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A B S T R A C T   

A novel case of developing a portable spectral imaging device for kiwifruit analysis is presented. Furthermore, a 
new complementary spectral image processing strategy combining deep learning and advanced chemometric is 
proposed for processing the spectral images. The deep learning was used for detection and localisation of har
vested fruit in the spectral image while the chemometric modelling was used to predict multiple fruit quality 
related properties i.e., dry matter and soluble solids content. The developed models were independently vali
dated on fruit harvested from a different orchard as well as on a different variety. The one touch spectral imaging 
presented in this paper can allow widespread usage of spectral imaging for fresh fruit analysis, particularly 
benefitting non-experts in spectral imaging and chemometrics to routinely use the spectral imaging for fresh fruit 
analysis.   

1. Introduction 

Optical spectral techniques are widely used for fresh fruit analysis 
[1,2]. One of the most common spectral technique is the visible and 
near-infrared (Vis-NIR) spectroscopy [3,4]. The Vis-NIR (400–1100 nm) 
is based on the interaction of the electromagnetic radiation (EMR) with 
the fruit and recording phenomena such as reflection, transmission, and 
absorption of EMR [5]. Although different types of spectral techniques 
are interesting for fruit analysis [2], however, the Vis-NIR techniques 
has some unique advantages for being preferred over other spectral 
techniques. For example, the Vis-NIR EMR detector and complete 
sensing solutions as point spectrometers (both lab-based and handheld) 
are readily available in the market [3]. Furthermore, the Vis-NIR sensing 
utilises the silicon-based detectors which are lower in cost compared to 
the detectors used for other sensing modalities such as short-wave 
infrared. Also, in some studies [6] it has been shown that the light 
penetration beneath the fruit skin is the highest for the NIR part of EMR 
bringing back more detailed information from the fruit. The light 
penetration is higher in the NIR part as the water absorption coefficient 

is lower [5,6]. 
In the current state of the art, there are two main modalities of Vis- 

NIR spectral sensing that are widely deployed. The first is the point 
based spectral sensing where the Vis-NIR signals are recorded individ
ually for each fruit and at a localised position on the fruit [4]. The second 
modality is the spectral imaging which measures the spatially distrib
uted Vis-NIR spectral responses for fruit [7]. Both modalities are com
plementary and are useful for non-destructive fruit analysis at different 
levels of fresh fruit chain. For example, the point-based sensing which is 
available in portable, or pocket forms is highly suitable for measuring 
fresh fruit during their early stages such as while the fruit are still on tree 
or plant [8,9]. This is possible as the portable spectrometer can be 
brought close to the fruit in tree or plant without any need to pluck the 
fruit from tree, leading to minimal fruit wastage as well no need for 
chemical destructive analysis, enabling monitoring development in time 
on individual fruits. However, one can assume that point spectral mo
dality may not be an ideal approach when it comes to high-throughput 
analysis of fruit, where many fruits need to be analysed in a fast way. In 
such a scenario combined spectral and spatial sensing, aka spectral 
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imaging, can be used to quickly scan multiple fruits simultaneously 
[7,10]. Another benefit of spectral imaging is that it provides spatial 
information which can provide insights to the distribution of properties 
as a function of fruit surface [11], or improves estimation of individual 
fruit values compared to spot measurements. 

Although the point spectroscopy for fruit analysis in terms of 
instrumentation is fairly developed and a wide range of easy-to-use 
portable instruments for fruit analysis is available in the market 
[3,12], the developments in the spectral imaging in terms of easy-to-use 
instruments are still limited. In the current state of the art, users need to 
purchase individual components and build the imaging systems by their 
own. Such a system development is suitable for scientific practitioners, 
but the main impact spectral sensing can have when the spectral in
struments are used by real-life fruit growers and handlers. Unfortunately 

for spectral imaging, this is currently far from common practise. 
In past many years, there has been extensive research on the appli

cation of fresh fruit analysis with spectral imaging [7]. In many works, it 
has been demonstrated that spectral imaging can allow fast and non- 
destructive analysis of fresh fruits [13]. Application ranges from quali
tative analysis such as bruise and defects detection to prediction of 
chemical components such as dry matter (DM) and soluble solids con
tent (SSC) [7,13]. However, as highlighted earlier, most of the studies 
were performed as sophisticated scientific experiments and with cus
tomised spectral imaging systems with minimal focus on the practical 
applicability of the technique. 

In this study, a novel case of developing one touch portable spectral 
imaging for kiwifruit analysis. The backbone of the approach was the 
All-In-One spectral imaging (ASI) [10] framework for standardised and 
controlled spectral imaging and real-time model deployment. Further
more, a new complementary strategy combining deep learning and 
advanced chemometrics is proposed for processing the spectral images 
of fresh fruit. The deep learning was used for detection and localisation 
of fruit in the spectral image while the chemometric modelling was used 
to predict multiple fruit properties i.e., DM and SSC. The developed 
models were independently validated on fruit harvested from different 
orchards as well as on a different variety. 

2. Material and methods 

2.1. Fruit samples 

The fruit samples were provided by Zespri, New Zealand, batches of 
Gold kiwifruit (A. chinensis var. chinensis ‘Zesy002′) and Green kiwifruit 
(A. chinensis var. deliciosa ‘Hayward’) were provided by Zespri (New 
Zealand) from three orchards, in the Bay of Plenty region, harvested at 

Table 1 
A summary of total number of fruit samples (=fruits) used for the experiment. 
Note that the dry matter band indicates the preliminary classification of fruit 
into groups based on estimated increasing dry matter; the individual fruit were 
experimentally assessed for DM as part of this study and verified in the results 
section.  

Type Dry matter 
band 

Fruit 
Orchard A 

Fruit 
Orchard B 

Fruit 
Orchard C 

Green 1 10 10 10 
Green 2 10 10 10 
Green 3 10 10 10 
Green 4 10 10 10 
Green 5 10 10 10 
Green 6 10 10 10 
Gold 4 & 5 10 10 10 
Total 

samples 
210  

Fig. 1. The all-in-one spectral imaging (ASI) setup for standardized spectral imaging [15]. The ASI allows automatic image acquisition as well as automatic 
radiometric correction of the images using white and dark reference. 
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different stages to achieve batches with six projected dry matter (DM) 
ranges. The three orchards will be denoted as A, B and C in this study due 
to the commercial confidentiality of the orchards. DM is the solid 
component of the fruit, i.e., what is left after all the water is removed. 
The fruit were shipped to Europe in containers and transported to the 
Netherlands by road transport stored at 1 ◦C and ripened up to approx. 
0.5–0.8 kgf penetrometer value (using 8 mm diameter probe) in the 
post-harvest facilities of Wageningen Food & Biobased Research, The 
Netherlands. Before the experimental day, fruit were left atroom tem
perature conditions overnight to stabilise the temperature for spectral 
imaging. The sample details are provided in Table 1. For simplification 
and anonymisation, orchards are denoted as orchards A, B and C. 

2.2. Spectral imaging 

Spectral images of kiwifruit were recorded with the recently devel
oped ASI setup [10,14,15] at Wageningen Food & Biobased Research, 
The Netherlands (Fig. 1). ASI setup uses a Vis-NIR spectral camera 
(Fx10, Specim, Oulu, Finland) for automatic spectral image acquisition. 
The camera records data in the spectral range of 398–1000 nm with a 
spectral interval of ~ 3 nm. In ASI, the samples are illuminated with two 
sets of halogen lights (supplied by Specim, Oulu, Finland) mounted next 
to the spectral camera (Fig. 1). The distance to the white reference and 
the samples is always the same as well as the travel distance of the 
camera mounted on the linear guide, hence, no changes in the settings 
during image acquisition are required. The software of the ASI setup is 
in-house developed at Wageningen Food & Biobased Research, The 
Netherlands, allowing a fully automated image acquisition and the 
acquisition controls such as the speed of the translation stage, exposure 
time, number of frames, etc. are pre-synchronised with the camera set
tings [10]. The speed of transalation stage was 30 mm/sec. The exposure 
time was 0.02 sec. The distance of sensor from fruit was ~ 600 mm. 
Automatic radiometric correction using white and dark references is also 
integrated in the software. For white reference, the ASI setup has an 
inbuilt white reference (Teflon) (Fig. 1) while for dark reference the 
camera allows automatic shutter control to record the dark reference. 
The output from the ASI system is the reflectance image. 

2.3. Reference measurements 

Manual sampling was performed on the kiwifruit (A schematic of the 
sampling locations on the fruit is shown in Fig. 2.). The reference 
measurements were dry matter (DM) and soluble solids content (SSC). 
DM for kiwi was determined using an electronic balance XS10001 L 
(Mettler-Toledo GmbH, Giessen, Germany) by recording the weight of 
the parts before and after drying in a food dehydrator (Ezidri, Hydraflow 
Industies ltd., New Zealand) at 65 ◦C for 24 h. SSC was determined using 

a handheld refractometer (PAL-1, Atago, Japan). All reference mea
surements were performed at room temperature. 

2.4. Spectral image processing 

In this study, a novel combination of deep learning and chemometric 
modelling to process the spectral images as demonstrated in earlier work 
[15]. The main aim was to automate the image analysis so that any user 
with minimal experience in data modelling and spectroscopy could use 
the imaging system for fruit analysis. The image analysis included a two- 
step process.  

1. Step 1 - Used deep learning to detect individual fruit in the imaged 
scene.  

2. Step 2 - Used pixels corresponding to individual fruit to apply the 
chemometric model for prediction of fruit properties. 

Deep learning was not used for the prediction of chemical properties 
as the number of fruits for training a deep learning model was too low. 

2.4.1. Deep learning-based fruit detection 
In this study, the deep learning model YOLOv4 developed in earlier 

study was used to detect kiwifruit [15]. All analysis were conducted in 
the MATLAB computing environment (release R2021a, The MathWorks, 
Inc., Natick, MA, USA) using the open-source scripts downloaded from: 
https://github.com/matlab-deep-learning/pretrained-yolo-v4. The aim of 
fruit detection was to locate individual fruit such that the spectra for the 
fruit can be accessed without needing any manual Region of Interest 
(ROI) selection. The spectra extracted for the detected kiwifruit were 
used for chemometric modelling and later model testing. The YOLOv4 
model was applied on the RGB images reconstructed using the spectral 
bands 671, 534, and 430 nm of the spectral image. The outputs of the 
YOLOv4 are the bounding boxes, centroids, and probability score for 
detection of kiwifruit. The centroids were used to extract the spectra for 
the fruit which were later used for chemometric modelling to predict the 
DM and SSC. Since Kiwi is a symmetrical fruit hence the centroid esti
mated by the deep learning model present the exact center of the fruit. 
Note that mean spectra were extracted inside the window of pre-defined 
width to study the effect of window width on the model performance. In 
total, 13 different window options were explored i.e., 1–25 in the in
terval of 2. 

2.4.2. PLS modelling 
The chemometric partial least-squares modelling [16,17] was per

formed using the mean spectra estimated using the centroid locations 
predicted by the deep learning model. Please note that since this study 
aimd to jointly model the DM and SSC in the same model, hence, the 
actual modelling was the PLS2 [17] modelling suitable for handling 
multiple responses. This study explored both the raw reflectance and 
standard normal variates (SNV) [18] normalized reflectance to under
stand if normalization have any benefit on the modeling. This study also 
explored two spectral ranges, i.e., 500–1000 nm and 688–1000 nm, to 
see the benefit of having color information in the model (500–1000 nm) 
compared to only using the NIR information (688–1000 nm). Note that 
the spectral information below 500 nm was not used due to noise. Note 
that there were a total of 120 green kiwi samples (Orchard A and B) in 
the calibration set, 60 green kiwi (Orchard C) samples in the test set for a 
different orchard, and 30 gold kiwi samples for a different variety. To 
decide the optimal number of components for the PLS model, 5-fold 
cross-validation was used. The optimal components were identified as 
those carrying the lowest cross-validation error. Once the optimal model 
was found, the model was independently tested on data from a new 
orchard and a new variety. The performance of the models was evalu
ated using the root mean squared error of prediction (RMSEP). 

Fig. 2. A schematic of the sampling points for reference measurements per
formed on the Kiwifruit. 
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3. Results and discussion 

3.1. Reference data 

A summary of the reference DM for different kiwifruit samples is 
shown in Table 2. The DM range for the kiwifruit (both the green and 
gold kiwifruit) were similar. The mean SSC for gold kiwifruit was higher 
with a narrower standard deviation compared to the green kiwifruit. A 
lower standard deviation for gold kiwifruit is due to a smaller sample 

size than green kiwifruit (i.e. 30 fruit/orchard vs 60 fruit/orchard). Due 
to the low number of fruit samples, the gold kiwifruit was left out of data 
modelling, but was used for independent testing of the chemometric 
model to predict DM and SSC. 

3.2. Deep learning-based object detection and mean spectra extraction 

The results of the application of YOLOv4 object detector for detect
ing green and gold kiwifruit are shown in Fig. 3A and 3B, respectively. 
Note that the deep learning model was applied in the RGB images 
reconstructed from the spectral images. In this study, no training or fine- 
tuning of the deep learning models was perfomed as the model was used 
directly from earlier study [15]. For both the green and gold kiwifruit, 
all fruit were detected correctly (marked in red Fig. 3) with detection 
probability > 85 %, and their centroids were correctly identified. Using 
the centroid location identified with deep learning, the mean spectra 
with varying window widths (spatial pixels) were extracted. An example 
of the mean spectra with varying window width is shown in Fig. 4. 
Furthermore, the spectra are presented before (A) and after (B) SNV 
normalisation. As the window width for estimating mean spectra 

Table 2 
A summary of reference dry matter and soluble solids content (mean ± standard 
deviation) in different kiwifruit samples.  

Property Green kiwifruit Gold 
kiwifruit 

Orchard A Orchard B Orchard C 

Dry matter (%) 17.22 ±
1.85 

16.87 ±
1.89 

16.87 ±
1.94 

17.43 ± 0.72 

Soluble solids 
(%) 

14.14 ±
1.77 

13.88 ±
1.73 

13.76 ±
1.75 

15.42 ± 0.65  

Fig. 3. Results of detecting green (A) and gold (B) kiwifruit by application of YOLOv4 deep learning model developed in earlier study [15]. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. The effect of changing window width for estimating the mean spectra. (A) Reflectance, and (B) standard normal variate normalised reflectance.  
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increased, the noise in the spectra was reduced, particularly noticeable 
in range of 400–500 nm in Fig. 4A. The other observation noted was that 
with the increasing window width, the overall intensity of the reflec
tance signal decreased (Fig. 4A). This overall reduction could be that as 
the window size increases the spectra correspond to the curved part of 
the kiwifruit were included for the estimation of mean. Since the curved 
part is at a far distance compared to the top part, hence, the addition of 
spectra corresponding to the curved part can reduce the overall spectral 
signal intensity. However, if needed such overall difference in signal 
intensity can be normalised with the SNV normalisation (Fig. 4B). Due to 
less noise in the spectra obtained as the mean of pixels in a larger win
dow width, it can be expected that the model performance should also 
be better for the mean spectra obtained with larger window width 
(verified in the next section). 

3.3. PLS2 analysis for joint prediction of dry matter and soluble solids 
content 

PLS2 modelling was performed to jointly predict the DM (Fig. 5) and 
SSC (Fig. 6) in kiwifruit. As a first step for model development, the 5-fold 
cross-validation analysis was performed to identify the optimal number 
of latent variables (LVs) and window width for estimating the mean 
spectra. Furthermore, the analysis was performed for both the 

reflectance (Fig. 5A) and the SNV normalised reflectance data (Fig. 5B). 
The lowest RMSECV (0.99 %) was obtained using the reflectance data 
compared to the RMSECV (1.18 %) for SNV normalised data. Hence, due 
to lower RMSECV, the final models were calibrated on the reflectance 
data estimated with the window size of 25 × 25 and 13 LVs. In general, a 
smaller window width for estimating mean spectra results in higher 
RMSECV than with bigger window width. 

Data analysis was also perfomed by reducing the spectral range to 
688–1000 nm. In other words, the visible information (400–688 nm) 
was removed from data and model based solely on NIR data were 
explored to find if NIR spectral range alone is sufficient to predict the 
DM and SSC. Variable reduction was also perfomed to see if the model 
based on green kiwifruit using only the NIR information can predict the 
DM and SSC in gold kiwifruits the outer peel colours for both kiwifruit 
are different and may influence the performance of the model calibrated 
on the data including colour information. While comparing the RMSECV 
for reflectance and normalised data, the lowest RMSECV (1.15 %) was 
related to the reflectance data, hence, the reflectance data were selected 
to develop the final models. The final models were calibrated on the 
reflectance data estimated with the window size of 25 × 25 and 13 LVs. 
As can be understood that for both the modelling cases, the lowest 
RMSECV was achieved with the raw reflectance data, while the RMSECV 
was higher for the normalised data. This finding is aligned with a recent 

Fig. 5. Root mean squared error of cross-validation (RMSECV) maps for cross-validation analysis performed on data in spectral range of 500–1000 nm. (A) 
Reflectance, and (B) Standard normal variate normalised reflectance. In x-axis explains the number of latent variables (LVs) and y-axis is the window width 
explaining the number of pixels used for estimating mean spectra. 

Fig. 6. Root mean squared error of cross-validation (RMSECV) maps for cross-validation analysis performed on data in spectral range of 688–1000 nm. (A) 
Reflectance, and (B) Standard normal variate normalised reflectance. In x-axis explains the number of latent variables (LVs) and y-axis is the window width 
explaining the number of pixels used for estimating mean spectra. 
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study which concluded that spectral pre-processing may not be needed 
for fresh fruit as they may eliminate the useful information present in 
reflectance spectral data related to light scattering [19]. From the cross- 
validation analysis performed on the data having the colour + NIR in
formation (500–1000 nm) and having only NIR information (688–1000 
nm), it was found that the RMSECV was the lowest when the colour 
information was included in the model. This gives an indication that the 
colour information is of use for predicting DM and SSC in green 
kiwifruit. 

The performance of the final PLS2 models for spectral ranges of 
500–1000 nm and 688–1000 nm are shown in Figs. 7 and 8, respec
tively. For both the DM and SSC, the RMSEP were lower than 1 %, which 
is the usual range of error for NIR technology [20–22]. The model per
formance was poor for predicting the DM and SSC in gold kiwifruit, 
particularly having poor slope rather than the commonly encountered 
bias shifts. It was noted that the performances of models for predicting 
DM and SSC in green kiwifruit from a different orchard were better using 
the spectral range of 500–1000 nm compared to the spectral range of 
688–1000 nm. For example, the RMSEP = 0.73 % was achieved with the 
model developed using 500–1000 nm compared to RMSEP = 0.88 % 
achieved with the model developed using 688–1000 nm spectral range. 

Similar results were noted also for the SSC. Better model performance 
with 500–1000 nm spectral range confirms that the colour information 
can be of use for predicting the DM and SSC in kiwifruit. For Gold 
kiwifruit, both the spectral ranges had a similar overall performance. 
Initially, the assumption was that a green kiwifruit model based solely 
on the NIR information may perform better than the model made using 
colour + NIR information, however, the differences were minimal in 
terms of RMSEP. Furthermore, looking at the predictions scatter plots it 
was noted that the predictions have more spread when only the NIR 
information was used in the modelling, compared to using the colour +
NIR information. Overall, the models based on green kiwifruit cannot 
directly predict the properties of gold kiwifruit. There are many reasons 
which could be related to this such as different physical structures 
outside the peel, for example, the green kiwifruit has hairy peel which 
can interact differently with the Vis-NIR light compared to the non-hairy 
peel of the gold kiwifruit. In practice, different models should be created 
for different kiwifruit varities/ cultivars. Altough in presence of data 
from several kiwifruit varities/ cultivars, it is advisable to develop global 
models as recently performed in a recent study related to mango fruit 
[8,9]. However, developing global models was out of scope in this work 
due to limited sample size and will be explored in future works. 

Fig. 7. Prediction plots for dry matter (DM) and soluble solids content (SSC) for modelling performed in spectral range of 500–1000 nm. For green kiwifruit, the 
model was made on two orchards (A + B) and tested on one orchard (C). (A) SSC prediction on data from new orchards, (B) SSC prediction on data from gold 
kiwifruit, (C) DM prediction on data from new orchards, and (D) DM prediction on data from gold kiwifruit. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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3.4. Example demonstrative application 

One of the aims of this study was to develop a push button approach 
to spectral imaging for kiwifruit analysis. In that regard, this study relied 
on the ASI system for spectral image acquisition while for the processing 
of the data a combination of deep learning and chemometric modelling 
was proposed. To demonstrate how such an approach to spectral im
aging looks like in practice an example prediction image is show in 
Fig. 9. In Fig. 9A, the RGB image reconstructed from spectral imaging for 
a box of kiwifruit is shown. In Fig. 9B, the sample image with fruit 
detection and simultaneous fruit property prediction is shown. The 
bound box in Fig. 9B indicates a detected fruit and the description of 
predicted DM and SSC is presented in the head of the bounding box. The 
overall process of image acquisition to deployment of the model was 
tested, and it took less than 30 s. 

4. Conclusion 

The study demonstrated a real case of simplifying the spectral im
aging and associated image processing to predict fruit properties. 
Furthermore, kiwifruit analysis was used to show the potential of the 
proposed approach. This study built over the framework of the All-In- 
One spectral imaging by adding deep learning and chemometric 

models for kiwifruit. Deep learning allowed the identification and 
localisation of the kiwifruit while the chemometric modelling was used 
for predicting DM and SSC. With the independent test of the model on 
data from new orchard and variety, it was found that the spectral models 
(made on green kiwifruit) worked well on the data from green kiwifruit 
but performed poorly for data from gold kiwifruit. The reason for failure 
of the model test on could be the very different peel structures of green 
and gold kiwifruit. It was noted that having a larger area (more pixels) 
for estimating fruit mean spectra led to lower prediction errors 
compared to using a smaller area (less pixels). Spectral models were 
found to be in general better when developed directly using the reflec
tance data and their performance decreased when the spectra were pre- 
processed with spectral normalisation such as SNV. The initial 
assumption that only using the NIR information for developing models 
for green kiwifruit may work also for gold kiwifruit was not fully correct, 
as it was noted that the model performance with NIR and colour + NIR 
information were similar when tested on gold kiwifruit. However, the 
performance of the model (based on only NIR) was poorer for green 
kiwifruit indicating that both colour and NIR information may play a 
crucial role for predicting DM and SSC in green kiwifruit. In terms of 
achieving generalised chemometric models, it is advised to measure data 
from wide kiwifruit variety/cultivars and develop global models. In 
relation to simplifying the spectral imaging for other fruit types, the ASI 

Fig. 8. Prediction plots for dry matter (DM) and soluble solids content (SSC) for modelling performed in spectral range of 688–1000 nm. For green kiwifruit, the 
model was made on two orchards (A + B) and tested on one orchard (C). (A) SSC prediction on data from new orchards, (B) SSC prediction on data from gold 
kiwifruit, (C) DM prediction on data from new orchards, and (D) DM prediction on data from gold kiwifruit. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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system can be combined with models of any fruit without any change in 
the hardware. 
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