upper temperature threshold as 36 ◦C.

Moisture index: we used soil moisture (SM), values from the Mediterranean temperate
template [14] to fit the current distribution of the raisin moth.

Cold stress: the cold stress temperature was adjusted at 0 ◦C to match the raisin moth’s
coldest distribution record in southern Sweden where the winter is generally mild with an
average temperature above 0 ◦C [30], whereas the cold stress rate (THCS) was increased
from −0.005 to −0.001 week−1 to fit the model to the current distribution of the raisin
moth in Europe.

Heat stress: the heat stress temperature threshold (TTHS) was set to 36 ◦C to match the
raisin moth’s hottest distribution record in Queensland, Australia. Additionally, heat stress
temperature rate (THHS) was set to 0.0001 week−1 to better match the known distribution
of the raisin moth to match its known distribution in Mediterranean climates.

Dry stress: we used dry stress threshold (SMDS) and dry stress rate (HDS) value from
the Mediterranean template [14] to fit the current distribution of the raisin moth.

Wet stress: wet stress threshold was modified to 2.5 based on SM3 whereas the wet
stress rate (HWS) was set to 0.0015 based on the parameters provided in the Mediter-
ranean template.

Hot-wet stress: integrating with the Mediterranean template parameters, the hot-wet
maximum temperature threshold (TTHW) was set to 23 ◦C, and hot-wet stress accumu-
lation rate (PHW) was set to 0.075. The hot-wet stress index (MTHW) was increased
from 0.5 to 1.35 to fit the actual distribution of the raisin moth in hot-wet states of the
United States (e.g., Florida).

The positive degree day sum: the number of degree days required to complete one
generation (PDD) were set to 292, since the tested PDD ranged 236–348 degree-days for
each generation [31]. All parameter values used are listed in Table 1.

Table 1. CLIMEX parameter values used to fit the potential distribution of Cadra figulilella.

Parameters Descriptions C. figulilella

Temperature
DV0 Lower temperature threshold (◦C) 13
DV1 Lower optimum temperature (◦C) 15
DV2 Upper optimum temperature (◦C) 30
DV3 Upper temperature threshold (◦C) 36

Moisture
SM0 Lower soil moisture threshold (◦C) 0.25
SM1 Lower optimal soil moisture (◦C) 0.8
SM2 Upper optimal soil moisture (◦C) 1.5
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Table 1. Cont.

Parameters Descriptions C. figulilella

SM3 Upper soil moisture threshold (◦C) 2.5
Cold stress

TTCS Cold stress temperature threshold (◦C) 0
THCS Cold stress temperature rate (week−1) −0.001

Heat stress
TTHS Heat stress temperature threshold (◦C) 36
THHS Heat stress temperature rate (week−1) 0.0001

Dry stress
SMDS Dry stress threshold 0.02
HDS Dry stress rate (week−1) −0.05

Wet stress
SMWS Wet stress threshold 2.5
HWS Wet stress rate (week−1) 0.0015

Hot-Wet stress
TTHW Hot-wet maximum temperature threshold (◦C) 23
MTHW Hot-wet moisture threshold 1.35
PHW Hot-wet stress accumulation rate (week−1) 0.075
PDD Effective accumulated temperature (degree-days) 292

Footnote: Values without units are dimensionless indices. Definitions of all CLIMEX parameters included in this
table are described in Kriticos et al. [14].

2.2.2. MaxEnt Model

MaxEnt uses presence-only data as an input to predict the potential distribution of a
given species, which is one of the most suitable methods for our raisin moth occurrence
data, since absence data were not available for raisin moth at global scale. Instead of using
the default parameters in MaxEnt Model, we used “ENMeval” R-package [32] to perform
automated runs to optimize two type of model parameters, regularization multiplier
(RM) and feature combination (FC) to maximize predictive ability and avoid overfitting.
The spatial block approach was used to split the records into four equal groups, of which
three were used for training and the other one was used for testing. This is required if one
is to conduct an extrapolation in environmental space [32]. We set the RM parameter to
0.5–4 based on the instruction of “ENMeval” R-package [32], and each interval was set
to 0.5, for a total of eight RM parameters (default setting is 1.00) [33]. For FC parameters,
the Maxent model offered 5 features: linear (L), quadratic (Q), hinge (H), product (P)
and threshold (T) [34]. We chose 6 feature combinations: L, LQ, H, LQH, LQHP and
LQHPT (default setting is LQHPT). We used the “ENMeval” R-package to evaluate the
resulting above 48 parameter combinations. The Akaike information criterion correction
(AICc; corrected for small sample sizes) was used to evaluate the fit and complexity of the
model [35]; difference between training and testing AUC (AUC.DIFF) and the 10% training
omission rate (OR10) were used to assess the degree of over-fitting of the model [36].
The parameter combination with the minimum value of AICc were selected as our optimal
parameter to build our model [36].

After determining the optimal model parameters, we used “dismo” R-package to
stimulate the model in 10-fold cross-validation procedure in MaxEnt, and final output
was the average of this procedure. A total of 25% occurrence records were extracted
randomly and used to test the dataset, and the remaining 75% of dataset was used as a
training dataset [34]. The maximum background points was set to 10,000. All 12 selected
environmental variables were used as predictors. Jackknife testing and response curves
were used to evaluate contributions of environmental variable and thresholds to define
potential suitable areas for the raisin moth worldwide.

Model performance is quantitatively evaluated by using two types of metrics: threshold-
dependent and threshold-independent. The area under the receiver operating characteristic
(ROC) curve (AUC) is widely in use since it is the threshold independent measure of
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model performance. The value of AUC range is 0–1, and as the AUC value increases,
the model’s prediction results become more precise. The model performance is considered
poor if the AUC value is less than 0.7, reasonable if the AUC is in the range of 0.7–0.9,
and outstanding if the AUC is greater than 0.9 [37]. Furthermore, two metrics that relay
on a specific threshold were used, namely the omission rate (OR) at lowest predicted
threshold (LPT) or minimum training presence threshold, and the omission rate at 10%
training presence threshold.

3. Results
3.1. Projected Potential Distribution of Raisin Moth under Current Climate Conditions
3.1.1. CLIMEX Model

The projected potential global distribution of the raisin moth resulting from the pa-
rameters used in our CLIMEX model covers 98.55% of the current global distribution
records for this species (i.e., 68 points out of 69 points) (Figure 2a), which indicated that
the model’s prediction is accurate and could be used to further predict the future distribu-
tion of the raisin moth and potential shifts under climate change. The climatic suitability
(Ecoclimatic Index, EI) was highest in eastern United States, southern Brazil, Uruguay,
southern Africa and southwestern, central and eastern regions of China. In addition, a few
regions in western and southern areas in Europe showed favorable climatic suitability for
the raisin moth.
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Figure 2. Global potential distribution of the raisin moth, Cadra figulilella, predicted by CLIMEX,
where (a) denotes the potential distribution under current climate conditions, (b) denotes the potential
distribution under the ssp585 scenarios by mid-century (MC, 2041–2060), (c) denotes the potential
distribution under the ssp585 scenarios by end of century (EC, 2081–2100). Dark red areas (EI = 100)
denote highly suitable areas, while white areas represent unsuitable areas (EI = 0). Red dots denote
the current worldwide distribution of the raisin moth.
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3.1.2. MaxEnt Model

The model optimization results indicated that the model included linear, quadratic and
hinge (LQ) features, RM = 0.5 and had the lowest AICc value, i.e., delta.AICc = 0 (Figure A2a).
The average 10% training omission rate (avg.OR10) value obtained, which was 0.1595, was
61.83% lower than those of the MaxEnt model with the default settings (avg.OR10 = 0.4179),
(Figure A2c). Thus, RM = 0.5 and FC = LQ were chosen as the optimal model settings, and these
model parameters can reduce the over-fitting and the complexity of the MaxEnt model. The av-
erage AUC value of 10 times of repeated training sets was 0.94 ± 0.01 and the average AUC
value was 0.91 ± 0.07, suggesting the model performance is good. The MaxEnt model results
indicate that the high suitable areas were mainly distributed in the Mediterranean coast and
the west southeast coast of the United States. The moderate suitable areas were predominantly
located in the most parts of Europe, east of the United States, southern China, and some regions
of north Africa. The low suitable areas were primarily situated in the east parts of the United
States, eastern Europe, south of Brazil, Paraguay and part of Bolivia, south of China, and also in
the Middle East, including Saudi Arabia, Iraq and Iran (Figure 3a). 
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Figure 3. Global potential distribution of the raisin moth, Cadra figulilella, 

predicted by MaxEnt, where (a) denotes the potential distribution under 

current climate conditions, (b) denotes the potential distribution under the 
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Figure 3. Global potential distribution of the raisin moth, Cadra figulilella, predicted by MaxEnt, where
(a) denotes the potential distribution under current climate conditions, (b) denotes the potential
distribution under the ssp585 scenarios by mid-century (MC, 2041–2060), (c) denotes the potential
distribution under the ssp585 scenarios by end of century (EC, 2081–2100). Dark red areas denote
highly suitable areas, while white areas represent unsuitable areas. Red dots denote the current
worldwide distribution of the raisin moth.
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MaxEnt model revealed that the most influential environmental variables, based on
both percentage contribution and permutation importance, were temperature seasonality
(bio4), mean temperature of wettest quarter (bio8), precipitation of coldest quarter (bio19),
elevation, latitude, and precipitation seasonality (bio15) (Table 2). The cumulative effect
of these variables, as represented by their percentage contribution and cumulative per-
mutation importance, was substantial, reaching as high as 88.3% and 88.6%, respectively
(Table 2).When testing the role of a single variable, bio19, bio4, latitude, bio8, and el-
evation resulted in the most significant enhancements in both the regularized training
gain (AUC values) and test gain, indicating that these variables exert an important role
in forming the current suitable areas for raisin moth distribution (Figure A3). In contrast,
when only mean diurnal range of temperature (bio2) was used in the jackknife test, AUC
values and test gain were all close to 0 (Figure A3), indicating that bio2 is not an important
predictor for suitable areas of raisin moth. The suitable ranges of mean temperature of
wettest quarter (bio8; Figure 4b) was 0–18.0 ◦C for the raisin moth. The probability of raisin
moth presence was higher in areas with low precipitation (<500 mm) during the coldest
period (Figure 4c) and in areas of low elevation (<1000 m) (Figure 4d). The probability of
the raisin moth being present was high between latitudes 18◦ and 45◦ while it was very
low at latitudes <−50◦ (Figure 4e).

Table 2. Percentage contribution and permutation importance values for each environmental variable
included in a MaxEnt model used to predict current and future worldwide distributions of the raisin
moth, Cadra figulilella.

Variable Descriptions Percent Contribution Permutation
Importance

bio4
Temperature

Seasonality (standard
deviation ×100)

23.3 37.1

bio8 Mean Temperature of
Wettest Quarter 18.3 1.6

bio19 Precipitation of
Coldest Quarter 17.7 32.8

elev Elevation 14 5
latitude Latitude 12 9.6

bio15

Precipitation
Seasonality

(Coefficient of
Variation)

3 2.5

bio17 Precipitation of Driest
Quarter 2.8 0.5

bio2

Mean Diurnal Range
(Mean of monthly
(max temp–min

temp))

2.6 0.7

aspect Aspect 2.2 0.4

bio13 Precipitation of
Wettest Month 2.2 4.7

slope Slope 1 2

bio18 Precipitation of
Warmest Quarter 0.9 3.1

Note: bio4 represents the variation in temperature throughout the year, which is calculated by determining the
standard deviation of the mean monthly temperatures for the 12 months. A higher standard deviation indicates
a greater range of temperature variability [38]. bio15 is an index used to measure the variability in monthly
precipitation levels throughout the year. It is expressed ad a percentage and is calculated by dividing the standard
deviation of the monthly total precipitation by the mean monthly total precipitation (also known as the coefficient
of variation) and is expressed as a percentage [38].
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Figure 4. Response curves of the six important environmental variables for the raisin moth, Cadra
figulilella; (a) temperature seasonality (bio4; i.e., a measure of the temperature change over the course
of the year), (b) mean temperature of wettest quarter (bio8; ◦C), (c) precipitation of coldest quarter
(bio19; mm), (d) elevation (elev; m), (e) absolute latitude (latitude; ◦), (f) precipitation seasonality (bio15;
i.e., an index used to quantify the fluctuation in monthly precipitation levels throughout the year).

3.2. Projected Potential Distribution of Raisin Moth under Climate Change Scenarios
3.2.1. CLIMEX Model

CLIMEX projections of potential future global distribution of the raisin moth, under SSP1-
2.6 scenarios, showed that the climatic suitability will increase in Europe but slightly decrease
in central China, and part of Sub-Saharan Africa (Figures A4 and A5). The predicted global
distribution areas under SSP1-2.6 climate change scenario ((4.94× 107 km2)) are not expected
to change much from the global predicted distribution under current climate ((4.70× 107 km2))
(Figures A4 and A5). However, under the SSP5-8.5 scenario, the northern distribution limit of
raisin moth is expected to move northward, with a drastic increase in climatic suitability in
Europe and in North America by the middle of this century (Figures 2b and A6). The total area
of suitable regions was estimated to increase by approximately 4.92% (i.e., from 4.70× 107 km2

at current climate conditions to 4.93× 107 km2 by the middle of this century). Towards the
end of this century, the distribution of the raisin moth is predicted to shift further north,
even reaching southern Canada and northern Europe (Figures 2c and A6). The overall area of
suitable regions was estimated to increase by ca. 5.62% by the end of this century (i.e., from
4.70× 107 km2 at current climate conditions to 4.97× 107 km2).
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3.2.2. MaxEnt Model

Under the SSP1-2.6 climatic scenarios by mid-century, the total suitable areas for
the raisin moth are predicted to increase 21.66% by the mid-century (i.e., from current
4.80 × 107 km2 to future 5.84 × 107 km2) (Figures A7 and A8). By the end of the century,
the increase in total suitable areas for raisin moth will be 22.08% in contrast to conditions
under the current climate situations (Figures A7 and A8). Under the SSP5-8.5 climatic
scenarios, and by the mid-century, the total suitable areas for the raisin moth will increase
by 20.63% (i.e., from current 4.80 × 107 km2 to future 5.79 × 107 km2) (Figures 3b and A9).
By the end of this century, the total suitable areas for the raisin moth are expected to
continue to increase by 36.25% (i.e., from current 4.80 × 107 km2 to future 6.54 × 107 km2)
(Figures 3b and A9).

3.3. Global Distribution Prediction and the Dynamics Shift under Two SDMs

Both CLIMEX and MaxEnt models predicted areas to be highly-suitable for the survival
of the raisin moth in Europe, east coast of United States, as well as around the Mediterranean
coast. However, the MaxEnt model predicts a larger number of suitable areas for the
establishment of the raisin moths than CLIMEX predictions. Additionally, predictions in
some areas, such as South America, are rather different. The northern boundary of the
raisin moth distribution was predicted by both models will move northwards. MaxEnt
predicted larger suitable areas in eastern Europe and the central of Africa than CLIMEX
did, while CLIMEX predicted suitable areas to include the southern part of Africa, which
MaxEnt did not predict.

4. Discussion

Projections of the potential distribution of the raisin moth developed with both
CLIMEX and MaxEnt models match the present recognized distribution of this pest both in
its indigenous habitats and in areas where it has been introduced. Both models predicted a
similar climatic suitability for a number of regions like the western United States, southern
Europe and some areas in Middle East and Australia, covering almost all the Mediterranean
climatic zone. However, there was a mismatch between CLIMEX and MaxEnt model spatial
predictions. For instance, CLIMEX projected somewhat larger areas as highly-suitable in
eastern Argentina, Uruguay, South Africa, Botswana, Zimbabwe and Namibia, whereas
MaxEnt projected larger suitable areas in Northern Europe, encompassing Norway, Sweden
and Finland. These differences may stem from the varying levels of complexity employed
during model fitting, disparities in the algorithms utilized by each niche model, or the ab-
sence of comprehensive surveys in certain remote regions that are difficult to reach [39,40].
Additionally, these disparities could be attributed to the nature of the information supplied
to each model, with CLIMEX utilizing species-specific biological information, such as
thermal development data, while MaxEnt did not [33].

The important role of temperature and humidity for the raisin moth was highlighted
by both MaxEnt and CLIMEX and they seem to be the dominant factor determining this
insect’s distribution. In the MaxEnt model, the response curve of the mean temperature of
the wettest quarter implied that high temperature combined with high rainfall decreased
the probability of the raisin moth to establish, which was in agreement with available
information from previous studies which indicate that temperature and humidity have a
combined impact on the life-cycle of the raisin moth [3] and of other congeneric species [41].
For instance, the optimal relative humidity range for raisin moth is between 30–50%, but it
rose to between 50–70% when temperature falls below 22.5 ◦C or rises above 36 ◦C [3].
The cumulative effects of temperature and humidity also have impacts on the lifespan
of other congeneric species, such as the almond moth (Cadra cautella) [41]. The current
CLIMEX model developed for the raisin moth also indicate hot-wet stress (HWS) limits the
distribution of the raisin moth, which is consistent with our MaxEnt results.

According to MaxEnt, temperature seasonality (i.e., temperature variations) was one of
the most important limiting climatic factors playing a role in the potential future distribution
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of the raisin moth. This resuts corresponds with an earlier study showing that the survival
rate of larvae of Cadra figulilella and C. calidella (Lepidoptera: Pyralidae) decreased to 23%
due to a 2.5 ◦C increase in the optimal temperature [3]. For other related species, such as the
almond moth [41], a similar pattern was reported with larvae completing their development
at 34 ◦C later than those ones developing under optimal temperatures of 30–32 ◦C [41].
Precipitation variations, such as precipitation of the coldest quarter, and precipitation
seasonality were also shown by our model to contribute the potential distribution of the
raisin moth. A previous study also showed that under the optimal temperature of 30 ◦C,
the development rate of the raisin moth and of the related dried fruit moth, Cadra calidella,
was reduced and the mortality increased when the insects were kept at 20% r.h. compared
to when kept at a higher humidity (70% r.h.), which supports our result that humidity
affects larval development [3].

Latitude, which serves as an indicator of daylight hours, appears to be a crucial
element in shaping the raisin moth’s potential future distribution predicted by the MaxEnt
model (Figure A10). Without latitude as a predictor, our MaxEnt model predicted much
larger areas of suitable regions including central Australia, Argentina, Uruguay, and the
Sichuan Province in China. These are areas in which the raisin moth has never been
reported and which do not meet the diapause requirements of the raisin moth. Previous
studies also showed that daylight exert a large influence on raisin moth occurrence [25] and
other closely-related species [42]. For instance, at an optimal temperature of 30 ◦C, only
33% of raisin moth emerged in continuous light, while the survival rate was high under
continuous darkness, reaching 82% [25]. We did not include diapause index in our CLIMEX
model since most of the diapause requirements of the raisin moth are unknown, apart
from what was reported by Cox [25]. Since diapause insects can survive under extreme
temperatures [43], incorporating diapause might release the restrictions by extreme climate
conditions and resulting in the larger prediction of the potential distribution. Elevation
was also recongnized as an important factor linked to the prospective range of the raisin
moth, as the higher the elevation and latitude, the lower the overall temperatures [44].
Similarly, latitude and elevation have been demonstrated to have a profound effect in
predicting spring emergence on a tortricid moth, the codling moth (Cydia pomonella),
in North America [45].

A large number of previous studies have demonstrated that climate change would shift
species distribution to north or higher latitudes, especially in high-altitude areas [12,17,46].
In our study, the predictions from both models, CLIMEX and MaxEnt, concur with these
studies and indicated that the overall suitable distribution area of the raisin moth will
increase by 5.19–36.25%, respectively, by the end of this century under future climate
scenarios, with the northern limit predicted to shift northwards. The area of suitable
regions will increase, indicating that the potential suitable areas for the raisin moth and
the risks of this pest invading new areas will also increase. In some high-altitude areas,
the suitable areas will increase (e.g., Norway and Sweden), while in some low-altitude
areas, the suitable areas will decrease (e.g., eastern United States). This suggests that the
raisin moth should tend to migrate to high-altitude areas, which matches the results of
previous studies [47,48].

It should be noted that CLIMEX and MaxEnt modelling outputs, like any other biocli-
matic modelling software, have some limitations (e.g., projections are made considering
climatic variables only), with the exception of CLIMEX that also can include biological
data of the species and non-climatic factors (like irrigation). As a result, projections of
the potential future distribution of the raisin moth derived from our study should be
interpreted carefully given some uncertainties in the role that a number of biotic aspects
(e.g., species competition [49], habitat type, food source, presence of natural enemies [50])
will have in the model algorithms used by both CLIMEX and MaxEnt [51]. For example,
interspecific competitions have previously been reported to exist between the almond
moth, the Indian meal moth and the raisin moth [52], which might influence the predicted
distribution of the raisin moth or of the other two moth species. Host plants type and
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availability could also affect the models’ predictions. For instance, a previous study showed
that the Indian meal moth adults that were fed a bran diet produced the most offspring,
while those that were fed walnuts yielded the lowest number of progeny [53]. Host plant
availability also has impacts on pest distribution, but we could not use the current host
plants’ distribution to restrain our predicted potential distribution, since data for all host
plants of the raisin moth is not available. Additionally, host plant distribution will also
shift under future climate change scenarios, and the distribution of economic important
plants such as almonds, figs, plums [8], date palms [4] or carobs are also influenced by local
governments’ planting guidelines.

There are other potential limitations for both CLIMEX and MaxEnt models that may
affect projection outputs. For instance, the output of CLIMEX model is mainly validated by
the visual comparison with current known distribution, and there is no standard statistical
approach to optimize this so far [39]. The selection of parameters by the CLIMEX model is
subjective even if their settings were based on prior physiological knowledge of the target
species. MaxEnt model also has its own limitations such as poor performance when extrap-
olating to new regions, limited number of presence data, sampling bias, background data
extent, the multicollinearity of environmental predictors and choice of predictors [54,55].
Thus, the utilization of two modeling approaches and a comparison of their results could
mitigate uncertainties associated with the use of a single model and could serve to offset
the limitations of each model, thereby enhancing the overall reliability of model predictions.
However, in the current scenarios, the substantial discrepancy in predictions of climate
change impacts between the models (and also predictions in a number of areas (e.g., South
America)), under the current climate, only serves to compound the uncertainty, as it is
challenging to determine which one is more reliable. In addition, raisin moth is a well-
known major pest of stored dried fruits, which may dwell and inhabit storage areas such
as silos or arrive to new areas inside infested fruits, which means that our predicted future
distributions of this pest could wider than the predictions of our models.

5. Conclusions

Here, we report our combined results using both MaxEnt and CLIMEX models to
predict the potential distribution of raisin moth under current climate conditions and the
distribution shift in response to climate change. Our results show similarities between the
two models but also differences, which indicate that future studies should consider using
both models together rather than separately. The combined outputs of these two models
could serve as a helpful tool for national plant protection organizations to conduct pest risk
assessments, and for policy makers and trade negotiators when developing phytosanitary
and control measures against high-risk quarantine species like the raisin moth.
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Appendix A

This word file includes: Tables A1 and A2; Figures A1–A10.

Table A1. Information for 23 global coupled climate models from CMIP6.

No. Model Institute/Country Reference

1 ACCESS-ESM1-5 CSIRO-ARCCSS/Australia [56]
2 BCC-CSM2-MR BCC/China [57]
3 CanESM5 BCC/CCCma/Canada [58]
4 CanESM5-CanOE BCC/CCCma/Canada [58]
5 CMCC-ESM2 CMCC/Italy [59]
6 CNRM-CM6-1 CNRM-CERFACS/France [60]
7 CNRM-CM6-1-HR CNRM-CERFACS/France [60]
8 CNRM-ESM2-1 CNRM-CERFACS/France [61]
9 EC-Earth3-Veg EC-Earth-Consortium/Sweden [62]

10 EC-Earth3-Veg-LR EC-Earth-Consortium/Sweden [62]
11 FIO-ESM-2-0 FIO-QLNM/ China [63]

http://mothphotographersgroup.msstate.edu/
https://bison.usgs.gov
www.idigbio.org
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Table A1. Cont.

No. Model Institute/Country Reference

12 GISS-E2-1-G NASA-GISS/USA [64]
13 GISS-E2-1-H NASA-GISS/USA [64]
14 HadGEM3-GC31-LL MOHC/UK [65]
15 INM-CM4-8 INM/Russia [66]
16 INM-CM5-0 INM/Russia [67]
17 IPSL-CM6A-LR IPSL/France [68]
18 MIROC-ES2L MIROC/Japan [69]
19 MIROC6 MIROC/Japan [70]
20 MPI-ESM1-2-HR MPIM/Germany [71]
21 MPI-ESM1-2-LR MPIM/Germany [72]
22 MRI-ESM2-0 MRI/Japan [73]
23 UKESM1-0-LL MOHC/UK [74]

Table A2. List of bioclimatic variables (bio1–bio19) and topographic variables (ELEV, ASPECT,
SLOPE), available on the WorldClim website (https://www.worldclim.org/). The variables high-
lighted in bold were chosen to construct the MaxEnt model used in this study to predict areas that
may be suitable for the development of the raisin moth under current and future climates.

Environmental Variables Abbreviation Unites Range

Annual Mean Temperature bio1 Degrees Celsius −26.9–31.4
Mean Diurnal Range (Mean of monthly (max temp-min temp)) bio2 Degrees Celsius 0.9–21.1

Isothermality (BIO2/BIO7) (×100) bio3 / 8–95
Temperature Seasonality (standard deviation ×100) bio4 / 72–22,673

Max Temperature of Warmest Month bio5 Degrees Celsius −5.9–48.9
Min Temperature of Coldest Month bio6 Degrees Celsius −54.7–25.8

Temperature Annual Range bio7 Degrees Celsius 5.3–72.5
Mean Temperature of Wettest Quarter bio8 Degrees Celsius −25.1–37.5

Mean Temperature of Driest Quarter bio9 Degrees Celsius −45.0–36.4
Mean Temperature of Warmest Quarter bio10 Degrees Celsius −9.7–38.0
Mean Temperature of Coldest Quarter bio11 Degrees Celsius −48.8–28.9

Annual Precipitation bio12 Millimeters 0–9916
Precipitation of Wettest Month bio13 Millimeters 0–2088

Precipitation of Driest Month bio14 Millimeters 0–652
Precipitation Seasonality (Coefficient of Variation) bio15 / 0–261

Precipitation of Wettest Quarter bio16 Millimeters 0–5043
Precipitation of Driest Quarter bio17 Millimeters 0–2159

Precipitation of Warmest Quarter bio18 Millimeters 0–4001
Precipitation of Coldest Quarter bio19 Millimeters 0–3985

Elevation ELEV Meters a.s.l. −352–6251
Aspect ASPECT Degrees 0–360
Slope SLOP rad 0–7.893677

Latitude Lat / −59.42–83.58

https://www.worldclim.org/
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Figure A1. Correlation matrix between the 19 bioclimatic variables for MaxEnt model, 3 topological
variables and latitude layer. (a) denoted the full Person correlation results, and (b) denoted the
remaining 12 variables that used to build model.

Figure A2. Results of parameter optimization of MaxEnto model to predict distribution of raisin moth.
Delta.AICc, AUC.DIFF and OR10 are generated by MaxEnt model for raisin moth, which were used
to select the optimal parameter combinations for the model. (a) denoted the relationship between
delta.AICc (AICc; corrected for small sample size) and RM (Regularization Multiplier), (b) denoted
the relationship between avg.diff.AUC (average difference between training and testing AUC) and
RM (Regularization Multiplier) and (c) denoted the relationship between avg.OR10 (average 10%
training omission rate) and RM (Regularization Multiplier).

Figure A3. Results of Jackknife test to show the relative importance of different environmental
variables. (a): Regularized training gain; (b): AUC value; (c): test gain.
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Figure A4. Global potential distribution of raisin moth predicted by the CLIMEX model under the
ssp126 scenarios in mid-century (MC, 2041–2060) (a) and end of century (EC, 2081–2100) (b). Dark
red areas (EI = 100) denote high suitable areas while white areas represent unsuitable areas (EI = 0).
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Figure A5. Differences in the predicted EI value via CLIMEX for the raisin moth under historical
(1951–2020) and mid-century future (MC, 2041–2060) (a) and the difference in the predicted EI value
for the raisin moth under historical (1951–2020) and the end of this century (EC, 2081–2100) (b) under
the climate conditions (SSP126). Red represents an increase; blue represents a decrease, and the
intensity of the color indicates the magnitude of the change in EI values.
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Figure A6. Differences in the predicted EI value via CLIMEX for the raisin moth under historical
(1951–2020) and mid-century future(MC, 2041–2060) (a) and the difference in the predicted EI value
for the raisin moth under historical (1951–2020) and the end of this century (EC, 2081–2100) (b) under
the climate conditions (SSP585). Red represents an increase; blue represents a decrease, and the
intensity of the color indicates the magnitude of the change in EI values.

Figure A7. Global potential distribution of raisin moth predicted by the MaxEnt model under the
SSP126 scenarios in mid-century (MC, 2041–2060) (a) and end of century (EC, 2081–2100) (b). Dark
red areas denote high suitable areas while white areas represent unsuitable areas.
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Figure A8. Differences in the predicted probability via MaxEnt for the raisin moth under historical
(1951–2020) and mid-century future (MC, 2041–2060) (a) and the difference in the predicted probability
for the raisin moth under historical (1951–2020) and the end of this century (EC, 2081–2100) (b) under
the climate conditions (SSP126). Red represents an increase; blue represents a decrease, and the
intensity of the color indicates the magnitude of the change in probability values.

Figure A9. Differences in the predicted probability via MaxEnt for the raisin moth under historical
(1951–2020) and mid-century future (MC, 2041–2060) (a) and the difference in the predicted probability
for the raisin moth under historical (1951–2020) and the end of this century (EC, 2081–2100) (b) under
the climate conditions (SSP585). Red represents an increase; blue represents a decrease, and the
intensity of the color indicates the magnitude of the change in probability values.
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Figure A10. Effects of latitude on global potential distribution of raisin moth predicted by the MaxEnt
model. Distribution predicted by MaxEnt model incorporated effect of latitude (a) and prediction
without considering effect of latitude (b).
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