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The pig, a representative of the artiodactyla clade, is one of the first animals domesticated, and has become an 
important agriculture animal as one of the major human nutritional sources of animal based protein. The pig is 
also a valuable biomedical model organism for human health. The pig’s importance to human health and nutri-
tion is reflected in the decision to sequence its genome (3X). As an animal species with its wild ancestors present 
in the world, the pig provides a unique opportunity for tracing mammalian evolutionary history and defining 
signatures of selection resulting from both domestication and natural selection. Completion of the pig genome 
sequencing project will have significant impacts on both agriculture and human health. Following the pig whole 
genome sequence drafts, along with large-scale polymorphism data, it will be possible to conduct genome 
sweeps using association mapping, and identify signatures of selection. Here, we provide a description of the pig 
genome sequencing project and perspectives on utilizing genomic technologies to exploit pig genome evolution 
and the molecular basis for phenotypic traits for improving pig production and health. 

Key words: Alternative splicing, Association mapping, Domestication, Genetic diversity, Genome sequencing, QTL, Selection, 
Selective sweeps, SNPs 

Introduction 
The recent completion of the human genome se-

quence provides a starting point for understanding 
genetic complexity and elucidating genetic variations 
contributing to diverse traits and diseases. Pigs are 
even-toed ungulates belonging to the order artiodac-
tyla, an order phylogenetically closer to primates than 
rodentia [1]. A separate suborder, the suina includes 
hippopotamuses, peccaries and pigs. All pigs are 
members of the suidae family. The pig is of particular 
interest in evolutionary studies not only because ex-
isting pig breeds show great phenotypic varieties for 
morphological, physiological and behavior traits but 
also because the wild ancestors of domesticated pigs 
and a convenient number of outgroup species are still 
present in the world. The pig (S. scrofa domesticus) was 
domesticated from S. scrofa, a wild boar, approxi-
mately 9,000 years ago in multiple regions of the world 
[2-4]. These domestication events were separated not 
only by 1000s of kilometers but also by 1000s of years. 
During the past decade, there has been an increasing 
interest in detecting genes and genomic regions in 
human and other organisms. Domestic animal species 
have experienced strong selective pressures directed at 
genes or genomic regions controlling traits of biologi-
cal, agricultural, or medical importance following their 

domestication and subsequent episodes of selective 
breeding. Consequently, these genes or genomic re-
gions are expected to exhibit signatures of selective 
breeding. Pigs offer a unique opportunity to identify 
genes or genomic regions encoding quantitative trait 
loci (QTLs) since they have been through recent and 
strong selective sweeps targeted at phenotypes to im-
prove agricultural performance and disease resistance. 

The pig whole genome sequencing project has 
been launched in the early of 2006 initiated by the 
Swine Genome Sequencing Consortium (SGSC) 
(http://www.piggenome.org/). In addition to pro-
viding important evolutionary information, the avail-
ability of the pig whole genome sequence will con-
tribute toward revealing the molecular mechanisms 
controlling phenotypes and play an increasingly signifi-
cant role in pork production, by integrating ‘omics’ 
techniques and bioinformatics tools to reduce the in-
cidence of disease and respond more rapidly to the 
changing demands of consumers. 
1. Pig genetic resources 

S. scrofa is one of the most globally widespread 
mammalian species. It has long been assumed that the 
force driving evolution was domestication and natural 
selection. Domestic pigs are found in a globally wide 
range of environments. Several features, including 
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teeth and skull morphology, external proportions, hair 
and colour patterns, biochemical and molecular 
polymorphisms, ecology and behaviour, reproductive 
isolation and natural areas, are used for discriminating 
the many species in the genus Sus. S. scrofa is classed 
into a large number of subspecies, but the number is 
uncertain and depends on the definition of the sub-
species. It has been possible to discriminate more than 
16 distinct subspecies, each occupying distinct geo-
graphical areas [5-8]. 
1.1. Pig domestication 

Domestication is the process of genetically 
adapting a wild biological organism to better suit the 
needs of human beings, as a result of living and 
breeding conditions under careful human control for 
multiple generations [9]. Pig domestication has been 
an integral part of the rise of agriculture and the 
adoption of the agricultural practices throughout 
much of the world. Insights into the evolution and 
spread of the pig are likely to deepen our under-
standing of the origins and spread of livestock agri-
culture and the rise of early human civilization. The 
earliest remains of domesticated pigs have been exca-
vated at Çayönü in southeast Anatolia dated to 7,000 
BC [10]. According to most traditional but arguable 
views based on extensive zooarcheological record [6], 
the domestic pig originated in the near east and spread 
west to Europe and east to China. However, recent 
preliminary research using mitochondrial DNA 
(mtDNA) sequences from samples of Eurasian wild 
boars and various breeds of domestic pigs has pro-
vided evidence to support a “multiple and independ-
ent domestication” hypothesis [2, 3]. Additional recent 
mtDNA data from the analysis of 685 individuals in-
cluding wild boars, feral and domestic pigs across 
Eurasia also support the hypothesis that the pig do-
mestication occurred independently in the world at 
diverse geographic locations across Eurasia: three from 
Far-East (two in China, additional ones in Thai-
land/Burma and northern India), one from Island 
South-East Asia (Wallacea), and two from Europe [4]. 
These results also suggest that the S. scrofa as a species 
originated from islands in South-East Asia (Phillippi-
nes, Indonesia), where they dispersed across Eurasia, 
and with little or no importation of Near East domestic 
pigs into Europe by early farmers.  

Domestication also provides rapid phenotypic 
evolution through artificial selections. Pig domestica-
tion has resulted in highly modified morphological 
architectures and has caused several major changes in 
physical types, e.g. one of the earliest results of do-
mestication was a decrease in skeletal size [6]. How-
ever, it could be argued that size differences in various 
areas of the world may have arisen from environ-
mental diversity such as feed resources. Improvement 
after domestication has also resulted in striking 
changes in yield, biochemical composition, and other 
traits. Most domesticated animals have experienced a 
“domestication bottleneck” with reduced genetic di-
versity relative to their wild ancestor(s). This bottle-
neck affects all genes in the genome and modifies the 

distribution of the genetic variation among loci. The 
magnitude and variance of the reduction in genetic 
diversity across loci provide insights into the demo-
graphic history of domestication. 

The pig represents a domesticated animal that 
has both a convenient number of outgroup species 
nicely spaced in evolutionary distance, as well as sur-
viving wild conspecifics (see Figure 1). This renders 
the pig as perhaps one of the most suitable animal 
species for inferring ancestral mutations as well as 
determining the fate of derived states and selective 
processes. Ancestral mutations are important because: 
(i) the probability that an allele is ancestral is equal to 
its frequency and (ii) strong positive selection results in 
regions with reduced heterozygosity and an excess of 
derived alleles. Since in the case of the pig, it is still 
unclear as to what constitutes the nearest living rela-
tive (likely S. barbatus) and the age of the species S. 
scrofa relative to some of it’s nearest relatives, it is 
critical to compare S. scrofa with several related species 
(e.g. S. barbatus, S. celebensis, S. verrucosus, African 
warthog) that fall within a range of 1 to 6 million years 
ago (MYA) of inferred evolution [11-14] (Figure 1). 
1.2. Natural and artificial selections 

Darwin (1859) clearly believed both nature and 
artificial selection shaped breeds, “The key (to domes-
tic breeding) is man's power to accumulative selection: 
nature gives successive variations; man adds them up 
in certain directions useful to him” [15]. Human and 
novel environmental pressures during pig domestica-
tion have been principally responsible for the genera-
tion of inter-breed genetically variation and for the 
formation of many unique breeds. Domestic pig di-
versity has evolved over millions of years through the 
processes of natural and artificial selections forming 
and stabilizing each of the species used in food and 
agriculture. Over the more recent millennia, interac-
tions between environmental and human selection 
have led to the development of genetically distinct 
breeds. Artificial selection in a targeted gene is similar 
to a more severe bottleneck that removes most of the 
genetic variation from a targeted locus. 

Over the centuries, global pig farming in different 
environmental conditions has resulted in breeds with 
traits such as heat/cold tolerance and disease resis-
tance, which favor their survival under environmental 
stresses. Farmers have also been breeding for a variety 
of attributes with a major focus on productivity traits 
such as meat yields and fertility. To date, there are 
likely over 730 pig breeds or lines worldwide of which 
two thirds reside in China and Europe and over 270 
are considered as endangered or critical (Table 1 and 
Figure 2) [8]. Currently, 58 pig breeds are recorded as 
“transboundary” (occuring in more than one country) 
including 25 regional transboundary breeds and 33 
international transboundary breeds. The worldwide 
distribution of pigs is dominated by five international 
transboundary pig breeds from the United States (US) 
or Europe i.e. Large white (117 countries), Duroc (93 
countries), Landrace (91 countries), Hampshire (54 
countries) and Pietrain (35 countries) [16]. Pig breeds 
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vary greatly in size, color, body shape, ear carriage, 
behavior, prolificacy, and other traits. In order to meet 
future challenges in the agricultural and food indus-
tries, special efforts are required to conserve genetic 
resources. Therefore, phylogenetic studies aimed to 
evaluate the genetic uniqueness and pig breed diver-
sity will assist in developing a rational plan for breed 
conservation programs. A set of criteria in an attempt 
to choose specifically breeds for conservation has been 
suggested including two essential criteria. These in-
clude the degree of endangerment and the genetic 
uniqueness of the breed [17]. In addition, the origin 
and history of domestic pigs can also be explained by 
phylogenetic analysis. Independent domestication has 
occurred from wild boar subspecies in Eurasia, and 
through the introgression of Asian germplasm into 
European domestic breeds that occurred during the 
18th and early 19th centuries [9, 18]. 
1.3. Selective sweep detection 

When selective pressure is applied to individuals, 
it ultimately leads to the changes in the underlying 
genetic content of the population [19]. Individuals that 
carry a more favorable genotype would outcompete 
their peers, resulting in the fixation of beneficial alleles 
in the population with concomitant removal of inferior 
alleles. Two primary approaches have been utilized to 
identify and study genes or gene pathways. First is a 
conventional candidate gene approach which repre-
sents a gene selection based on comparative mapping 
and gene function. The second approach is whole ge-
nome scans to identify genomic regions under selec-
tion through association mapping, i.e. associating 
phenotypes with genotypes. A third approach in-
volves identification of genomic patterns due to selec-
tive sweeps whereby large-scale high density single 
nucleotide polymorphism (SNP) haplomap on a spe-
cific region from diverse populations along with wild 
ancestral outgroup species or a panel of genes that 
might be associated with traits. The identification of 
the causative mutation for the insulin-like growth 
factor 2 (IGF2) QTL in pigs is an excellent application 
using these combined approaches [20]. Furthermore, 
by using comparative genomic data sets from different 
breeds containing wild ancestral species, several in-
teresting genotype-phenotype relationships in domes-
tic animals have been recently illustrated [21-28]. 

A selective sweep results in the elimination of 
surrounding variation in regions linked to a recently 
fixed beneficial mutation. For instance, the mus-
cle-favoring mutation in the porcine IGF2 gene (in-
tron3-3072G/A) has swept through commercial pig 
populations, but is not present in the tested Asian or 
European wild boars [20]. More recently, a naturally 
occurring G to A transition in the 3’ untranslated re-
gion of the myostatin gene creates a target site for mir1 
and mir206 microRNAs (miRNAs) affecting muscu-
larity in sheep, and a selective sweep has been detected 
in the hypermusculed Texel sheep [28]. The identifica-
tion of selective sweeps is interesting, not only because 
it elucidates important evolutionary questions, but 
also because of the increasing evidence linking selec-

tion and disease genes [29, 30]. The beneficial substi-
tution of an allele shapes patterns of genetic variation 
at linked sites, and may provide important insights 
into (i) the mechanisms of evolutionary change; (ii) 
guide selection of loci for population genetic studies; 
(iii) facilitate significant genomic regions; and (iv) help 
elucidate genotype-phenotype correlations in complex 
traits [31]. 

Genome scans for detecting signatures of selec-
tive sweeps in natural populations have been pro-
posed as a phenotype independent approach to iden-
tifying adaptive trait loci even when gene function or 
phenotype of interest are unknown [32]. There are 
many different methods available for detecting selec-
tive sweeps from DNA sequence data [29, 33-36]. 
Hitchhiking mapping provides a universal approach 
for the identification of important mutations and se-
lective sweeps. Hitchhiking is a phenomenon known 
as neutral variants linked to the beneficial mutation are 
also affected by a selective sweep [37]. This approach 
has been very successful for identification of selective 
sweeps at several genes [38, 39]. More information 
about genes causing the sweep can be obtained if di-
vergent populations are compared, particularly if the 
populations have been exposed to well-known selec-
tion regimes. Similar comparisons could be performed 
for hitherto uncharacterized, commercially important 
traits, such as fat content in pigs. The most ambitious 
goal of hitchhiking mapping is the identification of 
quantitative trait nucleotides (QTNs) that confers the 
selective advantage [32]. 
1.4. Integrated global pig biodiversity 

Comparative genomic analysis of different do-
mestic breeds can prove an efficient way of exploiting 
the genetic basis of phenotypic variation [40]. Phy-
logenetic studies can reconstruct the correct genea-
logical ties between species and estimate the time of 
divergence between two organisms since they last 
shared a common ancestor. 

To help understand the animal evolutionary his-
tory and genetic diversity, a variety of genetic markers 
can be utilized. Genetic markers can generally be 
grouped into two types based on their association with 
functionality: type I markers are DNA segments en-
coding for expressed DNA sequences which possess a 
relatively low degree of polymorphism but high evo-
lutionary conservation, whereas type II markers usu-
ally have no identifiable biological function but they 
are highly polymorphic and not well conserved be-
tween species. The comparison of the characteristics of 
main classes of genetic markers is shown in Table 2 
[41-43]. As one of the most widely used marker types, 
microsatellites (also called simple sequence repeats, 
SSRs), are characterized as having a short motif, gen-
erally from 1 to 6 bp, are commonly regarded as “junk 
DNA”; however, SSRs have served as one of the most 
important markers for genome mapping as well as 
phylogenic studies. SSRs have been more recently 
proposed to modify genes with which they are associ-
ated. The influence of SSRs on gene regulation, tran-
scription and protein function typically depends on 
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the number of repeats, while mutations that add or 
subtract repeat units are both frequent and reversible. 
Over the past decade, it have been demonstrated that 
SSR variation has been tapped by natural and artificial 
selection to affect almost every aspect of gene function 
[44]. In addition, mtDNA is a widely used molecular 
tool in domestication studies, but it suffers from the 
limitations of poor information for the whole genome 
and the loss of male-mediated gene flows by its ma-
ternal inheritance patterns. 

To date, a number of molecular markers have 
been used for genetic diversity and phylogenetic 
analysis in pigs including SSRs [45-49], AFLPs [50, 51], 
SNPs [52, 53] and mtDNA genotyping [2-4, 54-61]. SSR 
markers have been largely used in phylogenetic stud-
ies and to measure differences within breeds, however 
due to their neutral properties, they are poorly corre-
lated with phenotypic changes due to selection. Very 
recently the use of gene markers has attracted more 
researchers as variation in these allele frequencies may 
provide information related to functional differences 
between breeds. Phylogenetic studies using gene 
markers or SNPs associated with traits of interest are 
relevant for breed conservation and potential breeds 
efficiently for the future production markets. More-
over, mtDNA maternally inherited is useful for tracing 
the maternal lineages in populations. Alternatively, 
variable sequences on the Y chromosome are useful to 
measure breed history and phylogenetic origins, al-
though it is much less variable within species than 
most other genomic sequences [62]. The largest ongo-
ing project on biodiversity studies of pig breeds is the 
European Union (EU) pig biodiversity project II (Pig-
BioDiv II), which will evaluate and compare genetic 
diversity among at least 100 pig breeds originated 
from China and Europe [49-51, 53, 60, 61]. The project 
not only determines the relationships between breeds 
by estimating genetic distances, based on SSR markers 
and haplotypic relationships from mtDNA and Y 
chromosome polymorphisms, but also determines 
functional differences among breeds by characterizing 
trait gene loci and QTL regions. 
2. Pig genome mapping and sequencing 

Over the past years, our understanding of the pig 
genome has rapidly evolved from the localization of 
genes on specific chromosomes to high density marker 
maps, and now the pig whole genome is being com-
pletely sequenced which represents a key milestone to 
exploit the pig genome evolution and decipher the 
molecular basis of various phenotypic traits. 
2.1. Genome positioning system (GPS) 

The availability of large-insert libraries [63-68] 
allows for a more targeted approach to physical and 
comparative mapping. Over 620K BAC end-sequences 
(BES) with an average read length of 635 bp have pro-
vided a previously untapped source of both coding 
and noncoding porcine sequence information [69]. The 
first high-resolution, physically anchored, contiguous 
whole genome radiation hybrid (RH) comparative 
maps of the porcine autosomes were constructed by 

using physically anchored sequences derived from 
BACs [70]. Furthermore, a physical map of the pig 
genome by integrating 265K restriction fingerprints 
and BES generated from 4 BAC libraries with RH 
markers, and contig alignments to the human genome 
was recently constructed with coverage across the 18 
pig autosomes and the X chromosome in 176 contigs 
with an average length of 15 Mb as well as localised 
representation of the gene rich regions on Y. The map 
represents an entry point for rapid electronic posi-
tional cloning of genes and fine mapping of QTLs, and 
also provides a platform for the selection of an efficient 
minimum tiling path (MTP) through the genome to 
support clone-based sequencing and targeted func-
tional genomics studies 
(http://www.sanger.ac.uk/Projects/S_scrofa/WebFP
C/porcine/large.shtml). Exploitation of this resource 
as well as the complete human sequence and bioin-
formatics tools permit the establishment of an ordered 
list of unique sequences from which to select evenly 
spaced markers prior to mapping [69]. 

With the development of molecular markers, 
porcine genomic maps have been largely enriched in 
the last few years. The pig genome database has entries 
for over 4,000 loci including more than 1,588 genes and 
2,493 markers (http://www.animalgenome.org/pig/). 
However, while the average distance between markers 
is about 2 - 3 cM, some large gaps still exist in the pig 
genetic linkage map 
(http://www.marc.usda.gov/genome). The physical 
map for pigs as for other farm animals lagged behind 
initially. With the use of a somatic cell hybrid panel [71] 
and a 7,000 rad (IMpRH) or recently of a 12,000 rad 
(IMNpRH2) RH panel [72-74], the physical map has 
been growing rapidly and contains now over 10,000 
genes and markers [75]. The publicly available infor-
mation related to pig genomics and proteomics is 
shown in Table 3. 
2.2. The pig genome project 

The pig whole genome is currently being se-
quenced by The Wellcome Trust Sanger Institute 
through funding provided by Cooperative State Re-
search, Education and Extension Service at the United 
States Department of Agriculture (CSREES-USDA) 
(target of 3X genome coverage sequencing by January 
2008) [76]. This project uses a clone-by-clone sequenc-
ing strategy, based on the MTP of BAC clones. The 
planned order of contig selection for sequencing is: (i) 
SSC7, SSC14 and SSC4 are highest priority since addi-
tional EU funding targeting these chromosomes 
started earlier; (ii) SSCX, since it will be more chal-
lenging to complete and require increased depth se-
quencing; and (iii) SSC1, SSC11, SSC17, SSC5, SSC6, 
SSC2, SSC3, SSC8, SSC9, SSC10, SSC12, SSC13, SSC15, 
SSC16, and SSC18. To date, a total of 7,321 CHORI-242 
clones have been selected and used to generate initial 
shotgun sequencing data (> 52% of the swine genome) 
(Table 4). Since the CHORI-242 represents a female 
Duroc pig, 495 additional BACs with at least one BES 
anchored on chromosome X or Y from the French Na-
tional Institute for Agricultural Research (INRA) BAC 
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library was selected for sequencing the chromosome Y. 
A total of 1,660 accessioned clones have generated > 
287 Mb of sequence. A pre-finishing strategy is being 
employed for gap closure and ambiguity resolution. 
Automated annotation will be used after the entire 
chromosome has been sequenced 
(http://www.piggenome.org/). 

To take advantage of the emerging genome se-
quence and the characterization of new QTLs, there is 
an increasing need for improving the process of SNP 
discovery to define haploblocks in unique germplasms. 
Thus, a discovery platform that exploits ancestral 
chromosomes for unique SNP discovery would expe-
dite SNP discovery for exploitation in breeding. Also 
there is a need for a united, global initiative that cap-
tures and utilizes the broadest porcine germplasms. 
Porcine SNP discovery is ongoing and several large 
projects have been completed (Sino-Danish) or are 
currently being initiated by INRA-Genescope in con-
junction with SGSC pig genome sequencing project 
[76]. Within the Sino-Danish initiative [77], 3.84 million 
sequences have been generated using 5 different 
breeds (Duroc, Erhuanlian, Hampshire, Landrace and 
Yorkshire) and within the Genescope initiative, 1 mil-
lion sequences are being generated from 7 different 
breeds (Iberian, Landrace, Meishan, Minipig, Pietrain, 
Wild boar and Yorkshire) [77, 78]. However, the dis-
covery of SNPs using a limited pool of independent 
germplasm limits the potential to identify QTLs using 
genome-wide SNP sweeps and the ability to identify 
traits highly difficult to phenotype (reproduction, 
disease resistance) or marker-associated introgression 
of traits from wild-type alleles into commercial 
breeding populations. This supports the need for an 
alternative strategy to generate informative SNPs for 
use in commercial populations. In addition, the EU 
PigBioDiv II has provided significant insights into the 
multiple origins of the pig and phenotypic variation 
associated with geography, breeding and husbandry 
practices. Using 1,536 SNPs, distributed across the 
genome for genotyping 672 DNA samples, it has been 
demonstrated that the utility of SNPs is being able to 
define haploblock structure and extending linkage 
disequilibrium (LD) into genomic regions where genes 
controlling agricultural traits have been selected [53]. 
3. Approaches to understanding genome evo-

lution 
The relationship between genome size and or-

ganismal complexity remains unanswered. The 
C-value (genome size) paradox is that genome size 
does not correlate closely with organismal complexity 
[79]. However, the genomes of more complex organ-
isms are, on average, larger than the genomes of less 
complex. The C-value of the domestic pig varies from 
2.81-3.51 measured using various cell types and by 
different methods [80-82]. The pig genome comprises 
18 autosomes and X/Y sex chromosomes with a size of 
2.7 gigabases (Gb) estimated by integration of BES and 
fingerprints [69, 76]. Comparative genomic analysis 
indicates that organismal complexity arises from pro-

gressively more elaborate regulation of gene expres-
sion, and physiological/ behavioral complexity corre-
lates with the likely number of gene expression pat-
terns exhibited during an animal’s life cycle [83]. The 
unexpectedly high frequency of alternative splicing 
(AS) events has been proposed to be an attractive 
mechanism for increasing gene expression patterns 
and consequently for the organismal complexity in 
eukaryotes [84, 85]. As one of the most exciting recent 
discoveries in the field of genomics, the ultraconserved 
regions that are not functionally transcribed in mam-
malian genomes, has been suggested to play important 
role as transcriptional regulatory elements, and ac-
count for the complexity of gene regulation [86-89]. 
This is particularly evident for some genes involved in 
embryonic development. Another mechanism for in-
creasing organismal complexity was suggested to be 
DNA arrangement where genes themselves are rear-
ranged during cellular differentiation [90]. 
3.1. Comparative cytogenetics and genomics 

Genome organization has traditionally been in-
ferred using two approaches: cytogenetics mapping 
and genetic-linkage or physical mapping [91]. Com-
parisons of G-banded chromosome patterns were first 
used to infer homologies of whole chromosomes or 
subregions between species and even across mam-
malian orders. Gene mapping utilizing somatic cell 
hybrids subsequently confirmed the large tracts of 
mammalian genomes were remarkably conserved, 
suggesting that transferring information from species 
such as human and mouse, which have gene-rich maps, 
to the gene-poor developing maps of domestic animals 
is feasible [92]. Chromosome painting [or 
Zoo-fluorescence in situ hybridization (Zoo-FISH)] 
permits rapidly detecting entire chromosomal ho-
mologies across mammalian orders. Genetic linkage 
map are best suited to ordering polymorphic SSR 
markers, but less efficient for developing comparative 
maps since the limited degree of coding locus (type I 
markers) polymorphism observed within most inter-
species crosses. Radiation hybrid (RH) mapping has 
proven to be an effective approach for the rapid or-
dering of evolutionarily conserved type I coding gene 
markers over the whole genome of various species [70, 
74, 92, 93]. Genome sequence based comparative 
mapping is becoming a powerful approach to reveal 
the molecular basis for phenotypic variation as well as 
the evolutionary forces that have contributed to speci-
ation, including underlying mutational processes and 
selective constraints [94-96]. In addition to compara-
tive genome mapping, with the integration of genom-
ics and phylogenetics, phylogenomic studies are pro-
gressing to resolve long-standing evolution-
ary/phylogenetic controversies, to refine dogma on 
how chromosomes evolve, and to guide annotation of 
human and other mammalian genomes [97]. 
3.2. Exploiting varieties of genomic architectures 

Genome rearrangements: In eukaryotes, genome 
rearrangements, such as inversion, translocations and 
duplications, are common and range from gene seg-
ments to hundreds of genes. In most eukaryotes, there 
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is a strong association between rearrangement break-
points and repeat sequences. Rearrangement poly-
morphisms in eukaryotes are correlated with pheno-
typic differences, and proposed to confer varying fit-
ness in different environments. There is little evidence 
that chromosomal rearrangements causes speciation, 
but probably intensify reproductive isolation between 
species that have formed by other routes [98]. A rela-
tively large number of chromosomal abnormalities 
including inversion, translocation, duplication, fission 
and fusion have been identified in pig [93, 99, 100]. The 
chromosomal abnormalities are often responsible for a 
considerable decrease in prolificacy of the carrier ani-
mals. Recently, a bioinformatics tool was created to 
permit multi-species comparisons between the ge-
nomes of humans, horses, cats, dogs, pigs, cattle, rats, 
and mice (http://evolutionhighway.ncsa.uiuc.edu/). 
This provides a useful resource for evaluating pig 
evolution. A large set of reuse breakpoints were dis-
covered and more than 20% of the discovered break-
points have been reused during mammalian evolution. 
The eight species comparison showed that the histori-
cal rate of chromosome evolution in mammals was 
different than previously thought. The study demon-
strated that evolutionary changes has been moving 
faster during the last 65 million years than for the prior 
35 or so million years [92]. 

Transposable elements: Evolutionary biologists 
hypothesized that the earliest life originated via a sys-
tem based on a self-replicating RNA genome and RNA 
catalysts [101]. The advent of polymerases that make 
DNA copies of RNA templates allowed the conversion 
of information from unstable ribose-based polymers to 
more stable deoxyribose-based polymers through the 
process of reverse transcription. It is now known that 
only approximately 1-2% of the human genome is 
comprised of exonic sequences. The remainder, 
so-called “junk DNA”, is composed largely of introns, 
simple repeat sequences and transposable elements or 
their remnants. In mammals, transposable elements 
account for nearly 50% of the genome [102, 103]. 
Transposable elements were historically dismissed as 
junk or selfish sequences parasitizing the genome of 
living organisms [104, 105]. This view has been chal-
lenged through a wave of new information demon-
strating their emergence as contributors to the evolu-
tion and function of genes and genomes, and have a 
tremendous impact on an organism’s phenotype 
[106-108]. These effects include drug response, disease 
susceptibility and evolution novelties between species. 
The most common genomic effect of transposable 
elements is the induction of mutation. Through their 
mobility and ability to recombine, transposable ele-
ments can generate various types of rearrangements 
and lead to insertions, deletions, duplications and in-
versions. In mammals, retrotransposon have been 
proposed to act as general modulators of gene expres-
sion and to play a role in X-chromosome inactivation 
[109, 110]. Transposable elements, first recognized as 
potential causal agents of human disease in 1988 [111], 
have evolved over millions of years and have achieved 

a balance between detrimental effects on the individ-
ual and long-term beneficial effects on a species 
through genome modification. It has been suggested 
that transposable elements play an important role 
through diverse ways in the event of shaping the ge-
nome to speciation [107]. 

Single nucleotide mutations: SNPs are abundant 
and widespread throughout the pig genome (coding 
and non-coding regions), and are rapidly becoming the 
marker of choice for many applications in population 
genomics, evolutionary analysis, conservation genetics, 
because of the potential for higher genotyping effi-
ciency, data quality, genome coverage and 
cost-effective high throughput genotyping techniques. 
In most species, SNPs occur typically on average every 
200-500 bp [43, 112-114]. About 90% of genetic varia-
tion has been ascribed to SNP allelic variants that occur 
at a frequency of > 1%. Within coding regions (~1-2%), 
nonsynonymous SNPs can be considered candidates 
for functional changes. The phenotypic effect of any 
particular SNP is rarely known and often can only be 
inferred based on the evolutionary dynamics of the 
variant or on its effect on protein function. The non-
synonymous (dN) : synonymous (dS) SNPs ratio (dN/dS 
also known as Ka/Ks) can then be taken as a measure 
of the strength of purifying selection on a gene or the 
entire genome. Even synonymous SNPs in pro-
tein-encoding genes can have functional implications. 
Although multiple codons can encode the same amino 
acid, some occur more frequently in the genome than 
is predicted by random (i.e. codon usage bias). There-
fore, a SNP that causes a change from a more common 
or preferred codon to a rare or unpreferred codon can 
affect the efficiency of protein synthesis and expression. 
Most SNPs occurs in the non-coding portion of the 
genome, but can nevertheless be evaluated with regard 
to function. For example, the IGF2-intron3-G3072A 
substitution causes a major QTL effect on muscle 
growth in the pig [20], and explains a major imprinted 
QTL effect on backfat thickness in a Meishan × Euro-
pean white pig intercross [115, 116]. 

A substantial fraction of the non-coding genome 
is conserved between species, suggesting that purify-
ing selection acts on a large portion of the genome. 
Thus, SNPs can be evaluated based on their location in 
conserved versus non-conserved non-coding regions. 
Moreover, the regulatory regions of genes (e.g. pro-
moters, enhances, silencers, insulators, miRNA bind-
ing sites) have been annotated using comparative and 
predictive algorithms, and thereby enabling the as-
sessment of non-coding regulatory SNPs. For instance, 
SNPs that occur in the transcription factor binding 
sites of a promoter are more likely to affect function 
than SNPs that occur outside the regulatory region of a 
gene [28, 117]. Although ascertainment bias can be a 
problem with some applications, SNPs can generate 
equivalent statistical power whilst providing broader 
genome coverage and higher quality data than can 
either SSRs or mtDNA, suggesting that SNPs could 
become an efficient and cost-effective genetic tool. 



Int. J. Biol. Sci. 2007, 3 

 

159

3.3. Alternative splicing (AS) events and evolu-
tionary impacts 

Alternative splicing (AS), one of the most impor-
tant and nearly ubiquitous mechanisms regulating 
gene expression in many organisms, occurs in the 
coding sequence, coordinates physiologically mean-
ingful changes in protein structure and function and is 
a key mechanism to generate the complex proteome of 
multicellular organisms. AS results in two ways: (i) 
through skipping exons that encode a certain protein 
feature; and (ii) by introducing a frameshift that 
changes the downstream protein sequences. Recently, 
novel types of AS events have been proposed that ei-
ther join two non-consecutive exons (creating a protein 
feature) or insert an exon into the protein body (de-
stroying a feature) [118]. The effects of AS range from a 
complete loss of function or acquisition of a new func-
tion to very subtle modulations, which are observed in 
the majority of cases reported such as binding proper-
ties, enzymatic activity, intracellular localization, pro-
tein stability, phosphorylation and glycosylation pat-
terns [119]. 

It has been estimated that 30-70% of mammalian 
genes are alternatively spliced [120-122], and that 
mammalian AS events frequently arise from the evo-
lutionarily rapid loss or gain of exons from genomes 
[121, 123-125]. Variant splice patterns are often specific 
to different stages of development, particular tissues or 
a disease state [126]. Utilizing a highly predictive 
computational method over 11% of human and mouse 
alternative exons were estimated to represent spe-
cies-specific AS events [127]. By comparing gene 
structure of orthologous genes in human and mouse 
genomes, it has been revealed that the majority (98%) 
of human constitutive and major forms of alternative 
exons are conserved in the genomic sequences of their 
mouse and rat orthologues [121]. By contrast, nearly 
75% of the minor forms of alternative exons are not 
conserved, suggesting that AS is associated with a 
significant increase in the rate of exon creation and 
deletion in mammals, and plays a role on speciation 
events. 

Splicing mutations have long been proposed to be 
the basis for a number of human diseases [128]. More 
recently, based on the disease-gene propensity of hu-
man genes in terms of their coding region length and 
intron number, it was estimated that ~60% of human 
disease mutations represent splicing mutations, the 
most frequent cause of hereditary diseases [129]. Al-
though the importance of AS in various biological 
processes such as sex determination [130] and apop-
tosis has been known for a long time, genomics and in 
particular the shotgun sequencing expressed sequence 
tags (ESTs), have revealed its nearly ubiquitous role in 
gene regulation [85]. Genome sequencing has made it 
possible to study the evolutionary impact and con-
straints of AS [131]. 
3.4. Exploring functional portion of the genome 

Recently, it was estimated that according to se-
quence conservation patterns, the actual functional 
portion of the mammalian genome is at least 5% [103]. 

In mammals, using comparative evolutionary ap-
proaches it appears that functional elements are clus-
tered mostly within ~2 kb surrounding protein-coding 
sequence [132, 133]. These observations help to paint a 
general picture of noncoding conservation and struc-
ture in the genome and are likely to be extremely 
helpful in focusing future detailed investigation. Given 
that the protein-coding fraction is approximately 1.5%, 
there is significant opportunity for identification of 
additional functional elements. Sequence conservation 
does not reveal the total fraction of the functional ge-
nome, but simply the fraction of the genome that has 
remained functional within the group of species com-
pared. An additional fraction that is not conserved 
across larger evolutionary distances such as across all 
vertebrate lineages represent species-specific or line-
age-specific genes. The best known functional fraction 
is the class of protein-coding genes. Regulatory ele-
ments and noncoding RNAs such as small interfering 
RNAs, (siRNAs) and miRNAs are considered two 
other significant functional classes of the mammalian 
genomes. Analysis of the human and mouse genomes 
has identified an abundance of conserved non-genic 
sequences (CNGs). The significance and evolutionary 
depth of their conservation remain unknown. A strik-
ing extremely high number of such elements is found 
in vertebrate gene deserts, defined as long regions (> 
500 kb) containing no protein-coding sequences and 
without obvious biological functions [87-89]. It has 
been suggested that a global role of CNGs in genome 
function and regulation, through long-distance cis or 
trans chromosomal interactions [134]. 
4. Future expectations of facilitating pig ge-

nome navigation  
Exploring the complete functional information 

encoded in a genome is a major challenge in biological 
research. Comparative genome analysis between the 
pig and related mammals could provide a powerful 
and general approach to identifying functional ele-
ments without previous knowledge of function and 
detect phylogenetic footprinting of pig genome evolu-
tion. A principal goal of genetic research is to identify 
specific genotypes that are associated with phenotypes 
and to conduct genome-wide genotyping on a massive 
scale. The advent of the complete genome sequencing 
along with gene prediction has resulted in the devel-
opment of technologies that allow the assignment of 
genes to particular biological modules. Integration of 
‘omic’ technologies including genomics, transcrip-
tomics, proteomics and metabolomics will link ge-
nomics and system biology and accelerate the acquisi-
tion of fundamental knowledge about biology systems. 
The outputs of ‘omics’ research will change our ap-
proach to solving biological problems and result in 
novel uses of biotechnology to develop and improve 
products for agriculture. Advances in ge-
nome-phenome research will contribute to agriculture 
and food, bioengineering, biomedicine and health, 
conservation and the environment. Genome to phe-
nome research for the pig is still at a very early stage, 
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and requires enormous amount of work to understand 
the genetics and development of shape, specialization 
and organization at levels from cells to the whole in-
dividual. 

Since the whole genome sequence of the pig will 
soon be available, comparative studies with the com-
pleted human genome, and other mammalian ge-
nomes having moderate to deep genome coverage (i.e. 
cow, horse, dog, mouse, rat and chimpanzee) will yield 
new information about the pig genome evolution. In 
the next decade, by utilizing approaches of compara-
tive genomics, it will be possible to effectively select 
animals for agricultural purposes, create appropriate 
biodiversity conservation programs and create pig 
models for medical research. The utility of the pig in 
biomedical research affords many advantages com-
pared with other animals such as mouse and rat i.e. (i) 
its similar size to humans (ii) sharing high similarities 
with human both anatomically and physiologically; 
and (iii) the ability to target gene manipulation and 
clone using nuclear transfer. 
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Tables and Figures 
Table 1. Total population size and number of global pig breeds (2006) 
Region Africa Asia Europe Lartin 

America 
Near & Mid-

dle East 
North  

America 
Southwest 

Pacific 
Total 

Pig Pop Brd Pop Brd Pop Brd Pop Brd Pop Brd Pop Brd Pop Brd Pop Brd 

No. 23 49 594 229 192 165 72 67 0.3 1 75 18 3.8 12 960 541 

% 2.4 9.1 61.9 42.3 20.0 30.5 7.5 12.4 0.0 0.2 7.8 3.3 0.4 2.22 100 100 

Pop: population size in million heads; Brd: number of breeds; Per (%): share of the world total. 
Source: The state of the world’s animal genetic resources for food and agriculture (1st), 2006 [8]. 

Table 2. Characteristics of main classes of genetic markers 
 mtDNA Microsatellite SNP AFLP 

Type of loci (O’Brien) I and II II > I I and II I and II 

Type of loci (Dodgson) clone sequence-based clone sequence-based clone sequence-based fingerprint 

Distribution mitochondria (less than 20 
kb; 100-10,000 copies every 

cell) 

nucleus (spaced every 5-50 
kb; ubiquitous across the 

genome) 

nucleus (spaced every 200-500 
bp; millions of loci across the 

genome) 

nucleus (ubiquitous 
across the genome) 

PIC high high low moderate 

Typical allele no. hypervariable at the control 
region 

2 - 30 2 2 

Inheritance mode maternally inherited codominantedly inherited codominantedly inherited dominant inherited 

Speed of assay moderate moderate high  moderate 

Development costs moderate high moderate low 

Running costs moderate high low moderate 

Major use domestication; phylogeography genome mapping; population 
genetics 

phylogenomics; functional 
genomics; genetic diversity 

population genetics; 
genome mapping 

Major weakness poor predictor of overall ge-
nomic diversity; loss of 

male-mediated gene flows 

low abundance ascertainment biases; biallelic dominant mode of 
inheritance 

PIC: polymorphism information content; AFLP: amplified fragment length polymorphism. 
Source: modified based on O’Brien (1991) [41], Dodgson et al (1997) [42], Morin et al. (2004) [43]. 

Table 3. Publicly available pig genomics and proteomics internet resources 
Resource type Description Resource name URL 

Genome Pig genome sequencing by 
SGSC 

Pig tales http://www.piggenome.org 

Genome Pig PreEnsembl at Sanger Pig PreEnsembl http://pre.ensembl.org/Sus_scrofa 
Genome Pig genomics at UIUC Swine genomics http://www.swinegenomics.com 
Genome NAGRP pig genome program U.S. pig genome mapping http://www.animalgenome.org/pigs 
Genome Pig genome project at Japan Animal genome program http://animal.dna.affrc.go.jp 
Genome NCBI pig genome resources Pig genome resources http://www.ncbi.nlm.nih.gov/projects/genome/guid

e/pig 
Genome Pig genomic information system PigGIS http://www.piggis.org 
Genome 0.66X genome sequencing Sino-Danish pig genome http://piggenome.dk 
Genome 100 Mb genome sequencing Korean pig genome project http://www.nlri.go.kr 
Genome SSC7 and 14 genome sequenc- EU SABRE project http://www.sabre-eu.eu 
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ing 

QTLs Pig QTL database Animal QTLdb http://www.animalgenome.org/QTLdb/pig 
Genes/markers TIGR pig gene index SsGI http://www.tigr.org 
Genes/markers NCBI SNP database Pig SNP database http://www.ncbi.nlm.nih.gov/SNP 

Linkage map USDA MARC map US MARC linkage map http://www.marc.usda.gov/genome/swine 
Linkage map Pig genome map viewer NCBI map viewer http://web.ncbi.nlm.nih.gov/mapview 
Linkage map PIGMAP viewer at Roslin ARKdb web http://www.thearkdb.org 
Physical map Sanger porcine physical map Sanger WebChrom http://www.sanger.ac.uk/Projects/S_scrofa 
Physical map Pig FPC clones to linkage maps BAC clone map http://www.animalgenome.org/cgi-bin/QTLdb/SS 
Physical map Somatic cell hybrid panel SCH map http://www.toulouse.inra.fr/lgc/pig/hybrid.htm 
Physical map IMpRH maps RH map http://www.toulouse.inra.fr/lgc/pig/cyto/cyto 
Physical map UNR-1/UNR-2 RH map http://www.cabnr.unr.edu/beattie 
Comparative 

map 
Multispecies comparisons Evolution highway http://evolutionhighway.ncsa.uiuc.edu 

Comparative 
map 

Pig-human comparative map Comparative map http://www.toulouse.inra.fr/lgc/pig/compare/comp
are 

Comparative 
map 

Jackson labs Mammalian maps http://www.informatics.jax.org 

Comparative 
map 

Japan pig-mouse map Pig mouse map http://ws4.niai.affrc.go.jp/dbsearch2/java/mhomo/p
ig 

Expression Pig array from US pig genome 
project 

Pig microarray http://www.pigoligoarray.org 

Expression 98,988 pig ESTs database at 
Iowa 

Pig EST database http://pigest.genome.iastate.edu 

Expression Pig EST sequences at Denmark Pig EST http://pigest.kvl.dk 
Expression Full-length cDNA libraries and 

ESTs 
PEDE at Japan http://pede.dna.affrc.go.jp 

Table 4. Current chromosomal progress of the pig genome sequencing project (Nov 2006) 
Chr Estimated length 

(bp) 
No. of 
contigs 

NoCs se-
lected 

NoCs 
sent 

NoCs acces-
sioned 

NoCs fin-
ished 

Total 
NoCs 

Coverage 
(%) 

SSC1 303,136,142 3 59 518 329 1 907 56.89 

SSC2 155,149,711 7 0 377 0 0 377 45.87 

SSC3 151,274,484 9 0 354 0 0 354 45.73 

SSC4 149,877,177 8 2 319 82 2 405 52.49 

SSC5 105,163,859 4 0 273 4 2 279 50.07 

SSC6 173,044,584 11 0 433 6 19 458 48.60 

SSC7 138,247,446 5 118 46 321 47 532 67.01 

SSC8 152,094,626 4 0 419 2 0 421 53.92 

SSC9 157,355,516 4 1 448 0 0 449 55.18 

SSC10 81,315,841 7 0 196 0 0 196 46.19 

SSC11 89,955,204 3 32 72 160 2 266 59.36 

SSC12 70,201,005 6 0 151 0 0 151 42.16 

SSC13 221,109,244 1 2 635 1 0 638 54.65 

SSC14 142,311,687 3 160 12 365 6 543 67.50 

SSC15 173,169,528 3 1 456 0 0 457 51.01 

SSC16 89,254,859 2 0 239 1 0 240 51.99 

SSC17 70,843,094 5 2 82 58 69 211 51.41 

SSC18 63,240,215 1 0 162 0 0 162 50.42 

SSCX 135,575,825 21 0 275 0 0 275 39.29 

Total 2,622,320,047 107 377 5,467 1,329 148 7,321  

Average 138,016,845       52.09 

NoCs selected: number of clones selected for sequencing; NoCs sent: number of clones sent for sequencing; NoCs accessioned: number of accessioned 
sequence clones; NoCs finished: number of finished sequence clones; Total NoCs: total number of sequencing clones; Coverage (%): percentage of map 
covered by sequence clones. Source: Pig Pre-Ensembl: http://pre.ensembl.org/Sus_scrofa/ 
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Figure 1. Suiforme diversity and phylogenetic relationship. Source: Randi et al (1996); Groves et al (1997); Fokkinga (2004); 
Robins et al (2006) [11-14]. Pig pictures were adapted from the animal diversity website at the University of Michigan Mu-
seum of Zoology (http://animaldiversity.ummz.umich.edu/); http://www.triplov.com/guinea_bissau/mammalia/suidae.htm. 

 
 

 

Figure 2. Global status of pig breeds. Source: The state 
of the world’s animal genetic resources for food and 
agriculture (1st), 2006 [8] 
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