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Abstract: In the last two decades, unmanned aerial vehicle (UAV) technology has been widely
utilized as an aerial survey method. Recently, a unique system of self-deployable and biodegradable
microrobots akin to winged achene seeds was introduced to monitor environmental parameters in
the air above the soil interface, which requires geo-localization. This research focuses on detecting
these artificial seed-like objects from UAV RGB images in real-time scenarios, employing the object
detection algorithm YOLO (You Only Look Once). Three environmental parameters, namely, daylight
condition, background type, and flying altitude, were investigated to encompass varying data
acquisition situations and their influence on detection accuracy. Artificial seeds were detected
using four variants of the YOLO version 5 (YOLOv5) algorithm, which were compared in terms of
accuracy and speed. The most accurate model variant was used in combination with slice-aided
hyper inference (SAHI) on full resolution images to evaluate the model’s performance. It was found
that the YOLOv5n variant had the highest accuracy and fastest inference speed. After model training,
the best conditions for detecting artificial seed-like objects were found at a flight altitude of 4 m,
on an overcast day, and against a concrete background, obtaining accuracies of 0.91, 0.90, and 0.99,
respectively. YOLOv5n outperformed the other models by achieving a mAP0.5 score of 84.6% on the
validation set and 83.2% on the test set. This study can be used as a baseline for detecting seed-like
objects under the tested conditions in future studies.

Keywords: unmanned aerial vehicles; object detection; deep learning; flying height; light conditions;
background type

1. Introduction

In the last 15 years, technology related to unmanned aerial vehicles (UAV) has im-
proved significantly, and it has been adopted for photogrammetric survey applications. In
comparison to conventional methods, such as terrestrial surveys, UAV-based photogram-
metry has continuous image-based coverage of tens of hectares in a single flight, has a
higher spatial resolution (in millimeters) compared to satellite imagery, and is less expen-
sive to operate than manned airborne missions [1,2]. Object detection in optical remote
sensing images is a method to determine part of an image containing one or more objects
belonging to the class of interest. In follow-up, the location of the detected objects can
be determined [3]. There are at least four main approaches to object detection, namely
template matching-based methods, knowledge-based methods, object-based image anal-
ysis (OBIA)-based methods, and machine learning methods [4]. As part of the machine
learning category, deep learning methods have gained remarkable accuracy in object de-
tection [5]. Deep learning algorithms for UAV imagery classification and segmentation
have been widely used for various applications, including but not limited to palm tree
counting [6], tree seedling detection [7], land use classification [8], moving vehicle de-
tection and tracking [9], mammal detection [10], and bird detection [11]. In recent years,
remote sensing image analysis has benefited greatly from deep learning [12]. A wide
range of remote sensing tasks, including image classification, object detection, semantic
segmentation, and change detection, have seen significant advancements thanks to the
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utilization of deep neural networks. Quite a number of interesting novel approaches to
remote sensing image analysis have emerged as a result of recent advances in artificial
intelligence (AI) and deep learning, including but not limited to Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN), Generative Adversarial Networks
(GAN), Graph Convolutional networks (GCN) and multimodal deep learning. CNN is a
popular deep learning architecture particularly well-suited for image analysis tasks and
can learn useful features from images automatically [13]. Attention mechanisms, such as
RNN, selectively focus on certain parts of an input, such as regions of an image [14]. GCNs
are specifically designed to operate on graphs to exploit spatial information in images,
as well as the relationships between different spectral bands to improve the classification
accuracy in hyperspectral images. Using GCN, Hong et al. introduced a method that
effectively classifies images with wide range of spectral bands [15]. Multimodal approach
involves the training of a deep neural network on multiple modalities of data, such as
both hyperspectral and panchromatic images. It uses a diverse set of data augmentations
which improve the overall classification performance. For example, Hong et al. proposed a
method that involves training a neural network on both panchromatic and hyperspectral
images and demonstrated that the proposed method outperforms other state-of-the-art
methods for remote-sensing imagery classification. [16].

Taking inspiration from plant seeds’ morphology and dispersion capabilities, the EU
H2020 I-Seed project (see Figure 1) aims to develop biodegradable and self-deployable soft
miniaturized artificial seeds with fluorescence sensors (termed ‘I-Seed’ in this work) for
monitoring environmental parameters, such as temperature, humidity, carbon dioxide, and
mercury in topsoil and the air above soil [17]. Within the project, winged seeds such as
Samara (length 4–5 cm, width 1–2 cm) are one of the selected species for biomimicking (see
Figure 2a,b). Initially, these artificial seeds will be dispersed using UAVs, and the seeds will
be spread over the target area following their natural-like pathways (see Figure 1). One of
the potential ways to geo-localize these artificial seeds is using UAV RGB imagery.
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Figure 2. Seeds used in this work—(a) I-Seed prototypes and (b) colored Samara. Different back-
grounds of interest—(c) concrete, (d) soil, (e) soil and grass, and (f) grass. (g) Location of the test area
and (h) overview photo of the experimental setup.

Prior work on the detection of seed-like objects from aerial imagery is limited, mainly
due to the definition of small object detection in aerial imagery. There are two definitions
for small objects within the scope of object detection [18]. The first definition is based on
the physical size of the object in the real world. For example, Liu et al. classified humans as
small objects in aerial imagery using the COCO dataset [19], Chen et al. classified vehicles
as small objects in aerial imagery [20], and Zhao et al. classified wheat spikes as small
objects in aerial imagery [21]. The second definition is based on the image occupancy area
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of the object (less than 32 × 32 pixels), known as the MS-COCO evaluation metric [22]. For
example, Rui et al. classified UAVs as small objects in standard images (frontal perspective),
as they have an image occupancy size of less than 322 pixels [23]. Samara seeds are
relatively small in size (physical dimension) and will be viewed from an aerial perspective
after landing on an uneven surface at various angles (small image occupancy area). By
both definitions, I-Seeds fall within the category of small object detection.

Although there has been significant progress in small object detection with deep
learning in recent years, improvements are still needed in the accuracy of small object
detection in comparison with normal-sized object detection [5,24]. The reasons for the
lower accuracy of small object detection lie within the design of the state-of-the-art detectors,
which are (a) intended for frontal perspective images and not for aerial perspective images
and (b) optimized to detect large and normal-sized objects, resulting in the receptive field
not being robust enough for small objects [19]. To improve the performance of small object
detection in aerial images, conventional state-of-the-art detectors can be specialized by
reducing anchor sizes, using multi-scale feature learning, and using data augmentation [25].
State-of-the-art object detection models can be divided into two types based on their
working principle, namely two-stage detection frameworks and one-stage detectors [19].
The two-stage detection frameworks first generate region proposals and then perform
classification and bounding box regression for each proposal. Examples of two-stage
detection frameworks are Fast R-CNN, Faster R-CNN, Feature Pyramid Network, and
Mask R-CNN. In contrast, one-stage detectors perform a one-pass regression of class
probabilities and bounding box locations. Examples include You Only Look Once (YOLO)
and Single Shot MultiBox Detector (SSD). The main difference between these two types
of one-stage detector lies in the trade-off between accuracy and processing time [19,26].
The comparison between SSD and YOLO as well as different versions of YOLO have been
carried out by numerous authors. For example, Liu et al. developed UAV-YOLO from
YOLOv3 and defined humans as small objects (in terms of image occupancy area) from
UAV perspective [14]. They also compared their model with two variants of Single Shot
MultiBox Detector (SSD) and found that SSD variants perform poorly in terms of mAP, IoU
and processing time in comparison to YOLOv3 and UAV-YOLO. Zhao et al. defined small
aircrafts as small objects (in terms of image occupancy area), and exploited YOLOv3 without
any modification and showed that its performance in computational time is 3.4 and 27 times
faster than SSD and Faster R-CNN, respectively [27]. Nina et al. compared YOLO and You
Only Look Twice (YOLT) and found better performance of YOLO for Mini Ship and High-
Resolution Ship datasets [28]. In the context of the I-Seed project, the artificial seeds need to
be detected and localized in real time for the subsequent activity of read-out of the sensors.
For remote read-out of in situ sensor information (see Figure 1), an active laser-induced
fluorescence observation system onboard UAV will excite the I-Seeds for fluorescence
emission that is the function of measured environmental parameters on topsoil and air
above soil, e.g., temperature, humidity, CO2, and mercury [29]. In addition, the real-time
operation is aimed to be performed onboard UAV with small form-factor computational
unit. On top, remote uninhabited areas have poor cellular coverage to meet real-time data
streaming to a remote server/computational unit. Therefore, neural networks requiring
offline/remote processing, longer processing time, and heavy computational power are
disregarded for our investigation. To support the real-time detection of small objects such
as I-Seeds, one-stage detectors, such as YOLO, are a suitable option. Several studies have
utilized the modified YOLO model for small object detection in remote sensing images.
For example, Liu et al. developed UAV-YOLO by concatenating two equally sized residual
blocks of the network backbone and reported better performance of UAV-YOLO compared
to YOLOv3 and SSD using an optimized training dataset [19]. Pham et al. proposed YOLO-
fine, which can give better results in small and very small objects using finer detection
grids [26]. To detect small objects from aerial imagery, Ali et al. modified a YOLOv4 neck
structure by passing the output of the fourth Convolution + Batch Normalization + Mesh
(CBM) layer into an up-sampling layer with a factor of 4, which generates more refined and
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fine-grained features of the small object [30]. Zhao et al. enhanced YOLOv5 by adding a
microscale layer and a custom anchor box setting and adapting the confidence loss function
of the detection layer based on the intersection over union (IoU) [21].

Another noteworthy reason for the lower accuracy of small object detection is the
diverse and complex background, which leads to false positive predictions [31]. To counter-
act the effects of a complex background, either the settings of the camera can be optimized
during acquisition or the deep learning model can be adapted to varying background
conditions during the post-processing phase. However, commercially available UAV RGB
cameras are seldom configurable and generally capture images in automatic mode, mak-
ing it inaccessible to finetuning hardware settings. Alternatively, deep learning models
have been engineered to detect objects with complex backgrounds [31–33]. In the case of
YOLO, the algorithm reasons globally to avoid false positives on complex backgrounds
and encodes contextual information about the image [34].

To extract positional information of the distributed I-Seeds on the ground from high-
resolution UAV imagery in an efficient and accurate manner, the required object detection
model should be capable of small object detection in a complex image background, such as
concrete, soil, or grass, from the aerial perspective. In this paper, we propose and evaluate a
suitable deep learning-based detection model for small object detection with high accuracy
at effectively detecting I-Seed objects in each aerial image. The novelty of this work is
two-fold and considers primarily (a) effect of environmental parameters in data acquisition
on the detection of small seed-like objects from aerial perspective, and (b) implementation
and evaluation of a one-stage detector in combination with SAHI to reduce processing time
and computational load for full-sized images in order to implement on UAV platform for
real-time object detection and localization. We prepared an experimental dataset consisting
of imagery acquired at different flying altitudes with varying daylight and background
conditions to evaluate the generalizability of the model and to determine the detection limits
of the deep learning algorithm. Subsequently, we carried out a performance analysis for the
detection of I-Seeds in full-size images and the subsequent processing time requirements.

2. Materials and Methods
2.1. Sample Preparation

Generally, deep learning models require a large number of observations as input for
the data labelling process. With respect to the requirement of model training, the available
number of I-Seed prototypes were 10 brown and 10 blue objects (see Figure 2a). Therefore,
real Samara seeds (Acer platanoides) of similar dimensions to the I-Seed prototypes were
used in addition. To mimic the prototypes’ colors, the real Samara seeds were used in their
original color (brown), as well as being painted in blue (see Figure 2b). The total number of
seed-like objects in this study was therefore 160 brown objects and 160 blue objects. The
seeds were distributed by hand within delineated plots of 3 m × 3 m within the study area
over four different land cover types: concrete, bare soil, soil with grass patches, and grass
only (see Figure 2c–f).

2.2. Data Acquisition

The study site is located at Unifarm, the agricultural experimental research farm of
Wageningen University and Research, the Netherlands, at latitude 51◦59′21.45”N and
longitude 5◦39′38.97”E (see Figure 2g,h). The images for the dataset were captured by
two UAV platforms, a Phantom 4 Pro RTK and a DJI Mavic 2 Pro, for which the camera
specifications are listed in Table 1. Both the UAVs have a maximum flight time of 30 min.
Since the spatial resolution of the UAV camera is inversely proportional to the target
distance, the UAV flying altitude is limited for resolvable data acquisition. The minimum
flying altitude was found to be 4 m, where the downwash airflow from the rotors of the
UAV did not cause location shifts of the seeds. The images were captured at flying altitudes
of 4 m to 10 m with altitude increments of 2 m. To account for the contrast and exposure
differences arising from the variation of daylight condition during UAV image capture, the
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UAV missions were carried out on different days with sunny and cloudy skies (Table 2). The
solar irradiation intensities were collected from the nearby Veenkampen weather station
of Wageningen University and Research, the Netherlands. The image acquisition time
for all the datasets was between 12:00 and 15:00 local time, and the corresponding solar
zenith angles are listed in Table 2. Note that clouds diffract the incoming solar radiation,
resulting in higher diffuse irradiation than direct solar irradiation. Two different image
capturing methods were utilized, namely capture at equal distance/time interval and
Hover and Capture. The former is employed in autonomous flight missions and is prone
to motion blur, whereas the latter is used in non-automated flight missions and is more
time-consuming.

Table 1. Camera specifications of UAV platforms used in the experiments.

Parameter Phantom 4 Pro RTX Mavic 2 Pro

Field of View 84◦ 77◦

Minimum Focus Distance 3.3′/1 m 3.3′/1 m
Still Image Support DNG/JPEG JPEG

Mechanical Shutter Speed 1/2000 to 8 s N/A
Electronic Shutter speed 8–1/8000 s 8–1/8000 s

Table 2. Overview of image datasets acquired over the experimental plots (Figure 2) and the related
environmental information in the period of acquisition.

Dataset
ID Date

Light
Condi-

tion

Solar Intensity [W/cm2]

Solar
Zenith

Angle (◦)

Drone
Platform

Flight
Method

Total
Images

Category

Specular Diffuse

Tiled Dataset
(TD)

Full Size
Dataset
(FSD)

Tr
ai

ni
ng

V
al

id
at

io
n

Te
st

in
g

DS1 21 Sep. 2021 Overcast 157 ± 60 305 ± 27.8 52.2 ± 0.8 Phantom 4
Pro RTX Auto 359 P P

DS2 11 Nov. 2021 Overcast 0.98 ± 0.1 75 ± 14 71.1 ± 1.4 Phantom 4
Pro RTX Auto 816 P P

DS3 21 Dec. 2021 Sunny 652 ± 41.7 32.5 ± 3.3 76.4 ± 1.1 Phantom 4
Pro RTX Auto 816 P P

DS4 6 Jan. 2022 Sunny 11 ± 25.8 42.4 ± 34.1 77.6 ± 1.0 Mavic 2 Pro Manual 139 P P P
DS5 9 Jan. 2022 Sunny 60.4 ± 91.7 38.3 ± 4.6 78.1 ± 1.1 Mavic 2 Pro Manual 131 P P P
DS6 17 Jan. 2022 Overcast 0.8 ± 6.3 59.8 ± 7.8 75.3 ± 1.7 Mavic 2 Pro Manual 202 P P P

2.3. Datasets

For this research, seven datasets were acquired within the period of September 2021 to
January 2022 (Table 2). In each dataset, an image is captured at each flight altitude and each
background. For the creation of the dataset, at least two shooting methods were utilized.
The first was a self–directed flight with 70–95% overlap between photographs. It seeks to
reproduce the photographs taken so that there is a large amount of data to include in the
training model. The second type of data acquisition was performed by flying manually
over a bounded area of 3 m × 3 m with 14 I-Seed blue and 14 I-Seed original color. This
second strategy focuses on the evaluation of the deep learning method.

The datasets are divided into two categories (Table 2). The first one is the tiled dataset
(TD) that is used in the training (70%), validation (15%), and testing (15%) of the transfer
learning model YOLOv5. Note that, there were no identical images used in training,
validation, or testing. The tiled as well as full-sized images used in training, validation
and testing were unique, although they come from the images taken on same day. Such
practice is quite common in dataset design and analysis, for example, see the works of
Liu et al. [19], Chen et al. [20], and Zhao et al. [21]. The images are tiled, sub-images with
background information are discarded, and sub-images containing I-Seeds are selected
and labelled manually. The second dataset is the full-size dataset (FSD) that contains full
resolution images (5472 px × 3648 px) taken by the drone without tiling. The purpose of
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this dataset is to assess the identification of I-Seed YOLOv5 at full size. FSD consists of
192 full-size images. Since the design of the datasets influences the accuracy of the model
being trained, datasets containing images captured in equal distance/time interval mode
including image blur are allotted to the training set of TD. Meanwhile, datasets using the
Hover and Capture method are allocated for the FSD and test sets of TD. These datasets
include images without motion blur and ground truth data.

2.4. Data Pre-Processing

Since the full resolution images captured by the UAV contain a considerable amount
of background information less relevant to the training process (42%), tiling is utilized as a
pre-processing step to filter out irrelevant portions of the image. In the tiling process, the
full resolution image is divided into tiles with a size of 512 × 512 pixels, highlighting the
I-Seed characteristics while avoiding the loss of image information. A total of 12,300 tiles
was generated for TD, of which 42% did not contain any I-Seed objects (background
information).

Labelling is an essential step for training in supervised learning. Roboflow [35], a web-
based image annotation platform for computer vision algorithms, was used to manually
label objects and to create bounding boxes around each object in the image. One of the
major issues in object detection is class imbalance arising from the large differences in
objects per class. As is shown in Table A1, a total of 17,760 objects was annotated for the
tiled dataset (TD), where 59% of the annotations belong to I-Seed blue and 41% of the
annotations belong to I-Seed original color (brown). This division makes class imbalance
insignificant for our case. Since tiles containing a single object and multiple objects fare
equally, care was taken to avoid annotating objects at the margin of the tile. The maximum
number of objects per tile was less than 16, and in practice, each tile is expected to contain
between 1 and 8 items at a resolution of 512 × 512 pixels. For the full-size dataset (FSD),
a total of 192 images was labelled and 6526 objects were annotated to assess the accuracy
of the model while running inference with slicing-aided hyper inference (SAHI). Ground
truth on number of seeds over an area was ensured by dispersing seeds over a bounded
area of 3 m × 3 m. Therefore, each image in this dataset should ideally comprise 34 items,
17 I-Seed blue objects and 17 I-Seed original color objects. However, two photos contain
only 33 objects, including 16 I-Seed objects in their original color. The reason for the reduced
number of items in these images is because they contain 1 less I-Seed original color object.
This approach was taken to ensure that the model evaluation can be performed against the
ground truth of seed numbers, and human error in the data labelling step can be avoided.
The TD test data tiles are generated from FSD to maintain the identical condition and
quality of data for training and testing.

2.5. Data Processing
2.5.1. Object Detection Model

YOLOv5, proposed by Glenn Jocher in 2020, has been developed using the PyTorch
library of Python and has various versions depending on the network size, e.g., small
(YOLOv5s), medium (YOLOv5m), large (YOLOv5l), and extra-large (YOLOv5x) [36]. Gen-
erally, the performance of the model increases with increasing network size at the cost
of processing time [36]. That is, larger models can handle complex problems with large
datasets with good accuracy, but a longer processing time is required compared to smaller
models. In terms of integration, Python-based YOLOv5 is simpler than the previous C-
based YOLO versions and is one of the state-of-the-art techniques for object detection [37].
In this work, four variants of the YOLOv5 model, namely nano, small, medium, and
large, were utilized and compared for training the dataset for I-Seed detection. The key
differences between the variants are listed in Table 3, where depth and width multiples
represent the addition of layers and channels to the neural network, respectively. The hyper
parameters in a deep learning model play a key role in the learning process by controlling
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and deciding the model parameters that a model learns. The hyper parameters for this
work are listed in the Appendix A (see Table A2).

Table 3. Comparison of YOLOv5 variants in terms of crucial features.

Variant Depth Multiple Width Multiple Parameters

Yolov5x 1.33 1.25 86.7 M
Yolov5l 1.0 1.0 46.5 M

Yolov5m 0.67 0.75 21.2 M
Yolov5s 0.33 0.50 7.2 M
Yolov5n 0.33 0.25 1.9 M

2.5.2. Performance Evaluation

The performance of the YOLOv5 model for I-Seed detection was evaluated using
standard performance measures such as average precision (AP) and mean average precision
(mAP). Average precision AP is calculated as the area under the precision–recall curve p(r)
for a given intersection over union (IoU) α and mean average precision mAP is the average
of AP over n observations as follows:

AP@α =
∫ 1

0
p(r)dr, (1)

mAP@α =
1
n ∑n

i=1 APi . (2)

IoU α evaluates the overlap between the ground truth area GT with the predicted area
PD as follows:

α =
area(GT ∩ PD)

area(GT ∩ PD)
. (3)

Precision p depicts model performance when identifying relevant objects only, while
recall r measures the model performance when finding all relevant cases (all ground truth)
in terms of true positive TP, false positive FP, and false-negative FN as follows:

p =
TP

TP + FP
, (4)

r =
TP

TP + FN
. (5)

For example, when α > 65% on AP50, the detection is considered a true positive because
the IoU value exceeds the threshold, whereas for AP75, it is a false positive. Alongside
accuracy, model performance also considers the time needed for the model inference to
account for the real-time detection of the I-Seeds.

2.5.3. Inference in the Full-Size Dataset

The full-size dataset (FSD) is provided as an input to the trained YOLOv5 model
for detecting the I-Seeds. YOLOv5 is trained on 512px × 512px input images, whereas
each image in FSD is 5472px × 3648px. On the one hand, if the FSD is fed directly as
input into YOLOv5, the details in the image will be lost due to the size reduction. On the
other hand, if YOLOv5 is trained for the FSD size, the required computational resources
and memory for training and interference will increase significantly. Slicing-aided hyper
inference (SAHI) was utilized for detecting smaller objects without retraining the model
or requiring larger graphical processing units (GPUs). Initially, the original image I is
sliced into N number of K × L overlapping patches before progressing to object detection
forward pass. The results of the overlapping predictions and optimal full-inference (FI)
are merged using non-maximum suppression (NMS) [38]. SAHI gives the predictions
of the full-size image in COCO JSON format. Due to the fact that the FSD has a unique
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name indicating the state of the three parameters considered to influence object detection,
the SAHI and ground truth detection results are classified according to the class/value of
each parameter or the combination of the three parameters, namely light conditions, flight
height, and backgrounds. This separation is accomplished through the use of Python to
parse the COCO JSON format for both SAHI detection results and ground truth labelling.
Afterwards, the effect of each parameter and its combination on the model’s detection
capability for I-Seed is evaluated.

3. Results
3.1. Training Comparison

I-Seed TD is a small dataset that contains only two classes of I-Seed: I-Seed blue and
I-Seed original color. Due to the model’s complexity, training the YOLOv5 variants from
scratch with small datasets is ineffective for obtaining high-accuracy models. Because deep
learning models require more data than conventional machine learning methods due to
the increased complexity of the models, using pre-trained weights is a well-known way
to train data. Pre-trained YOLOv5 models trained on the COCO dataset were employed
and transfer learning strategies were used to improve the model’s performance while
using less data and time in this research. As can be seen in Figure 3a, the mAP0.5 of
all the model variants converge on near-optimal values around the 100th epoch due to
fine-tuning. Convergence is often related to the size of the dataset. YOLOv5 is trained for
250–300 epochs on a big dataset, as is the case for the COCO dataset. Since this model has
previously been fine-tuned on the COCO dataset, and the I-Seed dataset is small with only
two classes, it does not require a large number of epochs to learn. If training is continued
for a large number of epochs, the model will over-fit and good generalization will be
unlikely. As can be seen in Figure A1, the losses for YOLOv5 models’ variants over epochs
consistently decrease for all the variants, indicating inherently that YOLOv5 is a good fit
to model this problem. Moreover, the loss rates of YOLOv5n and YOLOv5s are lower
due to the lower number of parameters resulting in less overfitting than bigger variants.
After training all YOLOv5 variants on the I-Seed dataset, the mAP0.5 of the best weight
for each YOLOv5 variant was calculated for both the TD validation and test sets. As can
be seen in Figure 3b, the trends for TD test and validation datasets for all the categories
are similar, demonstrating that the model has sufficient generalization capabilities and
does not over-fit the training set. For both datasets, YOLOv5n outperforms the other
three models, YOLOv5m performs worst for the test dataset, and YOLOv5l performs worst
for the validation dataset.

Table 4 lists the variant-specific information of YOLOv5 trained with our I-Seed dataset.
The time it takes for pre-processing and non-max suppression (NMS) is roughly the same
for all models, whereas the major variation in speed lies in the inference. As the size of
the model increases, the inference time and the number of layers and parameters increase.
Although it is assumed that the size of the model has no bearing on the success of deep
learning, larger models appear to fare poorly in terms of mAP0.5, as is shown in Table 4.
Therefore, as the complexity of the model rises, more widespread networks tend to underfit
in the computational sense [39]. In addition, when objects are small and simple in size,
there are typically inadequate features to aid in the training process regardless of whether
the nodes are activated [40].
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Table 4. Details of variants of YOLOv5. The layers extract meaningful information from the input
and the parameters indicate the number of weights and biases in the whole model.

YOLOv5
Variants

Training Accuracy Speed (ms) Processing

Precision Recall mAP0.5 Pre-Process Inference NMS Total Layers Parameters

YOLOv5n 0.84 0.86 0.88 1.2 1 0.8 3 213 1,761,871
YOLOv5s 0.86 0.84 0.89 1.2 2.3 0.8 4.3 213 7,015,519
YOLOv5m 0.83 0.77 0.82 1.2 2.3 0.8 7.2 290 20,856,975
YOLOv5l 0.85 0.81 0.86 1.2 9.1 0.9 11.2 367 46,113,663

3.2. Inference on Full-Size Image

Figure 4 illustrates examples of the detection results obtained after SAHI on different
backgrounds (concrete and grass). When the detection results in Figure 4a are compared
to the prediction results in Figure 4b, it can be observed that the red labels indicate true
positives within the marked area, and almost all the seeds are detected with a score higher
than 0.77. Outside the area, the red labels indicate all the false positive results obtained,
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where the detected seeds are not present. In the case of a concrete background, there are
very few false positives, resulting in a high accuracy. However, the results obtained on
a grass background are not as accurate as those obtained on a concrete background, as
can be observed from Figure 4c,d. Not only are the number of false positives higher (the
red labels outside the marked area) but some of the seeds present in the ground truth
image are not detected (green labels), leading to a lower accuracy of the model with a
grass background. In Figure 4e, the results of SAHI for the three size categories are shown,
namely all sizes, small, and medium. Large objects with a size greater than 96px × 96px
were not categorized because there are no detections made in that size. As can be observed
from Figure 4e, the best mAP0.5 across all classes was obtained for medium-sized objects.
Additionally, the mAP0.5 of the small I-Seed is only slightly lower than the mAP0.5 of the
whole I-Seed, whereas the mAP0.5 of the medium-sized I-Seed is significantly higher. This
indicates that the detection performance of small I-Seeds is not significantly superior to
that of medium-sized I-Seeds. The number of medium I-Seeds, on the other hand, is not as
large as the quantity of small I-Seeds.
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Figure 4. Example of detection and comparison in overcast conditions from 6 m flying altitude. (a) De-
tection of I-Seed blue (red) and I-Seed original color (blue) for concrete background. (b) Detection
(red) vs. ground truths (green) for concrete background, where detection outside the boundary box is
a false positive. (c) Detection of I-Seed blue (red) and I-Seed original color (blue) for grass background.
(d) Detection (red) vs. ground truths (green) for grass background, where green indicates a false
negative. (e) mAP0.5 of I-Seed YOLOv5 Nano with SAHI.
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3.3. Model Assessment

The performance of YOLOv5n was evaluated under different environmental condi-
tions, namely daylight condition, flying altitude, and type of background. In Figure 5a,
the effect of different daylight conditions (overcast and sunny) is visualized. It can be
seen that of the two conditions, greater accuracy is achieved on an overcast day. For both
light conditions, the class representing blue I-Seeds has the highest mAP0.5 score. The
relationship between flying altitude and mAP0.5 can be seen in Figure 5b, where mAP0.5
increases with decreasing altitude, with comparable behavior for both classes. The best
and worst performance for both classes was achieved at an altitude of 4 m and 10 m,
respectively. In Figure 5c, the influence of different backgrounds on the mAP0.5 score is
plotted. Out of the four different backgrounds, the highest mAP scores were obtained for
concrete background in both classes (>0.94). Similar to the pattern seen whilst analyzing
the other parameters, the worst performing class was the original, with the lowest score
being 0.06 on grass. The overall worst performing background was also shown to be grass,
as all the seeds had their lowest score against this background.
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3.4. Parameter Combination

To thoroughly test the variants of YOLOv5n on our I-Seed dataset, 32 unique con-
ditions in total were tested using two metrics, namely mAP(0.5:0.95) and mAP0.5, as is
shown in Figure 6. mAP0.5 represents the scenario in which the IoU threshold is fixed
at 0.5, whereas mAP(0.5:0.95) is the Average Precision at IoU values of 0.5 to 0.95 with a
0.05 interval. In the heat map shown in Figure 6, the blocks in shades of green indicate
a higher score (i.e., better performance), the blocks in pale yellow represent an average
score, and the red shades indicate the worst performance. It can be seen that combinations
that involve a grass background have a much lower score than combinations with other
backgrounds, where the majority of the blocks are shades of red, indicating a fairly low
score. The metric mAP(0.5:0.95) is important to determine the accuracy of the model’s
bounding box predictions. When the mAP(0.5:0.95) is compared to mAP0.5, it ranges
between 0.4 and 0.7. This suggests that the IoU of prediction has a value between 0.6 and
0.8. I-Seed blue has a higher IoU than the original I-Seed. This is true for the majority
of parameter combinations, except in overcast conditions, at flight altitudes of 6 m and
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8 m, and under all backgrounds except grass. For these six parameter combinations, the
mAP(0.5:0.95) for the original color class performs somewhat better than for the blue class.
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4. Discussion

The results of this study show that small object I-Seeds can be detected from UAV-
acquired RGB images using the one-stage detector YOLOv5. The influence of three envi-
ronmental parameters on detection accuracy was investigated for seed-like small object
detection from aerial imagery. All these parameters affect the image quality, which deter-
mines the quality of the data labelling and training process.

The size of a physical object in an aerial image is proportional to the distance from the
camera, i.e., the greater the flying altitude, the smaller an object in the photograph. Using
the boundary tape in the FSD images as a reference for the ground truth’s dimensions
(Figure 4), the spatial resolution of pictures taken at 4 m, 6 m, 8 m, and 10 m is estimated
to be 0.75 mm/px, 1.25 mm/px, 1.75 mm/px, and 2.25 mm/px, respectively. The more
compact an object’s dimensions, the fewer details the object detector can retrieve. For
example, 42% of the images in the TD represent background only, whereas more than 50%
of the images in FSD at higher flying altitudes (8 m and 10 m) constitute the background.
The increased amount of background image induces higher rates of false positives in the
prediction findings, resulting in a 6% and 20% decrease in detection performance for I-Seed
blue and I-Seed original, respectively, for YOLOv5n + SAHI (Figures 3b and 4e).

In addition, the drone flies at a speed of 1 m/s with an exposure time varying between
1/50 s (overcast) and 1/200 s (sunny) on an automated mission. During the time that the
image sensor of the camera is exposed to light, the drone moves 0.5 cm to 2 cm. Given the
size of the seeds (approx. 3 cm), the image blur accounts for 16% to 67% of the seed size.
Blurry images decrease the visual quality of photographs and interfere with the extraction
of target features [41]. One of the ways to circumvent image blur is by switching the capture
mode from equal distance interval to Hover and Capture mode. As is shown in Figure 7a,c,
image blur becomes severe at the edges of the objects, while the images captured in Hover
and Capture mode show distinct edges (Figure 7b,d). The model was trained on the images
taken by automated flight to account for image blur and consequently, did not show any
noticeable mAP0.5 improvement for FSD inference on non-blurry images. However, Hover
and Capture mode is not realistic for automated flights, and therefore an alternate way
to avoid image blur is to decrease the exposure time while increasing the ISO without
compromising the optimum depth of focus. When using such an approach, the noise
around the object edge is expected to increase.

An aerial image is composed of a target object and the background from a bird’s-eye
view. For detecting physically small objects such as I-Seeds, the overlap of the object’s phys-
ical properties, e.g., dimension, shape, and color, with the image background determines
the detection accuracy of the deep learning model. Since the color blue is not present in
the tested backgrounds, I-Seed blue is easier to locate in the image (Figure 8), resulting
in 30% more annotations during the data labelling process (Table A2). For the same rea-
son, I-Seed blue has significantly better mAP0.5 scores than the original color I-Seed, as
can be observed for different model variants varying only by 1% (Figure 3b), as well as
for YOLOv5n + SAHI performing 28% better when detecting blue as opposed to original
color I-Seeds (Figure 4e). The similarity in the color and shape aspects of original I-Seeds
(brown in color) and background objects (e.g., soil and dry litter) induces lower contrast
and smaller shape difference with the background, making original I-Seeds challenging
for object detection. For example, numerous tiles containing original I-Seeds resulted in a
low confidence level during the data labelling process, and therefore they were discarded.
Consequently, higher variations in detection performance for different model variants and a
lower mAP0.5 value can be observed for original I-Seeds in contrast to blue I-Seeds. As the
complexity of the background increases (e.g., vegetated surfaces), the landing orientation
and occultation of the I-Seeds by ground objects also increases. Different landing orienta-
tions other than normal to the surface reduce the object size in the image, and occultation
by ground objects distorts the shape of the seeds in the image. As a result, the detection
performance degrades by 46% and 88% for blue and original I-Seeds, respectively, for the
grass background with a grass height of 5 cm (Figure 5c). Even though the model achieves
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a mAP0.5 value of 0.736 for I-Seed blue on a grass background, its performance is regarded
insufficient due to the presence of too many false positives on the grass background. This
can be avoided by increasing the confidence level of the detection’s upper limit and the
match threshold for match metrics at the cost of the increased possibility of false negatives.
Since detecting the I-Seeds is more important (TP and FP) than missing a few of them (FN),
a lower confidence level and threshold is preferred.
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The third parameter of investigation was daylight condition. Illumination plays a
crucial role in defining sufficient contrast of the specific features in an image. Object
detection algorithms do not identify the objects physically. Rather, they detect the objects in
an image captured by the imaging system at a given illumination condition. The variation
of illumination during aerial image acquisition has always been a major limiting factor for
optical remote sensing studies [42]. Although YOLOv5 has been shown to be successful for
small object detection in this work, daylight condition is found to play a significant role in
determining the accuracy and precision of the detected image. The investigated daylight
conditions, namely overcast and sunny, indicate that a higher accuracy was attained in
overcast conditions (Figure 5a). This is because (a) the diffuse lighting in overcast conditions
is higher (Table 2), resulting in well-lit soft lighting conditions for aerial photography, and
(b) the quality of images captured under bright sunny conditions is compromised due to
overexposure, which reduces the contrast between the background and I-Seed Original
to a greater extent than I-Seed Blue (Figure 9). Taking the f-number (Nf), exposure time
(texp), and exposure bias (Bexp) of the images from the image metadata, the exposure value

(EV) can be calculated as EV = log2

(
Nexp

2

texp

)
+ Bexp to compare different camera exposures

under different illumination conditions [43]. Except for a small difference in FOV and flight
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operational mode (automated and manual) between the two UAV platforms used, EV is
analogous for both systems at ISO 100, showing a higher EV value in sunny conditions than
in overcast conditions (Figure 9b,c). The effect of the background reflectivity on EV shows
a significant difference in sunny and overcast conditions, as can be observed in Figure 9b.
On the one hand, the contrast between the I-Seeds and the background is reduced for
backgrounds with little or no ground objects (concrete and soil). On the other hand, strong
shadowing effects are observed for heterogenous backgrounds such as grass. Rather than
using the automatic exposure bracketing features of the camera, alternative acquisition
approaches can be adopted to mitigate overexposure; for example, (a) underexposing the
camera, e.g., by two stops, especially when the background is bright, (b) using physical
filters such as neutral-density filters [44], tunable graduated filters [45], or digital filters [46],
or (c) including image processing techniques such as automatic exposure algorithms [47].
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Figure 8. (a) Image captured on a concrete background, (b) annotated image captured on a concrete
background, (c) image captured on a grass background, and (d) annotated image captured on a grass
background. All the images were captured at a flying altitude of 4 m.

The majority of the literature on object detection from aerial perspective recognizes
environmental effects on image quality and subsequent impact on object detection; however,
the model for all the environmental factors tends to be generalized [48,49]. Liu et al.
analyzed the effect of motion and fog blur on the accuracy of military object detection
by augmenting distortions of various degree on high resolution images to simulate fog
and motion blur [50]. They found a decrease of 26% and 44% in mAP0.5 value for severe
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cases of fog and motion blur, respectively. In our case, the model was trained on motion-
blurred images, and we did not observe any significant change in accuracy in case of
blur-free images. Zhao et al. assessed the accuracy of YOLO-Highway model to detect
highway center markings in different environmental conditions, namely partial occlusion
and damage, as well as weak light condition [51]. They found a decrease of AP by 41% and
12% for partial occlusion and weak light condition, respectively. Tang et al. evaluated the
effect of illumination (sunlight and shading) and occlusion (slight and severe) on Camellia
oleifera fruit detection using binocular stereo vision [52]. They found no significant change
in accuracy metrics for changing illumination, but observed around 5% decrease in case
of severe occlusion. In our case, we observed significant effect of daylight condition in
combination with background on the detection accuracy of the model (see Figure 6). We
found a 20% increase in accuracy for overcast condition compared to sunny condition, and
67% decrease for grass background compared to soil and concrete, resulting primarily from
occlusion (see Figure 5).
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Within the context of this study, 32 different combinations of the three parameters were
investigated, and the best mAP0.5 and mAP(0.5:0.95) result was found for the combination
of overcast lighting condition, a flight altitude of 4 m, and a concrete background (see
Figure 6). Of the three parameters, the major determining factor for the accuracy of seed-like
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small object detection is background type, followed by flying altitude and lighting condition,
respectively. As the complexity of the background increases, the detection performance
degrades due to the increased number of false negatives, limiting the likelihood of detecting
I-Seeds from UAV RGB imagery. Although a flight altitude of 4 m produces the best results,
utilizing a low altitude in aerial view takes longer to complete image acquisition than
using a higher flight altitude with the same field of view of the camera. To achieve
acceptable results at a greater altitude, several post-processing steps can be employed
that take into account the processing unit required for additional operations, such as
applying a super-resolution method [53]. For datasets, improvements can be achieved with
a higher resolution camera, by experimenting with the camera settings, or by utilizing
lens filters to mitigate the effect of overexposure in bright environments, as well as by
using training datasets with a more diverse focus on background photos to reduce false
positives. For picture preparation, the addition of an image normalization method can
be experimented with that uses RAW data as an input to reduce fluctuations in lighting
conditions in the image to be used as input into the model. To make the algorithm lighter
than the original, improvements on YOLOv5n used in this work can be realized via
architectural adjustments, for example, (a) by lowering the width and depth multiple
values while maintaining accuracy, and (b) by deleting the detection grid designed for
large object identification since no object exceeds 96px × 96px in size. There is always
a trade-off between speed and accuracy [48,54]; however, several adjustments may also
be incorporated to assess such constraints, for example, (a) optimizing the loss function
for grass background, (b) setting an extra high-resolution feature map exclusively at the
head of the algorithm, and (c) generating additional anchors for added details in feature
maps. These aforementioned improvements will be tested in future experiments. This also
includes the evaluation of recent developments in the YOLO family of algorithms (such
as YOLOv6, v7, and v8) where an earlier study by Zhou et al. showed the added value of
YOLOv7 for object detection in complex occluded environments [54].

5. Conclusions

This study aimed to develop a small object detection model for seed-like objects such as
I-Seeds. The one-stage detection-based YOLO method was chosen to maintain the balance
between accuracy and speed whilst preventing false positives on diverse and complex
backgrounds. YOLOv5 and its four variants were evaluated for varying environmental
conditions (daylight, flying height, and different backgrounds) using two different UAV
platforms. Pre-trained models, trained on the COCO dataset, were employed, and transfer
learning strategies were used to improve the model’s performance. It was found that
detection performance for I-Seed blue class is significantly higher than its original (brown)
color class, demonstrating sufficient generalizability of the model and the absence of
overfitting in the training set. The results indicated that a higher model detection accuracy
was attained in overcast situations due to the clarity of the photographs. The flight altitude
was found to be a major determinant of the results recorded from the detection process,
clearly indicating an inverse relationship between altitude and model performance. Lastly,
four different backgrounds, soil, grass, concrete, and soil and grass, were tested to analyze
the performance of YOLOv5n. The amount of ground objects largely determines the model
performance when detecting I-Seeds, followed by the contrast between the seed and the
background. Consequently, the model performed best with a concrete background and
worst with a grass background. When tested on the full-size dataset (FSD), only a slight
difference was seen in the performance when compared to the tiled dataset. The FSD was
used to evaluate the accuracy of the I-Seed YOLOv5n combined with slice-aided hyper
inference (SAHI) as a simulation of real-time detection delivering. similar results compared
to the standard I-Seed YOLOv5n. This work provides a baseline for seed-like object
detection from aerial imagery using a one-stage detector such that it can be implemented
for the real-time detection of I-Seeds in the field during UAV flight. In future studies, the
developed model will be implemented on small form-factor computational unit onboard
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UAV to assess the real-time detection performance in comparison with offline processing.
Other one-stage detectors, such as SSD, will also be assessed and compared with YOLOv5
in terms of detection accuracy, processing time, and computational load.

Author Contributions: Conceptualization, L.K. and Y.A.B.; methodology, L.K. and Y.A.B.; software,
Y.A.B.; validation, L.K., Y.A.B. and H.M.; formal analysis, Y.A.B.; investigation, Y.A.B., L.K. and H.M.;
resources, Y.A.B.; data curation, Y.A.B., H.M. and L.K.; writing—original draft preparation, H.M.;
writing—review and editing, L.K., H.B. and H.M.; visualization, H.M. and Y.A.B.; supervision, L.K.
and H.M.; project administration, L.K. and H.B.; funding acquisition, L.K. and H.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement no 101017940. The content of this publication is the sole
responsibility of the authors. The Commission cannot be held responsible for any use that may be
made of the information it contains.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to being in the process of uploading in
a publicly accessible repository and generating the corresponding DOI. The codes can be accessed at:
https://github.com/hasib1229/I-Seed.git (accessed on 2 March 2023).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

Details on Data Processing

The size of the sub-image after segmentation is 512px × 512px and the size of overlap-
ping area is 10%. These parameters will have impact on total inferences/total time required
to run inferences on a Full-Sized Dataset (FSD), and we have chosen the aforementioned
parameters via trial and error for optimal performance.

The trained network was deployed on a machine with the following specifications:
Ubuntu Linux 20.4, AMD Ryzen 5 3600, 32GB DDR4 RAM, and NVIDIA RTX3060Ti.

The training process is stopped after 300 epochs as mentioned in Sec. 3, which was
inspired from the YOLOv5 algorithm trained on the COCO dataset. The algorithm starts
overfitting if training is continued for more than 300 epochs.

Table A1. Data labelling of datasets.

Image Size
(Pixel)

No. of
Images

Null
Examples

Annotations Average
Annotations

per ImageI-Seed Blue I-Seed
Original Total

Tiled Dataset 512 × 512 12,300 5230 10,399 7361 17,760 1.4
Full Size
Dataset 5472 × 3648 192 0 3264 3262 6526 34.0

Table A2. Set hyper parameters of YOLOv5.

Hyper Parameter Value Hyper Parameter Value

Initial learning rate 0.01 focal loss gamma 0.0
OneCycleLR learning rate 0.1 HSE hue aug 0.015

momentum 0.937 HSE saturation aug 0.7
weight decay 0.0005 HSE value aug 0.4

warmup epochs 3.0 Rotation 0.0
warmup momentum 0.8 Translation 0.1

warmup bias lr 0.1 scale 0.5

https://github.com/hasib1229/I-Seed.git
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Table A2. Cont.

Hyper Parameter Value Hyper Parameter Value

box loss gain 0.05 shear 0.0
class loss gain 0.5 perspective 0.0
class BCELoss 1.0 flip up/down 0.0
object loss gain 1.0 flip left/right 0.5
object BCELoss 1.0 mosaic 1.0
IoU threshold 0.2 mixup 0.0

anchor multiple threshold 4.0 copy–paste 0.0
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Figure A1. (a) Losses for YOLOv5 model variants as function of epoch. (b) Difference between train-
ing and validation losses. 
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