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A B S T R A C T   

Pomelo peel, a by-product of fruit processing, is an excellent source of pectin. We aimed to study the effects of 
thermal treatments on the extraction and in vitro fermentation patterns of pectins from pomelo peel. We used 
subcritical water extraction and hot water extraction, with or without chelator (citric acid or EDTA-2Na) 
assistance to obtain the pectins. The pectin fractions were characterized by their constituent monosaccharide 
composition and molecular weight (Mw) distribution. The degree of methyl esterification of pomelo pectins was 
determined using FT-IR spectroscopy. We also compared the fermentation patterns of the pectin using an in vitro 
simulated human gut fermentation model, monitored Mw changes during fermentation by high performance size 
exclusion chromatography (HPSEC), and analyzed short-chain fatty acid (SCFA) using gas chromatograph. Our 
results showed that both chelator assistance and subcritical water treatment increased the pectin yield. Chelator- 
assisted extraction increased the pectin Mw and decreased the degree of methyl esterification (DM) whereas, 
subcritical water treatment had the opposite effect. Pectin with low rhamnogalacturonan-I (RG-I) and high 
homogalacturonan (HG) domain can be obtained from the used pomelo peels by citric acid-assisted extraction. 
Although gut microbiota intensively utilized uronic acid (UA) of pomelo during early fermentation stages, 
constituent neutral monosaccharides were consumed even faster than UA. Pomelo pectins enhanced the relative 
abundance of Bacteroides and Prevotella 9, and stimulated the production of SCFA, particularly acetic acid. 
Generally, pomelo pectin could be considered a new source for modulating gut microbiota towards a healthy 
pattern in functional foods.   

1. Introduction 

The pomelo (Citrus grandis) is widely cultivated in southwest China, 
Southeast Asia, and other Asian countries due to its high yield, ease of 
preservation, and plant characteristics (Xiao, Ye, Zhou, & Zhao, 2021). 
This fruit contains not only pectin but also other polysaccharides, 
phenolic compounds, flavonoids, vitamins, and other nutrients (Chen, 
Hu, Yao, & Liang, 2016). However, the pomelo peel contains a large 
amount of insoluble dietary fiber, making it difficult to chew for con
sumption. Additionally, naringin’s bitter taste negatively impacts the 

edible value of pomelo peel. Therefore, it is essential to explore a novel, 
high-efficient, and environmentally friendly extraction method for the 
easily bioavailable pectin from pomelo peel. 

The structure, extraction methods, applications, and potential 
beneficial effects on health of pomelo pectin have garnered significant 
attention (Xiao et al., 2021). The main chain of pectin primarily consists 
of homogalacturonan (HG ≈ 65%) made up of galacturonic acid (GalA). 
The rhamnogalacturonan I (RG-I ≈ 20–35%) skeleton is formed by the 
repeating disaccharide unit (GalA alternately combined with Rhamnose 
residues) (Mohnen, 2008). Hot water extraction (HWE) is commonly 
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used for plant polysaccharides due to its convenience and environmental 
friendliness compared to other methods. Chelators can assist in hot 
water extraction to increase pectin yield (Koh, Xu, & Wicker, 2018; 
Manikandan & Lens, 2022). Subcritical water extraction (SWE) is a 
green and efficient technology for extracting organic compounds such as 
polysaccharides using liquid-state water under high temperature 
(100–374 ◦C) and high pressure (0.1–22.1 MPa) (Liew, Teoh, Tan, 
Yusoff, & Ngoh, 2018). It offers the advantage of rapid, efficient 
extraction and is associated with high yields, quality, and purity. 
Additionally, the modification of the molecular structure by subcritical 
water may enhance the bioactivity of active substances (Zhang, Wen, 
Zhang, Duan, & Ma, 2020). 

Pectins are considered prebiotics because they are nondigestible but 
can be utilized by gut microorganisms to produce metabolites that 
regulate the composition and/or activity of the gut microbiota, thus 
conferring a beneficial physiological effect on the host (Holscher, 2017; 
Thomas, Suzuki, & Zhao, 2015). Additionally, pectins are highly valued 
polysaccharides with health effects. Pectins with different structures 
and/or compositions have been found to be potentially effective in 
protecting against and preventing gastrointestinal issues, reducing 
cholesterol, and regulating immunity (Cui, Wang, Zhao, Zhou, & Zheng, 
2022; Zaid, Mishra, Wahid, & Sakinah, 2019; Zhu et al., 2022). The 
health-promoting features of pectin include its fermentability and the 
corresponding changes in intestinal microbial composition (Kang et al., 
2022). In the gut, pectin is utilized by gut microbiota and fermented into 
microbial metabolites such as short-chain fatty acids (SCFA) (Holscher, 
2017). Pectins can support proper modulation of gut microbiota. For 
example, pectin from Cucumis metuliferus peels was found to increase the 
abundance of beneficial bacteria like Bifidobacterium (Zhu et al., 2022), 
and soy and citrus pectin increased the relative abundance of Prevotella 
in pig colonic digesta (Tian et al., 2017). Sugar beet pectin also stimu
lated members of the genus Lactobacillus during cecal fermentation in 
rats (Tian et al., 2016). 

In the present study, different extraction methods were compared to 
obtain pectin from pomelo peels. The pectin fractions were character
ized by their constituent monosaccharide composition and molecular 
weight (Mw) distribution. We compared the fermentation patterns of the 
pectin using an in vitro simulated human gut fermentation model. This 
knowledge could be used to determine and recommend efficient utili
zation of pectin and corresponding regulation of intestinal microbiota by 
different extraction methods. 

2. Materials and methods 

2.1. Materials and reagents 

The fresh pomelos Citrus maxima cv. (Burm.) Merr. cv. Shatian Yu 
were purchased from Guangxi province, China. The chelators citric acid, 
EDTA-2Na and dialysis bag were purchased from Beijing Solarbio Sci
ence and Technology Co. Ltd (Beijing, CHN). The monosaccharide 
standards and dextran standards were acquired from Sigma-Aldrich 
Chemical Co., Inc. (WI, USA). SCFA standards were obtained from 
Aladdin Biochemical Technology Co. (Shanghai, CHN). All other 
chemicals and reagents were of analytical grade. 

2.2. Extraction of pectin from pomelo peels 

To extract the pectin, fresh pomelo peels were dried at 50 ◦C to a 
constant weight and the fragments became hard and fragile. The peels 
were then ground into a powder and sifted through an 80-mesh screen. 
The ratio of water to material was 20:1 (v/w dried powder). The mixed 
solutions for the extraction of SWP were gathered under an automatic 
pressure steam sterilizer (GI54TW, Zealway instrument, Inc., USA). The 
program was set to rise from room temperature to 0.15 Mpa at 127 ◦C in 
35 min and maintained the condition for 20 min, then relieved to at
mospheric pressure in 35 min. The treatment condition for HWP was 

85 ◦C for 1.5 h. We defined the six groups of pomelo pectins (PPs) as 
follows: W-SWP/HWP (subcritical/hot water-extracted pectin), CA- 
SWP/HWP (subcritical/hot water citric acid-extracted pectin, with a 
citric acid solution of 5% w/v), and E-SWP/HWP (subcritical/hot water 
EDTA-2Na-extracted pectin, with an EDTA-2Na solution of 1% w/v) 
(Fig. 1). The supernatant was collected and the pH was adjusted to 7.0 at 
25 ◦C. Next, four volumes of anhydrous ethanol were added to the so
lutions, which were then kept at 4 ◦C for 12 h. The resulting deposition 
was separated by filtration and dissolved in ultrapure water. Dialysis 
was conducted using a dialysis bag (8–14 kDa) at 4 ◦C for 48 h, and then 
the samples were dried at low temperature under vacuum. The extrac
tion yield was calculated as follows: Extraction Yield (%) = W1/W2 ×
100%, where W1 and W2 are the weight of dried pectin samples and the 
weight of dry pomelo peel powder, respectively. 

2.3. In vitro simulation of human colonic fermentation 

The in vitro simulated gut fermentation was conducted using a 
modified version of a published method (Ai et al., 2022; Liu et al., 2022). 
Fresh fecal samples were obtained from six healthy donors (three males 
and three females, aged 20–24), who had not experienced any digestive 
or antibiotic treatment for at least three months. The feces were 
collected and homogenized in sterile centrifuge tubes filled with 
phosphate-buffered saline (pH = 7.4). The fecal supernatant was 
collected after centrifugation at 500×g for 10 min, and the fluid was 
diluted to a concentration of 0.1 g/mL. All further procedures were 
performed within 1 h of dilution. 

The fermentation basal nutrient medium (1000 mL) was prepared by 
adding NaCl (4.5 g), K2HPO4 (2.5 g), CaCl2⋅2H2O (0.45 g), MgSO4⋅7H2O 
(0.5 g), FeSO4⋅7H2O (0.005 g), ox bile (0.05 g), cysteine (0.4 g), bac
topeptone (3.0 g), casein (3.0 g), 1% Resazurin indicator (1 mL), haemin 
(0.01 g), para-aminobenzoic acid (0.05 g), D-biotin (0.002 g), vitamin B- 
12 (0.0005 g), menadione (0.001 g), pantothenate (0.01 g), nicotin
amide (0.005 g), and thiamine (0.004 g). In vitro fermentation was 
conducted in 5 mL anaerobic fermentation tubes. W/CA/E-HWP and W/ 
CA/E-SWP were dissolved in sterilized medium to a concentration of 10 
mg/mL. Fructo-oligosaccharides (FOS) were used as the positive con
trol, and the basal nutrient growth medium without any carbon source 
was used as the blank control (CON). The fermentation medium was 
inoculated with 10% of the total volume of diluted fecal supernatant. 
The tubes were sealed and incubated at 37 ◦C (100 rpm) in a vibrating 
incubator for 0, 6, 12, 24, and 48 h. 

2.4. Physiochemical analyses 

Molecular weight distribution. The samples (5 mg) were dissolved in 1 
mL ultrapure water and passed through 0.22 μm filter membrane to 
remove impurity. The Mw of PPs were determined by high performance 
size exclusion chromatography (HPSEC) with TSK-GEL columns con
nected in series of TSK-Gel guard column (TSKgel Guardcolumn 
SuperSW, 6 mm ID × 40 mm), 4000, 3000 and 2500 Super AW (6 mm ×
150 mm) series coupled to RI detector (RefractoMax520, Thermo Fisher, 
MA, USA). The NaNO3 solution was used as mobile phase at 55 ◦C col
umn environment and a concentration of 0.2M with 0.6 mL/min speed. 
Each 20 μL pectin solution was injected into the system for analysis, and 
the standard curve was obtained by various dextran standards (Mw of 
10, 40, 70, 500 and 2000 kDa) (Jermendi et al., 2023; Voragen, Schols, 
De Vries, & Pilnik, 1982). 

Constituent monosaccharide content and composition. Samples (10 mg) 
containing 1 mg of inositol as internal standard were pre-hydrolyzed in 
72% (w/w) H2SO4 at 30 ◦C for 1 h followed by 1 M H2SO4 at 100 ◦C for 3 
h. The monosaccharides released were derivatized into their alditol 
acetates and determined by gas− liquid chromatography (Englyst & 
Cummings, 1984). The uronic acid (UA) content of the samples was 
quantified using the p-hydroxydiphenyl colorimetry method at 520 nm 
with D-galacturonic acid as a standard substance. The detailed 
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determination conditions were the same as described in a publication 
(Blumenkrantz & Asboe-Hansen, 1973). Total contents of carbohydrate 
were calculated by summing all determined monosaccharides, including 
rhamnose (Rha), fucose (Fuc), arabinose (Ara), xylose (Xyl), mannose 
(Man), galactose (Gal), glucose (Glc) and UA. 

FT-IR spectroscopy and degree of methyl esterification. FT-IR spec
trometry was used to record the dried pectin’s KBr tablettings using the 
Nicolet iS50+iN10 spectrometer (Thermo Fisher Scientific, MA, USA) 
with a resolution of 4 cm− 1, cumulative scan of 32 and a wavelength 
range of 4000–500 cm− 1. KBr discs were prepared using a 90:10 salt: 
sample proportion. The DM of samples was determined by calculating 
from established standard curve with I and DM value. I = A1745/(A1745 
+ A1630) × 100%, where I is the percentage of ester based peak area. The 
A1745 and A1630 are the absorption peak area of methyl ester group and 
carboxylate absorption peak area, respectively (Filippov & Kohn, 1975; 
Zhao et al., 2021). The standard cure was established by various stan
dards of DM pectin (3, 20, 37, 55, 62.8 and 70.5%). 

Total polyphenols, protein content, pH and gas production. The content 
of proteins and total polyphenols were determined according to BCA 
assay (Smith et al., 1985) and Folin-Ciocalteu colorimetric method 
(Singleton & Rossi, 1965), respectively. The pH values of fermented 
samples were measured by 962244 detector (PHS–3C, Shanghai Leici 
Apparatus Corp., Shanghai, CHN). The gas production (mL) was recor
ded from the specific scale value by inserting piston type sterile needle 
through the rubber plug into tubes without contacting medium. 

SCFA content and composition. The diethylacetic acid was added into 
samples as internal standard (Tornero-Martinez et al., 2019). 2 μL of 
mixed solution was injected into gas chromatograph (Shimadzu 
G2010Plus, Kyoto, JPN) equipped with a DB-FFAP column (30 m × 0.53 
mm × 1.00 μm) (Agilent Technologies Inc., Calif. USA) and a flame 
ionization detector (FID) (Gao et al., 2020). The standards curve was 
obtained by acetic, propionic, butyric, isobutyric, valeric and isovaleric 
acid. 

2.5. Analysis of microbiota after in vitro fermentation 

Samples collected from the in vitro fermentation after 48 h, and the 
ones from CON group at 0 h were analyzed for microbiota composition. 
DNA was extracted from the samples using a DNA Extraction Kit (Omega 
Bio-Tek, USA). The DNA concentration of the samples was determined 
using the Qubit dsDNA HS Assay Kit and Qubit 4.0 Fluorometer (Invi
trogen, Thermo Fisher Scientific, Oregon, USA), and the quality was 
assessed by 1% agarose gel electrophoresis. The full-length 16S rRNA 
gene was amplified from the genomic DNA using the universal primer 
set 27F: AGRGTTTGATYNTGGCTCAG and 1492R: TASGGHT
ACCTTGTTASGACTT. The multiplexed sequencing was conducted using 
both forward and reverse 16S primers tailed with sample-specific PacBio 
barcode sequences. The clean reads were obtained by using UCHIME 
algorithm (v8.1) to detect and remove chimera sequences. Sequences 

with similarity ≥97% were clustered into same operational taxonomic 
unit (OTU) by USEARCH (v10.0). All selected representative reads were 
annotated and performed based on the Naive Bayes classifier in QIIME2 
using the SILVA database (Quast et al., 2013) (release 132) with a 
confidence threshold of 70%. 

2.6. Statistical analysis 

Statistical data were analyzed by SPSS 21 software. GraphPad Prism 
9.0, Origin 2021, Excel 2016 were used for graphics presentation. Sig
nificant differences at p < 0.05 were determined with ANOVA tests 
followed by Duncan’s multi-range tests. 

3. Results and discussion 

3.1. Physicochemical properties of the pomelo pectins 

The yield of pectin was significantly higher when chelator assistance 
and subcritical water treatments were used, as compared to thermal 
water extraction (Table 1). The top three yields of pectin were observed 
in CA-HWP (15.4 ± 0.6%), CA-SWP (14.5 ± 0.3%), and E-HWP (13.5 ±
0.3%). The reason for the higher yield with chelators may be due to the 
presence of high valence ions, which promote complete dissolution of 
pectin (Guo, Duan, Wang, & Huang, 2014; Zheng et al., 2016). The high 
temperature and pressure during subcritical water extraction promote 
solubilization, while high temperature weakens hydrogen bonds and 
increases extraction efficiency (Wang, Chen, & Lü, 2014). The lower 
amounts of protein and total phenols in chelator-assisted groups 
compared to the corresponding water-extracted group (Table 1) was 
mainly due to the increased solubilization of pectin in the former groups. 

The Mw of pectin extracted from pomelo peels was decreased by 
subcritical water treatment, while chelator assistance increased the Mw 
(Table 1). The Mw distributions of the pectins extracted using different 
treatments were determined using HPSEC (Fig. 2A), and the results 
showed that the Mw ranged from 56.3 kDa (E-HWP) to 220.4 kDa (W- 
SWP) for the thermally extracted pectins. The higher Mw of the HWP 
group compared to the SWP group may be due to the promotion of 
pectin hydrolysis by the high temperature and pressure during subcrit
ical water extraction (Wang et al., 2014). Compared to the 
water-extracted group, the chelator-assisted extractions using citric acid 
and EDTA showed higher Mw, which may be explained by the pectin 
polymerization during production process using chelators like citric 
acid, and the dissolution of high Mw pectin by chelator (CDTA) 
extraction (Kurita, Fujiwara, & Yamazaki, 2008; Qin, Liu, Lv, & Wang, 
2020). 

3.2. Carbohydrate contents and constituent monosaccharides 

Table 1 shows that the carbohydrate and UA contents of the pomelo 

Fig. 1. Extraction processing and grouping of pomelo pectins.  
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pectins were all above 77% and 70%, respectively. The monosaccharide 
content and molar ratio in Table 1 indicate that the main composition of 
PPs was UA (mostly galacturonic acid) and an increase in the total 
carbohydrate content was observed after subcritical water extraction. 
Notably, the highest total carbohydrate and UA contents were found in 
CA-SWP at 95.2% and 89.7%, respectively, compared to other groups. 
The contents of other constituent monosaccharides were much less than 
UA, with molar ratios ranging from a minimum of 0.02% (Fuc, CA-SWP) 
to a maximum of 10.2% (Ara, E-SWP). The ratio of HG in all groups was 
above 65%, indicating that HG was the main domain of PPs. These re
sults suggest that both HWP and SWP pectin were mostly composed of 
UA (82.7–93.6% mol) and small amounts of neutral sugars. Similar 
proportions of UA and neutral sugars can be found in Pomelo (Citrus 

maxima) pectin extracted using inorganic acids (nitric and hydrochloric 
acid) (Methacanon, Krongsin, & Gamonpilas, 2014). The contribution of 
the RG-I region to the entire pectin varied between a minimum of 0.0055 
(CA-HWP) and a maximum of 0.0089 (W-HWP). The degree of RG-I 
branching varied between a minimum of 4.7 (CA-SWP) and a 
maximum of 20.2 (E-SWP). CA-SWP had the highest degree of linearity 
at 23.0, with the lowest RG-I branching at 4.7 compared to other groups. 
Generally, pectin with low RG-I and high HG domain can be obtained 
from the used pomelo peels by citric acid-assisted extraction. 

3.3. FT-IR analysis 

The structure of thermally treated pectin samples was further char
acterized using FT-IR spectroscopy (Fig. 2B). The characteristic ab
sorption of O–H bond can be found at a stretched intense peak around 
3450 cm− 1, and the bands around 2935 cm− 1 were due to the stretching 
vibrations of C–H (Cui et al., 2020). Fig. 2B shows the spectra in the 
wavenumber range where pectin characteristic bands are typically 
detected (1700-600 cm− 1). A significant band of methyl-esterified 
carboxyl groups (1753 cm− 1) was observed in each group (Cui et al., 
2020). Furthermore, a strong and weak absorption peak around 1624 
cm− 1and 1440 cm− 1 were attributed to C––O and COO- stretching vi
brations, respectively (Liew et al., 2018). The absorption peak area of 
methyl ester group and carboxylate absorption peak area were used to 
calculate the DM of pectins. All pectin groups had low degrees of methyl 
esterification (<50%). In general, the DM of SWP were higher than 
HWP, which indicates that DM of PPs can be increased by subcritical 
extraction. Moreover, the DM of W-HWP (19.0%) were higher than 
CA/E-HWP (10.5% and 15.1%) and the same condition was observed in 
SWP. The results indicate that the use of chelators decreased the DM 
values of the PPs, and citric acid-assisted extraction led to a greater 
reduction in DM values than EDTA-assisted extraction. In general, the 
spectra between the studied samples were similar and had the charac
teristic absorption patterns of pectin, while significant differences in the 
intensity and absorption areas were observed, which were reflected in 
the DM values. 

3.4. Dynamic changes of pH, gas production, and carbohydrate contents 
during in vitro fermentation 

As shown in Fig. 3(A-B), the control group (CON) maintained a 
relatively smooth pH value around 6.5. In contrast, the pH value in 
pomelo pectin groups decreased at different rates during the 48-h 
fermentation period, although the final pH was significantly higher 
than in FOS (p < 0.05). A sharp decrease in pH was observed in the FOS 
group, which is consistent with our previous finding that high amount of 
lactic acid together with SCFA were produced during FOS fermentation 
(Ai et al., 2022). Gas production gradually increased during fermenta
tion in all groups except for CON, which stopped increasing at 12 h. The 
end of pomelo pectin fermentation gas production sequence decreased 
in the following order: W-SWP (4.06 mL) > E-SWP (3.86 mL) > E-HWP 
(3.40 mL) > CA-SWP (3.20 mL) > CA-HWP (3.16 mL) > W-HWP (3.12 
mL). 

The carbohydrates including UA were intensively utilized by the gut 
microbiota within 24 h of fermentation (Fig. 3C and D). The consump
tion of total carbohydrates from the initial value until after 24 h of in 
vitro fermentation can be sorted as follows: W-SWP (8.42 mg/mL)> CA- 
SWP (7.76 mg/mL)> W-HWP (6.79 mg/mL)> E-SWP (6.11 mg/mL)>
CA-HWP (5.81 mg/mL)> E-HWP (4.45 mg/mL). The favorable micro
bial consumption of total carbohydrates was found in pectins with low 
Mw induced by subcritical water extraction, which is in agreement with 
a previous study (Zhao et al., 2021). The utilized UA after 24 h of 
fermentation was highest in W-SWP (7.68 mg/mL), followed by CA-SWP 
(7.31 mg/mL), W-HWP (5.89 mg/mL), CA-HWP (5.39 mg/mL), E-SWP 
(4.66 mg/mL), and E-HWP (3.96 mg/mL). The limited UA consumption 
for E-HWP group could be partly due to the low DM (15.1%, Table 1) 

Table 1 
Physicochemical properties, constituent monosaccharide composition and 
structural patterns of the pomelo pectins.  

Item W- 
HWP 

CA- 
HWP 

E-HWP W- 
SWP 

CA- 
SWP 

E-SWP 

Physical properties 
Yield (w/w %) 4.7 ±

0.8e 
15.4 ±
0.6a 

10.5 ±
1.4d 

12.9 
± 0.4c 

14.5 
±

0.3ab 

13.5 ±
0.3bc 

DM (%) 19.0 ±
1.0c 

10.5 ±
1.5e 

15.1 ±
2.3d 

30.5 
± 0.8a 

19.4 
± 0.6c 

24.8 ±
1.8b 

Mw (kDa) 134.0 
± 13.2c 

188.5 
± 4.1b 

220.4 
± 24.3a 

56.3 
± 1.7e 

88.4 
± 1.9d 

137.1 
± 2.8c 

Chemical composition 
Total 

carbohydrate 
(%) 

78.8 ±
9.1b 

91.4 ±
3.0a 

88.7 ±
1.3a 

90.1 
± 1.7a 

95.2 
± 2.1a 

90.4 ±
2.6a 

Total UA (%) 70.3 ±
7.4c 

86.2 ±
2.8ab 

82.8 ±
2.5ab 

80.1 
±

0.6ab 

89.7 
± 2.0a 

77.1 ±
2.8bc 

Protein (%) 9.0 ±
0.4a 

5.1 ±
0.4c 

6.1 ±
1.0c 

7.7 ±
0.7b 

2.9 ±
0.2d 

6.0 ±
1.0c 

Total phenols 
(%) 

0.27 ±
0.01a 

0.05 ±
0.01e 

0.13 ±
0.00c 

0.20 
±

0.01b 

0.04 
±

0.01e 

0.08 ±
0.01d 

Monosaccharide content/molar ratio (%) 
Rha 0.5/0.8 0.4/ 

0.5 
0.4/0.5 0.5/ 

0.7 
0.5/ 
0.6 

0.5/ 
0.6 

Fuc 0.1/0.1 t/t t/t t/0.1 t/t t/0.1 
Ara 2.6/4.2 2.6/ 

3.7 
2.4/3.5 5.3/ 

7.4 
0.3/ 
0.4 

7.4/ 
10.2 

Xyl 0.7/1.1 0.1/ 
0.2 

0.2/0.3 0.3/ 
0.4 

0.4/ 
0.5 

0.4/ 
0.6 

Man 1.1/1.5 0.2/ 
0.2 

0.5/0.6 1.0/ 
1.1 

0.5/ 
0.5 

0.8/ 
0.9 

Gal 2.1/2.8 1.4/ 
1.6 

1.4/1.7 1.6/ 
1.8 

2.2/ 
2.5 

1.9/ 
2.2 

Glc 1.4/1.9 0.5/ 
0.6 

1.0/1.2 1.2/ 
1.5 

1.6/ 
1.8 

2.4/ 
2.7 

UA 70.3/ 
87.7 

86.2/ 
93.2 

82.8/ 
92.3 

80.1/ 
87.0 

89.7/ 
93.6 

77.1/ 
82.7 

Structural patterns 
HG (%) 69.8 85.8 82.4 79.6 89.2 76.6 
RG-I (%) 5.8 4.8 4.6 7.9 3.5 10.2 
Rha/UA (10− 3) 8.9 5.5 5.9 7.6 6.6 7.4 
(Ara + Gal)/Rha 9.0 10.4 9.4 14.0 4.7 20.2 
UA/(Fuc + Xyl +

Rha + Ara +
Gal) 

9.8 15.4 15.5 8.4 23.0 6.1 

Note: DM: degree of methyl esterification. The monosaccharide composition of 
pectins were presented in two ways: monosaccharide content and molar ratio, 
respectively. HG (%) = UA - Rha, and RG-I (%) = UA – HG + Rha + Ara + Gal, 
which were calculated by monosaccharide content. The contribution of RG-I 
domain to the entire pectin was calculated by Rha/UA; the degree of RG-I 
branching was calculated by (Ara + Gal)/Rha; and the linearity of pectin was 
calculated by UA/(Fuc + Gal + Ara + Rha + Xyl); which were calculated by 
molar ratio. t: trace amount, <0.05%. The different superscript letters indicate 
significant difference (p < 0.05). 
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and high Mw (220.4 kDa, Table 1), which facilitated the formation of 
strong gel via calcium ions present in the fermentation medium. Our 
results are in contrast to previous findings that low DM pectin was fer
mented faster than high DM pectins in vivo and in vitro (Dongowski, 
Lorenz, & Proll, 2002; Tian et al., 2016; Tian et al., 2017). It could be 
attributed to the influences of other structural patterns, such as Mw, 
distribution of methyl-esters, ratio of HG, linearity, and degree of 
branching. 

3.5. Dynamic changes of Mw and monosaccharides composition 

As depicted in Fig. 4, all pomelo pectins underwent significant 
degradation by the gut microbiota after 24 h of fermentation. The Mw 
populations at various time points can be utilized to monitor the fer
mentability and the utilization speed of polysaccharides by gut micro
biota (Wu et al., 2022). The limited degradation of E-HWP after 6 h of 
fermentation could be mainly ascribed to the high Mw and low DM as 

Fig. 2. Mw distribution and FT-IR spectrum of PPs. HPSEC profiles (A), FT-IR spectra (B) of thermal extracted pectins from pomelo with/without chela
tors assistance. 

Fig. 3. Preliminary assessment of PPs during in vitro fermentation. Dynamic changes of pH value (A), total gas production (B), total carbohydrate content (C) and 
total UA content (D) of thermal extracted pectins from pomelo with/without chelators assistance at different times during in vitro fermentation. Values are means ±
SD (n = 3) The different superscript letters indicate significant differences (p < 0.05) between different groups at 48 h, while same letters indicate no significance. 
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explained in the upper part. 
As shown in Fig. 5(A-F), a gradual decrease in Ara, Gal, and Man over 

time was observed in all the groups during fermentation, indicating that 
these monosaccharides were effectively utilized by the gut microbiota. 
Rha/UA increased in all groups from 0 to 24 h and decreased thereafter 
(Fig. 5G), indicating that the main domain HG of pectin was preferably 
utilized compared to RG-I during the first 24 h of fermentation. How
ever, the turning point at 24 h can be attributed to the effective 
fermentation of RG-I after the preferential utilization of HG by the gut 
microbiota. The decreasing ratio of (Ara + Gal)/Rha suggests that the 
branches of RG-I were preferentially degraded by gut microbiota, in 
comparison to the RG-I backbone, which is in agreement with our pre
vious data (Ai et al., 2022). The linearity of pectin (measured as 
UA/(Fuc + Gal + Ara + Rha + Xyl)) in the CA/E-HWP groups increased 
significantly during the early stages of fermentation. This suggests that 
the gut microbiota preferred to consume the neutral monosaccharides 
rather than the galacturonic acid present in the pectin during early 
fermentation stages. This preference could be due to the relatively high 
Mw and low DM of CA/E-HWP which has high calcium ions binding 
capacity, limiting the accessibility for microbial enzymes. Conversely, a 
decrease in linearity values indicates the preferred consumption of 
galacturonic acid by gut microbiota. 

3.6. Modulation of gut microbiota by pomelo pectins 

Bacteroidota, Firmicutes, Proteobacteria, and Fusobacteriota had a 
higher relative abundance compared to other phyla and were deter
mined to be the dominant bacteria in pectin-fermented groups (Fig. 6A). 
When compared to CON-48h, a decrease in the relative abundance of 
Proteobacteria and Fusobacteriota, and an increase in the relative 
abundance of Firmicutes and Bacteroidota were observed in all pomelo 
pectin supplemented groups. 

The Firmicutes phylum, which includes the Lactococcus, Phasco
larctobacterium, Lachnospira, and Faecalibacterium genera, are commonly 

found in the gut of healthy individuals and may be potential beneficial 
bacteria (Hu et al., 2019; Sun et al., 2022). As shown in Fig. 6B, 
compared to CON-48h, Faecalibacterium and Phascolarctobacterium 
increased in all sample groups after 48 h of in vitro fermentation, while 
E-HWP and CA-SWP had a significant promotion effect on Faecali
bacterium and Phascolarctobacterium, respectively. Furthermore, a sig
nificant increase in the relative abundance of Lactococcus and 
Lachnospira was observed in W/E-SWP and CA-HWP/SWP, respectively. 
Polysaccharides can be utilized by Bacteroidota as the main energy 
source (Ferreira-Lazarte, Kachrimanidou, Villamiel, Rastall, & Moreno, 
2018). The Bacteroidota phylum, which includes the Bacteroides, Pre
votella 9, and Parabacteroides genera, can benefit the host by preventing 
potential pathogens that may colonize and infect the gut (Han et al., 
2020; Wu et al., 2022). The relative abundance of Bacteroides and Pre
votella 9 increased in all the pomelo pectin supplemented groups 
compared to CON-48h group. In agreement to our data, a significant 
increase of Bacteroides by citrus pectins has been reported before 
(Dongowski et al., 2002). In a previous study, we also observed that the 
relative abundance of Prevotella in pig gut was significantly increased by 
pectin supplementation (Tian et al., 2017). 

The heat map in Fig. 6C indicated the relative abundance of top 20 
bacteria at genus level. The HWP and SWP showed different effects on 
bacterial profiles. Compared to other pectin-fermented groups, W/E- 
SWP had a relatively poorer inhibition on Escherichia-Shigella, while 
promoting a higher relative abundance of Lactococcus. The CA-HWP 
group had high relative abundances of Lachnospira and Enterobacter, 
whereas the E-HWP group had a high abundance of Faecalibacterium. 
The CA-SWP group had high relative abundances of Enterococcus, 
Phascolarctobacterium, and Pantoea, while the W-HWP group had 
increased relative abundances of Sutterella and Lachnospiraceae UCG 
004. These results suggest that supplementation with pomelo pectins 
could alter the microbial composition and relative abundance, which 
could potentially be beneficial for maintaining intestinal homeostasis. 

Fig. 4. Mw degradation of PPs during in vitro fermentation. HPSEC profiles on Mw degradation of W-HWP (A), CA-HWP (B), E-HWP (C), W-SWP (D), CA-SWP (E) and 
E-SWP (F) groups’ dynamic changes during in vitro fermentation. 
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3.7. Dynamic changes of SCFA production 

As shown in Fig. 7, the contents of all types of SCFA increased after 
24 h of in vitro fermentation, which is consistent with the effective uti
lization of carbohydrates by gut microbiota (Fig. 3C and D). However, 
the total SCFA content decreased at 48 h compared to 24 h, which could 
be explained by the carbohydrate shortage and the consumption of SCFA 
by gut microbiota (Sun & O’Riordan, 2013. Acetate and propionate are 
both effective anti-inflammatory mediators (Kang et al., 2022). 
Compared to FOS, there was a significant (p < 0.05) increase in the 
concentration of acetic acid in pectin groups, especially CA-SWP, which 
may be correlated with the higher relative abundance of Bacteroides that 
produces acetic acid during fermentation (Sun & O’Riordan, 2013. 
Citrus pectins have been suggested to be a good source for acetate 
production (Tian et al., 2016). All pectin groups had higher propionic 
acid content than the control, particularly W-HWP in the pectin groups. 
Butyrate can increase the expression of tight junction proteins, thereby 
reducing potential gut permeability and inflammation associated with a 
leaky gut (Bang et al., 2018). All pectin groups had significantly (p <

0.05) increased butyrate acid content, particularly W-SWP, which can be 
attributed to the Lachnoclostridium, Ruminococcaceae, and Faecalibacte
rium genera that produce butyrate. The pH value decreased significantly 
(p < 0.05) in FOS group than others after 48 h in vitro fermentation 
(Fig. 3A), which may be conducted to high relative abundance of Bifi
dobacterium (Fig. 6F), a genus that can ferment carbohydrate and pro
duce lactic acid which is more acidic than other SCFAs (Valdes-Varela, 
Ruas-Madiedo, & Gueimonde, 2017). 

The isobutyric acid and isovaleric acid are the metabolism of 
branched-chain amino acids as the final product of protein catabolism 
that utilized by gut microbiota (Ratajczak et al., 2021). The ratio of total 
SCFAs/total branched short-chain fatty acid (BCFAs, sum of isobutyric 
acid and isovaleric acid, Fig. 7H) can be used to assess the overall 
fermentation pattern during different time points. Pomelo pectin groups 
had combination use of carbohydrate and proteins as the energy sources 
and carbohydrates were preferred (Koecher et al., 2014; Sun & 
O’Riordan, 2013. As shown in Fig. 7I, the microbiota’s consumption of 
carbohydrates over time results in a shift in gut microbiota from car
bohydrate fermentation to partial protein utilization. The total 

Fig. 5. Dynamic changes on monosaccharides composition and structures of PPs during in vitro fermentation. Dynamic changes on monosaccharides contents of W- 
HWP (A), CA-HWP (B), E-HWP (C), W-SWP (D), CA-SWP (E) and E-SWP (F) during in vitro fermentation at different time points. Rha/UA: the contribution of RG-I 
domain to the entire pectin (G), (Ara + Gal)/Rha: the degree of RG-I branching (H), UA/(Fuc + Gal + Ara + Rha + Xyl): the linearity of pectin (I), calculating by 
molar ratio. 
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SCFAs/total BCFAs ratio of E-HWP was significantly (p < 0.05) higher 
than the other groups at 24h and 48 h, which can be attributed to its 
slower degradation and utilization by gut microbiota due to its high Mw 
of 220.4 kDa (Table 1). 

Previous research has shown that pectins with low Mw have favor
able fermentation properties, resulting in high production of SCFAs and 
an abundant population of SCFA-producing genera (Zhao et al., 2021). 
Subcritical water extraction not only significantly increases the yield, 
but also alters the pectin structure by degrading the Mw and increasing 
the percentage of HG in the resulting products. These changes increase 
the fermentability and prebiotic effects of the corresponding pectins. All 
pomelo pectins showed great potential for improving the gut microbiota 
community and producing beneficial prebiotic effects, especially E-HWP 
and CA-SWP, which had a relatively high abundance of Bacteroides and 
Faecalibacterium. The manipulation of pectic substances on gut micro
biota metabolites is complicated, and the link between structural spec
ificity of pectin and fermentability need further exploration. 

4. Conclusion 

Pomelo peel, a by-product of fruit processing, is an excellent source 
of pectin. The chemical structure of pomelo pectins highly depends on 
the extraction methods used. Our results indicate that chelator-assisted 
extraction increased the pectin Mw and decreased the DM of pectin, 
whereas subcritical water treatment had the opposite effect. Pectin with 
low RG-I and high HG domain can be obtained by citric acid-assisted 

extraction. Pomelo pectins enhanced the relative abundance of Bacter
oides and Prevotella 9, and stimulated the production of SCFA, particu
larly acetic acid. Subcritical water extraction could promote the 
fermentability and prebiotic potential of obtained pectin. Generally, 
pomelo pectin could be considered a new source for modulating gut 
microbiota towards a healthy pattern in functional foods. 
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Abbreviations 

PPs pomelo pectins 
HWP hot water extraction pectin 
SWP subcritical water extraction pectin 
W/CA/E-HWP hot water only extraction/critic acid assisted 

extraction/EDTA-2Na assisted extraction pectin 
W/CA/E-SWP subcritical water only extraction/citric acid assisted 

extraction/EDTA-2Na assisted extraction pectin 
FT-IR Fourier transform-infrared spectral 
Mw molecular weight 
HPSEC high performance size exclusion chromatography 
Rha rhamnose 
Fuc fucose 
Ara arabinose 
Xyl xylose 
Man mannose 
Gal galactose 
Glc glucose 
GalA galacturonic acid 
UA uronic acid 
CON blank control 
FOS fructo-oligosaccharides 
SCFAs short-chain fatty acids 
BCFAs branched short-chain fatty acids 
HG homogalacturonan 

Fig. 7. Dynamic changes of PPs’ SFCAs production during in vitro fermentation. Dynamic changes of all groups on SCFAs contents (production or consumption) at 
different time points during in vitro fermentation: acetic acid (A), propionic acid (B), isobutyric acid (C), butyrate acid (D), valeric acid (E) and isovaleric acid (F). The 
total SCFAs was calculated by sum of the six short chain fatty acids (G), and total BCFAs was summed by isobutyric and isovaleric acids (H). Values are means ± SD 
(n = 3) The different superscript letters indicate significant differences (p < 0.05) between different groups at 48 h, while same letters indicate no significance. 
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RG-I rhamnogalacturonan I 
DM Degree of methyl esterification 
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