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I N T R O D U C T I O N  

The term extensive aquifers is used to denote aquifers whose horizontal dimensions 
are much larger than their thicknesses, so that the losses of head due to  the vertical 
velocity components may be neglected. The term groundwater hydraulics is used in 
the sense of deductive theory. 
A series of strongly schematized problems is analysed with a view to applying the 
results in groundwater engineering. The publication is a text-book, not a manual, 
stress being laid on didactics, not on completeness or detail. The mathematical 
derivations are given in full, starting from the fundamental physical laws; mathemati- 
cal methods, however, are not explained. As a rule, a problem is discussed in four 
stages: posing the problem, formulating the solution, deriving the formulae and analys- 
ing the result. The mathematical derivations are marked by a disjoined vertical line; 
they should be omitted at first reading, when the reader’s attention should remain 
concentrated on the main issue of the theory. 
The basic laws and assumptions adopted are more or less consecrated by tradition. 
They have, however, a limited range of validity. This range has been established for 
some laws (e.g. the law of linear resistance). In other instances it forms the subject of 
modern investigations (e.g. the law relating the stored or released quantities of water 
to the rise or fall of the water table, where the notion of effective porosity is only an 
approximation). This physical side of the problem is not treated. It is thought too 
important to be discussed in complementary remarks to  an essentially deductive study. 
If it were to be treated comprehensively, it should be made the subject of a separate 
study. 

The use to be made of the solutions of schematized problems may be summarized in 
the following points : 
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1. Since flow of groundwater is hidden to  the eye, we have no everyday experience 
with it, as we have with mechanical phenomena; the best way to get acquainted with 
the nature of the phenomena is to solve, as an exercise, a series of elementary problems: 
We are also blind to the magnitude of quantities involved in problems of ground- 
water flow; to estimate them properly we need orientating calculations on strongly 
schematized models. 
2. Physical formulas have a limited range of validity. When, for example, a phenom- 
enon depends on three factors, A, B, and C, it depends on A alone when A is pre- 
dominant, on A and B when C is negligible. Posing the problem requires an apprecia- 
tion of the relative magnitude of the relevant quantities. This is another reason for 
starting with orientating calculations. 
3. Engineering calculations generally cover two phases. First the hydraulic character- 
istics of the aquifer are determined on the basis of observations and tests; then the 
dimensions and flow rates of the design are determined on the basis of these character- 
istics. In both phases it is recommended that rough, orientating calculations be used 
to start with, and that they be repeated once or several times on a more refined basis. 
The reality should be compared with standard flow systems, preferably chosen so as 
to comprise the reality between conditions that are too favourable and too unfavour- 
able. This is the principle usually adopted for the calculation of steel and concrete 
constructions. 
4. Groundwater calculations are generally rough, because the underground is irregu- 
lar, because tests are costly, and because some basic quantities, such as evaporation, 
are only approximately known. This stresses the importance of elementary calcula- 
tions above refined ones. The use of computers is justified only when the observations 
and tests have been adequate to obtain precise results, and this precision is needed for 
the design. Another use of computers is to  solve standard problems that are too diffi- 
cult for mathematical analysis. 
5. The basic laws of groundwater hydraulics are linear. Thus, in problems depending 
on several factors, the influence of each factor may be calculated apart, and the results 
added. This principle, that of superposition, will be the guideline throughout the 
theory. It makes understanding easy, and allows complicated calculations to be split 
up into elementary ones. 

Part of the theory has been acquired from literature; part is the result of my own stu- 
dies. Foreign elements have not been presented in  the form chosen by the authors. All 
elements have been merged into greater units of thought, in which process they have 
lost their individuality. Each chapter forms a unit; the chapters form a sequence: the 
publication should be read as a whole. 
Since foreign elements have not been given in their original form, and all derivations 
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are given in full, no reference is made to  the original publications. A list of compre- 
hensive modern books is added, to be used for further study as well as for detailed 
reference. However, the names of G. J. de Glee, J. P. Mazure, J. van Oldenborgh, and 
J. H. Steggewentz should be mentioned, since their work has been fundamental for 
athe present studies. 
Thanks are due to G. de Josselin de Jong, and A. Verruijt for critical remarks, as well 
as to N. A. de Ridder for his critical reading of the manuscript and to Mrs. M. F. L. 
Wiersma-Roche for linguistic corrections. 

Wageningen, October 1968 J. H. E. 
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N O T E S  A N D  L I S T  O F  S Y M B O L S  

1 .  A disjoined vertical line marks the derivations. 
2. The text alway refers to the figure indicated at the beginning of the paragraph. 
3. The following conventions are used in the figures 
shaded: impermeable 
dotted: low permeability 
blank: permeable 
4. Throughout this study the potential is defined as a pressure, while most engineers 
are accustomed to defining it as a height (length dimension). As long as one-fluid is 
concerned, they may read the formulas in their own interpretation, considering the 
potential cp as a height, the permeability k as a velocity, and reading for p the effective 
pore space, a dimensionless quantity. In the theory of two-fiuid systems, however, all 
symbols must be read according to the definitions of this study. 
5.  All formulas are dimensionless. They apply to any consistent system of units 
(founded on one unit for the mass, one unit for the length, and one unit for the time). 
6 .  Where references are made to  other parts of the text, the main units, 1 to 7, are 
called chapters; the smaller units, indicated by one or two decimal figures are called 
sections. 
7. Most symbols are used throughout the text, often without explanation. Their 
meaning and dimension are listed below, and reference is made to the section in 
which they are introduced. As a rule the following distinctions are made: 
Without prime: related to the fresh water i n  the aquifer. 
With prime: related to the low-permeability top layer. 
With double prime: related to the salt water in the aquifer. 
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Aquifer in one-fluid problems , 

RL Reference level. 
x and y Horizontal coordinates. 
Z 

t 
T 

w 

cp 
Y 
h 
k 
D 

kD 
m 

P 

V 

4 

Q 

n 

N 

Vertical coordinate. 
Time. 
Period of periodic movements. 

Equal to -, used in sin cot, defining sinusoidal variations. [t-'1 

(Section 5.2). 
Potential, defined as a pressure. [ml- 
Specific weight of water. [ml -2 t -2 ]  
Piezometric height. [ l ]  (Section 1.1.1). 
Permeability, generally in a horizontal direction. [m-'Z3t] (Section 1.1.1). 
Thickness of the water body contained in the aquifer. Either constant or  
variable. [ I ] .  
Transmissivity of the aquifer for horizontal flow. [m-'14t] (Section 1.1.2). 
Effective porosity. Volume of water released from or taken into storage 
per unit area of the aquifer due to variation of the phreatic level by unit 
height. Dimensionless. (Sections 1.2 and 6.3.1). 
Volume of water released from or taken into storage per unit area of the 
aquifer, due to a change of the water level corresponding to unit potential. 

p = -. [m-'Z2t2] (Section 1.2). 

Velocity in the sense of the quantity of water passing per unit time through 
a unit area including the section over the grains. [lt-'3 (Section 1.1.1). 
Quantity of flow through unit width of an aquifer with thickness D .  
q = vD.[12t-'] (Section 1.1.2). 
Quantity of flow through an arbitrary cross-section, e.g. the flow towards 
a well. [Z3t-']  (Section 1.1.2). 
Recharge of the aquifer from the upper, nonsaturated soil layers, as a 
volume of water per unit time and per unit area of the'aquifer. [It-'] 
(Section 1.2). 
Mathematical concept, introduced to make a general formulation of the 
law of continuity possible: the volume of water joining the groundwater 
flow in the aquifer per unit time per unit area of the aquifer, as a conse- 
quence of both recharge and fall of the piezometric level. [ I t - ' ]  (Section 

2n 
T 

(Section 1.1.1). 

m 

Y 

1.2). 
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Low-permeability top layer 
cp' Potential (Section 1.1.2). 
h' 
k' 
D' 

k'/D' 
m' 
P' 

Piezometric height (function of z)  (Section 1.1.2). 
Permeability in vertical direction (Section 1.1.2). 
Thickness of the water layer contained in the top layer, always considered 
constant over the area of the aquifer (Section 1.1.2). 
Transmissivity of the top layer for vertical flow. 
Equivalent of m for the top layer (Section 1.2). 
Equivalent of p for the top layer (Section 1.2). 

Aquifer in two-Jluid systems 
RL 
SL 
y and y" 
cp and cp" 
h and h 

D and D" 
Dt 
Z 

m 

P 

v and V" 

q and q" 

Q and Q" 

Reference level. 
Sea level. 
Specific weight of fresh and salt water respectively. (Section 6.1.1). 
Potentials of fresh and salt water respectively (Section 6.1.3). 
Piezometric height of fresh and salt water respectively (The piezometer 
tube filled with fresh and salt water respectively) (Section 6.1.3). 
Thickness of fresh and salt water body respectively (Section 6.2:l). 
Sum of D and D" 
Elevation of the interface above reference level (negative when reference 
level coincides with sea level) (Section 6.1.3). 
Effective porosity. Volume of water released from or taken into storage 
per unit area of the aquifer, due to variation by unit height of the phreatic 
surface or the interface. Dimensionless. (Sections 1.2 and 6.3.1). 
Same as for one-fluid system. Related to cp. For the water surface only; not 
for the interface. 
Horizontal velocities, or velocities parallel to  the interface in fresh and 
salt water (volume of water displaced per unit time per unit section, 
including the section over the grains) (Section 6.1.3). 
Quantities of flow per unit width over the thickness of the fresh and salt 
water body respectively. q = vD; q" = v"D" (Section 6.2.1). 
Quantities of flow through an arbitrary section in fresh and salt water 
respectively. [13tt- '1. 
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I. F U N D A M E N T A L S  

1.1. THE LAW OF LINEAR RESISTANCE 

1. I .  1. Formulation of the law 
Water flowing through a porous medium loses energy. The quantity of energy per 
unit volume of water is called the potential cp, for reasons to be specified below. Its 
dimension [ml- l t - ’ ]  is that of a pressure. 
There is no uniformity in the definition of the potential. In engineering practice it is 
more common to define cp as the quantity of energy per unit weight of the water. The 
potential thus defined has the dimension of a length, and can be shown graphically as 
an elevation above a plane of reference. This definition, however, cannot be admitted 
in the following studies, as it would complicate the formulas of two-fluid problems. 
For fresh water problems all formulas describing the flow systems are identical in 
both practices, but with a different meaning of the symbols. 
Figure 1. - The potential cp at a certain point P of the aquifer is given by 

c p = P + Y z  

wherep is the pressure and y the specific weight of the water at P; z is the elevation of 
P above reference level RL. This expression is taken from the théory of general 
hydraulics: i t  will not be derived here. In its general form it contains still a third term 
(,5v2)/2, depending on the velocity of the water, where p is the density and v the velocity 
of the water at P. This term can be ignored in groundwater hydraulics, where velocities 
are always low. 
A piezometer is a simple tube, placed in the ground and screened over a certain 
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Fig. 1 

R L  

length at its bottom end. For theoretical considerations the screen may conveniently 
be reduced to a point. The piezometric height h at this point is the elevation of the 
water level in the tube above the reference level RL. The potential cp is related to  the 
piezometric height h by 

cp = Yh 

I 
I 
I gives cp = yh. 

The pressure at P corresponds to the water column h - z inside the tube; hence 
p = y(h - z). Substitution of this value for p in the expression cp = p + yz 

The discharge Q is the quantity of water flowing per unit time through a small section 
S perpendicular to the flow. It is customary to take for S the rough area over both 
pores and grains. The quantity v = Q/S ,  therefore, does not correspond to the average 
velocity of the water particles. Yet it is customary to  call v the velocity of the water. 
Throughout the study laminar flow will be assumed. In nature this condition is usually 
satisfied. Exceptions may exist locally where the velocities are particularly high, such 
as near pumped wells or where fresh groundwater flows into the sea. In laminar flow 
the losses of energy are proportional to the velocities. This law of linear resistance is 
known as Darcy’s law, when applied to groundwater. It may be written as: 

where k is a constant, and v,, v,, and v,  are the components of the velocity in the direc- 
tions of the coördinate axes x ,  y and z. For an arbitrary direction s 

which will not be proved here. 
Formulas of this type are well known in physics. Any quantity cp satisfying them is 
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called a potential. If it defines a velocity, as in the present case, it is called a velocity 
potential; if a force, a force potential, etc. Consequently the theory of groundwater 
flow appears as a particular case of potential theory. 
The constant k ,  as defined by these formulas, has the dimension [m-'tZ3]. In current 
engineering practice, where the potential cp is defined as a length, and k is determined 
by the same formulas, k takes the dimension of a velocity. If values of k are given as 
velocities, they must be divided by the specific weight of the water, to obtain the cor- 
responding values in the practice to be followed heré. 
The permeability k depends on the characteristics of the soil, and the viscosity q of 
the water. Strictly speaking, it is improper to call it the permeability of the soil, as it 
depends also on the properties of the water. Other names have been proposed, but 
since there is no uniformity on this point, simply the most current term, although 
improper, will be used. 
As can be shown from the theory of Dimensional Analysis or from more thorough 
theoretical considerations, the following relationship exists: 

This formula should be read with the idea of similitude in mind. If two ideal scale 
models are imagined, composed of grains of the same form and arrangement, but of 
different size, the geometrical scale of either model may be determined by any length 
dimension do f  the grains, e.g. the average grain size, defined in any conventional way. 
The models may be filled with fluids of different viscosity q. The formula then indicates 
the relationship between k ,  d and q in each model. The coefficient ko is a dimensionless 
constant, depending on the form of the grains and the definition of d, and is the same 
in both models. It can be seen from this relationship that k is equal for both salt and 
fresh water filling the same medium, if the difference in viscosity between the fluids is 
neglected. 

In the following studies homogeneous soil and water will be assumed. Where in 
Chapters 6 and 7 two-fluid systems are described, the property of homogeneity will 
apply to each of the fluids separately. Strictly speaking, granular material is not homo- 
geneous. The term will be used with respect to the average values of the soil charac- 
teristics (pore space, permeability, etc.) in units of volume, large compared with the 
dimensions of the grains, and small compared with those of the aquifer. Used in this 
sense, the word homogeneity expresses that these average values of the soil charac- 
teristics are the same throughout the aquifer. As a consequence, the hydraulic quanti- 
ties (pressure, velocity, etc.) are continuous functions of the coördinates. In nature the 
condition of homogeneity is in general not fully satisfied. The main exceptions are: 
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Fig. 2 X / A P  

C 

- Sandy aquifers are usually made up of alternating layers of sediments having 
different properties. They may contain layers of fine material, or even lenses of silt or 
clay, which impede the vertical water movement. Natural aquifers usually have a 
greater permeability in horizontal than in vertical direction. 
- Limestone, if finely fissured, has the characteristics of a permeable medium, but its 
degree of fissuring is seldom uniform throughout the aquifer. 
- The density and viscosity of water vary with temperature. In-thick aquifers the 
increase in temperature with depth plays a role. 
- The viscosities of fresh and salt water are slightly different. This factor will be ignored 
in Chapters 6 and 7. 

1.1.2. Extensive aquifers 
The following studies will deal alternately with three types of aquifers: confined, 
partly confined, and phreatic, to be described below. As a general assumption they 
rest on a horizontal, impermeable base. Some special cases will be considered where 
the aquifer dips slightly. 
Figure 2a represents a confined aquifer, covered with a horizontal impermeable layer, 
and saturated with water under pressure. The thickness D of the water layer is constant 
and equal to  that of the aquifer. 
Figure 2b represents a partly confined aquifer, i.e. covered by a layer of low-perniea- 
bility, and saturated with water under pressure, the phreatic level being in the top 
layer. The term low-permeability will be used in the sense of low compared with the 
permeability of the aquifer, but not zero. Since the horizontal flow in the top layer 
will be neglected, as will be explained below, the lateral water movement depends on 
the thickness D of the aquifer, which is a constant, as in the previous case. 
In Figure 2c the groundwater has a free surface. For the sake of simplicity no capillary 
fringe is considered. Groundwater having a free surface is called phreatic water; the 
surface, the phreatic surface. The thickness D of the water body is variable from one 
point to another. For exact calculations the variations of D are considered. For 
approximate calculations the variations in  water height are neglected in comparison 
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with the total thickness of the water-layer. The variable thickness is then replaced by 
its average value D. This assumption is frequently made in engineering practice. 
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In all cases the thickness of the aquifer is assumed to be small compared with its 
horizontal dimensions. This property is indicated by the term extensive aquifers. The 
water transport through such aquifers is mainly horizontal. The horizontal velocity 
components are generally greater than the vertical components and since, moreover, 
the water moves horizontally over much greater distances than it does vertically, the 
losses of energy in a horizontal direction are much greater than in a vertical direction, 
so that as a basic assumption for all following studies, the vertical energy losses are 
neglected. This assumption may be considered either as an approximation, applicable 
to an aquifer composed of isotropic material, or as an exact characteristic of an aquifer 
composed of anisotropic material, having a permeability k in all horizontal directions 
and an infinitely great permeability in vertical direction. 
Figure 3. - When the vertical losses of energy are neglected, the potential cp is a 
constant in a vertical. Mathematically cp is a function of x and y only, and not of the 
vertical coördinate z. The same is true for the piezometric head h, which differs from 
cp only by a factor y. Hence the water rises to the same level in two piezometers 
placed in the same vertical at different depths. This is shown for a phreatic, a confined 
and a partly confined aquifer respectively. In phreatic water the piezometric level 
corresponds to the water table. In a confined aquifer it rises above the top of the 
aquifer. The same holds good for a partly confined aquifer, where the piezometric 
level is generally different from the water level in the top layer. 
Figure 4. - The left-hand side shows an aquifer bounded by a river or a lake. It 
follows from the above that the potential cp is equal at all points to the right of A ,  
regardless of whether these points are chosen in the lake or in the aquifer underneath. 
In all models, therefore, canals, lakes or the sea will be assumed to be in  contact with 
the aquifer along a vertical plane down to the impermeable bottom, as indicated on 

- A, 

19 



A A " I 

I 

I n-1 
I 

Fig. 5 

Fig. 4 

the right-hand side of the figure. The mathematical expression for the boundary con- 
dition is a given value of cp in the vertical plane passing through A. 

, 
I 

Figure 5. - Similar considerations can be applied to wells. On the left-hand side a 
partially penetrating well is shown. Since losses of head inside the wells will be neglect- 
ed in all studies, mathematically the well face is a boundary of the aquifer, charac- 
terized by a constant value of cp. But since vertical losses of energy in the aquifer are 
neglected as well, the cylindrical part of the aquifer below the bottom of the well has 
the same characteristic. Therefore, only completely penetrating wells will be considered, 
as shown on the right-hand side of the figure. 
If 'p is independent of z, it follows that the same is true for acp/dx and acp/ay, hence 
for v, and v,. In  other words, the water flows at  the same rate at all levels. Summation 
of the discharge over the height of the aquifer is then easy. The symbol q will be used 
to  denote the quantities flowing per unit width over the entire thickness of the aquifer. 
The notations q,, q, and qs apply to the discharges in the direction of the x and y 
axes, or in an arbitrary direction s. It follows from the law of linear resistance that 

1 

1 

~ 

which formulas will be taken as a starting point in the following chapters. The 
product kD is called the transmissivity of the aquifer for horizontal groundwater 
flow. 
The symbol Q will be used to  denote the rate of flow through an arbitrary cross- 
section. In case of radial flow for example, it denotes the flow through a cylinder with 
radius r and a height equal to the thickness of the aquifer. The quantity Q is then 
related to q by the elementary relationship Q = 2nrq, hence 

_ .  
. .  
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It should be noted that neglecting the losses of energy due to the vertical components 
of the velocity does not imply that these components would not exist in the schemes 
to be examined. Water supplied by infiltrating rain, and reaching the top of the 
aquifer, is distributed over at  least a part of the thickness of the aquifer by vertical 
velocity components. Or, to give another example, the interface between fresh and 
salt groundwater may, in case of nonsteady flow, move upwards or downwards, and 
these displacements can even be calculated when the vertical energy losses are 
neglected. 

In the case of a partly confined aquifer, the flow through the top layer of low permea- 
bility has to be considered. The physical quantities of this layer will be indicated with 
primes to distinguish them from the corresponding quantities of the aquifer. It will 
be assumed that the thickness D‘ of the waterbody in the top layer is less than the 
thickness D of the aquifer; moreover, that the permeability k’ is low compared with 
the permeability k of the aquifer, though not zero. It follows then that the horizontal 
flow through the top layer can be neglected in comparison with that through the 
aquifer, because it depends on the product k’D’, which is small compared with the 
product kD. 
This assumption can be considered either as an approximation when the top layer is 
composed of isotropic material, or as an exact formulation when it consists of 
anisotropic material with a permeability k‘ in the vertical direction and zero permea- 
bility in all horizontal directio‘ns. Consequently, if a kanal, a lake, or the sea borders 
the top layer, it will be assumed that no lateral exchange of water takes place, although 
the potential of groundwater and free water on either side of the boundary might be 
different. 

Figure 6 .  - Since no horizontal flow is considered here, the rate of vertical flow per 
unit area, N, is equal at all points of a vertical. It follows from the law of linear 
resistance that the gradient dcp’ldz is a constant, which means that cp’ varies as a linear 
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function of the depth. Its value at B, the lowest point of the top layer: is equal to cp 
at A ,  which is the potential of the aquifer. This is because the potential depends on 
p ,  y and z where p and q are continuous functions of z at the boundary between top 
layer and aquifer. For may thus be written cp. As to  C being the point im- 
mediately below the water table, it will be written simply as 9’; it is related to the 
height h’ of the water table by 

cp’ = yh‘ 

Thus the gradient on the vertical is (cp‘ - cp)/D’, and the flow N (positive in a down- 
ward direction) is given by - 

Since the water table is not level, the height of the water column varies. As a general 
assumption, however, these differences will be neglected, taking for the variable height 
the average, constant value D‘. In the expression for N,  D’ occurs in the combination 
k’/D‘, called the transmissivity of the top layer for vertical flow, in analogy with the 
product kD,  the transmissivity of the aquifer for horizontal flow. 

1.2 THE LAW OF CONTINUITY 

In addition to the law of linear resistance a second relation governs the flow of ground- 
water: the law of continuity. It relates the quantities of the horizontal flow in the 
aquifer to the quantities flowing in from above. The volume of water received per unit 
time and per unit horizontal area will be called N.  This quantity was introduced in 
the previous section in the case of partly confined aquifers, where it had a physical 
meaning. In the case of phreatic aquifers it is a purely mathematical concept, useful 
in that it enables the law of continuity to be written in a uniform way in all cases. Tn 
a general problem, N is the sum of two terms. 
The first term, n, denotes the net deep percolation of rain or irrigation water. Part of 
the rain or irrigation water is lost by evaporation from the surface; a further quantity 
is taken up by the roots of plants; in dry soils a certain quantity is ietained by the 
soils to make up for the moisture deficit; the rest percolates, and joins the water of the 
aquifer. The latter quantity, expressed as a volume per unit time per unit area, will be 
called n, the recharge of the aquifer. 
The second term, - $cp/at, is related to the movement of the free water table in the 
case of nonsteady flow. When the water table moves downwards or upwards, water is 
released from, or taken into storage respectively. If over an area S the level falls by 
Ah, a volume of water AV = mSAh is released, m being the effective pore space of 
the soil. It will be assumed that the values of m for upward and downward movement 
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are equal, and that the yield is instantaneous. This is the classical, simple assumption. 
The difficult problem of the relationship between water level variation and yield will 
not be studied here. Instead of relating A V to  Ah, it is more convenient to relate it to  
A q ,  according to AV = p S A q ,  where ,u = mly, with the dimension [m-'IZtZ].,Thus 
a quantity - p ( a q / a t )  exists, and should be added to n, representing the volume of 
water released per unit time per unit area. 
Hence 

av 
at 

N = n - p -  

where N indicates the volume of water joining the horizontal flow per unit time per 
unit area, due to both infiltration and movement of the water table. A third term 
might be added to the formula in problems of nonsteady flow, accounting for the 
quantities of water released or stored, because of the elasticity of ground and water. 
The influence of the elasticity, however, will not be studied, as will be explained in 
Chapter 5. 

The expression for N will be examined in the three cases of confined, phreatic and 
partly confined aquifers. 
- Confined aquifer. - The impermeable cover of the aquifer allows neither recharge 
from infiltration, nor the formation of a free water table. Therefore both terms in the 
expression for N are zero, and 

N = O  

- Phreatic aquifer. - Both terms in the expression for N may exist. Thus in the most 
general case, that of nonsteady flow, 

acp 
at 

N = n - p -  

If the flow is steady acplat = O, and 

N = n  

- Partly confined aquifer. - The same formula 

applies, where p' is now defined by AV = p'SAq' and cp' is the potential of a water 
particle just below the water table. Since both the water received from infiltration and 
that released by the falling water table flow down through the top layer before 
reaching the aquifer, the following condition applies 
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k' 
D N = 7 (rp' - rp) 

In combination 

This formula, in its general form, applies to nonsteady flow. In problems of steady 
flow arp'pt = O, and thus 

k' N = n = -(q' - rp) 
D' 

Once the quantity N is'defined, the law of continuity can be formulated in a uniform 
way for confined, partly confined and phreatic aquifers. Three cases will be examined : 
- Parallel flow 

aq - N _ -  
ax 

which equation expresses that N corresponds to the increase of q per unit length. 
- Radial flow 

I 
I 
I between the two cylinders. 

This equation expresses that the increase of Q between two cylinders with radii r 
and r + dr corresponds to the water received at  the rate N on the area 2nrdr 

- In a general flow pattern the law of continuity reads 

I 
I 

Figure 7 represents an elementary prism in horizontal projection. The'quantity of 
flow entering through the left side is q&, that leaving through the right-hand side 

(qx + - dx)dy. The difference is - dxdy. The difference in flow through the 

I other two sides is - dxdy. The sum of these differences equals the flow Ndxdy 

1 received on the square. 

343 893 I 
I ax ax 

8% 
I aY 
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Fig. 7 

- dx- 

1.3 DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS 

A flow system depends on two basic laws: that of linear resistance and that of con- 
tinuity. Mathematically, these laws appear as partial or ordinary differential equations, 
relating cp, qx and qy to x and y in the case of steady flow, and to x, y and t in the 
case of nonsteady flow. With steady flow their solution requires boundary conditions; 
with nonsteady flow boundary and initial conditions. Physically, the differential 
equations are the formulation of general laws governing large classes of flow systems, 
while the boundary or initial conditions define each flow system separately. This will 
be explained first for an elementary system, and then for more general examples. 

1.3.1 Elementary example 
Figure 8 corresponds to parallel flow with constant n in an aquifer with constant D. 
It shows a variety of boundary conditions. At A and E the aquifer is bounded by 
impermeable sides, imposing the condition q = O. In the canals B and C the water 
levels are given, determining the values of c p B  and cpc. From canal D water is extracted 
at a constant rate qo. With these conditions the flow system is defined in each of the 
sections AB, BC, CD, and DE, as will now be shown. - 

A C 

l 

Fig. 8 
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In each section the law of linear resistance reads 

dcp (I) q =  + k D -  
d x  

and the law of continuity 

The positive direction for x and q, as indicated in Figure 8, are arbitrarily chosen; the 
plus and minus signs in the differential equations are determined accordingly from 
the following considerations, looking at the section DE. 
- In Equation (1) q is positive, whilst cp increases with increasing x (dcp/dx positive). 
- In  Equation (2) the recharge n (positive number) results in increasing q with 
decreasing x (dqldx negative). 
From (1) and (2) q can be eliminated by differentiating (l), and substituting the ob- 
tained value of dqldx in (2). 

This equation gives in  differential fo.rm cp .as a function of x, just as (2) gives q as a 
function of x, also in differential form. Each of these equations is independent of any 
boundary condition. Thus they express general flow properties of any steady parallel 
flow system with constant recharge n in an aquifer with constant D. They apply as 
such to any of the sections AB, BC, CD and DE. The difference between the formulas 
of these sections is brought about solely by the different boundary conditions. 
Twice integrating equation (3) yields successively 

' 

d V - - - x + c ,  n 
dx kD 

(4) - - 

and 

where cI and c, are integration constants. The last equation gives cp as a function of 
x. A similar expression for q can be derived from (4) and (1): 
(6)  
Since the differential Equation (3) is of the second order, there are two integration 
constants, c1 and c,, to be determined. Accordingly two boundary conditions are 
required. I f  the condition is of the form 

q = - nx + c ,kD 
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for s = x l ,  
substitution in  ( 5 )  gives 

cp = (p, 

. . . . - . . . - ~- 

if of the form 
for .Y = x, ,  

substitution in (6)  gives 
(8) q2 = - nx,  + c,kD 
Thus in section AB, c1 and c, are determined by one equation of the form (7) and 
one of the form (8); in section BC by two equations of the form (7). Sections CD and 
DE are linked together. The formulas of either section should be written separately. 
They contain the integration constants c1 and c, for CD; c3 and c4 for DE. These 
quantities are determined by four conditions, written schematically 
In C: cp = cpc 
In D :  the values of cp at either side of the canal are equal. 
In D :  the difference between the values of q at both sides of the canal is equal to  qo. , 
In E :  q = O .  

q = q, 

I .3.2 General equations 
In  a general problem the flow pattern depends on the following differential equations: 
- the law of linear resistance 

I ' - the law of continuity 

~ where ' N = O in the case of a confined aquifer, 

N = n - p - i n  the case of a phreatic aquifer, acp 
at 

òp'  k' 
N = n - p' - = - (cp' - cp) in the case of a partly confined aquifer. 

These equations apply to steady as well as to nonsteady flow. They relate cp, qx and 
qv to x and y (and to t in the case of nonsteady flow). 

at DI 
. I  
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From the equations (1) and (2) qx and qy can be eliminated, so as to obtain a differ- 
ential equation in cp only 

aZq aZq N (3) - - + - = - -  
ax2  ay2 kD 

Integration gives cp as a function of x and y (and t) .  Once cp is known, the quantities 
of qx and qy are determined by Equation (1). 
In principle the reverse procedure can also be applied: eliminating cp between (1) and 
(2), so as to obtain differential equations in qx and qy. This operation, however, is 
only elegant if N is independent of cp (and acppldt), for instance i n  the case of steady 
flow in a confined or phreatic aquifer. The result is 

to be combined with 

Integration of these equations gives qx and qy as functions of x and y (and 1).  Determi- 
nation of cp requires further integration of Equation (1). 
As previously stated, these differential equations are the formulation of general 
laws governing whole classes of flow systems. For example the formula 

. azq a29 p acp ’ 

ax2 ay2  kD at 
--.+-=-- 

which is a special case of Equation (3), applies to any nonsteady groundwater move- 
ment in an aquifer with constant D, receiving no recharge N .  The system may be 
parallel, radial or two-dimensional ; the variations of cp with time may be periodical, 
steadily rising, etc. The individual systems are determined by further conditions 
(boundary conditions, initial conditions), to be examined next. 

I .3.3 Boundary and initial conditions 
Boundary conditions of two-dimensional flow patterns show so much variety that it 
would be’difficult to give a general rule as to their nature or their number. The 
examples will be limited to steady flow, with n given as a function of x and y ,  (ex- 
cluding, in particular, flow in partly confined aquifers with cp’ given; these systems will 
be analyzed in Chapter 4). 
Figure 9a. - If cp is given at each point of a closed boundary A, the flow system inside 
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Fig. 9 

the boundary is determined for n given as a function of x and y. The system outside 
the boundary, however, is not defined: a second condition is required, e.g. cp = cpo at 
infinite distance in all directions. To avoid difficulties arising from recharge of an 
infinite aquifer, it is assumed in this example that n = O outside the boundary A. 
Figure 9b. - The system inside A is also defined if in the field one or more closed 

impermeable, in which case the condition reads that in any point the flow component 
perpendicular to the boundary is zero. 
If the boundaries B reduce to the circumferences of wells, it should be noted that cp is 
equal at all points of the well face, so that a single value (po, the potential of the well, 
suffices to determine the problem. Since moreover the dimensions of the well are small 
compared with those of the aquifer, the flow immediately around the well is radial, 
with equal values qo of q on all radii, and a total discharge Qo = 2nroqo, where ro is the 
radius of the well. Thus the problem can be defined equally well by giving Qo instead 
of 'po. 
A particular instance of the above arrangement is a single well, pumped at a rate eo, 

I boundaries B exist, where cp is given at each point. These boundaries may also be 

b o 
C 

For nonsteady flow the same boundary conditions apply; however, neither the values 
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of cp or q at the boundaries, nor the recharge n need be constant: they may vary with 
time. Theoretically these data suffice to determine the groundwater movement if they 
are given from a remote past onwards, theoretically from an infinitely remote past. 
This is feasible if, for instance, they are given as constants or as periodic functions of 
time. If some of these quantities, however, vary in a more arbitrary way, it is con- 
venient to resume at a time t = O the influence of all previous changes in boundary 
conditions and recharge by describing the flow pattern at that moment, giving cp 
(or q)  as a function of x and y (initial condition). From that moment onwards íp or q 
at the boundaries, as well as the recharge n, must be given as functions of time. 
A distinction should be made between confined and phreatic aquifers (disregarding 
partly confined aquifers, which will be discussed in Chapter 5). Confined aquifers 
receive no discharge because of their impermeable cover; they are under the sole 
influence of the boundary conditions. The reaction is immediate, since the change in 
flow pattern is only a change in pressure, while the propagation of pressure waves is 
infinitely rapid under the assumed conditions of incompressible water and soil, 
without inertia. Thus a nonsteady movement in a confined aquifer is a succession of 
steady state flow patterns, each of them corresponding to the boundary conditions of 
the moment. Clearly no initial condition is needed to define the movement. 
The mechanism is different in a phreatic aquifer, where the water table constantly 
tends to adapt its form to the steady state form corresponding to the boundary 
conditions and n values of the moment. Any deformation of the water table, however, 
requires time, because volumes of water must be displaced. Hence the system IS  

engaged in a continuous process of adaptation to the ever-changing conditions im- 
posed upon it, and always lagging behind. Should these conditions remain constant 
from a certain moment onwards, the system would gradually approach the corre- 
sponding steady’state, reaching it theoretically after an infinitely long time. 
Two-fluid systems are comparable with single systems as regards boundary and initial 
conditions, the only difference being that all conditions must be doubled: a complete 
set is required for each fluid layer. When, for instance, fresh water is extracted from a 
well, the double boundary condition reads: ( I )  extraction Q,, from the fresh water 
layer, (2) zero extraction from the salt water. Along the coast the conditions read: 
( I )  the salt water potential corresponds to sea level, (2) the fresh water section reduces 
to zero. As to the initial conditions in a phreatic aquifer, the values of cp (fresh water 
potential) as well as cp” (salt water potential) must be given as functions of s and y ,  or 
what is mathematically equivalent to this, the form of both the water surface and the 
interface. 
In  confined aquifers, which by definition are without recharge, two-fluid systems can 
only develop when the fresh water body IS  supplied laterally from adjacent zones. 
Although the propagation of pressure waves is instantaneous, the system will not 
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immediately assume the steady state corresponding to the instantaneous boundary 
conditions, as the deformation of the interface requires time. 
In a phreatic two-fluid system both the water surface and the interface undergo a 
change in form during a nonsteady period. The movement of the interface is particu- 
larly slow. The time of adaptation to steady boundary conditions is therefore much 
longer for a two-fluid system than for a one-fluid system filling the same aquifer. It may 
be of the order of tens of years or even longer. Groundwater in aquifers of coastal 
regions is seldom in a steady state when any technical intervention has taken place in 
the last decades. 

1.3.4 Methods of integration 
So far, the flow problems have only been discussed in principle; the practical question 
as to whether or not the integration can be executed has not been examined. Actually, 
the number of solutions found up to now have been strongly limited by the difficulty 
of the mathematical operations involved. Apart from formal integration, other 
methods of solution have been developed. The main methods now in use are: 
A general solution of the differential equations (in terms of complex numbers) can 
only be given for steady flow without recharge. Each particular solution depends on 
an arbitrarily chosen function. Once the function is chosen, the boundary conditions 
for a given circumference can be determined, but the converse is not true: from given 
boundary conditions the function cannot be determined. The theory concerning this 
point is developed in Section 2.4. 
A certain number of solutions have been found by direct integration of differential 
equations. They apply for the greater part to steady parallel or radial flow, where cp 
and q depend on one single coördinate. Examples are given in several chapters. 
Only in a few cases have nonsteady systems been described by analytic functions, 
generally for parallel or radial flow. Most solutions have been found accidentally as 
particular solutions of the partial differential equations. A general method for inte- 
gration does not exist. Some of these solutions are to be found in Chapter 5. 
In Chapter 7 iteration methods will be described enabling the calculation of steady or 
nonsteady flow systems inside a closed boundary of arbitrary form, along which is 
given numerically. (If qis given the method lacks elegance). The quantity n is given in 
arbitrary distribution over the aquifer. Iteration methods may be executed with 
computers. Computer technics, however, will not be treated. The theory given in 
Chapter 7 has been restricted to providing the reader with a basic knowledge, which 
will enable him to carry out simple studies by himself, or to discuss more complicated 
problems with a computer engineer. 
In some cases graphical methods can be used. These, however, are more commonly 



applied in relation to flow through dams and similar problems, where vertical flow 
components are involved. They will not be discussed. 
Finally, model tests may be chosen to solve the problems: scala models, filled with a 
liquid flowing through a porous medium or analogue models, e.g. containing a 
viscous fluid between two parallel plates a short distance from one another, or models 
based on the mathematical analogy between electrical fields and potential flow patterns. 
None of these model technics will be discussed. 

I .3.5 Dimensions 
In physical formulas each symbol stands for the product of a number and a unit. 
The equation expresses the equality of the members from a qualitative as well as a 
quantitative viewpoint. This double condition implies that 
- both members have the same dimension, 
- in any sum occurring in the equation, the terms have the same dimension, 
- the arguments of analytical functions are pure numbers. 
For example, in one of the problems of nonsteady flow the relation between the 
potential cp, the place x and the time t is given by 

cp = cpl + cpo e-ax sin (ot - ax)  

The dimensions of the constants a and o are such that the products ax and ot are 
dimensionless. Thus the arguments of both the exponential and the sine function are 
pure numbers. The constants cpl and cpo have the dimensions of the potential cp. 
When differentiating with respect to x, the left-hand member changes from cp into 
dcpldx; hence its dimension is divided by a length. The right-hand member is first 
differentiated with respect to ax, a number, which operation does not change its 
dimension, and then multiplied by d(ax)/dx or a, which multiplies the dimension by 
the dimension of a. Since ax is a number, a has the inverse dimension of a length, and 
by multiplication with a the qualitative equality with the left hand member is re- 
established. Differentiation with respect to t gives rise to similar considerations. 
Hydraulic problems depend on the dimensions of length, mass and time. Accordingly 
a flow system is defined by at  least three physical quantities of different dimensions, 
depending on length, mass and time. For instance the problem of steady flow around 
a well in an infinite, partly confined aquifer with constant cp'(=O), depends on the 
transmissivity kD of the aquifer for horizontal flow, the transmissivity k'/D' of the top 
layer for vertical flow, and the extraction rate Qo from the well. This number of three 
quantities is a minimum; the scheme may depend on more parameters, for instance 
when there are more wells at  different distances and pumped at different rates, or 
when cp' varies from one area to another. 
The number of variables happens to be at least three as well: in the simplest systems, 
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those of steady, parallel flow, cp and q depend on x. But this number may also be 
greater: in .a more general system, cp, cp', qx and q,, may be functions of x, y and t ,  
which ribngs the number of variables up to seven. 

In  problems which call for a difficult mathematical treatment, it may be convenient 
to  simplify the formulas in the following way. Three characteristic constants defining 
the problem are chosen as a base. They should have different dimensions and depend 
on length, mass and time. They are used to form dimensionless groups with each of 
the variables and each of the constant quantities defining the problem. In the scheme 
of the well sited in a partly confined aquifer with kD, k'/D' and Qo as basic quantities, 
the three variables cp, Q and r appear in the following dimensionless groups 

kD 
- cp, 
Qò Qo' 

The differential equations read (for cp' = O): 
Law of linear resistance: 

dcp Q = 2nkDr -- 
d r  

Law of continuity: 

dQ k' 
- = - 2nrcp 
dr  D' 

while the boundary conditions are: 
for Y = ro (radius of the well), Q = Qo 

which may be replaced by 
for r = O, Q = Qo, 
a n d f o r r  = 00, cp = O 

When writing cpinsteadof- kD q, Q instead of -, Q and r instead of r /z, the dif- 
Qo Qo 

ferential equations become 

dcp Q = 2 n r -  
dr  

_ -  d Q  - 2nrcp 
d r  

and the conditions 
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for r = O, Q = 1 
for r = co, cp = O 

The problem is then formulated in relations free from physical constants and can be 
solved in its most general form. 

As can be seen from the example, only two of the basic constants (kD and k’/D’) 
appear in the differential equations, whereas the third constant, Q,,, occurs in the 
conditions only. This difference plays a role in the theory on solutions in terms of 
complex numbers (Sections 2.4.1). These solutions apply to steady, two-dimensional 
flow in an aquifer with constant D ,  receiving no recharge. The differential equations 
are 

The general solution of the equation can be formulated in terms of complex numbers. 
It involves all particular solutions, each determined by its own boundary conditions, 
i.e. by at least three physical constants, of which only one, kD,  occurs in the differ- 
ential equations. Thus, dimensionless groups with the variables cp, qx, q,,, x and y can 
be formed for each scheme separately, but since they differ from scheme to scheme, 
they cannot be used when formulating the general solution of the differential equations, 
or establishing its general properties. 
Yet it is customary to delete kD in the general theory, reasoning that in each particular 
scheme two other physical constants can be added to kD to form dimensionless groups. 
Under this assumption the general solution may be written 

where IC, is a variable, to be defined in Section 2.4.1, and F is an arbitrary analytical 
function. I t  is understood that x and y, as well as cp and ll/, are dimensionless groups, 
to be formed in each system separately in dependance of the constants defining the 
problem. 

cp + ill/ = F(x + iy) 
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2. STEADY FLOW, C O N S T A N T  D,  GIVEN n 

In this chapter three types of aquifers physically different, but mathematically 
identical, will be examined. 
1. A phreatic aquifer with constant thickness D (as an approximation). - The laws of 
linear resistance and continuity read respectively: 

Since for steady flow acp/at = O, the general formula N = n - p (acp/at) reduces to 

N = n .  

2. A partly confined aquifer. - The differential equations are the same. The expression 
for N reads for steady flow: 

The method of solution varies according to the way the problem is defined. 
- If n is given as a function of x and y ,  the first two members of the above expression, 
in combination with the differential equations, define the problem in exactly the same 
way as in the case of a phreatic aquifer. The method of solution is identical, and gives 
cp as a function of x and y.  Once cp is known, cp’ can be determined;also as a function 
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of x and y,  from the last two members of the equation. If, for instance, the distribution 
of n over the aquifer is uniform, the value of cp' - cp is constant. In geometrical 
representation: the cp' surface is at a constant height above the cp surface. 
- If cp' is given as a function of x and y ,  or as a constant, the problem assumes another 
character. The two differential equations are then to be combined with 

k' 
D' 

A; = -- (cp' - cp) 

and cp must be determined as a function of x and y by means of a different integration. 
Once cp is known, n can be found as a function of x and y from 

Problems of this kind will be examined in Chapters 4 and 7. 
3. A confined aquifer. - The recharge n is zero because of the impermeable cover. 
The differential equations are the same as those of a phreatic aquifer, while 

N = n = O  

2.1 SUPERPOSITION 

2.1.1 The principle 
In the following chapters the principle of superposition will be frequently used. 
Since its application varies according to the nature of the aquifer, its precise formula- 
tion will be given in each chapter separately. In the present chapter the problem will 
be limited to steady flow in aquifers with constant thickness D, where n is a given 
function of x and y.  The principle will be shown in an example. 

L Fig. 10 

1 

Figure 10. - To give the example a general character, boundaries of different nature 
are assumed: an impermeable rock wall I ,  two rivers R and a lake L (a lake rather 
than :the sea, to avoid the complications of salt water intrusion). From this aquifer 
water.is extracted by means of a number of wells. 
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This description defines what will be called a model, this term taken in the sense 
of any material arrangement, either in nature or in the laboratory. On the given 
model several flow systems can be imposed, defined by the following hydraulic 
data : 
- The recharge n as a function of x and y. 
- The water levels in the rivers and the lake, determining cp along the borders. 
- A given supply of water along the : .  rocky . . outcrop Z, as a function of the length coör- 

- The rates of extraction from the weilsl'"' . 
An arbitrarily chosen set of these values'defines a flow system, which means mathe- 
matically that at each point (x, y )  the values of cp and q (qx and q,,) are determined. 
The principle of superposition can be formulated as follows: If in  a certain model two 
different flow systems, I and TT, can be realised, it is also possible to realise a third 
system, ITI, in which the values of cp, q and n at each point are the sum of the corre- 
sponding values in Systems I and 11. FOI cp and n this is the algebraic sum, for q the 
vectorial sum. 
This summation applies to all points of the aquifer, in particular to the values of cp 
and q at the boundaries. As to the borders of the rivers and the lake, the superposition 
is valid for the values of cp as well as for the quantities of flow exchanged at each point 
between these waters and the aquifer. As to  the wells, the well faces constitute bounda- 
ries of the aquifer. The superposition applies both to the values of cp in the wells, and 
to the rates of extraction. 
This principle enables two or more elementary systems to be superposed, and con- 
versely permits any given system to be-separated into two or more elementary flow 
patterns. In the latter case the choice of the elementary systems is arbitrary, depending 
on the use to be made of the, separation: it might, for instance, be different when the 
separation is needed for a calculation or for a demonstration. 
Although superposition. is one of the leading principles in calculation practice, its use 
is limited. Tn the following it will be applied to schemes where n is given, and sometimes 
to partly confined aquifers where cp' is given. Yet other problems exist where in phreatic 
or partly confined aquifers the water level is near the surface, so that evaporation 
depends on the elevation of the water table, and thus n is related to cp or cp'. These 
cases occur frequently in irrigation and drainage problems. Although the principle of 
superposition remains valid, it is no longer feasible to distinguish elementary systems 
depending on given quantities only. 

. t  

> . .  . ,  . . . I  

dinate along this boundary. . .. 

j 
I 
I 

The demonstration starts from the mathematical condition that if in the given 
model System I can be realised, the quantities cp,, (qx)l,  (q,,)I and n1 satisfy the 
differential equations and the boundary conditions. The same is true for System 11. 
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1 As regards the quantities 
I ' ~ I i r  ' P I  + vir 
I 
1 
I 
I they represent again a flow system, System 111, if they also satisfy the differential 
I equations and the boundary conditions. For the boundary conditions this is true 
I by definition of the problem; for the differential equations the proof is given by 
I 'summation of the (linear) equations, as follows: 
I The law of linear resistance (e.g. for the x direction) reads System I: 

( 4 x ) r r I  = ( 4 x 1 1  + ( 4 x ) r r  
( 4 y ) r r r  = ( 4 h r  + ( 4 y ) r r  
n i i r  1 ni + nr,  

I System 11: 

I After summation, using the premiss that D is the same in both systetns: 

I 
I System I :  

The law of continuity reads 

I System 11: 
I 

I After summation 

2.1.2 Water resources 
In regional studies on the possibilities of groundwater extraction, the fundamental 
question to  be answered is the maximum rate at which groundwater can be withdrawn 
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Fig. 11 ‘po ‘po ‘po 
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from an aquifer or a certain geographical area. The phrase groundwater resources is 
used, but the term is misleading since it is also used for mineral or oil resources. Where- 
as in the latter case the quantities to be extracted are limited by the quantities present 
in the ground, in the case of groundwater the quantities present are replenished by 
recharge from rainfall or irrigation, as well as by lateral infiltration from adjacent 
water courses. The expression safe yield is also used, but the term has not always been 
defined in the same way. 
In  view of the mainly didactic character of the present study, no exhaustive discussion 
of the problem will be attempted, and the definition of the terms in question will be 
left open. The aim is rather to analyse the problem on its main points, so as to provide 
the basis for a complete study. The analysis varies according to the character of the 
aquifer. Therefore the question of water resources will be taken up again in each 
chapter. The best insight can be gained from this section, the corresponding parts in 
the following chapters having more or less the character of additional remarks, with 
the exception of Chapter 6 ,  where the intrusion of saline water comes to  the fore as a 
factor strongly limiting the yield of the aquifer (see Section 6.1.2). 

Figure 1 1. - The model of the previous section will be used as a basis for the analysis : 
first with one well, then with several wells. Two systems, I and 11, will be considered, 
whose sum is System 111. 
System I is defined by: 
- The true values of cp in the rivers and the lake. 
- The true n values. 
- The true supply along the rocky border. 
- No extraction from the well. 
System 11 by: 
- cp = O in the rivers and the lake. 
- n = O  
- No supply along the rocky border. 
- The true extraction Qo from the well. 

1 
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It follows that System 111 is defined by: 
- The true cp values in the rivers and the lake. 
- The true n values. 
- The true supply along the rocky border. 
- The true extraction Q, from the well. 
Physically these systems may be interpreted as follows: 
System 1 is the natural state before water was extracted from the well. 
System I t  is the change in state brought about by the extraction. 
System 111 is the final state of the aquifer under exploitation. 
From this analysis several important conclusions can be drawn with respect to the 
exploitation of the wells. First the system with one well will be examined. The draw- 
down in the well, by definition the difference between the levels before and during 
exploitation, is equal to the cp Galue of System 11. Since the basic laws of groundwater 
flow are linear, the drawdown is proportional to the rate of extraction. Hence the 
specific capacity of a well can be defined as the yield per unit drawdown, or its reverse, 
the specific drawdown, as the drawdown per unit rate. 
The specific capacity of a well is determined by System I1 only. It depends on: 
(1) the form and the nature of the boundaries of the aquifer, and the position of the 
well with respect to them, (2) the transmissivity k D  of the aquifer, and (3) the diameter 
of the well. I t  is independent of: (1) the levels of the lake and the rivers, (2) the re- 
charge n, and (3) the supply along the rocky border. Thus it is independent of the 
original flow pattern, as defined by System I. Finally it is clear that under the condi- 
tions of the present chapter the well has no radius of influence: its influence extends to 
the boundaries of the aquifer. 
If several wells are exploited in the same aquifer, they interact. Several elementary 
systems, Ira, IIb, I k ,  etc. may then be distinguished, each taking one well into account. 
The interaction corresponds mathematically to the superposition of these systems. 
The calculation is a straightforward one when the extraction rates of the wells are 
given; an iteration procedure must be used in the reverse case, when the extraction 
rates are to be determined at such values as to create given drawdowns in the wells. 
Methods of calculation, however, will not be discussed here; only the hydraulic aspects 
of the problems will be analyzed: 
System I1 shows that the quantity of water extracted from the wells is counterbalanced 
by a change of the flow passing through the boundaries with the lake and the rivers. 
Under natural conditions these water courses receive the full recharge of the aquifer. 
When water is extracted from the wells, the water courses receive only a part of this 
recharge, and if the extraction exceeds the recharge, they supply the ekess. The 
quantity extracted from the wells appears for the full amount in the water balance of 
the water courses. 



If the surrounding water courses can supply unlimited quantities of water, the 
maximum extraction from a given set of wells (given site and diameter) depends 
finally on the maximum drawdown in  the wells to be admitted. This maximum 
drawdown is determined by: 
- Formal considerations. - According to the premisses of this chapter, the water level 
in the well should not fall below the basis of the top layer in the case of confined or  
partly confined aquifers, while in the case of a phreatic aquifer the drawdown should 
be small compared with D. 
- Technical considerations. - The characteristics of certain pumps to be used may 
limit the water lift. The drawdown should also be limited, so as to leave sufficient 
water height in the aquifer for screens of adequate length. 
- Economic considerations. - The water lift may be restricted by a maximum allow- 
able pumping cost per unit water volume. This cost should always be compared with 
the cost of conveying the water through canals or pipelines from the surrounding 
water courses to  the site of the well. 
If the number and the site of the wells can be chosen freely to obtain the maximum 
yield from the aquifer, the problem loses interest. By sinking a sufficient number of 
wells along, and close enough to the bordering water courses, the yield can be in- 
creased at will. The exploitation no longer bears the character of extraction from the 
aquifer, but of indirect extraction from the water courses. 
If the bordering water courses are exploited, or if their contribution is limited by 
natural factors, their water balance should be considered. As long as no water is 
extracted from the aquifer, the water courses receive the full recharge of the aquifer. If 
their water balance allows for a reduction of this flow by A Q  at a maximum, the 
extraction from the aquifer is limited to that rate. If their exploitation does not admit 
any reduction of the inflow, no water can be extracted from the aquifer at all. The 
problem is comparable to that of extraction from the upper course of a river, when the 
full discharge or a part of it is used downstream. No water can be extracted without 
considering the interests downstream. 
Finally, the water in the bordering water courses may be of inferior quality, and unfit 
for use. The classical example is sea water, but the discussion of this case will be post- 
poned to Chapter 6 ,  as the difference in density between the fluids modifies the flow 
pattern considerably. Slightly saline water, or water containing other undesirable 
constituents will be assumed. 
The problem depends too much on details, to be treated in a systematic way: the 
chemical composition of the water along the boundary may not be uniform, or extrac- 
tion of impure water may be tolerated to some extent when the water used is mixed 
with good quality water from the aquifer. In any particular problem the study should 
be made on System 111, which gives the actual flow lines, and in particular the actual 
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flow vector at  any point of the boundary, indicating the inflow of impure water into 
the aquifer. From this system the quantity of impure water extracted by any of the 
wells can be determined, as well as the period of time that elapses before this water 
reaches the well. This time period may be tens of years. 

For didactic reasons the discussions have been placed on a strongly schematised basis. 
To bring the problem nearer to engineering practice some additional factors will be 
introduced. 
1. I t  has been assumed that the recharge in Systems I and I1 is the same. But if the 
water extracted is used for irrigation in the region itself, a part of it will return to the 
aquifer as seepage. The quantity An of this supplementary recharge, as well as its 
distribution over the area, can be estimated. To account for this supply an additional 
flow system can be superposed on the others characterized by: 
- A n  as the only recharge 
- cp = O in the bordering canals 
- no suppiy at the rocky border 
- no  extraction from the wells. 
Since the return flow from irrigated fields is saline, the qualitative aspects may need 
study. If any investigation on this point is required, it can be based on the sum of the 
elementary flow systems. This flow pattern indicates along what paths and at what 
speed the introduced salt is carried through the aquifer. 
2. Systems I and 111 both represent steady flow. The water levels of System IIIare 
lower than those of System I when the aquifer is phreatic or partly confined. As long 
as the water table was falling, water was released which has not been accounted for in  
the above dicussion. It is gained but once, and may be of small interest compared with 
the quantities extracted in a series of years, but it does constitute a yield of the aquifer. 
3. It was assumed in all problems that the recharge n is given, which implies that the 
water table is so deep under the surface that evaporation of groundwater is negligible 
(more than 2 or 3 m deep in'moderate climates). If, however, in the initial state the 
water table is near the surface over the whole area or a part of it, evaporation does 
playa role, and n becomes a function of the water depth. Moreover, lowering of the 
water table generally causes a change in the natural vegetation, which in the case of 
land reclamation will even be replaced by crops. Finally, on irrigated lands, water is 
supplied according to the need, which in turn depends on depth to water table, 
evaporation and crops. 
This complex problem is no longer governed by simple hydraulic laws. It will not be 
dealt with here; only some marked differences will be listed, which may form as many 
starting points for detailed studies. 
- It is virtually still possible to distinguish two systems, I and 11, whose sum is 111, I 
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being the original, and TI1 the final state, but the quantities n,, n,, and n,,, are no  
longer given. 
- The influence of a well no longer extends to the boundaries at all sides, as is dis- 
cussed for a paIticular case in Section 2.3.2. 
- The drawdown in a well is no longer proportional to the discharge rate, as can be 
seen from the formulas of the same section. 
- The interference of the wells no longer corresponds to the superposition of elemen- 
tary systems. 
- The yield of the wells is no longer counterbalanced by diminution of the outflow 
towards the bordering canals only; reduction of evaporation appears as a further 
term in the water balance of the aquifer. 

2.2 PARALLEL FLOW 

In this section the principle of superposition will be applied to some of the simplest 
schemes. . 

2.2.1 Two canals 
Figure 12 represents parallel flow in an aquifer bounded by two long, parallel canals. 
Three flow systems will be studied in this model, indicated by 1, TI and I11 respectively, 
System I11 being the sum of I and 11. The differential equations and their general 
solution have been given in Section 1.3.1 (Equation (5) defining cp and Equation (6) 
defining 4).  Thus the formulas can be applied directly to thepresent systems. The 
results are given below. The 9 diagrams are shown in the bottom part of the figure. 
System I is characterized by 
- Potentials (pl and ' p z  of the canals A and B respectively. 
- No recharge (n == O). 
The formulas are: 

X 
'PI = 'p1 - 4 4 0 1  - 402) 

1 

'P1 - 9 2  

1 
41 = - k D  

'p, is a linear function of x, corresponding to a straight line in the figure; q,  is a 
constant (independent of x). 
System 11 is defined by 
- Zero potentials in both canals. 
- Uniform recharge n. 
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The formulas are 

n 
2kD 

= - x (1  - X) 

4 1 r  = n (i - x) 

0 

t t? 
p2 

u 0  

O 

I 
90 

p2 

Fig. 13 

4 

) 

Fig. 12 

E 
PZ 

O 

p2 

is a second degree function of x, corresponding in the figure to a parabola, sym- 
metrical about the middle section of the figure. The value of (P in the middle section is 

nl2 
(Pm = __ 

' 8kD 
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q is a linear function of x, zero in the middle section.'The quantities flowing into the 
canals are equal and opposite. 
System 111, being the sum of Systems I and IT, is defined by 
- Potentials 'p, and (p2 of the canals. 
- Recharge n. 

The formulas of this system can be written forthwith as  the sum of the above mention- 
ed. 

X n 
1 2kD 

40111 = 401 - - (40, - 402) f __ x ( 1  - x) 

As a corollary it may be remarked that for n = O the'formulas reduce to those of 
System I ;  for (p, = q2 = O, to those of System 11. 

The characteristics of System 111 vary with the sign of q I 1 ,  for x = O, as shown in  the 
figure. 
- System M a :  q, l ,  is positive (flow to the left). The water level reaches a top on the 
left-hand side of the figure. 
- System ITIb: q r r ,  = O .  The discharge into the canal on the left-hand side reduces to  
zero; the flow in the aquifer is towards the right throughout. 
- System IIIc: ql ,r  is negative (flow to the right). The canal on the left feeds the 
aquifer. 
In the three cases the superposition is shown by the shaded parts of the figure, whose 
ordinates are equal to those of System 11. 

2.2.2 T h e e  canals 
Figure 13 shows a model with three parallel and  equidistant canals. The flow scheme 
is defined by: 
- Uniform recharge n. 
- Potentials q1 and 'pz in the outer canals. 
- Extraction qo per unit length from the middle canal. 
It has been indicated in Section 1.3.1 how y and q can be determined as functions 
of x. However, the solution can be established more readily by using the principle of 
superposition. The present system, to be called 111, will therefore be considered as the 
sum of two others, I and IT. The systems are characterized as follows (the respective 
cp lines being indicated in the bottom part of the figure). 
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System 1: 
- Recharge n. 
- Potentials in the outer canals 'p l  and 'p2. 

- No extraction from the middle canal. 
This is the system examined in the previous section. The formulas can be repeated: 

System 11: 
- No recharge. 
- Potentials in the outer canals zero. 
- Extraction from the middle canal qo. 
The formulas (valid for the left part of the symmetrical model) need no further 
explanation after the foregoing. 

4ox 
'pr1 = - - 

2kD 

' 40 
411 =. - - 

2 

The formulas of System 111 can be found by summarion: 

In the figure the ordinates of the shaded parts are equal. The figure shows an example 
of the general proposition formulated in Section 2.1.2:  The drawdown in the canal 
for a given extraction rate qo is independent of the original flow (of System 1). 
Figure 14. - An interesting conclusion can be drawn when the superposition is re- 
peated for iz = O. In each of the systems, q is then a constant in both halves of the 
aquifer. The problem is: If in System I the flow rate in absolute value is gl, what rate 
go may be extracted from the middle canal, so that no water flows into the aquifer 
from the canal on the right? The answer is 

as can be deduced from the figure. 
90 = 291 
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Fig. 14 

I ‘1 

Fig. 15 

2.3 FLOW AROUND WELLS 

2.3.1 Infinite aquifer 
Figure 15. - The model is defined by a well, sited in an aquifer with constant D,  
extending infinitely in all directions. On this model a flow system is imposed, which is 
characterised by : 
- Constant extraction Q, from the’well. 
- No recharge of the aquifer. 
These characteristics do not fully define the flow system, but they allow the following 
formula for cp to be established: 

where rl and r2 are two arbitrary distances from the centre of the well, and ( p l  and ‘p2 
the corresponding potentials. 
I The laws of linear resistance and continuity read respectively 

d v  I 

I 
I (1) Q = 2nkDr - 

di. 

I 
1 
1 integrating: 

(2)  Q = Qo = constant 
(Q positive towards the well, r positive in opposite direction). Eliminating Q and 

Qo In! 
I 
I v=-  
I 2nkD c 

1 whxe c is an integration constant. 
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Substituting successively 
1 f o r r = r ,  c p = c p 1  
I for r = rz cp = cpz 
I and substracting 

I t  follows from this formula that if the system is defined by a given potential at infinite 
distance from the well, the drawdown in the well is infinitely great. If, conversely, the 
potential in the well is given, the potential at infinite distance is infinitely high. As a 
conclusion, under the given conditions the problem of a well in an infinite aquifer 
does not correspond to any reality, although a mathematical solution exists. 
Yet the formula derived has a certain value. If the flow system is of a nature other than 
described here, it may approximately satisfy the conditions of the present section for 
small values of r. Examples will be given for a partly confined aquifer with given cp’ 
in Section 4.3.3 and for nonsteady flow in Section 5.5. In these cases the formula in 
question applies to the vicinity of the well. It may therefore, under certain well to be 
checked conditions, be used for the interpretaton of pumping test data obtained from 
observation wells sited near the pumped well. 

2.3.2 Radius of influence 
I n  extensive flat country under natural conditions, the groundwater table shows no 
gradient of any importance. Hence the groundwater balance in not too small an area, 
say a square kilometre, is mainly determined by the recharge of the aquifer and the 
evaporation from the groundwater table, while the lateral groundwater movement is 
negligible. 
In a climate with average or ample rainfall the water table cannot stay permanently at 
great depth, where evaporation from the water table is negligible (depths of more than 
say 3 m), because in some periods of the year at least, recharge from rain would occur, 
which in the absence of evaporation or  lateral flow, would cause the water table to  
rise. Nor can it stay permanently at  the surface of the soil, because in other periods 
of the year evaporation would lower it. Thus, in  the course of the year the water table 
fluctuates in the upper 2 or 3 m of the soil. Similar conditions may exist in irrigated or 
drained lands. 

Figure 16. - If water is extracted from a phreatic or partly confined aquifer, the level 
in the well being lowered to more than, say, 3 m below the surface, three zones can be 
distinguished : 
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Zone A, where evaporation from the groundwater table is negligible, while a recharge 
n is received from percolation through the root zone. 
Zone B, where the groundwater table is lowered under the influence of the well, but 
to less than 2 or 3 m below the ground surface. Evaporation is less than under natural 
conditions, so that the aquifer does receive recharge, but at a rate lower than n. 
Zone C, where the groundwater level is practically no longer influenced by the well, as 
the recharge of the zones A and B corresponds to the extraction rate of the well. 
An exact calculation of the nonsteady flow during the year, taking into account the 
relationship between evaporation and water level in Zone B, would be complicated. 
A first rough estimate may be made based on the following steady-state flow scheme, 
where Zone B is taken partly with A, partly with C. In this model two zones are 
distinguished : 
Zone A', around the well, characterized by recharge n, assumed evenly distributed over 
the area, and constant during the year. The radius R of this zone is the radius of 
influence of the well. 
Zone C', characterized by a constant water level, representing the average during the 
year under natural conditions. If the aquifer is phreatic, íp = íp,, and if partly confined 
íp = íp' = 'p,. In the latter case íp and íp' are equal in Zone C'; they differ in Zone A', 
but only íp affects the calculation. 

The model is defined by a well, sited in an aquifer with constant D. The water flows 
towards the well within a circle with radius R (the radius of influence). The flow 
system is defined by 
- Uniform recharge n. 
- Extraction Qo from the well. 
- F o r r = R ,  Q = O  . 
- For r = R, íp = íp1 

Clearly the quantity Q,  extracted from the well corresponds to the recharge over the 
surface area of the cone of depression 

49 



Qo = nR2n 

Since Q, is given, this equation defines R. 
The formulas are 

n rz  Qo Qo 

Q = Q, - nr2n 

At the well face, for r = ro,  with slight approximation 

Qo Qo 

where the term within the brackets may often be neglected. 
I 
I 
I System I: 
I - No recharge. 
I - Extraction Qo from the well. 
I - F o r r = R ,  'p='p,. 

\ The solution has been given in Section 2.3.1 : 

I 

The simplest way to  find the solution is b y  superposing two elementary systems. 
I and 11, defined as follows: 

Qo In!! 
I 
I v= 'p1--  

2nkD r I 
1 Q = Q o  I System 11: 
I - Recharge n. 
I 
1 - For r = R, 'p = O. 
I 

- No extraction from the well. 

For this system the laws of linear resistance and continuity read respectively, 

, 

I Equation (2) can better be written directly in integrated form: 

1 Q = -  nr'n 
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I 
I 
I Eliminating Q 

It expresses that the water flowing through the cylinder with radius r equals the 
recharge received on the enclosed surface area. 

I 

n 
2kD 

I 
I d q =  -- rdr 
I 
I Integrating 

I nr2 . I q = - - + c  

I 4kD 

I 
1 f o r r =  R, q = O  
I Thus 

where c is the integration constant, to  be determined from the condition 

n 2  
I 
I = - ( R  - r2> 

4kD I 
I By superposition 

I Q o R n 2 2  

I 
I qllr = q 1  -  in- + - ( R  - r ) 

2nkD r 4kD 

I Q I I I  = Qo - nr2n 
I 
I Q o =  nR2n 
I 

From the expression for y ,rr ,  R can further be eliminated, using 

which gives the formula indicated earlier. 

2.3.3 Well near a canal 
(The problem dealt with in this section is re-examined more comprehensively in 
Section 2.4.3, where the theory of complex numbers is .applied). 
As was shown in SecGon 2.3.1, a single well in an infinite aquifer does not correspond 
to a state of steady flow, since infinite potentials are involved, either in the well itself 
or  at a great distance from it. However, a well discharging at  a constant rate near a 
canal where a constant potential is maintained, brings about a steady flow system 
with finite potentials throughout the aquifer. 
Figure 17. - The model consistsof an aquifer with constant D, divided by an infinitely 
long straight canal into two halves, in one of which a well P is sited. The flow system 
is defined by , 

- Extraction Qo from the well 
- Potential qc of the canal 
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Fig. 17 

- Potential cpc at infinite distance from the well in all directions (so that the aquifer 
would be at rest if the well were not exploited) 
- No recharge (n = O). 
The system can best be studied by replacing the canal with an imaginary well P', sited 
symmetrically to well P about the axis of the canal, and into which the same quantity 
Qo is injected as is extracted from well P. (Negative well: extraction - Q,). The study 
isonlyconcerned with the half aquifer containing the well P; the flow pattern of the 
other half is fictitious. The solution is found by superposition of the influences of the 
two wells. 
The figure shows why the influence of the second well is equivalent to that of the canal. 
All along the canal axis the velocity is perpendicular to it, as is shown for point D. 
A zero velocity component along the canal corresponds to  the condition of constant 
potential in thesanal. 

. 
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The potential at an arbitrary point S is 

Qo rz 
c p = c p c - -  In - 

2nkD r l  , 

In particular the potential in the well (radius ro) is 

Qo 2a 
c p = ( P c - -  In - 

2nkD ro 

(if ro is neglected in comparison with 2a). 
The flow vector q at S is the vectorial sum of q1 and q2, whose magnitudes are 
respectively, 

Qo Qo 
I q 1 l = - ;  I q z I = -  

2nr, 2nr, 

In particular, the flow vector in B is 

As is implied in these results, the flow pattern covers the whole aqui.,r to  infinite 
distance from the well. 

1 
1 
1 

These formulas are derived from superposition of the influences of the wells P and 
P'. Only the determination of the integration constant requires comment. The 
potential at any point S ,  resulting from the extraction from well P is 

Qo ri In - 
2nkD c 1  

I 
I ' P I = -  

I 
I and from the replenishment to well P' 

I 
I 

where c1 and c2 are integration constants. Under the combined influence of the 
two wells the potential is the sum: 

Qo r2 I I c p = - -  
I . 2nkD r l  

In -+ c 
I 
1 
I 
I 

where íp = cpl + cp2, and c = (Qo/2nkD) In (cz/cl). Along the axis of the canal 
rl  = r2, hence In (r2/r1) = In 1 = O, and cp = c = cpE. This shows that the com- 
bination of the two wells defines along the axis of the canal the same condition 

53 



I 
I 

cp = cpc as was imposed by the canal itself. Moreover, at infinite distance from the 
well, where rz / r l  tends to 1 as well, cp is also equal to  cpc. 

i 
w 2b-2a-----2 b- "5"---- ' b+b-2a--2bP--2a- 

+ 
C E G I 

- + + - + - i +  I - 
a - 0- 0- ------y -----.-- 
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Fig: 18 

2.3.4 Well between two canals 
Figure 18. - A well with a discharge Q ,  is sited between two infinitely long parallel 
canals, where cp = O. The problem is the same as the previous one, with the addition 
of a second canal. The method of solution is similar. The flow pattern can be found by 
replacing the two canals by an infinite series of positive and negative wells (positive 
for extraction; negative for replenishment), each having a capacity eo, and sited as 
shown in the figure. This series of wells is characterized by 
- geometrical symmetry about either of the canal axes, 
- opposite signs to the left and right of either canal. 
The series of wells is equivalent to the canals, since each pair of a positive and negative 
well, sited symmetrically about any of the axes, gives a flow vector perpendicular to 
that axis in any of its points. Hence the flow vector resulting from the infinite series of 
wells is also perpendicular to either of the axes. 
Only the flow pattern in that part of the aquifer between the canals will be consider- 
ed. The potential at any point is the sum of the influences of an infinite number of 
wells. As was shown in the previous sections, it is not possible to determine the in- 
fluence of each well separately, because of the infinite value of q, either in the well 
itself, or at infinite distance. However, the influence of each pair of a positive and a 
negative well is finite. Thus, the summation of the influences of the wells should be 
done in pairs. The succession can be chosen in various ways. When taking, for in- 
stance, in schematic notation 

('4 + B) + (C + 0) + ( E +  F )  + (G + H )  

it is clear that the terms within brackets diminish regularly in absolute value and 
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eventually vanish, while their signs alternate. This is a mathematical criterion for the 
convergence of the series. 
Similarly, the flow vector in any point is the vectorial sum of an infinite series of 
vector terms, each term resulting from a pair of wells. The convergence can be proven 
in  the same way by considering the vertical and the horizontal components separately. 
Figure 19. - As an example the potential 'po a t  the well face can be calculated when 
the well is sited midway between the canals (b  = a = 1/2). When summing in the 
given succession 

the result is found to  be 

- + - - + - 

( A  + B )  + ( C +  D) + ( E +  F )  + (C + H )  

cp=-ln- Qo "ro 
2nkD 21 

I Using the formulas of the previous section the result can be written 
I 

r,, 21 21 
In - + In - + In - + I n  Qo I 

1 31 I 

1 I formula). 
using a welt-Known expression Ior T C / L  in m e  Iorm 01 an  innnire prouuu (wailis s 

2.3.5 Well between a canal and an impermeable boundary 
Figure 20. - The next problem differs from the previous one in that the canal on the 
right is replaced by an impermeable boundary. A well P with a discharge Qo is sited 
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between an infinitely long straight canal A ,  (cp = O), and an impermeable boundary By 
parallel to  the canal. 
The flow pattern can be determined when the canal and the impermeable boundary 
together are replaced by a series of wells, characterized by 
- geometric symmetry about both the axes A and By 
- difference in sign at either side of the canal axis A ;  identical signs relative to the 
line of the impermeable boundary B. 
The last condition results from the consideration that each pair of wells, symmetrical 
to the axis By both in position and in sign, causes a flow vector along that axis at any 
of its points D, as shown in the figure. Thus the flow vector defined by the infinite 
series of wells is also directed along that axis, which is the condition for an imper- 
meable boundary. 
Because of the perfect symmetry about the axis By the flow pattern in the zone between 
the axes B and A can also be described as one half of the symmetrical flow system 
determined by two wells P and P' (both extracting at a rate Q,), sited in  a zone bound- 
ed by two canals A and C (cp = O in both). This arrangement is indicated in the lower 
part of the figure. 
In particular, if in the upper part of the figure the well P is sited against the imper- 
meable wall, (b = O, a = l) ,  this means that in the lower part of the figure the wells P 
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and P' coincide, so as to form one well extracting at a rate 2Q0. According to the 
previous section the potential in this well is 

Qo nro 'po = -- In - 
nkD 41 

2.3.6 Well near a canal in unijorm flow 
(See also Section 2.4.4, where the same problem is examined in more detail, using the 
theory of complex numbers). 
Figure 21. - The model is defined by an aquifer with constant D, bounded on the left 
by an infinitely long straight canal, and extending infinitely to the right. A well is 
sited at distance a from the canal. As to the flow system, if no water were extracted 
from the well, the aquifer would flow at a uniform rate qo at right angles to the canal, 
where cp = O. The aquifer receives no recharge. The problem is to determine the flow 
pattern when water is extracted from the well at a rate Qo after steady-state conditions 
have been reached. 

Th definition of th aquifer extends t flow system raises difficulties. Since th i n- 
finity on the right, the potential would rise to infinite heights. In the case of a con- 
fined or partly confined aquifer, the top layer would be uplifted by the pressure of the 
water; in the case of a phreatic aquifer the thickness of the water body would become 
infinitely great, and D would no longer be approximately constant. 
There are two ways to handle the problem. The first is to assume a sloping base of the 
aquifer. This model will be studied in the next section. The second is to consider only 
a strip of an aquifer bounded on the right by a second canal (y = O), parallel to the 
first, at a distance I ,  great compared with a (as will be shown the condition is 
1 
- > >  a). A uniform recharge is assumed, whose influence in the narrow strip, 2 
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Fig. 22 

v :,O 

I 

however, is negligible. This scheme will be examined next. At first sight the assump- 
tions made may seem complicated; they have been deliberately chosen as a prepara- 
tion for the study of related problems, dealt with in following chapters (Sections 3.4 
and 6.2.6). 
Figure 22. - The flow system, 111, described above, will be considered as the sum of 
two elementary systems, I and 11, defined by 
System I: 
- Recharge n. 
- No extraction from the well. 
- cp = O in both canals. 

. 
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System IT: 
- n = O  
- Extraction Qo ,from the well. 
- cp = O in both canals. 
It follows that System 111 is defined by: 
- Recharge n. 
- Extraction Qo from the well. 
- cp = O in both canals. 
System I was studied in Section 2.2.1, where the following formulas were established 

n 
2kD 

q = - x ( l - x ) ;  q = n  

In the following, only a narrow strip near the canal on the left will be considered, 
I 1 

determined by x << -. Since the well is in this strip, also a << -. Under this as- 
2 2 

sumption the above formulas reduce to 

n l  1 c p = - x = 4 0  x; q = n - = q o  
2kD kD 2 

which are the formulas of uniform flow qo towards the canal, without supply n. 
Figure 23. - System IT has been studied in Section 2.3.4. (Well between two canals). 

20 20- 2b I__ 
2a 2b  

I I 

I -----.--.- .-i - 
-,&--.A 

-A - 

- +  - I +  I - +  

R '  R P' I P s S' 

-*.-*--..-- 

The two canals can be replaced by an infinite series of wells, as indicated in the figure. 
Tf only a narrow strip near the left-hand canal is considered, the wells P and P' 
suffice, the influence of the other wells being negligible. This reduces the problem to 
that of Section 2.3.3 (Well near a canal). 
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I 

I 
I 

The distance 26 is great compared with 2a. Moreover, the wells R and R', near to 
each another and with opposite sign, almost counterbalance each other. Thé same 
applies to the wells S and S'. 

From these considerations the potential cp as well as the vector q can be determined at 
each point in the strip for both Systems I and 11, and by summation for System 111. 
Reference is made to Section 2.4.4 where the results are given. 

I 

2.3.7 Sloping base 
Figure 24. - In  this section, by way of exception, an aquifer will be examined, resting 
on a base that dips slightly along the x axis. The aquifer receives no recharge. If D 
is exactly or approximately constant, the fundamental hydraulic laws are the same as 
in the case of a horizontal base: 
- The law of linear resistance: 

- The law of continuity: 

84, - 0 (2 )  - + - - ax . ay 
In a horizontal aquifer, cp is bound to certain limits. If the aquifer is confined or partly 
confined, cp should not fall below a certain value in order to keep the aquifer full of 
water, nor rise above another value, to avoid uplifting of the top layer by too high a 
pressure. If the aquifer is phreatic, the limits are much narrower:,to keep D approxi- 
mately constant, its deviations from the average value should be negligible. 
The same conditions apply to a sloping aquifer, where they limit the deviations of 
cp, not from a constant value cpo, but from a variable quantity 'po + yas. In other 

P -q ------ 

+-----+X Fig. 24 
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words, while flow systems with a horizontal base are described as deviations from a 
state of rest, those with a sloping base are described as deviations from a system 
defined 'by 

'p = 'po + Y U X  

qx = - kDya = 40 

q Y  = 0 

Since the diffeIentia1 equations are the same in both cases, many hydraulic phenomena 
are the same. For instance, extraction at a constant rate from a well in a horizontal 
aquifer, starting from a state of rest, would never lead to steady flow. In  the same way, 
in the case of a sloping base, starting from a state, defined by 

cp = cpo i- yax, q x  = 40, q y  = 0 

extraction from a well at a constant rate Q ,  would not lead to steady flow either. 
If, however, the aquifer were limited by a horizontal, straight, infinitely long canal 
along the y axis, where 'p = 'po ,  constant extraction from a well, sited on either the 
upstream or the downstream side of the canal, would result in a steady flow system. 
The formulas would be the same as in the previous section. This is the other way of 
representing physically the system of a well near a canal in uniform flow. 

2.3.8 Approximation for series of wells 
In this section an approximative method will be given for calculating the influence of 
series of wells. Such an approximation may be used as a first approach to a problem, 
to be checked afterwards by precise calculations. It may also be considered as a final 
evaluation if the transmissivity or the recharge are not well known, or if any  other 
unknown factor reduces the value of the exact solution. Lack of precise data is 
frequent in groundwater engineering. 
Figure 25. - The drainage of a phreatic or partly confined aquifer with constant D 
may be effectuated by a grid of wells extending in all directions to infinity. The wells 
are sited in parallel series at interdistance a;  the spacing of the wells within the series 
is b, where b is assumed considerably smaller than a. 
The flow system is defined by a uniform recharge n, and an extraction Qo from each 
well. Steady flow requires that 

Q,  = nab 

A series of wells shows a certain analogy with a canal, in that in  both cases the poten- 
tial is lowered along a line, which is the axis of either the well series or the canal. 
Therefore, first the well series will be replaced by canals, from which a quantity qo is 
extracted per unit length, so that 
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A 

C 

q o  = na 

The highest potential exists in the symmetry axis CC; the lowest in the canal. The 
difference A q , ,  according to Section 2.2.1, is 

Actually the extraction takes place locally from the wells, instead of uniformly from 
the canal. The first consequence is that the potential in the line CC is not constant. 
Deviations from the average value, however, will be neglected, since a is assumed 
much greater than b. Thus the potential in the line CC is considered as a constant qC. 
The second consequence is that 'po in the well is lower than the hypothetical potential 
in the canal. The losses of energy are concentrated in the vicinity of the well, where the 
flow is radial. For radial flow, the loss of potential between a radius r and the radius 
of the well ro can be calculated according to Section 2.3.1. In  absolute value 
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The approximation is that A q ,  and Aqo, are added for finding the difference in po- 
tential qc - 'po between the line CC and the face of the well 

nuz r 
qE - qo = _ _  + Qo In - 

8kD 2nkD ro 

taking for r such a value that the circumference of a circle with radius r is equal t o  the 
front through which the water flows towards the well from both sidës together: 

2nr = 2b 

Using Qo = nab the result may be written in the form 

Some justification of this choice can be found in the following consideration. 
A q ,  represents the loss of energy in parallel flow over a length 1/2u; A q ,  the loss in 
radial flow over a length r = b/n, which is about l/gb. Thus the total flow length 
assumed amounts to ' / ,a + 1 /3b .  Actually all streamlines have different lengths; 
the shortest measures ' / ,a ;  the longest + l / , b .  Between these values ' / ,u + 
1/3b appears as a fair average. 

2.4 SOLUTIONS IN  TERMS OF COMPLEX NUMBERS 

This section deals with some of the most important applications of the classical 
theory of complex numbers to'groundwater flow. At  the outset some general remarks 
should be made. 
1. Due to its historical development, the theory of complex numbers is generally 
presented in an unsatisfactory way, with square roots of negative numbers as a basic 
element. A better theoretical development can be given, leading to the same results, 
but on the one hand this would require a profound discussion of the fundamentals of 
algebra, and on the other hand would lead to more general conclusions than potential 
flow theory only. I t  therefore will not be given here; the theory will be presented in 
its classical form. 
2. In a treatise on vector algebra it is desirable to  make a distinction in notation 
between symbols representing numbers and vectors (here complex numbers). In this 
publication the theory of complex numbers occupies only a small space. Thus the 
choice of the symbols has been determined mainly by the requirements of the other 
chapters, and no difference in notation between numbers and vectors could be made 

. without complicating the orthography of the whole. 
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3. If cp + i$ is an analytic function of x + i y ,  the relation can be represented graphi- 
cally. If, as will be done>in this section, lines of equal cp and $ are drawn in a graph 
where x and y are plotted on the axes, the reasoning can be based on either the function i 

cp + $ i= F(x + iy) 

or the inversion function 

x + iv = C(cp + i$) 

The second representation is preferable. The first, however, will be chosen for tradi- 
tional reasons and also because the function F appears anyhow, and alternative use of 
the functions F and G might create confusion. 
4. The formulas will be written in dimensionless form. For an explanation of this 
point reference is made to  Section 1.3.5. 

2.4.1 Fundamentals 
The following theory is valid for n = O (and constant 0). Under these assumptions the 
differential equations read : 
- The law of linear resistance 

- The law of continuity 

- + - -  84, aqy - 0 
ax ay 

To simplify the formulas, it is customary in this theory to  write cp instead of kDcp. 
Thus, if the result of a calculation reads cp = c, this should be read kDcp = c or 
cp = c/kD. In  other words, the values of cp obtained as results must be divided by kD. 
The equations then reduce to 

These equations are satisfied by solutions of the following form 

(3) 

(4) 

q5 = cp + i$ = F(z)  = F(x + iy) 

q* = qx - ig, = - F ’ ( z )  = - dF 
dz 
- 
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where F is an arbitrary analytical function of z. Equation (3) contains a variable II/, 
which does not occur in the differential equations ( I )  and (2). Its physical meaning 
will be explained below. The solution, as defined by (3) and (4), satisfies in effect a 
second set of differential equations, similar to (1) and (2), but with $ instead of cp as a 
variable. For physical reasons, however, Equations (3) and (4) will only be considered 
in relation to (1) and (2). From the same viewpoint a second solution, where in (3) $ is 
replaced by - $ is ignored. Although mathematically the solution is independent of 
the first, it does not yield new physical results. 
The quantity q* (= qx - iq,) must be introduced, since it cannot be written as an 
analytic function of q (= qx + iq,). In particular, no complex number a can be found 
such that q* = aq. Graphically q* is the vector symmetrical to q with respect to the 
real axis. 

I 
I 

Proof that Equations (3) and (4) satisfy ( I )  and (2): 
Differentiating (3) with respect to x, and multiplying by - 1 

I Differentiating (3) with respect to y, and multiplying by i: 

I Equation (4) reads 
I 
1 
I 

(4) + qx - iq, = - F' 
Since the right-hand members of (9, (6)  and (4) are equal, the left-hand members 
are equal for their real and imaginary parts separately. Hence 

I acp acp 
I ax a Y  

qx  = - - and qy = - - 

I which corresponds to (1). 

I Differentiating (4) with respect to x: 

1 Differentiating (4) with respect to y, and multiplying by i: 

I 
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I Adding (7) and (8), and equating the real parts: 

a 4 x  %y - 0 I 
1 -+-- 
I ax aY 
I which corresponds’ to (2). 

The given solution defines cp and $ for each point of the field. Thus lines of equal cp 
and equal $ can be drawn. It is customary to space them by equal intervals Acp = A $ .  
It can then be shown that the elementary quadrilaterals enclosed by these lines are 
squares. Since the lines of equal $ are in all points perpendicular to the equal potential 
lines, they are stream lines. The water flows in the direction of decreasing cp! 

I 
I 
I (Theorem of Taylor) 

The area around a point z1 can be represented by z, + AZ, where A Z  is a variable 
vector. Using this notation, the functional relationship can be written as a series 

I ’ (AZ)’ 4 = F (zl) + F‘ (zl) A Z  + F” (z,) T-. . . 
L I 

I 
I 

I For a small area around zl, the first terms suffice: 

+ = F(z,) + F‘(z,)Az 

1 WritingF(z,) = +1 and 4 - 4 ,  = A 4  1 A +  = F’(z,)Az. 

I 
I 
I A$=cAz . 

In the series all coefficients F(z,), F’(z,), F”(z,) are complex numbers. Writing i n  

the last expression F‘(z,) as a complex number c 

I 
I or 
I 

I Displacement along an equipotential line (Acp = O) over an interval A$ corresponds 
I ‘ t o  
I 

I 

I to 

1 I Az,=- iA$ 

1 
C 

Displacement along a line of constant $(A$ = O) over an interval Acp corresponds 
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1 I 
I A Z ,  = - A q  

C 

1 
I 

Since A $  = A q ’  as a convention, the vectors A Z ,  and A Z ,  have equal length and 
are perpendicular to each other. 

X 

Fig: 26 Fig. 27 

Figure 26. - At certain points F’(z , )  may be zero. It follows from y* = - F’(z)that 
at these points q*, and therefore the flow vector q, is zero. Such points are called 
stagnation points. The flow net shows a particularity: the figure represents the flow- 
lines; the equipotential lines, not shown, are perpendicular to them. 

For a small area around such a point the functional relationship reduces to 

or 

or 

where c is a complex nunikcr. This relationship, according to classical theory, 
corresponds to the given figure. 

A 4  = ~ ( A z ) ’  

Figure 27. - In the following sections yet another type of stagnation point will be 
studied, where F’(z , )  = F”(z,)  = O. The flow pattern is indicated in the figure. The 
straight lines intersect at 60”. 
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I The proof is similar. The functional relationship for values near z1 reduces to 1 Ll4 = c(dz)3 

I where c is a complex number. 

2.4.2 Well in an infinite aquifer 
In this and the following sections the problem will be defined by a given function 
4 = F(z). The characteristics of the flow system are to be derived from this formula. 
First the following function will be examined 

(1) 4 = cp + i$ = F(z) = In z 

1 
(2) q* = qx - iqy = - F' ( z )  = - - 

Z 

Figure 28. - These equations describe the flow around a well sited at the origin. With 
z = re", the formula for the potential can be written as 

cp = l n r  

1 
I 
1 Equating the real parts 
1 cp=lnr  

Upon substitution of reie for z, Equation (1) becomes 
cp + i$ = In z = In r + i0 

Fig. 28 

Since cp depends on r only, and not on 8, the flow is radial. At the face of the well, 
(r = ro), rp = In ro, which is a finite value. For r + oc), cp + co, in agreement with 
Section 2.3.1. 
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The flow vector can be written as 

I According to (2) 
I 

I Thus 

1 eio 
I .  
1 q = q x + i q , =  - -  
I r 

I 
I 
I 

The vector q is directed along z, but in the opposite direction, which indicates 
radial flow towards the origin. Its absolute value I q I = I/r.  Thus the quantity 
flowing through a cylinder with radius r is 

1 
I 
I 

a constant, which confirms the basic assumption n = O. The quantity extracted 
from the well has the same value 

I 

2.4.3 Well near a'canal 
The function is 

z - a  ( I )  4 = F ( z ) = ~ I n ( z - ~ ) - l n ( z + u ) = l n -  
z + a  

( 2 )  q* = - F ' ( z )  = - ~ (. 1 a - A) 
where a is a complex number. 
Figure 29. - I t  can readily be seen that if I$ = In z represents the flow towards a well 
a t  the origin, 4 = In ( z  - a)  represents the flow towards a well a t  the point indicated 
by the vector a. 

1 
I 
I the origin. 

The figure shows that the vector z - a defines the position of a point S with 
respect to the well P in the same way as does the vector z with respect t o  a well a t  
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Fig. 29 

Q z - 2 ~  Q: 2n 

Fig. t-' 30 

Figure 30. - Thus the formula 

4 = In ( z  - a) - In ( z  + a) 

corresponds to the combination of two wells P and P', sited at + a and - a. respect- 
ively, extracting and replenishing respectively, quantities 2n. This combination is 
known from Section 2.3.3. It is equivalent to the combination of the well P and a 
canal along the axis of symmetry between the two wells. If a real positive value is 
chosen for a, the well P is on the positive real axis and the canal along the imaginary 
axis. 
Figure 31. - The formulas (1 )  and (2) imply the following propositions: 
1. The canal is an equipotential line with cp = O.  
2. At infinite distance from the well P in all directions, cp = O as well. 
3. At an arbitrary point S of the aquifer the potential is 

cp = In (rJr2) 

4. At the face of the well ( r  = ro)  

cp = In (r0/2a) 

5.  At an arbitrary point S of the aquifer the flow vector is 

q =  -- 2a er(e1+e2) 

r1r2 
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6 .  At the origin of the coördinate system 

I 4 I = 2/a 

7. Streamlines and equipotential lines are circles. 

I 
I 
I 
I 

I 

I 
I 
I 
I 
I 
I 

Proof of these propositions. - The figure shows that 

z - a = r l e i  '1 

z + a = rzei ' 2  

Thus 

z - u  r 

z + a  r2 

Equating this to cp + i$: 

4 = In - = In -! + i (e, - e,) 

cp = In ( r l / r 2 )  (proposition 3 ) ,  and II/ = el - O2 

Lines of constant cp (equipotential lines) are lines. of constant r l / r 2 ;  lines of 
constant &(streamlines), are lines of constant dl  - 8,. According to well-known 
geometric properties both are circles (Proposition 7). 
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I For any point of the canal, r I  = Y , ,  and cp = In ( r l / r z )  = In 1 = O (Proposition I). 
1 For any point at infinite distance from both wells the ratio í - , /rz  tends to I as well, 
I and q~ tends to zero (Proposition 2). 
1 At the face of the well r1  5 ro and r2 = 2a, neglecting ro in comparison with 2a. 
I Thus cp = In (r0/2a) (Proposition 4). 

' I The vector q* is defined by 
I 

- I 1 1 2a 
1 I 4 * =  -(ya-=)= - ( Z - u ) ( z + a )  

I Substituting 
I z - a = r ,e  and z + a = rzei ' 

i O L  

I 

I 
2a - i  ( e,+ 0 2 )  I q * = - - e  

rl rz 

2a i (e ,+e2)  
I 

I 

I 
I 
I At the origin of the axes, rl  = r ,  = a, hence 

I q=-----&e 

I This formula gives the absolute value of the vector 

1 4 I = Wr1t-2 

1 as well as its direction: an angle O ,  + O ,  with the negative real axis (Proposition 5). 
, I  

I (Proposition 6). 
The results obtained must be transformed, taking into account some of the premisses 
made at the outset. An example will be given for the formulas of cp and q at an 
arbitrary point (Propositions 3 and 6) 

cp = In (r1lr2) 

2a i ( e , + 0 2 )  

q = - r , r , e  
Firstly it should be remembered that cp stands for kDcp, thus the first formula reads 

? <  
1 rl c p = - I n -  

k D  r2 
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Secondly the extraction rate from the wells, in absolute value, was 2rc. For an arbitrary 
extraction Q, instead of  2n all values of 9 and q must be multiplied by Q0/27c, thus 

Qo ri cp=-ln- 
2rckD r2 

q = - -  ~ Q o  ei (01  + O * )  

nr1r2 

The expression for cp corresponds with the result of Section 2.3.3. 
Finally this example can be used to show the formation of dimensionless plots in a 
scheme on which the theory of complex numbers has been applied (see Section 1.3.5). 
The scheme is defined by three constants, kD,  a and eo. Using these constants, 
dimensionless plots can be formed with the variables 9, q (ql  or q2)  and r ( r l  or rz).  

kD a r 
- 9 ;  - 4 ; ;  - 
Qo Qo a 

The variables used in the general theory were 

kD9;  4 ;  r 

since only kD occurs in all problems of this kind; a and Qo are proper to the present 
system only. 

2.4.4 Well near a canal in a uniform -flow 
The function is 

z - a  
z + a  

(1) 4 = F ( z )  = In - + q o z  

1 1 
(2) q" = - F ' ( z )  = - (G -z) - 40 

The first term of these expressions corresponds to the flow system examined in the 
previous section. Upon it the system 

4 = 402 

has been superposed, which corresponds to 

cp =qox; q =  - q o  

representing uniform flow at a rate qo towards the canal and perpendicular to it. 
Figure 32. - The problem corresponds to  that of Section 2.3.6. The model is defined 
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Fig. 32 

by a canal, running along the imaginary axis, and a well P on the positive real axis, 
at a distance a from the canal. The aquifer extends to infinity to the right. The flow 
system is defined by 
- cp = O in the canal. 
- Extraction from the well at a rate 277. 
- Uniform flow at a rate qo in the direction of the negative real axis, if no water were 
extracted from the well. 
As in the previous section the canal will be replaced by a negative well P', sited sym- 
metrically to P with respect to the canal, and replenishing at a rate 27c. The physical 
restrictions of this flow system are the same as in Section 2.3.6.  They are subject to the 
considerations given there. 
The values of cp and q are given by Eqs. (1) and (2), 

r 

r2 
cp = In 2 + qox 

I n  the well 

r o 
2a 

'po = In - + qox 

The derivation of these formulas does not require comment; the stagnation points, 
however, need a close analysis. . 

Figure 33. - Three cases can be distinguished. 
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Fig. 33 (continued) 

point 0 

3% 
A. qo > 2/a. A single stagnation point of the type A 4  = ~ ( A Z ) ~  exists at A ,  at a 
distance Ja (a - 2/q0) from the origin. The dotted line divides the aquifer into two 
parts, one delivering into the well, the other into the canal. At a great distance to the 
right the two branches of the dotted line are parallel at a distance 2n/q0, so that the 
parallel flow qo over that breadth corresponds to the extraction rate 2n of the well. 
B. qo = 2/a. A stagnation point of the type A 4  = ~ ( A z ) ~  exists at the origin ofthe coör- 
dinate axes. The division of the aquifer into two parts is the same as in the previous case, 
as is the distance between the branches of the dotted line at great distance to the right. 
C .  qo -= 2/a. Two points of the type A 4  = ~ ( A Z ) ~  exist at B and Con the canal border, 
at distance 4- a (a - 2/q0) on either side of the origin. The dotted line divides the 
aquifer into three parts, characterized respectively by flow into the well from the right, 
into the well from the canal, and into the canal. The distance between the branches 
of the dotted line at great distance to the right is smaller than 2n/q0, because the flow 
between these branches constitutes only part of the supply into the well. 
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The function 

z - a  
(1 )  4 = F ( z )  = in- + 402 

z + a  

has the following derivatives: 

2a 
z2 - + 40 F‘ (z) = ~ 

4az 
F “ ( z )  = - 

( 2 2  - U Z ) *  

32’ + a 2  
( z 2  - a2)3 

F”’ (2 )  = 4a 

The particularity F’(z)  = O applies to the p,oints z where 
( 2 )  z2 = a ( a  - 2/q0)  

2 
90 

Case A. a - - > O. - There are two real values of z: 

z = k J a ( .  - 2/qo) 
corresponding to two points on the real axis at  equal distances at either side of the 
canal. Since only that part of the aquifer to the right of the canal corresponds to the 
physical model, only the positive value is considered. For this value of z ,  different 
from zero, F”(z)  # O, thus the stagnation point is of the type A +  = ~ ( A Z ) ~ .  
Case B. a - 2/q0 = O. - According to (2), z = O ,  which locates the stagnation . 

point at the origin of the coördinate axes. For z = O, also F”(z) = O, but not F”’ 
( z ) .  The point is therefore of the type A +  = ~ ( A z ) ~ .  
Case C. a - 2/q0 < O. - According to (2) z2 is negative, which corresponds to  two 
complementary, imaginary values of z :  

representing two stagnation points on the canal border. at equal. distances, 3 .  from . . 
the origin. Since z # O,F”(z) # O, and the points are of the type A 4  = c(dz)’. 

z = & i J- a (u - 2/q0) .. , ,;. 



3. S T E A D Y  F L O W ,  V A R I A B L E  D, G I V E N n  
1 -  

3.1. ANALOGY WITH SYSTEMS WITH CONSTANT D 
The assumptions made in the title are the same as those of the previous chapter, 
except that D is variable instead of constant, which limits the studies to phreatic 
aquifers. To simplify the formulas, the level of reference R will in all, problems be 
chosen a t  the base of the aquifer. The thickness D of the water body is then equal to 
the piezometric height h, which in turn is equal to cp/y. With this convention the 
formulas for cp and 4 from the previous chapter can be repeated when Dcp is replaced 
by cp2/2y. Flow nets formed by streamlines and equipotential lines remain unchanged 

. if the equipotential lines are drawn at  equal intervals of cp2/2y instead of cpD. In par- 
ticular in Section 2.4 (solutions in terms of complex numbers), cp, which stands for 

k 
2Y 

kDcp, must be replaced by c p 2 ,  standing for - c p 2 .  Thus the text of this chapter could 

be an almost exact repetition of that of the previous one, and the formulas would show 
a great resemblance. To avoid uninteresting repetition, only those problems which 
require discussion will be taken up  again. 

I 
I 
1 
1 
I constant D :  

The flow system is determined by differential equations and boundary conditions. 
As to the latter, they are the same; in both cases they are expressed in terms of 
cp or 4 .  But the differential equations are different. 
- The law of linear resistance (to be written for the .Y direction only) reads for 
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I For variable D ,  where D ,= h == Cply 

I or 
I a (Cp2/2Y) 

i 
I q , = - k -  

I 
I 

ax 
Thus Dcp has been replaced by cp2/2y. 
- The law of continuity in both cases reads, 

The meaning of this substitution can be illustrated by the following reasoning. 
In  the formulas the values of cp2 always appear as differences: c p 2  - cp:, or cp: - cp:. 
'(This is due to the fact that in  the differential equations cp only appears in the form 
of derivatives of cp2. Upon integration expressions in cp2 are found, containing an 
integration constant, which is eliminated by subsequent substraction of two 
equations of the same form). The difference of two squares, for instance ípf - cp: 
can be written (cpl - cp2) (cp, + cp2), where cpl + c p 2  may be replaced by 2yD, if 
cpI and c p 2  are near the average value of yD, as was the assumption of the previous 
chapter. Thus cp: - corresponds to 2yD(cp, - cp2), which means replacing 
Dcp, by cpfl2Y3 and Dcp2 by (P:/2?i. 

3.2 SUPERPOSITION AND WATER RESOURCES 

Figure 34. - The principle of superposition can be applied as in the previous section 
by summing the values of q and n, but the values of cp2 should be added instead of 
those of cp. The same model may serve for the proof. System I represents the natural 
flow pattern, System I1 the change brought about by the extraction from a well, and 
System 111 the final flow pattern after the flow is steady again. The same conclusions 
can be drawn, subject however to the following remarks. 
I .  For the definition of the specific drawdown or the specific capacity of a well, the 
relationship between Acp2 and Q ,  should be taken as a basis, instead of that between 
Acp and e,. The conclusions then remain the same. 
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Fig.  34 

2. I n  System I1 all values of cp2 are negative; they do not correspond to real values of 
cp. This system has no physical meaning, but is merely a term in the mathematical 
operation of superposition. The negative values of q2 indicate that the values of qp2 of 
System I must be reduced to obtain those of System 111. Interpreted this way, the 
imaginary character of the system disappears. It should also be noted that if water had 
been pumped into the well instead of being extracted from it, the values of c p z  in 
System I1 would have been positive, and the difficulty would not have arisen. This 
stresses the conclusion that the physical interpretation of this system is of minor 
importance. 
3. At the border of the water courses in System I1 the section of flow reduces to zero. 
This particularity recurs in other problems of the same kind, and also in Chapter 6 ,  
where in several schemes the thickness of the fresh water layer reduces to zero near 
the coast, or near wells and galleries. If the system under consideration has no physical 
meaning, but is a mere term in the process of superposition, only the mathematical 
consequences need be examined ; if it represents reality, the physical consequences 
must be studied as well. 
- Mathematically speaking, if s is the coördinate perpendicular to the boundary, it 
follows from the law of linear resistance 

acp 
as 

that for D O, - -+ co at all border points where qs # O. Thus 40 as a function of s 

shows a singularity at the boundary. But in any system, as in the present, where D is 
proportional to cp, (D = ccp), the same law may be written: 
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indicating that 'p2 as a function of s has no singularity at the boundary. It follows that 
there are no restrictions on superposition in terms of 'p2 at the boundary. 
- Physically speaking, secondary phenomena will play a role. If q does not reduce to 
zero while the section reduces strongly, but not to zero, the velocities will be high, but 
not infinite. The law of linear resistance then may no longer be valid. The zone near 
the border should therefore be studied in detail from a physical viewpoint by methods 
that will not be described here (calculation, graphical methods, model study, obser- 
vation in nature). 
From such studies it may follow that 
- The adapted scheme represents reality with sufficient precision for the use to be 
made of it. (The high velocities are local, and the precision of groundwater calculations 
is generally not high). 
- A correction should be applied to the data as resulting from the scheme. 
- The scheme should be abandoned. 
In the following, where this particularity recurs, reference will be made to these 
remarks, while the analysis to be made will apply to the scheme in its simple form only. 

3.3 PARALLEL FLOW 

Figure 35. - As an example; the system of Section 2.2.2 (three canals) will be analysed 
here. The problem is the same as in the previous chapter, the only difference being 
that D is variable instead of constant. The model is defined by three parallel canals, 
I 
- apart. The flow system is determined by 
2 
- potentials 'pl and 'p2 in the outer canals. 
- extraction qo per unit length from the middle canal 
- uniform recharge n. 
Following the same line of thought as in Sections 2.2.1 and 2.2.2., the formulas can 
be derived from the superposition of three systems. The formulas of the individual 
systems can be copied, after transformation, from those of the previous chapter. The 
bottom part of the figure shows the 'p2 lines of the different systems. 
System 1 is defined by 
- Potentials 'pl and 'pz in the outer canals. 
- No extraction from the middle canal. 
- No recharge. 
For constant D the formulas were 



I I  

n 

I '  

Replacing Dcp by q 2 / 2  y : 

X 
cp2 - cp2 - - - <cp: - cp:> 

1 
1 -  

System I1 
- Zero potential in the outer canals. 
- No extraction from the middle canai. 
- Uniform recharge n. 
For constant D the formulas were 

n 
2kD 

cp = __ x ( I  - x )  

= i:.- 
After substitution 

cp2 = - nY x ( I  - x) 
k 

q = n ( i - x )  

System I11 
- Zero potential in the outer canals. 
- Extraction qo per unit length from the middle canal. 
- No recharge. 
For constant D the formulas were (left-hand part of the aquifer) 

q = - 4 0 x  
2kD 
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. q = -  4012 
After substitution 

4 = - 4012 
’ Thus, by superposing the three systems, 

2 2 x 2  2 Yn 4oY 
40 = q1 - - ( V I  - qz) + - x ( l  - x )  - - x 

1 k k 

q = - - - ( q 1 - q 2 ) + n  k 2  2 

21Y 
In the q2 diagrams the ordinates of the shaded parts are equal. The figure demonstrates 
the remarks made about the characteristics of the function q2 near the boundaries. 
Although in Systems 11 and I11 aq/ax tends to infinity, this is not the case with 
a(qz)/dx: the qz lines have no vertical tangents at the boundaries. 

3.4. FLOW AROUND WELLS 

The flow system around a single well sited in an infinite aquifer and pumped at a rate 
Qo is subject to the same restrictions as in the case of constant D. In the preceding 
chapter, Section 2.3.1, the formulas were 

Qo r q - q1 = -In - 
2nkD rl 

For variable D they become 

4 = QoI2nr 
For a finite value of p in the well, the potential at infinite distance rises to infinite 
height; for a finite value at great distance, the potential in the well drops to infinite 
depth. I 

If the well is sited at a distance a from an infinitely long, straight canal with potential 
qc, the method of replacing the canal by an imaginary negative well can be used 
as in Section 2.4.3. The basic formulas can be copied, substituting q2/2y  for qD. 
Thus, at a point S 
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where r l  and r2 are the distances from the point S to the real and the image well 
respectively. The potential in the well (radius ro) is 

The flow net formed by the streamlines and equipotential lines is identical to that of 
Chapter 2, provided the equipotential lines are drawn at equal increments of y 2  and 
not of y. 
The problem of a well between two parallel canals, or between a canal and a n  
impermeable boundary, will not be dealt with, since it is not essentially different from 
the corresponding problem in Chapter 2. 

The problem of a well near a canal in uniform flow can also be copied from Chapter 2 
(Section 2.4.41, when Dy is replaced by y2/2y. The transformation does not present 
any new element. The formulas will be given because they will be used in Chapter 6. 
The potential at an arbitrary point S a t  distances rl  and r2 from the real and the image 
wells respectively, is given by 

or 

2 2 n b  Y Q O  r2 (D = y c + - x - - - - - - l n -  
k nk r 1  

if the zone along the canal is considered as part of a broader aquifer, bounded on the 
other side, at distance I, by a second canal, as was assumed in Section 2.3.6. A model 
with a sloping aquifer may not be used, since the principle of superposition would not 
apply to it (D being no longer proportional to y). The potential in the well (radius ro)  
is given by 
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Fig. 36 

The flow vector, finally, is defined as 

= 
2a ei(81+82) - 

l'tl'2 2 

as with constant D. as with constant D. 

3.5 SLOPING BASE 

For an aquifer with a gently sloping bottom, the principle of superposition is not 
valid. A complicated system cannot be considered as the sum of elementary systems; 
it must be calculated as a whole, which makes the integration more difficult. 
Figure 36. - The simplest problem is that of a flow of constant intensity q,, directed 
along the lines of greatest slope. This problem has an infinity of solutions, defined 
commonly by 

where D, = q , / k q ,  and y ,  is a parameter, corresponding to the value of y for x = O. 
Three classes of solutions may be distinguished : 
1. The value y ,  = O gives the solution of Chapter 2 with constant D = D,. See line C 
in  the figure. 
2.  Positive values of y ,  correspond to solutions of type A .  The thickness of the aquifer 
increases in the direction of the flow, whilst the gradient decreases. At infinite distance 
to the left D becomes infinitely great and the gradient zero. 
3. Negative values ofy, correspond to solutions of type B. The thickness of the aquifer 
decreases in the direction of the flow, and the gradient increases. At P the thickness D 
becomes zero, and the gradient infinitely great. 
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Proof of formula (1). 

The basic formulas are 
- The definition of the potential 

- The law of linear resistance 

(1) - CYx = Y  - Y o  + D, In YlYO 

(2) cp = + D, + Y) 

acp (3) 4 = k (D, + Y) - 
ax 

- The law of continuity 

- The definition of D, in the simplest system with D = D, = constant 

Eliminating cp, q and 4,  from the four basic equations (2), (3), (4) and (5) results in 

(4) 4 = 40 

( 5 )  40 = kDcaY 

dY dY Y 
ax dx Dc +Y 

( 6 )  (D, + y) - + ay.= O, or - = - CY - 

This differential equation relates y to x. Since it is of the first order, it needs one 
single condition for integration 

The proof that (1) is a solution of this differential equation (6) is given by differ- 
entiation; the proof that the condition satisfies (1) is given by substitution. 

for x = O, y = yo 

dh 
from (7): for y + O ,  - + ci 

dx 

Analysis of the solution 
1. From (2) and (6): . 

( 7 ) - = - , - - -  YUD, . dh - ED, dY 
dx D, + y dx D, + y . 

2. Since the argument of the logarithm in (1) must be positive, y is positive for 
positive values of yo and negative for negative values of y,. Thus the water table 
lies as a whole either above or below.line C. 
3. In both cases the water table approaches the line C on the extreme right, 
from (1): for y + O, x --* + 00 

4. If y, is positive, y varies between O and co. Zero value is approached at  the ex- 
treme right (x + + 03). According to (6), dyldx is always negative, which means 
that y increases steadily when x decreases (towards the left). According to ( l ) ,  
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dh 
dx 

y + 00 corresponds to x + - 03, while (7) indicates that for y + co, - + O. 

(horizontal water surface). 
5. If y ,  is negative, y is negative, but for physical reasons y varies only between O 
and - D,. As was shown, y = O corresponds to x + 00. According to (6), for y 
negative between zero and - D,, dyldx is positive: y decreases steadily with 
decreasing x, in other words I y I increases steadily towards the left. 
The value of x corresponding to y = - D, is determined by (1): 

- D c  - ux = (- D, - yo)  + D, In - 
Y o  

(point P in the figure). From the above it is clear that this value of x is negative. 
This can also be derived from the above expression when writing the logarithm as 
a series (not shown here). 

According to (6), for y = - Dc, - + + co, or, physically speaking, the water 

surface is vertical. Equation (7) indicates also that - + co at this point. 

6. Ify, = O, equation (1) is satisfied byy = O, but loses its structure. It is better to  
return to the basic equations (2) ,  (3), (4) and (5) .  

dY 
dx 

dh 
dx 

As in the previous chapter, the question arises: Can steady flow exist around a well, 
extracting at a rate Qo from an infinite aquifer in which groundwater flows at a 
uniform rate qo, according to line C? To answer this question no use can be made of 
the principle of superposition. The reply can, however, be given by comparison with 
the scheme of a sloping aquifer with constant D. When the losses of energy from 
infinity to the well are infinitely great for constant D = D,, they will be greater still 
for variable D < D,. Hence no steady flow exists. 
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4. S T E A D Y  FLOW, P A R T L Y  C O N F I N E D  A Q U I F E R ,  G I V E N  cp' 

In the problems of this chapter not n, but cp' is given. Thus in 

k' 
D' 

N = n = -(p' - cp) 

n and cp are the unknowns. 
Physically, this condition may correspond to  any of the following instances: 
- In inundated fields the free water surface corresponds to a constant value of y'. 
- In areas with upward groundwater flow reaching the ground surface and resulting 
in surface run off towards ditches or low places in the field, cp' is defined by the ground 
level. 
- In a drained region ditches or tiles narrowly spaced maintain the phreatic water 
table within certain limits. Neglecting the undulations between the drains, as well as 
the variations in time, an average, constant water table may be assumed. 
- During a short period of nonsteady flow (e.g. a pumping test under certain condi- 
tions) a changing water table may be considered as steady. The same approximation is 
allowed for periodic fluctuations of y' with small amplitude. (See Section 5.2.2., for 
instance, where the nonsteady flow is a succession of steady-state systems). 
- In a scheme of superposition a constant cp' may be assumed for one of the elemen- 
tary systems, when the other systems account for the variations. 

4.1 SUPERPOSITION AND WATER RESOURCES 

The principle of superposition may be applied when adding the following quantities: 
cp, q (either the vectors or the components), y' and n. 
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I The law of linear resistance 

I is linear in qx, qy and cp, since k D  is constant. The law of continuity 
I 

I is linear in qx, gY, cp', cp and n. 

The question of the water resources, applied to the conditions of this chapter, would 
be the question of the origin of the water extracted from an aquifer where cp' is 
maintained at given values, notwithstanding the extraction. It is clear that this water is 
provided partly by lateral flow into the aquifer - as it was in the preceding section - 
and partly by increase of the recharge n. The analysis of the latter point will not be 
developed here, since maintaining the water level by changing the recharge is a 
practical rather than a theoretical problem. 

' 

4.2 PARALLEL FLOW 

In this section a series of flow systems will be examined, derived from one another 
by means of the principle of superposition. I n  all schemes parallel flow in a partly 
confined aquifer is assumed. 

4.2.1 One canal 
Figure 37. -The first scheme is defined by an aquifer with constant cp' = y;, bounded 
on the left by a canal, where cp = (po, and extending infinitely to the right. The for- 
mulas are: 

ob - cp = (ob - cpo)e-ax 

9 = qOe-Ox 
__ 

where a = J k ' I D '  and qo = I /kD k'/D' (cpb - qo) 
k D  

1 ' q = k D  dqld.u 

1 The law of continuity 

The law of linear resistance reads 

I 
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k' 
--- D, (VA -VI  dq 

dx 
_ -  

I Eliminating q yields 
I 

1 
I 
[ 

1 .  f o r x +  co, q +  qh 

I which implies c, = O 
I f o r x = O ,  cp=rp, 
[ which gives c2 = - 'po. 

I 

The general solution of this linear differential equation with constant coefficients is 

where c1 and c2 are integration constants, to be determined from the following 
y: - cp = c, eax + cze-ax 

' I conditions: 

The formula for q is found by differentiating the expression for cp. 

Both y: - rp and (I are maximum at the canal border. With increasing x, they both 
decrease proportionally to e - a x ;  thus their ratio is the same in each section. 
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Both vanish at infinite distance from the canal. (A series of values of e-ax can readily 
be calculated, using the property that the function is multiplied by the same factor 
e-adx each time the argument increases with the same term Ax) .  

4.2.2 Two different phreatic levels 
Figure 38. - Whereas in the previous section the scheme was determined by a value 
of cp', (cpb), and a value of cp, (cp& in the next example it will be defined by two values 
of cp', (cp', and cp;). The value of cp; is characteristic of the left-hand part of the model 
toinfinity; thevalue of cp; applies to the right-hand part. The transition in the middle 
section is abrupt. 

A 

The cp diagram is symmetrical about the point M ,  where 

40 = 'po  = Il,(cp; +cp; 1 
This consideration reduces the problem to the previous one with, for the right hand 
half of the aquifer 

q = qo e-ax 
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4.2.3 (P' constant between two canals 

Figure 39. - The aquifer is bounded by two parallel canals A and B, in which the 
water levels correspond to the potentials 'pl and q2 respectively. Between A and B, 
(P = ( P o .  

I I 

'ma 

?l 

U!b  

A 0 

Fig. 39 

1 9 C  

' p l  

The solution reduces to that of Section 4.2.1 by the superposition of three systems, 
I, I1 and 111, whose sum is System IV. 
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System 1: 
- cp' = cpb in the top layer. 
- cp = cpb in both canals. 
It is clear that no flow occurs (q  = O), while cp = cpb in all points of the aquifer 
System 11: 
- cp' = O in the top layer. 
- cp = u (unknown value) in canal A. 
- In  canal B, cp = ue-"' = nu, which is the value cp would have according to the 
formula of Section 4.2.1, if no water were extracted from canal B, and the aquifer 
extended to infinity to the right. 
The values of cp and q in the aquifer as functions of x are determined by the formulas 
of Section 4.2.1. 
System I l l  is the reverse of System It; 
- cp' = O in the top layer 
- cp = v (unknown) in canal B 
- I n  canal A, cp = ve-"' = nv. 
Summing the three systems and writing cp, and cp2 for cp in the canals A and B 
respectively. 

cpb t- u + nv = cpl 

cpb + nu + v = cp2 

which conditions determine u and v. 
Since cp, and cp2 may be positive as well as negative, the cp line of System IV may 
assume different forms, some of which are indicated as examples in  the figure (IVa, 
IVb, IVc). It can readily be shown that the inflection point corresponds to the section 
where cp = cpb. 

I 

I For cp = cpb, dq/d,r = O, and therefore d2cp/dx2 = O. 

4.2.4 Arbitrary cp' values 
Between the sections A and B, cp' varies smoothly as an arbitrary, in  principle non- 
analytic function of s. To the left of A and to the right of B, to infinity, cp' is constant, 
equal to cpb. 
The first step in solving the problem is to replace the smooth cp' curve of Fig. 40b by 
the step curve of Fig. 40c. Calculation is then possible by multiple superposition, 
according to Fig. 40d, using the formulas of Section 4.2.2. 
Another way of superposition is indicated in Fig. 40e. The elementary system, 
rccurring in this figure, can be calculated according to Fig. 40f, where, as an example, 
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Fig. 41 

94 



System I1 is found as the sum of Systems IIa and IIb, again of the type described in 
Section 4.2.2. 

4.2.5 Arbitrary cp’ values between two canals 
Figure 41. - The aquifer is bounded by two parallel canals whose water levels corre- 
spond to the potentials cpl and cp2 .  Between the canals, cpl is given as an arbitrary, 
generally non-analytic, function of x.  The system is the sum of two elementary 
Systems I and 11: 
System I correspdnds to that of the previous section defined by 
- Absence of canals 
- cp’ equal to zero outside the axes A and B to infinity. 
- Values of cp’ inside the canal axes equal to those of the present scheme. 
The flow system can be calculated following the methods indicated in the previous 
section. In particular the values of cp in A and B can be found: ( c p J l  and ( ~ p 2 ) r .  

System I1 corresponds to that described in Section 4.2.3 : 
- In  the axes A and B, the potentials are cpl - (cpl), and cp2 - ( ~ p 2 ) r  respectively. 
- Between the canals cp’ = O. 

4.3 RADIAL FLOW 

4.3.1 Bessel functions . 

Figure 42. - In  the following sections solutions will be given in the form of Bessel 
functions. Since the theory of these functions is not generally known, its relevant parts 
will first be summarized. 
The differential equation 

d2y 1 dy 
dx2 x dx  

(1) - + - - - y = O  

is a linear equation of the second order with second member = O. If y = 41 (x)  and 
y = 42 ( x )  are two particular solutions, the general solution can be written as 

y = c 1 4 1 ( 4  + c242(x) 

where c1 and c2 are integration constants. Traditionally the general solution is written as 

(2) Y = ClKO(X) + c210(4. 

The function fo(x)  is a particular solution of (l), defined by the following conditions: 

for x = O, fo(x)  = 1 
for x = O, f&x) = O (IA= dfo/dx) 
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Fig. 42 

This function can be written as a series: 

xz x4 X6 
Zo@) = 1 + - + ~ +- . . .  

22 4222 624222 

For small values of x, I,(x) = I ,  as can be seen from the series. 
The function Ko(x) is also a particular solution of ( I ) ,  for the conditions 

f o r x = O  KO =%co 
f o r s  = co KO = O 

These conditions do not define the function fully, since any multiple of KO would 
satisfy them as well. The complete definition of the function, however, is generally 
given in an indirect way;and will not be formulated here, nor will the development 
in a series. For small values of x, 

Ko(x) = In (1,123/x) 

As can be seen from these definitions, for arbitrary values of c, and c2, (2) gives 
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infinite values of y, either positïve or negative, for both x = O and x = 00. 

The derivatives of the functions Zo and KO are traditionally indicated 

d d 
dx dx - z o w  = I , ( x )  -KK,(x) = - K,(x)  

The function I , (x)  can be written as a series 

x x3 x5 
z',(x) = - + - + 

2 4 .22  6 . 4 2 . 2 2 " '  

For small values of x ,  I , (x)  = 1/2x. The series for K,(x)  will not be given. For small 
values of x, 

K,(x)  = I /x  

In the problems of the following sections the quantity 

z = x dyldx 

plays a role. It is a solution of the differential equation 

- z = o  
d 2 z  1 d z  
dx2 x dx 

- 

which differs from the previous differential equation only in the sign of the second 
term. The general solution can be written as ' 

, 
2 = c ,xK, (x)  + C 2 X Z , ( X )  

where c, and c2 are integration constants. 
For the values of KO, Zo, K I  and I, reference is made to  mathematical tables, as listed 
at the end of the publication. Sometimes the functions are indicated differently, 
according to the following correlation: 

_" iHV' ( i x )  = KO (x) 
2 

- - 7L H y  ( i x )  = K ,  (x) 
2 

Jo(ix) = Zo(x) 
- iJ,(ix) = Z,(x) 

4.3.2 Flow in and around a circular area 
Figure 43 represents a cross-section of a circular area with radius R, inside of which 
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r-R- Fig. 43 

a 
c__ 

I 
I 

cp' = (pi, and outside of which cp' = ípi, to infinity. Physically the scheme may 
represent a circular, drained area, surrounded by marshes or by an area drained at a 
higher level. 
The solution can be written in Bessel functions: 
For the outside part: 

cp - cp; = m,Ko(ar) 

.- Q - -  - m a rK , (a  r )  
2nkD 

For the inside part: 

cp - cp; = ndo(ar )  

-- Q - n,arI,(ar) 
2nkD 

where 

I The law of linear resistance reads: 

I dcp I Q = kD2nr- 
dr I 
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I the law of continuity: 

I 
1 Elimination of Q gives 

where cp‘ equals cp; and cpb in t..: outer ant 

I 

inner part respectively. 

where 

kD 
The general solution of this differential equation reads: 

Substituting this value of cp in the law of linear resistance yields, 
cp - cp‘ = mK,(ar) + nIo(ur). 

I For the outer part 
I cp’ = cp’,, 
I For the inner part 
I cp‘ = cp;, 
I 
I 

m = m , ,  and n = n ,  

m = m 2 ,  and n = n ,  
Thus the solution depends on the values of four constants m , ,  n,, m2 and n,. These 
values are determined by the following four conditions: 

I 1. In the outer part 

I f o r r = c o ,  c p - c p ’ , = O  ( o r Q = O )  
I 
I 

This condition gives in either way of formulation n, = O, otherwise both cp - cp’, 
and Q would be infinite. Thus in the outer par t  

I cp - cp; = m,Ko(ar)  

I 2. In the inner part the synimctry condition . 

I f o r r = O ,  , Q = O  
I 
1 cp - cp; = n2io(ar.) 

gives m2 = O, otherwise Q would be infinite for r = O. Thus in the inner part 

99 



I 
I -- Q - n2arz,(ar) I 2nkD 

1 
I same value. Thus 
I . 
1 - m,K,(aR) = n,Z,(aR) 
I 

3. and 4. For r = R the values of cp and Q of the inner and outer part reach the 

n2Z0(aR) - m,K,(aR) = cp; - cp; 

From these two equations m ,  and n, can be calculated. 

4.3.3 Flow around a well 
Figure 44. - From a well in an infinite aquifer (cp = cp’) water is extracted at a constant 
rate eo. The problem is essentially the same as that for the outer part in the previous 
section, when R reduces to the radius ro of the well. Unlike a well in a phreatic or a 
fully confined aquifer, the present scheme corresponds to a steady flow system. The 
formulas are : 

Qo 
2nkD 

(1) cp - q’ = - - Ko(ar) 

O l i  4P- where 

I In the previous Section the formulas for the outer part were (writing cp! instead of 
1 epi, and ro instead of R): 

I (4) Q/2nkD = - m,arK,(ar) 
I 
I for r = ra, Q = Q,, 

I (3) cp - cp‘ = mlKo(a4 

When substituting in (4) the condition 

I m ,  can be found: 

I m, = - QoI2nkDaroKi (ar01 

1 
1 m , = -  QoPnkD 

I 

and since for small values of ar, K,(ar) 3 l/ur, 

which, substituted in (3) and (4), gives (1) and (2) 
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For small values of ar, 

1 ,  123 
Ko(ar) -+ I n  ~ 

ar  

and 

K,(ar) -+ l / a r  

Thus, at short distance from the well 

Qo 1,123 
cp - cp’ =’- ~ In - 

2nkD ar 

Q = Qo 

,The constant value of Q indicates that the recharge in a small circular area around the 
well may be neglected because of the small surface area, notwithstanding the great 
values of cp’ - cp. Thus the logarithmic function known from confined aquifers 
reappears. Whereas in the case of a confined aquifer the drawdown was infinitely 
great, it is now limited to a finite value. The explanation is that in a confined aquifer 
the full rate Qo is transported through the aquifer from infinite distance to the well, 
whereas in a partly confined aquifer, due to the recharge, this quantity increases from 
zero to the extraction rate of the well. 
As in  problems with n = O, there is no radius of influence. For practical purposes, 
however, a limit can be defined conventionally, e.g. as the distance from the well 
where Q reduces to 5 % or I O  % of the rate of extraction from the well. 

4.3.4 Several wells 
Figure 45. - If several wells A ,  B, C, D, E etc. are sited in an aquifer with constant 
cp’, extending to infinity, the question may%arise: what is the influence of all wells 
together on the pofential cp at a point P? It can be found from superposition of the 
following systems. 
- System I without wells, where cp‘ has the real value. Since in this system the aquifer 
is at rest, cp = cp’ at all points, e.g. at P. 
- System 11, characterized by cp‘ = O and extraction from well A only. 
- System 111, characterized by cp’ = O and extraction from well B only. 
- Similarly for the other wells. 
The calculation does not present any special difficulty, but if it has to  be made for a 
great number of points P, it can be speeded up by the following method. To explain 
the principle, it will first be assumed that the extraction rate from all wells is equal to 
unity. 
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Fig. 45 Fig. 46 

The plan of the wells is drawn to a certain scale on white paper. To the same scale, but 
on transparent paper, concentric circles are drawn around a well with unit discharge, 
at such distances that the drawdown on each circle corresponds to a round figure: 
1 m, 0,90 m, 0,80 m, 0,70 m etc. If the centre of the circles is laid successively on each 
well, the drawdown at point P can be read each time, and the results can be summed. 
But since the influence at  P of a well at A is the same as the influence at  A of a well 
with the same capacity at  P, the centre of the circles can more conveniently be laid 
on the point P ,  and the values at A,  B, C, D etc. read and summed, which gives the 
same result. 
If the discharges are different, the same method can be used, if before summation each 
reading is multiplied by the extraction rate from the corresponding well. 

4.3.5 Canal of limited length 
Figure 46. - From a canal with limited length L, in an infinite aquifer with cp' = O, 
water is extracted a t ' a  rate qL. For an approximate calculation the canal can be re- 
placed by a series of wells a t  equal distances b, each extracting a quantity of flow qb. 
This arrangement differs in two points from the reality: firstly in that the drawdown in 
the canal is smaller than that in  the wells and greater than that midway between two 
wells; secondly in that the drawdown in the wells near the extremities of the canal is 
smaller than that in the wells near the centre, whereas the water table in the canal is 
level. Although the problem can be solved for wells with equal drawdown and different 
extraction rates, this solution, requiring iteration methods, will not be examined here. 
Equal extracting rates from the wells will be assumed, which leads to the following 
results: 
1. At a point P,\some distance from the canal, the drawdown can be calculated by 
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summation of the influences of the wells, applying the method developed in the previous 
section. If the number of wells is not t oo  small, and the distance from the canal 
sufficiently great compared with the distance between the wells in the series, the ap- 
proximation may suffice for an orientating calculation. 
2. At any point of the canal at distances x 1  and x2 from the extremities, the draw- 
down can be found at its exact value by increasing the number of wells infinitely, the 
extraction' rate of each well becoming qdx. Under these conditions a varying draw- 
down in the axis is found, smallest near the ends,'greatest in the middle section. At any 
point at distances x1 and x ;  from the ends of the canal, (xl + x2 = L), the drawdown 

I c p =  -- ' 2 mKo(ax)d(ax) 
a2nkD o 

is 

3. If the length of the canal is extended infinitely, the drawdown at all points of the 
canal becomes the same. Its value is without approximation 

and since 

cp = - q/2akD 

which was the result obtained in Section 4.2.1. 

103 



5. N O N S T E A D Y  F L O W  ( C O N S T A N T  O) 

5.1 FUNDAMENTALS 

5.1.1 Elasticity 
Throughout this chapter inelastic water and soil will be assumed. In reality three 
factors play a role: 
(1) the elasticity of the water, (2) the elasticity of the grain material and (3) the changes 
in pore space due to  slight displacements of the grains (compaction). Generally (2) 
can be neglected in comparison with (1). Only the eleasticity of the water and the 
displacements of the grains need be considered. Thus the term elasticity may be 
applied to the sum of these two influences. 
In  the case of a confined aquifer the propagation of pressure waves is instantaneous 
when elasticity and inertia are neglected; when these factors are taken into account, a 
rapid, but not instantaneous, propagation is found. 
In  the case of a phreatic aquifer water may be released in two ways: ( I )  lowering of 
the water table and (2) elasticity due to lowering of the pressure. If the losses of 
energy in a vertical direction are neglected, both are proportional to the fall of the 
water table. They may be added, but then (2) is negligible compared with (1). 
In the case of a partly confined aquifer the elasticity of a clayey or silty top layer may 
be higher, and of another order of magnitude than that of the aquifer. It should 
therefoie be studied if this elasticity plays a role, and under which circumstances. 
Up to now fragmentary studies have been made on the influence of elasticity on 
nonsteady flow problems. They should be completed, and the order of magnitude of I 

the quantities involved examined, so as to define the conditions in which the effect of 
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5.1.2. Differential equations and superposition 

- law of continuity 

84, - + - -  8% - N 
dx ay 

where 
a. In a confined aquifer 

N = O  

while D is constant. The formulas define cp and q (qx and q,,) as functions of x, y and t .  
b. In a partly confined aquifer 

while D is constant. If cp' is given as a function of x, y ant t ,  the formulas define cp. q 
and n as functions of the same variables. If n is given they define cp' instead of n. 
c. In a phreatic aquifer 

acp N = n - p -  
òt 

while D is either approximately a constant (independent of x, y and t )  or a variable, 
related to cp by 

cp D = - + C  
Y 

where c depends on the choice of the reference level. In  either case the equations 
define cp and q as functions of x, y and t ,  if n is given as a function of the same variables. 

Normally the formulas of a scheme should be deduced from the above equations, 
combined with conditions (initial condition and boundary conditions). But in the 
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examples of the following sections they have been found in an indirect way, and the 
conditions have been established, if at all, after the mathematical solu$on, had been 
found. Moreover, in the case of sinusoidal waves, the initial condition is replaced by 
the condition of perpetual repetition. Thus, no example of a systematic solution has 
been given. 
The possibility of superposition depends on the same equations. If D is a constant, 
either exactly or approximately, summation is possible for the values of cp, q, N and n 
(and cp' in  the case of a partly confined aquifer). The derivatives of cp, cp' and q with 
respect to  x, y and t are summed as well as the quantities themselves. The proof 
follows directly from the fact that the equations are linear in these quantities. 

5.1.3 Water resources 
With respect to  the water resources of an aquifer, nonsteady flow may be considered 
from two points of view: 
1. From the moment extraction from a phreatic aquifer begins, the water table falls 
until steady flow is reached. The quantity of water released constitutes a yield of the 
aquifer, but its calculation follows from comparison between the initial and final 
steady state, and therefore does not involve the theory of nonsteady flow. This 
aspect of the problem will not be discussed in this chapter. 
2. The theory of nonsteady flow applies when the extraction during the seasons does 
not correspond to  the quantities which the aquifer receives from recharge and lateral 
inflow. Dry seasons and periods of shortage or lack of water in the rivers play a role, 
especially when they coincide with periods of high water demands, e.g. for irrigation. 
A phreatic aquifer may then serve as a storage basin. A partly confined aquifer with 
varying water table acts in the same way, but its capacity is less, since the effective 
pore space of the top layer is generally low. Engineering problems in this category are 
generally complicated. Only elementary problems will be dealt with, to be used as a 
basis for the solution of practical problems. 

5.2 ELEMENTARY SINUSOIDAL WAVES (PARALLEL FLOW) 

Figure 47. - In this section four schemes A,  B, C and D will be examined. System D, 
shown in the figure, is the most general. For certain particular values of the constants 
involved it can be reduced to any of the schemes A ,  B or C. The systems will first be 
examined separately (Sections 5.2.1 - 5.2.4). Then the reduction of the formulas of D 
to those of A ,  B and C will be shown (Sections 5.2.5 - 5.2.7). 
The schemes are commonly characterized by nonsteady, parallel flow in an aquifer 
with constant D, without recharge, traversed by a long straight canal; the aquifer 
extends at either side to infinity where y~ = O. In the canal the water level fluctuates 
around zero level as a sine function of time, according to 
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Fig. 48 Fig. 47 

. cp = cpo sin wt 

where o = 2n/T (T = period). 
The four schemes are different as to the nature of the aquifer: 
A: Phreatic aquifer. 
B: Partly confined aquifer (cp' = O). 
C :  Confined aquifer. 
D: Partly confined aquifer with variable cp'. 
The formulas for both sides of the canal will be given, but for the analysis, only the 
right-hand side will be considered. The formulas of both sides will be used in the next 
section (5.3). 

5.2.1 Scheme A (phreatic aquqer) 
Figure 48. - The formulas are: 

cp = (poeax sin (ot + ax) 
q,= qoeaX sin (ot + /? + ax) 

where 'po and qo are positive numbers: the sign of cp or q varies with the sign of the 
sine function. 
The values of j and a are different at either side of the canal 
- At the right-hand side 

Since a is negative, eax decreases with increasing x, which means that the amplitudes 
of cp and q decrease to the right. 
- At the left-hand side 
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Since a is positive, eax decreases with decreasing x; thus the amplitudes of cp and q 
decrease to  the left. 

I The differential equations are: 
I - The law of linear resistance: 

I (1) q =  k D -  

I 

acp 
ax 

I 

I 
- The law of continuity: 

I 

At the outset it is supposed that the solution has the following form: 
(3) cp =r poeaX sin (o t  + ax) 

q = qoeax sin (o t  + 
to  be written as: 
(4) q = qoeax [sin (wt + ax) cos p + cos (or -+ ax) sin p]  
where a and p are still unknown. 

From (3) and (4) the values of -' - and can be found by differentiation. 

Upon substitution in  (1) and (2) two equations are found containing terms with 
sin (wt + ax)  and cos (of + ax). The solution should be valid for all values of 
x and t, which implies that the terms with sin (wt + ax) and with cos(wt + ax) 
satisfy individually. Thus each equation separates into two conditions, which gives 
a total of four equations. 
(5 )  Sine terms of (1): qo cos p = kDcpoa 
(6)  Cosine terms of (1) : qo sin p = kDcpoa 

I (7) Sine terms of (2): cos p - sin p = 0 
I (8) Cosine terms of (2): qoa (sin p + cos p) = pcpoo 

+ ax) 

acp acp a4 
ax at ax 

I From (5 )  and (6),  or from (7), it follows that cos /? = sin p, which corresponds to 
5 1 p = - 2n or p = - 2rc. 
8 8 

I 
5 ' - The value p = - 2rc applies to the right-hand side of the aquifer. It corresponds I 8 

1 ' to cos p = sin p = -- .\/2 I 2 
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I From (5): qO/a = - cpokD42 

From (8): qOa = - - d2cp0pw 

Thus q,, and a can be calculated from their ratio and their product. 

1 
2 

1 
8 

I 
I 
I ' - The value of p = - 2n applies to the left-hand side of the aquifer. It results in 

I 
I qoa = - 2cpopw. 
I 2 J- 
From the given formulas the following properties of the flow system can be derived 
(valid for the right-hand side of the aquifer): 
- cp and q are sine functions of the time with the same period T = 2n/w. Both vary 
around the zero value. As to cp, this means that the water level in the canal as well as 
in any point of the aquifer varies around an average elevation equal to zero. As to q, 
it  means that in any section the water movement is alternatively towards the left and 
towards the right, without resulting flow. 
- In the canal the amplitudes of cp and q are 'po and qo. Both are damped with in- 
creasing x, vanishing at great distance from the canal. The law of damping for cp and 
q is characterized by a common factor eox. Thus in any section the ratio of the am- 
plitudes of íp and q is the same, and equal to that in the canal ' 

4 0  ___ 
-=  I / p w k D  
400 

5 
8 

- At the canal border the phase of q leads that of cp by - 2n. At distance x this differ- 

ence is maintained, but both phases are commonly delayed by 1 ax 1 with respect to 
the canal. 
- The time lag I ax 1, proportional to x, has as an effect that the phase of 'p or  q does 
not change for an observer moving away from the canal at  a constant velocity w/a, 
while the amplitudes, although decreasing, conserve their ratio. This particularity has 
given rise to the notion of (damped) waves, propagating with a constant velocity 
c = w/a. Two remarks should be made concerning this point: firstly the speed of the 
waves has nothing to do with the velocity of the water. The first is constant to the 
right; the second varying in direction. Their order of magnitude may also be very 
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different. Secondly, the notion of a constant speed of propagation is reduced to this 
problem. In other similar problems (e.g. Section 5.4.1) no hydraulic characteristic can 
be found which remains unchanged for an observer moving away from the canal at  
constant velocity. 
- Since the phase lag with respect to the canal is proportional to'x, it can theoretically 
amount to any value: n, 2n, etc. For a difference n the movement would be opposite 
to that of the canal; for 2n it would be in phase again. Yet these greater differences are 
not relevant because the waves are damped too much. For a lag of 71 the amplitudes 
of cp and q are already reduced to  4 %  of their values in the canal. 
- It is a basic assumption of the present studies that the losses of energy in a vertical 
direction are negligible. If the formulas are applied to homogeneous soil, this means 
that the vertical velocity components are small compared with the horizontal com- 
ponents. The formulas given define for a section at distance s from the canal, cp and q 
as functions of time, and therefore the vertical velocity component at the water surface, 
related to  cp, and the horizontal component in the whole section, related to q. Both are 
sine functions of time. When comparing their amplitudes the condition is that 

Rapid variations, as caused by tidal movement for instance, do not always satisfy this 
condition. 

1 At distance x from the canal, the vertical velocity component at the surface is 

I 
I 
I 
I equal to  
I 

with a half amplitude of pocpoe"x (the word velocity taken in the sense of the volume 
of water displaced per unit time through a unit area including the section over the 
grains). At that distance from the canal the horizontal component of the velocity is 

4 40 

D D  

I 

I v = - = - eoX sin (wt + j3 + ax)  

I 
90 I with a halfiamplitude of - eax. Comparison of the amplitudes gives the result I D 

1 stated. 
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5.2.2. Scheme B (partly coilJined aquifer, q' = O) 

Figure 49. - The formulas are 

cp = cpoeax sin wt 

q = qOeQx sin (ut + p) 
qo = ' po  J k D  k'lD' 

.____ 

where 'po  and qo are positive. 
' - For the right-hand part of the aquifer 

- For the left-hand part 

Fig. 49 

I The differential equations are 
1 - The law of linear resistance 

acp 
ax 

I 

I 
1 ( 1 )  q =  kD- 

1 - The law of continuity 

I 
I time. 
I 
I 
1 
I to be written as 
I 
1 These formulas must be verified by substitution in the differential equations ( I )  
I and (2), at which occasion the values of LI and /3 are found. 
1 Substitution gives as conditions 
1 - The cosine terms of ( 1 )  and (2): sin p ='O 
1 - The sine terms of ( I ) :  

In  these equations t does not appear explicitly, although q and cp are functions of 

It is assumed that the solution has the following form 

cp = (poeQx sin wt 
q = qoeax sin (wt + /3) 

q = qoeox (sin wt cos p -k cos wt sin /I) 
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40 - kD’P0 
u cos p 

I 
I 
I 

k’lD’’P0 
I 
I 40u = -- 

cos p I 

I - The sine terms of (2): 

1 
I 

- I 

The solution sin p = O, p = n, cos p = - 1 corresponds to the right-hand part of 
the aquifer; the solution sin j? = O, p = O, cos p = + I to the left-hand part. In 
either case qo and a can be calculated from their ratio and their product. 

These formulas express the following properties (considering the right-hand part of 
the aquifer) : 
- In any section, cp as well as 4 vary around zero as a sine function of time. 
- The amplitudes of cp and q both decrease proportionally to eax (where u is negative). 
Their ratio at the canal 

’ 

40 ___ 
- = I /kD k’/D’ 
‘ P O  

is conserved in all sections. Both amplitudes vanish at infinite distance from the canal. 
- Since in the expressions for 9 and q the argument of the sine function is independent 
of x, the propagation of the waves is instantaneous, although damped. 

5.2.3 Scheme C (conjined aquifer) 
Figure 50. - The formula for cp at both sides of the canal is the same as for the canal : 

q = qo sin cot 

while 

q = o  

I The proof is given by substitution in the differential equations 
I - The law of linear resistance: 

1 1 The law of continuity: 

a4 - 0 
1 
I -- 
I ax 
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-x 
Fig. 50 Fig. 51 

These formulas represent the instantaneous and not damped propagation of pressure 
variations in stagnant water. This extreme result is due to the basic assumptions, 
which exclude elasticity and inertia: 

5.2.4 Scheme D (partly confined aquifer with varying 40') 

' Figure 5 1. - The formulas are : 

( I )  cp = cpoeax sin (ut + bx) 
(2) cp' = cpbeeX sin ( u t  + bx + a) 

(3) q = qOeaX sin (wt + bx + p) 
where cpo, cpb and qo are positive; the sign of cp, cp' or q varies with the sign of the 
corresponding sine function. 
As to the constants, a is defined by 

P" (4) t g ( -  a) =- 
. . k'/D' 

'2n 2n 
where O < (- a) < -. The limit values - a = O and - SI = -will be studied sepa- 

4 4 
rately. 
p is determined by 

- For the right-hand part of the aquifer 

2n 5 
2 8 
- < p <-2n .  
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Both sin p and cos p are negative. 
- For the left-hand part of the aquifer 

1 
8 

o < p < - 2 n .  

Both sin p and cos p are positive. 

rpb is ,determined by 

(6)  

where cos c1 (= cos (- a)) is always positive. 
yo is defined by 

rpb = ‘po C O S  ~1 

(7) 

positive by definition. 
a is defined by 

qo = rpodp‘wkD COS U, 

(8) a = --cosp 40 = p ” ” , Z “ s  a cos p 
rpOkD 

where a has the same sign as cos p. 
b is defined either by 

(9) b = - 40 sin p = J / p t w k 0 s  ;in p 
rpOkD 

or by 

b = a t g b  

where sin p, cos p, a and b have the same sign, and tg p is always positive. 

, I The differential equations are: 
I - The law of linear resistance 

arp I 
I ax 
I (10) 4 = k D -  

* I  

I - The law of continuity: 
I 

I These three differential equations define q, rp’ and q as functions of x and t. 
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Formulas (I), ( 2 )  and (3) are admitted tentatively as a solution, with unknown 
values of a, p, vlo, qo, a and b. From them a'p/ax, aq/dx and a'p'/at are derived by 
differentiation. Substitution in (10) and (1 1) gives separate conditions for the sine 
and cosine terms, a total of six. 

(12) a = ~ qo cosp  
'pOkD 

(13) b = ~ 'O sin p . 
'pOkD 

'k' 
D' 

(14) qO(a cos p - b sin p) = - p"pbm sin a = - ('po - 'pb cos a) 

k' 
D' 

(15) qO(b cos p + a sin p) = ,u"pbw cos c( = - - 'pb sin a 

These six equations define the six constants c(, p, 'pb, qo, a and b. 
Subsitituting the values of a and b from (12) and (13) into (14) and (15) gives: 

k' . 
cos 2p = - ,u"pbm sin a = - ('po - 'pb cos a) (16) - 9; 

VOkD D' 

From the last two members of (17) 

(18) tga = - !? 
kf/Df 

From the first members of (16) ànd (17) 
k'/D' 

,uw 
(19) tg2p =I 

From the last members of (14) and (15) 

'po - 'pb cos a 
tgu = (PA sin a 

written otherwise: 

(20) 'pb = 'po cos CI 

From (18) it follows that tg (- a) is positive; from (20) that cos (- a) is positive. 

Thus O < - a < - . From the first two members of (16), since sin a is negative, it 
2n 
4 
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follows that cos 2p is positive; from the corresponding members of (17) that sin 2p 
is positive, thus O < 2p < 2x14 and O < p < 2x18. This condition applies to  the 
left-hand part of the aquifer. But since the limits of 2p may be increased by 271, 
those of p may be increased by 2x12. Thus a second range for f i  is found: 
2n 5 
- < /3 < - 2n, applying to the right-hand part of the aquifer. 
2 8 
- For the right-hand part of the aquifer sin p and cos p are negative; thus, ac- 
cording to (8) and (9), a and b are negative. eax decreases with increasing x, i.e. 
towards the right. 
- For the left-hand part sin p and cos f i  are positive; a and b are positive, eax 
decreases with increasing x, i.e. towards the left. 

The characteristics of flow system D may be summarized as follows (for the right- 
hand part of the aquifer). 
- In the canal, as well as in any section of the aquifer, cp and cp' vary around the zero 
-value. The flow rate q varies equally around zero, which means that the water moves 
alternately in both directions, without any net displacement resulting. 
- The amplitudes of cp, cp' and y are in the same ratio to each other in all sections of 
the aquifer. They are commonly multiplied by a factor eax, which decreases with 
increasing distance to the canal and vanishes at infinity. 
- At the canal border cp' lags behind cp by a difference in phase varying from zero to 
I14T, depending on the constants of the system, whereas q is in advance of cp by a 
difference varying from 1/2 T to 518 T. 
- In a section at distance x from the canal the phases of cp, cp' and q still have the 
same differences, but are commonly delayed by bx. This characteristic corresponds 
to  the notion of waves propagating with a velocity c = o/b .  

5.2.5 Reduction of scheme D to scheme A (phreatic aquifer) 
If in a marginal case 

~- $o - tg (-- e) -+ o 
k'/D' 

it follows that 
, 

_ -  po - cos (- .) -+ 1 
' P O  

which means that the amplitude of cp' approaches that of cp. This condition may 
correspond to different physical characteristics of the scheme,.all resulting in the same 
effect that the losses of energy in the top layer due to  the vertical velocity components 
become negligible. 
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- High values of k'. - When k' increases infinitely, the top  layer assumes the character 
of the aquifer, in which.the losses of energy due to the vertical velocity components 
are neglected by assumption. Thus the aquifer becomes phreatic. 
- Low values of p'. - When p' decreases, the water transport through the top layer in 
vertical direction, corresponding to  a given displacement of the water level, decreases, 
and vanishes when p' + O. Thus, for given value of k', the corresponding losses of 
energy vanish, which renders the flow system similar to that of a phreatic aquifer. 
- Low values of o. - Since T = 27c/o, this condition corresponds to  very slow 
oscillations, where the vertical water transport in the top layer causes low velocities 
with negligible losses of energy, which again leads to  analogy with the phreatic 
aquifer. 

1 

I 
I 

As a further consequence, according to (7) 

where p' has been written for the effective porosity, which in the case of a phreatic 
aquifer may be indicated by p. 

I 40 + ' p o  JI*rwkD 

! 5 .  ' 

I 8 
I 

Finally tg(- u) + O corresponds to  /3 4 - 2.n (at the right-'hand side of the canal), 

which in turn corresponds to 

1 sin fi  as. well as cos /3 -+ - 1 , / 2  ; a as well as b -+ - 
I 2 2kD 

5.2.6 Reduction oj'scheme D' to  scheme B (partly confined aquiJèr, 'p' = O )  
If in another marginal case 

~ = cotg (- a) 
P'W 

k'/D' 

I is small, but not zero, it follows that 

k'lD' _ -  - cos (- u) + ~ 

'po  P" 

As in the previous section, this condition may correspond to  different physical 
characteristics, all resulting in the same effect that the amplitude of 'p' becomes 
negligible compared with that of 'p. 

- Low values of k', which strongly damp the oscillations of 'pl. 

- High values of o, corresponding to rapid oscillations of 'p, which cannot be followed 
by the water table. 
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- High values of p' would give the same effect, but p' is limited by the maximum 
values of the effective porosity in natural soils. 

k'lD' . ' Substituting cos a = - in (7), where p' cancels out: I 11" 

k'/D' 

PLO 
tg2p = I 

I 

I 
1 

and cos p near - 1. 
k'lD' ' 2j7, and p near n, while sin f i  is about - - 

For small values of the right-hand side of the equation, 28 is (near zero or) near 

I P" 

I According to  (8), for cos a -+ -, k'/D' a - + - f g  
I P'O 
I 
I 
1 
I 

According to  (9), b = atg p. Since tg p is small, I bx I is small compared with I ax I .  
As was shown in the analysis of Scheme A, values of 1 ax I > j7 are of little interest, 
because e-" reduces to about 4% only. Thus bx is only a fraction of n, and can be 
neglected as a difference in phase. 

5.2.7 Reduction of scheme D to scheme C (confined aquifer) 
If finally 

-- - cotg (- a) = o 
P'U 

k'/D' 

. it follows that 

cos (- a) = o 
and therefore 

cpb = 'po cos (- a) = o 
This condition corresponds to k' = O. The top layer is impermeable; the phreatic level 
does not react on the variations of cp. 

I According to (7) 

I 40 = 'po dp'íXkD COS 
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I 
I stagnant water. 
I 
1 
I 
I 
I is instantaneous. 

also qo = O, which corresponds to the propagation of pressure waves'through 

Since cp' = O and q =,O, the only formula remaining is that for cp: 

where a = b = O (according to  (8) and (9) both are proportional to qo, which is 
zero), thus with a = O the waves are not damped, and with b = O the propagation 

cp = (poeax sin (ut + bx) 

5.3 SUPERPOSED SINUSOIDAL WAVES (PARALLEL FLOW) 

The assumptions underlying the following sections are much the same as those of 
Section 5.2.1. In both cases parallel flow is assumed in a phreatic aquifer with constant 
D and n = O. The difference is in the boundary conditions. Whereas in Section 5.2.1. 
the aquifer was bounded at one side by a canal where 

cp = qo sin wt, 

in the following sections it is bounded at both sides. The formulas will be found by 
applying the principle of superposition, taking the formulas of Section 5.2.1 as a base. 
These will be repeated here in a slightly different formulation, which is more practical 
for the purpose. 
Writing U for the absolute value of a, and u for the absolute value of the distance 
between the canal and the point in question, while q remains positive when directed 
to the left, the formulas become: 
For waves propagating in both directions: 

cp = sin (wt - UU) 

For waves propagating to the right: 

q = - qOeëau sin 

For waves propagating to the left: 

where 
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5.3.1 Constant cp as a boundary condition 
Figure 52. - The problem is to describe the water movement between the canals A and 
B, if in A the potential is a sine function of time 

cp = cpo sin u t ,  

and in B constant, equal to zero. 
The solution can be found by superposing an infinite series of schemes similar to that 
of Section 5.2.1., each characterized by one canal sited in an infinite aquifer, while the 
potential in the canal varies according to 

if the canal is marked with a plus sign in the figure, and to 
cp = 'po sin o t  

cp = - 'po sin cot 

if marked with a minus sign. 
The solution is 

q = cpo Xpe-'" sin (at - au) 

q = qoZcSe-'" sin 

where in the different terms successively 

- 1  - 1  21 - x 
+1 - 1  21+ x 
,- 1 -1  41 - x 
+ 1  -1 41 + x 

+1 - 1  61 + x 

p =  + 1 ,  s =  -1, u = x  

- 1  -1 61 - x 

etc. 
q o  = ' p o  2/pokD = ~ o a k D d 2 ;  a = 2/po/2kD 
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I 
I 
I 
I only influence. 

The proof follows from the fact that the figure represents symmetry with opposite 
signs as to both canal axes, so that in canal B all cp variations counterbalance each 
other in pairs, whereas in canal A the variations in the canal itself remains as the 

In principle another method can be followed, which may be preferable if the series 
converges slowly. If the summation is restricted. to the first two terms, the condition 
cp = O in canal B is satisfied, but cp in canal A would be 

cp = cpo sin ut - cp0e-2a' sin (wt - 2al) 

which is not the true boundary condition 

cp = cpo sin ut 

but can be written in the form of a single sine function 

cp = c,q0 sin (wt + c2) 

Thus the formulas for cp and q as functions of x and t ,  found by summing only the 
first two terms, can be adjusted by dividing the values of cp and q by c, ,  and delaying 
their phases by c2. The determination of c ,  and .c2 may be done analytically or 
graphically. 

5.3.2 q = O as a boundary condition 
Figure 53. - The model is similar to that of the previous section. In canal A, cp varies 
in the same way, according to 

cp = cpo sin wt 

Fig. 53 

E 

121 



but the boundary condition on line B is 

q = o  

This mathematical condition physically represents either an impermeable boundary, 
as indicated in the upper part of the figure, or the symmetry axis of an aquifer where 
in  canal C ,  cp varies in the same way as in A, as indicated in the lower part of the 
figure. 
The solution can be found in the same way as in the previous section by superposition 
of an infinite number of systems, each characterized by a single canal in an infinite 
aquifer. The variations of cp in these canals are equal or opposite to those in canal A, 
according to the plus or minus sign in the figure. 
The solution can be expressed in the form of a series 

1 
~ 

I 

I 
40 = qo Epe-'" sin (ut - au) 

q = qoCs e-'"sin 

where in the different terms successively 

p =  +1, s =  -1, u =  x 

+1 +1 21- x 
-1 $1 21 + x 
-1 -1 41 - x 
+1 -1 41 + x 
-1 +1 61 + x 
+1 + l  61 - x 

I .. The proof follows from the fact that the figure represents symmetry with respect 
I to  line B, which implies q = O in B. The symmetry with opposite signs about line 
I A means that the influence of all canals on the cp value in A cancel out in pairs, 
I with the exception of the influence of the canal itself. 

As in the previous section the summation may be restricted to the first two terms, 
and the result adjusted in the way indicated. 

5.3.3 Periodic variations in recharge 
Figure 54 represents a cross-section of a strip of land or an elongate island. The 
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n 

Fig. 54 

potential q~ of the (fresh) water at both sides is constant, equal to  zero. The recharge n 
varies as a cosine function of time, according to 

If the period is one year, this formula may represent seasonal variations -in the re- 
charge. The figure shows these variations in two different suppositions: for a n, value 
relatively small compared with n,, and for no = n,, which may correspond to  the 
alternation of wet and dry seasons. 
The solution (System IV) is found by superposition of three elementary systems, 
I, I1 and TIT. 
System I is characterized by 
- constant recharge n,, and 
- potentials cp = O at both sides. 
These conditions describe a steady flow system, as was examined in Section 2.2.1. 
The formulas are: 

n = n, + no cos cot 

. 

System 11 is characterized by 
- recharge n = no cos cot, and 
- potential variations at both sides 

no . cp = - sin ot 
PO  

The recharge n = no cos wt, if represented physically, would correspond to an alter- 
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, nation of recharge and evaporation. If such alternations occurred in an aquifer 
extending in all directions to infinity; they would create uniform oscillations of the 
water level, corresponding to  variations in cp defined by ' 

1 _ -  L i ~  - - (no cos o t )  
dt P 

or upon integration 

no . cp = - sin ot 
Po 

If the aquifer were limited, but the water level at both sides varied in the same way, 
the level in the aquifer would also move up and down as a horizontal plane, according 
to the given formulas, and no lateral flow would occur: 

g = o  

System I11 is characterized by 
- recharge n = O, and 
- variations of cp at both sides according to 

, 

n 
cp = - o s i n o t  

/*o 

so as to  counterbalance the movements introLJce1 in System 11. The formulas of 
System I11 have been given in the preceding section for a distance 21 between the 
canals instead of 1. 
Thus, by summing the equations of the three elementary systems, those of System IV 
are obtained : 

n1 n n 
4p = __ x (1 - x) + 0 sin ot - L X p e - "  sin (ot - au) 

2kD , p o  , I. .pc0 

where a =, 1/['; -, and in the terms successively: 
. ,  

p = + I ,  s =  -1, u =  x $1 -1 21 + x 
t l  + 1  I - - x  +1 +1 31 - .Y 

-1 $1 I + x  -1 +1 31 + ,Y 
-1 - 1  21 - x etc. 
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5.4 SUDDEN CHANGE IN BOUNDARY CONDITION. PARALLEL FLOW 

5.4.1 Basic formulas 
Figure 55. - Again in this section the systems are characterized by parallel flow in a 
phreatic aquifer with constant D,  and n = O. The aquifer is bounded on the left by a 
canal, and extends ‘infinitely to the right. The water movement is discontinuous at  
the moment t = O. Before that moment, the aquifer was at  rest (cp = O, q = O). 

From that moment onwards it is under the influence of a given variation in the canal, 1 defined either as 

cp = c l tm  

or as 
m- 112 q = c,t 

where c ,  and c2 are constants, and m a parameter. 
The series of solutions to be examined (depending on the parameter m) can be 
written.in the form 

4- 
~ a = - , / p k D  and f ’  = -. 

2 ’ du 

The function f ( u )  is a solution of the linear differential equation 

,f” + 2uf’ - 4mf = O 

for the conditions 
f o r u =  co, f = ‘ O  
fo ru=O,  f = c  
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The differential equations are: 
- The law of linear resistance 

acp 
ax 

(3) q = k D  - 

- The law of continuity: 

a4 acp (4) - = p - 
’ ax at 

- The solution 

is to be checked by substitution into the differential equations (3) and (4). Differ- 
entiating (1) with respect to x and substituting in (3) yields 

Differentiating (2) with respect to x gives 

( I )  cp = t’”S(u) 

(2) q = atm-’ / ’  f ’ 

- - _  
ax k D  

Differentiating ( I )  with respect to t gives 

When these values are substituted in (4) thè result can be written in  terms off 
and u only, which confirms that the structure of formula (1) was right: 

f” + 2uf‘- 4mf = O 

This differential equation relating f to u is of the second order. Its solution is 
defined by two conditions, for which are chosen: 
- For u = co,f’= O 
The value u = co corresponds to t = O as well as to x = 00, while f = O cor- 
responds to cp = O. Thus the above condition is the combined expression of 
the initial condition: 

and the boundary condition at infinite distance from the canal: 
fo r t  = O ,  cp = O  

f o r s  = co, cp = O 
For u = O, f’= c 

The value u = O corresponds to x = O or t = co. Thus the condition expresses 
both 

for x = O cp = ctm 
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which is the boundary condition at the canal, and 

The state at t = co need not be considered here, since the basic assumption of the 
problem was that D is constant. Of any variation of in the canal, proportional to 
a power of t, only the first period is to be considered, when the level variation is 
negligible in comparison to D. The only exception is the casem = O, where indeed 
for t = 00, cp = cto = c 
(see below for the analysis of .that case). 

fo r t  = ca cp = ctm 

Four cases will be examined: 
- m = O. At t = O the potential in the canal is suddenly lowered, and kept constant 
from that moment onwards (cp = c). 
- m = 1/2. From t = O onwards a constant rate is extracted from the canal (q = c). 
- m = 1. From t = O onwards the potential in the canal is lowered at a constant 
rate (cp = ct). 
- m = 1 112. From t = O onwards the water is extracted from the canal at an increa- 
sing rate, proportional to time (q = ct). 
Table. - (see pag. 128). 
The formulas of these four cases are given in the upper part of the table. The 
left-hand column gives cp and q as functions of x and t ;  the right-hand column gives 
the same quantities as functions of time at the canal border (x = O). 
In the lower part of the table the left-hand column gives the definition of the functions 
f o ,  fi, . f i ,  f 3  and J l k ;  the right-hand column their values for u = O. For u = 00 all 
functions vanish.The relationship is such that 

fo =A, fl =f;, f 2  =.I-;, f 3  =.I-: 
wheref' stands for df/du 

The formulas show that at any distance x from the canal, however great, a slight 
influence is felt, even shortly after the moment t = O. This is due to the artificial con- 
ditions, elasticity and inertia of water and soil being neglected. 
Figure 56. - The functional relationships are illustrated. The left-hand column gives 
cp as a.function of x at four successive moments, chosen at equal intervals. The 
second and third column give respectively cp and q as functions o f t  at the canal (x = O). 
Figure 57. - Similar diagrams can be drawn for any value of x. As an,example cp is 
given as a function of t for m = 1/2 in four sections a, 6, c and d, chosen at  equal 
distances, where a is the canal border. Each curve shows an inflection point P which 
is nearer to the origin of the coördinate system when x is smaller. For x = O, P 
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coincides with the origin, and the tangent t o  the curve in the origin, which is horizontal 
for all curves, becomes vertical. 

5~4.2 Superposed variations 
Figure 58. - 1 .  Four examples will be given of superposition of elementary flow 
schemes. 
1 .  In the model of the preceding section cp may vary in an  arbitrary way with time, 
as indicated by the smooth curve in the figure. If this curve is replaced by a stepped 
curve, the latter can be considered as the sum of a great number of elementary systems 
of the type m = O ,  as indicated in the upper group of diagrams. The same line of 
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b 

Fig. 60 

thought can be followed if the diagrams represent q instead of rp as a function of t ,  in  
which case the solution can be reduced to schemes of the type m = 1/2. 
Another approach is shown in the lower part of the figure, where the smooth curve 
is first replaced by a polygon, and then considered as the sum of a great number of 
schemes of the type m = 1 or m = 1 1/2, .depending on whether variations of cp or q 
are given. 
Figure 59. - 2. Instead of arbitrary variations, periodic changes may be studied, 
which correspond to such technical problems as daily or seasonal extraction from 
canals, or seasonal variations of river levels. As an example, a series of periods of 
equal length will be considered, during which alternately water is extracted from, or 
supplied to the canal, at  equal rates. The quantity of flow thus passing through one of 
the sides of the canal is alternately + q,, (during extraction) and - q,, (during supply). 
Since the calculation must start from the initial state of rest, the first period may be 
one of either extraction or supply. The water movement at some distance from the 
canal will approach a regime of periodic repetition, but only after a certain number of 
phases. This state will be reached either from the low or the high side depending on 
whether the first period was one of extraction or supply. It can be reached more rapidly 
when a period of half length is assumed at the beginning, since at about the middle of 
each period the water level in  the canal is nearest to its average height. 
Figure 60. (Upper part). - The next considerations concern the state of periodic 
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Fig. 61 

repetition. In the canal, as long as water is supplied, the level rises; as soon as extrac- 
tion begins it starts falling: the reaction is immediate. This is indicated in the middle 
figure, where, in the diagram of cp in the canal, the line a a represents the sum of all 
influences before t = t , ,  while the shaded surface represents the influence of the ex- 

traction starting at  t = t l .  Since the latter diagram is characterized by - = - co for 

t = t l ,  the upward trend of the cp line immediately changes to a downward one when 
the extraction begins. 
The diagram for a point at  some distance from the canal (lower part of the figure) 
shows another character. Firstly the amplitudes are smaller: the waves are damped. 
Secondly there is a lag in phase: the moment when the sign of arplat changes is delayed. 
The reason for the latter particularity is shown in the figure, where the line b b represents 
the sum of all influences before t = t,, and the shaded diagram the influence of the 
extraction beginning a t  t = t,. In this case the latter diagram is characterized by a 
value acpldt = O for t = t , ,  which means that the upward movement of the cp line 
does not change into a downward one until the negative value of &plat in the shaded 
diagram has become as great as the positive value of the line b b. (The form of the 
shaded diagram has been studied in Section 5.4.1 .). 
Thus a lag in phase exists, depending on the distance to the canal, similar to that 
described for sine variations in the canal (Section 5.2. l), but which does not correspond 
necessarily to aconstantvelocity. Anyhow the variations in steps of q at the base of this 
example are very near sinusoidal variations, and in orientating calculations the for- 
mulas of the sine functions may be taken, since they are more simple. The formulas of 
this section are useful in problems of less regular variations, e.g. periods of extraction 
and supply of different length. 

acp 
at 

Figure 61. - 3. In the above examples the variations in canal level were defined either 
in terms of cp or q. In the following example they will be expressed in terms of both 
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cp and q. Before the moment z = O the aquifer is at rest. From t = O to t = to water is 
extracted from the canal, at a constant-rate, corresponding to a flow qo through the 
side of the canal. From t = to onwards the level in the canal is maintained at constant 
height. The problem is to assess the quantity of flow entering through the side of the 
canal after t = to as a function of time. 
Although the boundary condition between t = O and t = to is given in terms of q as 

4 = 40, 

it can be translated in terms of cp by means of the formulas of the schcme m = 1/2. 

This continuous variation of cp with time can be considered the succession of an in- 
finite number of infinitely small variations dcp, where the value of dq follows from 
differentiation of (1) 

2) d q  - 't-l/'dt 

The flow dq through the side of the canal at a time t ,  ( t l  > to) caused by an elementary 
change in cp at the moment t (O < t < to)  is defined by the formulas of the system 
m = O. 

2 a d  n 

d q  = - --(ti 2a - t ) -  1/2 d cp 
d n  

or, afte! substitution of the value of dcp from ( 2 )  

d q  = ?!? t-'/' ( t l  - t ) - l12 d.t 
'II 

Integration between the limits t = O and t = to gives 
- 

2 q1 = - qo arc sm 
n 

where q1 is the flow through the side of the canal at the moment t l .  
Considering q1 and t ,  as variables, written as q and t ,  the formula becomes: 

- 
2 q = - q o  arc sin 
n 

This function is represented in. the figure. For t = to, d q / d t  = - CO; 

q = qo/2; for t = 4t0, q = qo/3. 
for t = 2t0: 
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4. If the aquifer, instead of extending to infinity, is bounded at the other side by a 
second canal where cp = O, or by an impermeable wall, where q = O, the problem can 
be solved by the method indicated in Section 5.3. for sinusoidal waves. The system is 
then the superposition of an infinite series of schemes, each characterized by a single 
canal, where the variations of either cp or q are equal or opposite to those in the first 
canal. Since the reasoning is the same, it will not be repeated here. 
Another scheme, not mentioned here, since it is similar to that of Section 5.3.3, is the 
water movement in an island, created by a succession of dry and rainy seasons, each 
with uniform rainfall. 

5.5 SUDDEN CHANGE IN BOUNDARY CONDITION. RADIAL FLOW 

Figure 62. - This section treats the same problems as Section 5.4.1, but for radial 
instead of parallel flow. A well is sited in a phreatic aquifer with constant D, without 
recharge, extending in all directions to infinity. The aquifer is at rest until t = O. From 
that moment onwards water is extracted from the well in such a way that 

Q = Ct"' 

where c is a constant, and m a parameter. 

Fig. 62 
f O0 ~ /~~ /~ , ,  

- - 

D 

The general form of the solution is very similar to that of parallel flow. It reads: 

(1) cp = tmf(U) 

(2) Q = 27~kDt"'~4'(~)  

where 

the same variable as used in the formulas of parallel flow. f'(u) stands for df/du 
whilef(u) is the solution of the differential equation 
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for the conditions: 
f o r u = c o ,  f = O  
for u = O, uf'= c1 

where c, is a constant. 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

I 
I 

' I  
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The proof is essentially the same as in Section 5.4.1. The differential equations are: 
- The law of linear resistance: 
(3) Q = 2nkDr acplar 
- The law of continuity: 

aQ , Zcp (4) -=2npr -  
ar at 

When taking 

substitution in (3) gives 
( 5 )  Q = 2nkDt"uf' 
Differentiating ( 5 )  with respect to r results in 

(1) cp = tmf(4 

aQ U 
- = 2nkDt" - (f'+ uf  ") 
ar r 

Differentiating (1) with respect to t gives 

When these values are substituted in (4), the result can be written in terms off 
and u only 

f (u )  must be a solution of this differential equation for the following two boundary 
conditions 
- For u = co, .f = O 
The value u = 03 corresponds to both t = O and r = co, while f = O corresponds 
to cp = O. The condition therefore combines the initial condition 

and the boundary condition at  infinite distance 
for t =- O, cp = O 
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I f o r r = c o ,  q = O  
1 - For u = O, uf'= c1 

I The value u = O stands with slight approximation for r = ro (where ro is the  radius 
1 of the well). I t  is not certain beforehand whether this approximation is justified, 
1 since the function / (u)  shows a singularity for u = O. The proof can be given 
I afterwards, when the functionf(u) is determined, by showing that the value of uf 
I varies little for small values of u. The value uf' = c ,  corresponds to Q = 2nkDc,t'" 
I = ctm. Thus the condition stands for 
I 
I As in the problem of parallel flow, u = O corresponds to t =I co as well, but only 
I a limited range o f t  will be considered, since the drawdown must be small in com- 
I parison with D, so as to  be negligible. 

for r = yo, Q = ctm 

Since the formulas of this section are more complicated than those for parallel flow, 
only the case 172 = O will be treated, which corresponds to  extraction from the well at  
a constant rate Qo. I t  has already been pointed out that constant extraction in an  
infinite phreatic aquifer does not give rise to a steady flow system. The formulas 
below describe the nonsteady system. They are valid for a limited period of time only, 
since the condition must be satisfied that the drawdown in the well is small compared 
with the thickness of the aquifer. 

The solution reads: 

Cp=- Qo Ei(- v); Q =  Qoe - u  

4 n k D  

where 

p '  r 2  
y = 1,781072 ... ; v = U' = - - 

4 k D  t 

The formulas indicate that there is no  radius of influence: the influence of the  varia- 
tion in the well is felt immediately a t  any distance, in a measure which varies with time. 
It vanishes at infinite distance. 'This result is due to the extreme assumption of in- 
elastic soil and water and the absence of inertia forces. 
Artificially a radius of influence can be defined as the distance R from the well where 
Q < tl Qo, when CY is an arbitrarily chosen small fraction, e.g. 5 %. For  this value v = 3 
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t. Thus R increases with 
9.2kD 

t .  For a = lo%, v = 2,3 and R2 = - 
12kD 

and R2 = - 
P P 

Z / t .  There is no constant velocity as regards the propagation of the front. Hence the 
term waves should preferably not be used. (Only the surface area of the circle enclosed 
by the radius R increases porportionally to t) .  
For small values of v, (v < v,), the series can be reduced to its first term only. The 
formulas then become 

The error introduced is 0,3 % for v = 0,01, 5,3 % for v = O,lO,  9,9 % for v = 0,15 
and 15.6% for v = 0,20. The approximation is valid for values of x and t bound by 

i.e. within a circle whose radius increases proportionally to l / t .  The constant value of 
Q indicates that the recharge within the circle is negligible compared with the flow 
entering laterally through its border. This circle extends with time because the lowering 
of the water table within it decreases with time. This is another example of a flow 
system where Q is constant in the vicinity of the well, which makes the relation 
between cp and Y logarithmic (see Section 2.3.1). 
The logarithmic relationship is valid in particular at the well face (r = ro) .  Thus the 
drawdown in the well is given by 

The formulas established in this section may be useful for calculating the water move- 
ment created by periodic extraction from a well, alternating with periods of rest, as 
may occur in irrigation or drainage practice. When several wells are sited in an 
aquifer, their influences can be superposed by adding the values of cp or q. The 
extraction from the wells need not begin simultaneously. The aquifer may extend to 
infinity in all directions, or be limited by parallel canals, or by a canal and an imper- 
meable wall. The way to handle these problems has been indicated in Sections 2.3.4 
and 2.3.5. 
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6. T W O - F L U I D  SYSTEMS O F  F R E S H  A N D  SALT WATER 

I' 6.1 FUNDAMENTALS 

6.1.1 Introduction 
I n  coastal regions, water infiltrating from rain or irrigation flows off underground 
towards the sea. This groundwater flow does not cover the total thickness of the 
aquifer, because the sea water, due to its greater specific weight, intrudes laterally into 
the lower part of the permeable strata. The slight difference of two to three percent in 
specific weight suffices to change entirely the characteristics of the flow pat!ern from 
those of a one-fluid system. Two distinct bodies of fresh and salt water form, one 
floating freely on the other. 
Between the two bodies a transition layer of brackish water develops. The mechanism 
of its formation will be discussed later, as well as the reason why its thickness remains 
reduced (see Section 6.4). This layer is often thin compared with both the fresh and the 
salt water layer; its thickness may then be neglected, and a sharp interface assumed. 
This will be the assumption throughout this chapter. Because of its great technical 
importance, however, the behaviour of the transition layer under the influence of 
extraction from a well or gallery will be studied in Section 6.4. 
Figure 63. - In  steady flow, different cases may be distinguished, as indicated (all in a 
phreatic aquifer as an example). 
Fig. a shows a cross-section of an island. The salt water is at rest since the sea level all 
around the island is the same. The fresh water body is not thick enough to reach the 
bottom of the aquifer; thus it is in contact with the salt water over the whole area. 
Fig. b shows the same cross-section for a thicker water lens, resting on the imper- 

. 
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b e 
Fig. 63 

meable base of the aquifer. An interface then exists only along the coast. 
Fig. c. The same situation exists a t  the coast of a mainland, where at  some distance 
from the shoreline the interface encounters the base of the aquifer. 
Fig. d represents a cross-section of a strip of land, bounded a t  both sides by salt water 
of the same density, but at different levels. This situation is rare in nature but is easy 
to realize in a ,laboratory. Unlike the other examples, here not only the Fresh water 
moves, but alAo the salt water. 
Two-fluid systems may be steady or unsteady. Unsteady flow occurs on the one hand 
when one or more of the quantities determining the flow system vary with time, as in 
the case of tidal movement of the sea, variations of river levels, seasonal rainfall or 
periodic extraction from wells; and on the other hand when these quantities, although 
constant from a certain moment onwards, do  not correspond to  the form of the inter- 
face or the phreatic level a t  the initial moment. Then a gradual adaptation of the form 
of these surfaces leads, after theoretically infinite time, t o  a steady flow pattern. 
The time needed for the adaptation of the interface is in general much longer than 
that of the phreatic water surface in a one-fluid system: it may cover tens or even 
hundreds of years. Unsteady flow is therefore the rule, rather than the exception in 
two-fluid systems. In coastal regions all over the world, where in the last century 
works have been executed for water extraction, irrigation or drainage, the flow is 
generally unsteady. Conversely, looking into the future, all technical projects should 
be studied from the viewpoint of an intervention creating long-lasting unsteady flow. 
Although steady flow is thus of less importance than unsteady, it will be studied first 
for didactic reasons. 
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6.1.2 Water resources 
The question of the yield is more complicated for two-fluid systems than for one-fluid 
systems. The discussion, therefore, will be limited to an elementary model, that of an 
island, where the fresh water body is in. contact with the salt water over the whole 
area. Thus two-fluid systems, as exist along the coasts of mainlands, are not considered. 
The question of the yield involves several problems, to be dealt with in this chapter. 
- I n  Section 6.2.5. considerations on the yield are given by comparing different steady- 
state systems. The theoretical maximum extraction rate, equal to the recharge of the 
island, is obtained when the extraction takes place all along the coast. But such 
exploitation is usually avoided for fear of extracting water from the transition zone, 
which is here at shallow depth. 
- In Section 6.2.8. the possibility is discussed of increasing the fresh water extraction 
from the centre of the island in steady flow conditions, by simultaneously extracting 
salt water to be disposed of to the sea. A theoretical solution is given, mainly for 
didactic purposes, since it will generally be uneconomic or technically unfeasible. 
- Nonsteady flow conditions, as described in Section 6.3 are of particular importance 
for short-term exploitation, since.the movement of the interface is slow. For a limited 
period high extraction rates can be realised, but these cannot be maintained in the long 
run. Since the quantities of water released by a rise of the interface are important, they 

- The storage capacity of the lens plays a role when the recharge or the extraction 
rate varies periodically. This problem is examined in Section 6.3.5. for varying re- 
charge of a phreatic aquifer. 
- The transition layer greatly hampers the extraction of fresh water. It is usually 
unavoidable that some water from the upper part of the, transition layer is extracted 
along with the’fresh water. Its density is scarcely higher than that of fresh water, so 
that it moves upwards almost as easily. Its salinityhcreases with the quantity extract- 
,ed.. Even.small rates may make the extracted mixture unfit for consumption or,irri- 
gation. The problem is explained in Section 6.4.2., whiie Section 6.4.3. deals with the 
principle of extracting fresh and brackish water separately, and transporting the 
brackish water to  the sea. 

. also play a role in long-term exploitation. 

F 

6.1.3 The law of discontinuity at the interface 
Figure 64. -The interface constitutes a discontinuity for the potential as well as for the 
velocity. The law of discontinuity can be written either in terms of potential (Formula 
1) or of velocity (Formula 2), as will be shown. In the figure, Zrepresents the interface, 
R an arbitrarily chosen reference level, A and B two adjacent points sited at either side 
of the interface. In  its first form the law of discontinuity relates the potentials cp and q” 
at these points: 
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( 1 )  

cp > cp” 

cp - *” = - (y” - y)Z 

Often sea level is chosen as a reference level. Then 2 is negative, and since y” > y, 

I By definition of the potential’at points A and B ’ 
I cp = p + yz; cp” = p + y”Z 

I 
I 

Tn both expressions p is the same, since the pressure is continuous at  the interface. 
Elimination of p gives (1). 

If piezometers are installed at A and B, and filled with fresh and salt water respect- 
ively, their hydraulic heads are 

cp 
11 = - and /i“ = - 

Y Y” 
related by 

h - z y” 

h” - 2 y 
- 
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Since y“  > y, h - Z > h“ - 2, which means that the water level rises higher in the 
, fresh than in the salt water tube. 

I The common pressure p at A and B can be expressed either as y (h - Z )  or as 
I y ”  (h” - 2). Thus 
I y (h - Z) = y” (h” - Z) = p .  

Figure 65. - In  its second form the law of discontinuity is written in terms of velocities. 
The velocity component perpendicular to the interface is continuous : 

u == u” 

Fig. 65 \“ 

u un 
m m  

since the quantity - = - represents the velocity of displacement of the interface 

(where m is the effective pore space). In the case of steady flow the interface does not 
move : 

The velocity components parallel to the interface are related by 
u = u“ = 0 

az 
( 2 ~ )  v - Y” = k (y” - y )  - = li (y” - y) sin 

2s 

when isotropic soil is assumed, and 

in the hypothesis of anisotropic soil with infinitely high permeability for vertical flow. 
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For isotropic soil, according to the law of linear resistance: 

acp acp” 
as as 

v - k .- and y“ = - k - 

where s is the length coördinate along the interface. Partial derivatives are written 
since with nonsteady flow cp and 9‘‘ may be functions of both s and t .  The permea- 
bility is the same in fresh and salt water, if the slight difference in viscosity between 
the two fluids is neglected. (see Section 1.1. I .). Thus 

According to (1) 

cp” - cp = ( y ”  - y)Z 

Differentiating with respect to s: 

which, upon substitution in the formula for v - Y”, gives formula (2). 
For anisotropic soil the proof is similar. The law of linear resistance reads: 

av acp” v = - k - ;  y ” = - k -  
ax dX 

while (l), upon differentiation with respect to x, gives 

From Equation (2) it can be concluded that if two fluids of different densities are in 
contact with each other along a sloping interface, they cannot both be at rest. ’ 

I 
I 

If o! # o and y ”  # y, the right-hand side of (2)  is different from zero and therefore 
v and V ”  cannot both be zero. 

The term ‘dynamic equilibrium’ is sometimes used for steady flow with sloping inter- 
face: the term ‘equilibrium’ indicating the steady position of the interface; the term 
‘dynamic’ the movement of at least one of the fluids. It is, however, recommended to 
speak simply of steady flow. 

/ 
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Fig. 66 __  . . . . . . . . . . . . . . 

Fig. 67 +-x 

Figure 66. - In Formula (2) v and Y” may have different signs. To illustrate the variety 
of possibilities, some examples are given in the figure, where schematically the quantity 
k(y”.- y) sin CI has been given the positive value of 10: 

v - v” = 10 

It should be kept in mind that the law of discontinuity, either in form (1) or (2), is 
valid for nonsteady as well as for steady flow, this contrary to the laws of Section 
6.2.3, which are restricted t o  steady flow with salt water a t  rest. 

6.2 STEADY FLOW 

6.2.1 Difèrential equations 
Figure 67. - The general problem of steady flow involves the flow of both the salt and 
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the fresh water. The variables are related by five differential equations: the laws 
of linear resistance and continuity in both the fresh and the salt water bodies, and the 
law of discontinuity at the interface. These equations can be formulated as follows: 
- The law of linear resistance in the fresh water: 

- The law of linear resistance in the salt water: 

- The law of continuity in the fresh water: 

k' 
D' with in a phreatic aquifer N = n ;  in a partly confined'aquifer N = n =- (cp' - cp), 

with cp' constant in case of steady AOW; and in a confined aquifer N = O. 
- The law of continuity in the salt water: 

- The law of discontinuity at the interface. 

( 5 )  cp - cp" = - ( y "  - y)Z 

To these differential equations the following auxiliary relations must be added, where 
the reference level is assumed at the base of the aquifer. 
- For a phreatic aquifer 

cp 
Y 

D " = Z ,  D = h - Z = - - Z  

or, if as an approximation the total thickness of the fresh and salt water body is 
considered as a constant 

D" = Z,  D = D, - Z 

- For a confined or partly confined aquifer 

D" = Z,  D = D, - Z 

In the following sections it will be assumed that 
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Fig. 68 

- In a phreatic aquifer n is given as a function of x and y ,  independent of cp. 
- In a partly confined aquifer either 40’ or n is given as a function of x and y.  
Under these conditions there are five unknown variables: cp, cp”, q (qx and q,), q” 
(41: and qi) and Z. Related to these by the auxiliary conditions are D and D“, and in 
the case of a phreatic aquifer h. The five unknowns are defined by the five differential 
equations and the boundary conditions. 
If the salt water is at  rest, cp” is a given constant, and q: = qi  = O. Thus the number 
of unknowns reduces to three: 9, (qx and q,) and Z. The number of differential 
equations reduces also to three, since the laws of linear resistance and of continuity in 
salt water disappear. 

-6.2.2 Boundary conditions 
In a two-fluid system the boundary conditions are doubled with respect to one-fluid 
systems (see Section 1.3.3.). As an example a well may be assumed from which fresh 
water is extracted at a rate eo. The double condition then reads: 

Q = Q o  Q G = O  

The second condition might easily be forgotten if one is merely thinking of the 
extraction of fresh water. Yet it establishes a condition, since, physically, extraction 
of both fresh and salt water is possible by placing in an uncased well two pumps whose 
orifices are respectively above and below the interface. 
When water is extracted from a gallery, the same boundary conditions are valid 

q = q o  q”= o 
where q and q” are the extraction rates per unit length of the gallery. 
Figure 68. - In nearly all problems the boundary condition along the coast plays a 
role. The upper part represents the two alternatives: a phreatic aquifer or an aquifer 
with a covering layer (partly confined or confined). The fresh water layer always ends 

.in a point. A vertical contact plane between fresh and salt water, as indicated in the 
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right part of the figure is not possible, as the pressure gradient ap/az would be differ- 
ent at either side of the plane (y in the fresh water and y” in the salt water), whereas the 
pressure is continuous at the contact between fresh and salt water. 
The double boundary condition is 

cp”=  cpb’ z=zo  
where cp; is the potential of the sea. If the aquifer is phreatic with reference level at  sea 
level, 

cp = c p ” =  21 0 

Near the coast the gradients of both h and 2 tend to infinity, as shown in the figure. 
The same is true for the gradient of the fresh water potential. 

I 
I 

The law of linear resistance in the fresh water 

acp 
ax 

I 
I q = - k D -  
I 

I ah I 40 
lax1 lax1 Y 

‘ indicates that I ’ -+ co for D -+ O. In a phreatic aquifer -+ co, since h = -. 

I The law of discontinuity at the interface 
I az 

ax 
I 

I Y - Y” = k (y” - y) - 
I 
I indicates that I az -+ co for I v I -+ co and Y” finite. I lax1 
It is clear that near the coast, where the fresh-water velocities increase infinitely, a 
detailed study is required to establish whether the scheme is approximately representa- 
tive of a physical flow system. This point is mentioned here, but will not be examined 
(see Section 3.2). 

6.2.3 Basic laws fo r  salt water at rest 
If the fresh water is at rest, the level of the impermeable base is immaterial, provided 
the fresh water lense is in contact with the salt water over the whole area. If the fresh- 
water body is in contact with the impermeable base there is at least an interface in the 
vicinity of the coast. The relationships established below are valid for any aquifer or 
part of an aquifer where the fresh-water body is in contact with salt water at rest. 
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Distinction should be made between a phreatic aquifer on the one hand and a confined 
or a partly confined aquifer on the other. In both cases the reference level can be 
chosen at such an elevation that the thickness D of the fresh-water body is propor- 
tional to the fresh-water potential cp, which makes comparison with Chapter 3 possible, 
and allows for superposition. In this section the laws of proportionality will be studied 
first, then the comparison with Chapter 3 and the possibility of superposition will be 
examined. 

I I  
D Z  

Figure 69. - If the aquifer is phreatic, the reference .,vel is placed preferably at sea 
level. This makes h" = O and therefore cp" = y", h" = O; h becomes the elevation of 
the water surface above sea level and Z (negative) the depth of the interface below sea 
level. 
IJnder this assumntion the three auantities determining the shane of the fresh-water - . . - - . ... . - ..- - -. . . . . . . . . . - . . ._ - - __ .. -. _. - - - _. . . . . . . . _ _ _ _  - - - _._- --_I__ ..I___ 

I 

body, h, Z and D (where D = h - Z )  are proportional to cp according to 

cp I The relationship h = -, in combination with the law of discontinuity at the inter- 

i f Q P P  

I Y 

i cp - cp" = - - y ) ~  
i 

] gives for v'' = O the indicated expressions for Z and D. 

It follows from the above relationships that - Z is proportional to h according to 

- z = -  y h. 
Y" - Y 

This is the well known law of Badon Ghijben-Herzberg. It states that the water 
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Fig. 70 

surface W and the interface Z are similar curves: the latter can be obtained from the 
former by multiplying the figure with a factor - y / ( y "  - y) with respect to  the sea 
level R. This factor is - 40 when the density of the salt water is 1.025. In other words, 
for every metre the water surface rises above the sea level, the interface is 40m below it. 
This law is valid for steady flow with salt water at  rest. Enormous mistakes have been 
made by engineers who have drawn practical conclusions from it, applying it to 
nonsteady flow. Their idea was that the interface would suddenly rise by 40 m when 
the water surface is lowered by one meter, for instance due to  pumping a well. Actually 
this rise does take place, but over a period of tens or hundreds of years. During this 
long period of nonsteady flow the above mentioned law is not valid. 

Figure 70. - If the aquifer is confined or partly confined, a similar proportionality 
between D and cp exists: 

D ,= d ( Y "  - Y? 

if the reference level is chosen at a distance b above the top of the aquifer, where 

b = (Y'" 

Under these conditions 
N Y" - Y a rp" = - r (y" - y )  u ; 11'' = - ___ 

Y Y 

In the figure a, b and D denote absolute values, whereas 2 and h" are algebraic quanti- 
ties, here both negative. SL indicates sea level; RL reference level. . 

I In  the expression 
I ( l ) D = - Z - b  
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Z is defined by 

while cp” depends on h” by 

Finally the following geometric relation exists: 

Eliminating Z, cp“ and h” gives 

If the last term in brackets equals zero, D is proportional to cp according to 

D = A. Putting this term equal to zero gives b = - a. 

( 2 )  cp - cp” = - ( y ”  - y)Z 

(3)  cp” = y”h” 

I 

(4) a = b + h ”  1 
I 
I 

CP = D(Y” - Y) + ( f a  - yb) I 
Y” 

Y - Y  Y 

It follows from the above that in a steady two-fluid system with salt water a t  rest, 
the reference level can always be chosen in such a way that íp is proportional to D. 
In a phreatic aquifer: I 

3 
D = - - ,  Y” cp. 

Y - Y  Y 
in  a confined ,or partly confined aquifer: 

D=-- Y c p  
Y” - 7 Y 

This makes comparison possible with a steady one-fluid system in a phreatic aquifer 
with variable D ,  where the reference level coincides with the bottom of the aquifer. 
Then 

D = cp/Y 

The only difference is a factor y”/ (y”  - y )  in the case of a phreatic aquifer, or a factor 
y / ( y ”  - y) in  the case of a confined or partly confined aquifer. 
In Section 3.1 it was shown that the formulas for constant D could be changed into 
those for variable D by replacing Dcp with c p 2 / 2 y .  This theorem can be extended to 
two-fluid systems. It then reads: the formulas for cp and q are identical when the follow- 
ing quantities are interchanged: (1) Dcp for one-fluid systems with constant D, (2) c p 2 / 2 y  

for one-fluid systems with variable D ,  (3) y”cp2 for two-fluid systems in phreatic 
2Y(Y“ - Y )  

aquifers, (4) - :2 for two-fluid systems in confined or partly confined aquifers. 

This theorem is subject to the assumptions already made: steady flow, salt water at 
2 ( Y  - Y )  
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rest in the two-fluid system, given n, reference level as indicated for each case sepa- 
rately. The flow nets formed by stream lines and equipotential lines remain unchanged 
when in each system the equipotential lines are drawn at equal increments of the 
respective interchangeable quantity. Examples will be given in the following sections. 

I 
I 

I 
I 

The essential point of the proof is in the law of linear resistance, which for a one- 
fluid system with variable D reads (in the x direction) 

1 1 and for a two-fluid system in a phreatic aquifer 
I 

I 1 The second equation can be derived from the first by replacing 

The principle of superposition is valid in the four cases alike, when the values of n and 
q (qx and q,,) are added in each instance, those of íp in the one-fluid systems with 
constant D, and those of cpz in the three other instances. The proof of this thesis for 
two-fluid systems is similar to that of Chapter 3;  the constant factor does not play a 
role in the proof. Once the values of cp are known from superposition, those of D, h, 
and 2 can be obtained from the given relationships. 

1 
I 

6.2.4 ParallelJlow: salt water at rest 

Figure 71. - The left part represents a cross-section of a long land strip, bordered 
by two parallel vertical boundaries, and containing a phreatic aquifer. The sea level 
at both sides is the same (12’’ = O). The aquifer receives a uniform recharge n. 
Under these conditions a fresh-water body forms, as indicated in the figure, through 
which the fresh water received from recharge flows off to the sea at both sides. The 
salt water underneath is at rest. The formulas are: 

q = n ( i  - x) 
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Fig. 71 

2 (Y” - Y) n x ( 1  - x) h =- 
YY” k 

Y n  
y”($’ - y )  k 

Y(Y” - Y) k 

2 2  = - x ( 1  - x) 

- x ( 1  - x) 
y“ n 2 D =  

In the middle section, where h and - Z attain their maximum values: 

cp2= y (y ” -  y )  n12 

y” 4k 
y“ - y nlz 

yy” 4k 

y nlz 

~- 

h = -  - 

2 2  = 
y”(yII - y )  4k 

2 y“ n12 

Y (Y” - Y) 4k 
D 

I 
1 

These formulas can be derived from those of Section 3.3 (see bottom figure). The 
formulas of that section, for System 11, were 

Yn 
k 

I 
I ( p 2 = - x ( ~ - x ) ;  q = n  
I 

I Y -Y 
Y ’ Replacing (p2 by 7 q2 gives: 

I 
Y 
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2 Y(Y” - r) n I 
I cp = - - x ( L - x ) ;  q = n  
I y” k 

I From the expression for cp, those for h, - Z and D can be derived with the re- 
l lationships given in the same section. 
1 The formulas may also be established directly from the differential equations. 
1 These are: 
1 - The law of linear resistance in fresh water ’ 
I 

I 
dcp 1 q = k D -  
d x  

I - The law of continuity in the fresh water 

1 
I 
I 

I 
I f o r x = O  c p = O  
I for x = O q = ‘/,nI 

- The law of discontinuity at the interface 
cp - cp” = - ( y ”  - y)Z, where cp“ = O 

The following auxiliary conditions should be added: 

These five equations define cp, q, Z, h and D for the boundary conditions 
1 h = c p / y ;  D z h - 2  

From a physical point of view the results may be analysed as follows. The fresh-water 
body forms a lens, floating freely on the underlying salt water. In the middle section 
q = O for reasons of symmetry. In this section the interface is horizontal, since both q 
and q” (and therefore v and v”) are zero. From the middle section towards both left 
and right, 1 q 1 increases as a consequence of the received recharge n. Since moreover 
the section D decreases, I v I increases, which corresponds to an increasing slope of 
both the water surface and the interface. At the coast the section reduces to zero, 
and I v I tends to infinity. The slopes of both the surface and the interface tend to  
infinity (see Section 6.2.2). 

6.2.5 Extraction ,from canals 
In this section some remarks will be made on the yield of an aquifer in steady-state 
conditions, exploited by canals or galleries. Similar considerations on the extractions 
from wells will be given in the next section. A sharp interface is assumed, which is too 
favourable an assumption, as will-be shown in Section 6.4. . 
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Fig. 72 

Figure 72. - The situation to be examined first is the same as in the previous section, 
but with the addition of a canal in the middle section from which water is extracted at  
a uniform rate qo per unit length. The lower part shows the corresponding situation 
of a phreatic aquifer under one-fluid conditions. The formulas of the latter scheme 
have been established in Section 3.3. Upon application of the transformation de- 
scribed in Section 6.2.3. they become (for the left half of the figure, and ‘pl = cp2 = O). 

Y 

where h, - Z and D are related to  cp according to 
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Figure 73. - The greater the extraction rate qo, the lower the level in the canal, and the 
higher the interface under the canal. The theoretical maximum for the extraction rate 
is reached when the interface rises to the water surface in the canal: 

' 

h=cp=O.  , -Z=O;  q 0 = n 1 / 2  

The extraction is then one half of the recharge of the whole'island. 
The fresh-water lens is now cut into two halves. Each has a symmetrical form, since 
a t  both sides the following boundary conditions are valid: 

cp = O ;  h = 0 ;  c p " = O ;  h"=O 

Each half may be compared with the lens described in the previous section. Since the 
breadth I is reduced to 112, all dimensions reduce to  one half, and the volume to  one 
quarter, as can be seen from the formulas of Section 6.2.4. 
As a conclusion, by exploiting a canal in the middle, no  more than one half of the 
recharge can be extracted, which reduces the fresh water volume to one half of its 
original size. 

This is the result as t o  the final steady state flow. For  the exploitation the preceding 
non-steady period must also be considered. This period will not be studied in detail; 
the following remarks will merely be made. If the exploitation during the transition 
period is performed with the water level in the canal constantly at sea level, the ex- 
traction rate decreases gradually, and reaches the value qo when the steady state is 
approached. Under these conditions the extracted quantity is greater than if the 
exploitation had taken place at  a rate qo from the beginning, in which case the water 
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1 '  

Fig. 74 

I 
'-4 

level in the canal would have fallen gradually, the final steady state being the same. 
In both ways of exploitation the fresh-water volume under the island would reduce by 
one half of its initial value. In the first case a part of this water would be extracted; 
whereas in the second all of it would be lost to the sea. It is clear that in principle still 
more water can be extracted by lowering the water level in the canal below sea level 
during the first stage of exploitation. The modalities of such an exploitation, however, 
would have to  be studied in detail. 

Figure 74. - Instead of one canal in the middle of the island two parallel canals in  
symmetrical arrangement may be assumed, each extracting q 0 / 2  per unit length, so 
that the total yield is the same as in the last scheme. The theoretical maximum ex- 
traction rate in the final state is obtained when interface and water surface touch in the 
canals at sea level. The extraction rate from both canals together, defined in this way, 
can be established as a function of the distance between the canals. Since the canals 
receive the full recharge of the zone between the canals, and one half of the recharge 
of the outer zones, the extraction rate is: 

a +  I n  
90 = ~ 

2 

If a increases from zero (one canal in the middle) to I (two canals near the coast), qo 
increases from nl/2 to  nl. , 

As a conclusion, if the extraction takes place with one canal in the middle, the maxi- 
mum yield is one half of the recharge of the island, and the final volume of the fresh- 
water lens is one half of the initial volume. If, instead, the extraction is performed by 
two canals near the coast lines, the yield is twice as great, equal to the full recharge of 
the island, and the final volume of the fresh-water lens is the same as in the beginning. 
The final state is then almost immediately reached. There is therefore a theoretical 
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advantage in placing the canals as near to the coast as possible, but this solution is 
seldom chosen for fear of extracting brackish water from the transition layer. This 
point will be discussed in Section 6.4. 

6.2.6 A well near the coast 
Figure 75. - The upper part shows a parallel flow model, representing a strip of land 
or an elongate island. The phreatic aquifer receives a uniform recharge n. The sea 
level at both sides is the same, equal to reference level (q" = h" = O). A single well P 
with extraction rate Q,  ,is sited at short distance a from the coast (a GK l/2). The 
discussion will be limited to a narrow strip along the coast (x <(l/2), where the 
fresh-water flow is approximately constant. 
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q = - nl/2. 

The formulas for 'p and q are those of Section 3.4 but with application of the trans- 
formation as described in Section 6.2.3. : 

Y" A ;  D z  = ___ A h 2 =- ( Y " - Y ) A ; z 2  = Y 
Y'? Y"(Y" - Y> Yb'' - Y> 

I n  the well 

I t  is clear that for physical reasons ' p 2  must be positive a t  all points of the aquifer, in 
particular in the well, where the water level is lowest and  the interface highest. The 
theoretical maximum rate of extraction from the well is therefore given by 

' po  = ho = zo = o 
which, according to  the given formula, corresponds to 

m l a  

The dotted line, separating the parts of the aquifer whose water flows towards the 
canal and the well, does not reach the canal. The two other situations examined in 
Section 2.4.4 do not apply here, since they require potentials in the well lower than 
in the sea. 
In  reality the extraction rate must be lower, firstly to allow for a safety margin, but 
principally because of the upconing of the transition layer, as will be explained in 
Section 6.4.2. It  can be deduced from the given formula that the maximum value of 
Qo increases when a increases and ro remains the same (not shown here). 

6.2.1 Partly confined aquifer 
Figure 76 shows a cross-section of a parallel flow model with a partly confined aquifer. 
On the right-hand side the  model is bounded by a impermeable wall, which may also 
be considered a symmetry axis, in which case the figure would represent only one half 
of the model. Between A and B the aquifer receives a uniform recharge n. The down- 
ward flow through the top layer causes a uniform loss of potential in vertical direction, 
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I so that the cp‘ line in that part of the model is parallel to the cp line. To the left of B 
the aquifer extends to infinity; it is covered by the sea. 
The part AB may represent a dune series, and the part to the left of B a shallow sea. 
If beyond point C, where no flow occurs, the top layer were entirely eroded by the sea, 
this would have no effect on the flow system. The water received by the aquifer over 
the part AB flows off to the sea, but finds its upward movement hampered by the top 
layer. As shown in the figure, a ‘tongue’ forms, thus facilitating the upward flow 
through the top layer by increasing the area. At the extremity C the interface en- 
counters the top layer at a small angle, not zero. 
The situation as sketched might raise doubts as to  the stability of the sea water above 
the fresh water contained in the top layer. This question will not be analysed here 
from a theoretical point of view. It suffices to mention that the existence of tongues, as 
drawn, has been proved both in a laboratory model and in nature. In the latter case 
borings have shown that the thickness of the fresh-water body does not tend to zero 
near the coast line, while water has been pumped from a well drilled in the sea some 
distance off the coast. 

, 

Figure 77. - The reference level has been chosen so that D is proportional to cp, which 
implies (see Section 6.2.3). 

Y’ Y 
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cp = (y” - y )  D ;  q’’ = - r (Y‘‘ - Y) a 
Y 

In these formulas 2 and h” are algebraic quantities (both negative), whereas a, b, Band 
D‘ are absolute values. 
For the part CD (the ‘tongue’) the solution reads: 

2 k’ *D k’ 
. 3 k D’ k . .  

q = k(y” - y )  D J - - - + -  
At the extremity C ,  the angle of encounter between the interface and the top layer is 
defined by dD/dx for x = O, or JW, a small angle, since k’ is small compared with k .  

I 
I 

The solution depends on the following equations: 
- The law of linear resistance 

I 

I 
I (1) q = k D -  dcp 

dx 

I - The law of continuity 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

where cp' is the fresh-water potential just below the top of the layer with low 
permeability. 
- The law of discontinuity at the top of the layer with low-permeability. 

or, after expressing cp" and b in a, 

where a cancels out. 
- The law of dhontinuity at the interface 

which, as a result of the choice of the reference level, reduces to 

- Eliminating q, cp and cp' from (l), (2), ( 3 )  and (4) 

40' - ~ p "  = - ( y "  - y )  (-- b + 0') 

(3) cp' = - ( y "  - y)D' 

cp - cp" = - ( y "  - y)Z 

(4) 40 = (Y" - r>D 

1 
dD ' Multiplying both sides by D -' and integrating term after term I dx 

where A = 2k'/kD' and B = 2k'/k 

dD B 
dX 3 2 

I I D - = J A D ' + - D ' + c ,  

I 
I 

I where c1 is an integration constant. Multiplying by k(y" - y ) :  
I 

B I 

I 4 = k(y" - y )  4; D 3  + D 2  + C, 
I 
I The integration constant is found from the condition 
I for D = O q == O 
I which makes c 1  = O and 
I 

B I 

1 
I 

4 = k(y" - fj D 

I 

B 
dx 2 

I ' 1  _ -  
I 
I Integrating the last equation by separating the variables. 

I The integration constant cq is determined by 
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I f o r x = O  . D = O  
I which gives 

l2 I c 2 = O o r c 2 =  - -  
A 

I 
I for x = O. 

I .  

I 
Only the first value has a physical meaning, since the other makes dD/dx negative 

The formulas of part AB read: 
nx  (2x, + 1 - x )  + c 2 D =  

k(Y" - Y )  
where c is an integration constant. 

cp = (Y"  - r w  

q = n  x , + - -  ( :.> 
I The basic equations are: 
I - The law of linear resistance , 

dcp q = k D -  
d x  

I 
I 
I 
I - The law of continuity 

q = n  X I + - -  ( :.> 
I 

I 

- The law of discontinuity at the interface 

Eliminating cp and q from these three equations yields the formula for D. 
I . ~ p = ( y " -  y)D. 

' The values of x1 and c depend.on both parts AB and BC. Since in section 9, separating 
these parts, q is known to be n1/2, the formulas of part BC define the values of s, 
(x,), and D, (O,), in that section. The result cannot be given explicitly, since a third 
degIee equation in D is involved. When D, and x, are known, substitution into the for- 
mula for D of part AB yields the value of c. 
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6.2.8 Flowing sult water 
Steady-state systems with flowing salt water are rare in nature. They presupposc 
either two different sea levels or salt water extraction. Whereas different sea levels 
seldom occur, salt water flow may exist under a dune series bounded by fields that are 
drained below sea level. This case will be examined in the first example. In the second, 
salt water extraction will be studied with a view to increasing the long-term extraction 
of fresh water from the lens under an island. 
The differential equations of steady flow with moving salt water are non-linear. Even 
the simplest schemes of parallel flow pose difficult mathematical problems. Indeed, no  
scheme was found that could serve as an  example for exact solution. The analysis of 
both schemes therefore will be qualitative only. Since it is extremely hard to  draw 
conclusions from differential equations, the reasoning is not fully exact, but contailis 
some assumptions which will most probably be confirmed by further investigation. 
The proof, however, remains to be given. For the first example the differential equa- 
tions will be given, but not solved. 

Diperent sea levels 
Figure 78. - The scheme indicated in the lower part  can best be derived from a sym- 
metrical system with salt water a t  rest, as represented in the upper part of the figure. 
The latter system corresponds to  parallel flow in a phreatic aquifer, bounded at  both 
sides by the sea at the same level and receiving a uniform recharge 17. This system was 
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examined in Section 6.2.4. The lower scheme, also in steady flow conditions, differs 
from the previous one only in that the sea level on the right is raised by a small height 
a, and the level on the left lowered by as much. If a is relatively small, the lower part 
of the figure will resemble the upper part, and conclusions can be drawn with some 
probability from a comparison of the schemes. 
For reasons of symmetry it is probable that the heights of the points A and B will be 
about the same as in the upper part of the figure, while the surface as well as the inter- 
face at  these points will most probably be inclined towards the left. If these assump- 
tions are correct, it follows that the highest point C of the surface will be at  the right- 
hand side of the middle section, and the lowest point D of the interface at the left-hand 
side, as indicated in the figure. 
In section C the fresh water separates into a flow to the left and a flow to the right. I n  
the section itself v = O, whereas v” # O, directed to  the left. According to the law of 
discontinuity at  the interface, written in terms of velocities, this difference between 
v and V ”  coriesponds to an  interface, sloping to  the left as indicated in the figure. In 
section D the interface is horizontal, which corresponds to v = v” ,both directed 
towards the left. 
The differential equations and the boundary conditions of this system will be establish- 
ed below, to show how the problem can be posed mathematically, but the solution 
will not be attempted. The differential equations are: 
- The law of linear resistance in the fresh water 

d q  I (1) q = k D -  
dx 

- The same in the salt water 

dq“ 
dx 

( 2 )  q” = kD“ - 

- The law of continuity in the fresh water 

dq - - - n  - 
dx 

or upon integration 

(3) 4 =  40 - nx 

where qo is the (unknown) value of 4 in the section where x = O. 
- The same in the salt water 

(4) 4’’ = 4;  
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where q i  is the unknown constant flow in the salt water 
- The law of discontinuity at the interface 

( 5 )  cp - cp" = - ( y "  - y)Z 

To these equations must be added the following auxiliary relations 

D" = z 
50 
Y 

D = h - Z = - - Z  

The five differential equations relate the five variables q, cp", q, q" and Z to x, when 
the auxiliary relations are used to eliminate D and D". 

The boundary conditions are 
F o r x  = O cp = yhl ' 

For x = O 
For x = I 
For x = I 

cp" = y"h, 
cp = yh2 
cp" = y"hz 

Extraction of salt water 
Figure 79. - The upper part represents the scheme examined in Section 6.2.5, charac- 
terized by : 
- Steady parallel flow in a phreatic aquifer, bounded at either side by salt water. 
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- At both sides the same salt water level, which corresponds to reference level 

- Uniform recharge n. 
- Extraction q = n1/2 from a gallery in the middle of the island. 
This scheme corresponds to the theoretical maximum extraction of fresh water from 
the aquifer: surface and interface touch at sea level in the middle of the island. The 
aquifer is divided into two halves. The highest points H of the surface are 1/2 apart. 
One half of the island’s recharge is received between these two points, and drained to 
the gallery; the other half, received outside the points, is lost to the sea. 
In  principle, if the assumptions to be made are correct, the same drain can produce 
more fresh water if salt water is simultaneously extracted from the middle section. 
Such extraction must be done by means of wells, but to  explain the principle a gallery 
is assumed. The lower part of the figure shows the steady flow system that results from 
a slight extraction of salt water. This system differs little from the first one, and can be 
compared with it. Fresh water is extracted a t  such a rate that surface and interface 
touch in the middle section, as they did in the first system. 
The fresh-water lens at the right-hand side is in the same position as that between 
different sea levels, studied before. On the basis of the assumptions made there, it 
would follow that the tops H of the surface are farther apart than in the upper figure, 
which means that the fresh-water gallery extracts more than one half of the island’s 
recharge. 
It should be kept in mind that this reasoning is given to show the principle. For 
application, practical and economical factors must be considered. From a hydraulic 
point of view, the following remarks should be added: 
- When surface and. interface touch, the extreme theoretical limit is reached; in a 
design a safety margin should be introduced. 
- A sharp interface has been assumed, whereas in reality the brackish water of the 
transition layer may play a predominant role. 
- The effect of the salt water extraction depends on the transmissivity of the lower part 
of the aquifer. The impermeable bottom should not be too deep, or the lower part of 
the aquifer too permeable. 
- The effect of a series of wells extracting salt water is less uniform, and therefore less 
favourable from an exploitation point of view, than the effect of a gallery. 
Since some of these remarks are of great weight, it is clear that the method has been 
discussed for didactic reasons rather than with a view to practical application. The 
system might be studied in some cases in combination with the principle set out in 
Section 6.4.3. 

(9 = q” = O). 
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6.3 NON-STEADY FLOW 

6.3.1 Diflerential equations and boundary conditions 
Figure 80. - The flow system is defined by the following differential equations: 
- The law of linear resistance in the fresh-water layer 

I 
I D  q- 

Fig. 80 

- The law of linear resistance in the salt-water layer 

- The law of continuity in the fresh-water layer 

where m is the effective porosity of the soil. I n  the case of 
a. a phreatic aquifer 

in acp N = n - - -  
Y at 

I .  
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m 
Y 

(In the chapters on one-fluid systems the quantity - has been written as p) 

b. a partly confined aquifer 

where m‘ is the effective porosity of the top layer 
c. a confined aquifer 

N = O  I _  

- The law of continuity isthe salt-water layer 

- The law of discontinuity at the interface 

( 5 )  cp - 9’’ = - ( y ”  - y)Z 

These five differential equations relate cp, cp”, q (qx and qv), q” (q: and 4,”) and Z to x, 
J and t ,  if the quantity Nis  defined as above and the sections of flow are determined by 
the following auxiliary relations. These will be written under the assumption that the 
reference level coincides with the bottom of the aquifer. 
I n  a phreatic aquifer 

, D“ = Z 

h = cpIY 
D = 11 -DI’= - cp - Z 

Y 
In a confined or partly confined aquifer 

D” = Z 
D = D  - D D ” = D  - 2  

In problems concerning phreatic aquifers, n will be given as a function of x, y and t ,  
independent of cp. In  problems concerning partly confined aquifers, depending on the 
problem, either cp”or n‘will be given as a function of x, y and t ,  independent of cp. 
In  addition, initial and boundary conditions are required to define individual flow 

‘systems. Both are doubled in number in comparison with a one-fluid system. As an 
initial condition may be given: the form of both the phreatic surface and the interface 
at the moment t = O, or cp and cp” as functions of x and y at that moment, or any 
equiyalent pair of conditions. The boundary conditions are similar to those of one- 
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fluid problems, but their number must be doubled, while the potentials and rates of 
flow at the boundaries may vary with time. Examples will be given in the following 
sections. 

6.3.2 Superposition 
The principle of superposition can be applied without approximation to confined and 
partly confined aquifers, and only with approximation to phreatic aquifers. 
In problems concerning confined or partly confined aquifers, any System I11 can be 
separated into two elementary systems, I and IT, which have the same interface, but 
different values of A y  (= y" - y). The superposition is valid for a short period dt 
during which the displacement of the interface is negligible, or for periodic variations 
of small amplitude, causing negligible displacement of the interface. The following 
quantities are added cp, cp", q, q" and N (n and cp') and their derivatives with respect to  

x, y and t ;  furthermore A y  and -. Since the two systems have the same Z but az . 
at 

az 
at 

different -, it is recommended, in order to avoid confusion, that 

8 2 ,  
at 

rather than -, though both notations are theoretically correct. 

I The proof follows from 
1 .  - The law of linear resistance in fresh and salt water, written for the x direction 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

as an example 

Since the two systems have the same interface, the values of D and D" are the same. 
Moreover, the definition of k has been given in such a way that k is the same in 
fresh and salt water. Thus the equations can be added by adding the values of 
cp and q, or of cp" and q". 
- The law of continuity in fresh and salt water (in the x direction as an example) 

' 

84: aq;1- - ml - ÙZ , . - -+ - -  
ax ay dt 

These equations are linear in  q2, q,,, q:, q", N and aZ/dt so that they can be added 
by adding the respective values of these quantities. 
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I - In the case of a confined aquifer 
I 
I N = O  - .  

I - in the case of a partly confined aquifer , 

I 

1 
I 

This relation is linear in n, &'/at, cp' and cp, which quantities may be added. 
- The,law of discontinuity at the interface ' c p - c p " = - A y Z  

I 
I 
1 

where A y  (positive) stands for y" - y. Since the two systems have the same inter- 
face, Z is the same, and the values of cp, cp" and dy may be added. 

The condition that ( A y ) ,  + (dy),, equals the true difference in specific weight does 
not define each of the quantities (dy), and ( A y ) , ,  individually. A choice can be made. 
In each of the examples given below, one of the systems will be given the true differ- 
ence in specific weight, and the other, or the others, homogeneous fluid ( A y  = O).  
This choice does not yet determine Systems I and 11: still other characteristics may be 
defined arbitiarily, e.g. one system steady, the other nonsteady. 
I n  problems concerning phreatic aquifers the principle of superposition cannot be 
applied without approximation. Two systems with different cp have different h(= cp/y),  
and with the same Z they have different D .  According to the method adopted, only 
one of the elementary systems is a two-fluid system. Only here do D and D" have a 
physical meaning. The approximation is that D + D", as determined from this 
system, is not exactly equal to the thicknesses of the aquifer, as assumed in the one- 
fluid systems. 
In all problems (concerning confined and partly confined, as well as phreatic aquifers) 
superposition during a period At is only allowed if in each section the variation AD 
of D is small compared with D. In the case of periodic movement the amplitude of the 
variations of D,  to be called AD as well, should be small compared with D .  This 
condition needs verification, since D tends to zero near the coast. The mathematical 
condition is that AD/D remains small when D tends to zero. 
Nonsteady two-fluid problems are usually difficult from a mathematical point of 
view. To avoid the accumulation in one system of complications resulting from 
difference in densities and nonsteady movement, it is advisable to choose the ele- 
mentary systems so that the two-fluid system is steady, while the movement of the 
interface results from the one-fluid systems. The movement of the interface in homo- 
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geneous fluid systems must therefore be studied in detail. 
Physically no interface exists in those systems, but mathematically Z plays a role in 
the superposition. It is therefore useful to imagine two layers of water of the same 
density, but of different colour, so as to maintain the notion of the interface. 
The velocity in both water layers is the same. This follows from 

v - v” = k(y” - y )  rg cl 

where y ”  - y = O, and therefore v - v” = O. Thus 4 and 4” are proportional to the 
respective flow sections 

4 - 4” - 4 + 4” 
D D” D + D” 

where D + D“ = D,. 
The one-fluid system may be steady or nonsteady, but in both cases the interface 
(between the colours) is likely to displace, since even in steady flow there is no reason 
why the interface should coincide with a stream line. The displacement of the inter- 
face is determined by 

D“ N 
at D + DI’ m 

- _  az 
(1) - -  ~- 

where D + D” = D,. 

I This follows from the law of continuity in fresh and salt water: 

. .  1 a4; aq“ az 
ax  ay at I 

I -+2=- m -  

I 
I 

Dividing these equations by each other gives the result mentioned since, according 
to the foregoing, the left-hand members are in  the ratio DID“ to each other. 

In a phreatic aquifer Nis the sum of two terms, depending on n and ahlar, respectively. 

a 11 

at 
4 2 )  N = n - m -  

and 
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(3) D = h - Z  

On elimination of N from (l), (2) and (3) it follows that 

D" n D ah - -+-- aD 
at D + D" m D + D" at 

az - aolf D" n D" ah -+-- 
at at D + D" m- D + D" at 

--___ 

- - - = -  

Thus the variation of 2, D or D" can also be written as the sum of two terms depending 
on n and ahlat respectively. 
For n = O these formulas become 

D ah .- - aD _ -  
at D + D" at 

When applying the superposition to a time interval AC, and writing Ah and AD for 
the increments of h and D during that interval, the first equation indicates that 

A D  A h  
D D + D" 

- --___ 

The same formula applies when A h  and A D  represent the amplitudes of a periodic 
movement. 
This result should be interpreted as follows: if the variations of D result from varia- 
tions of h only (n = O), and these are small in relation to the total thickness of the 
aquifer, (right-hand member small) then A D / D  remains small when D vanishes near 
'the coast, which was a condition for application of the principle of superposition. An 
example is given in Section 6.3.4. 

From the above the following law may be deduced, which applies t o  any system where 
superposition, as described, is applicable. If in a two-fluid model one or more of the 
hydraulic quantities determining the flow system, are suddenly changed, the aquifer 
reacts as if it were filled with homogeneous water, as long as the displacements of the 
interface are small. The same is true for periodic variations of these quantities, if they 
create small displacements of the interface. The hydraulic quantities determining the' 
flow system are: the potentials and flow rates a t  the boundaries, the recharge and, in  
the case of a partly confined aquifer, the q' values. 
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Examples (provided the displacements of the interface are small) are: 
- A pumping test on a fresh-water well gives as a result the transmissivity of the whole 
aquifer : kD,. 
- Tidal variations or seasonal variations of a river level propagate uniformly through 
fresh and salt water. 
- Seasonal variations in rainfall or percolation from drainage affect fresh and salt 
water alike. 
- The same is true for a sudden change in cp’ in a partly confined aquifer, due to  
drainage or irrigation. 

I 
I 

I 
I 
I 
I 
I 
I 
I 

I 

For systems affected by a sudden change in the hydraulic conditions, the proof is 
based on the consideration that immediately after the change the system can be 
considered the sum of two elementary flow patterns: 
- System I, representing the conditions before the change. In this system y”  - y has 
the real value. 
- System TI, characterized by the change in the hydraulic conditions, combined 
with y “  - y = O, representing homogeneous water. 
I n  the case of periodic variations System I is characterized by the average values of 
the hydraulic quantities and the true difference in densities, whereas System I1 
contains the variations around zero value, in  combination with y ”  - y = O 
(homogeneous water). 
The formulation of the proof in general terms may lack precision; examples will be 
given in the following sections. 

6.3.3 Partly confined aquger 
In this and the following sections some examples will be given of nonsteady flow 
systems. Tn the present section the solution will be given by means of a numerical 
method. Tn Chapter 7 more examples of nonsteady systems will be shown, also solved 
by numerical methods, but then applied to systems depending on two horizontal 
coordinates x and y, whereas the present scheme depends on x only. As will be seen, 
there is some difference in method. In the present section the differential equations 
are used as they are; in Chapter 7 after some quantities have been eliminated. 
Figure 81. - The model is defined by parallel flow in a partly confined aquifer. The 
boundary conditions are constant: 
Outside the sections A and B a constant sea level. Reference level coincides with sea 
level: cp” = h” = O. 
Tnside the sections A and B, cp’ is given numerically as an arbitrary function of x, 
independent of time. 
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Fig. 81 

- X  

For a n  arbitrary moment t ,  2 is given numerically as an arbitrary function of x. The 
problem is t o  determine the flow system during the subsequent elementary interval 
A t ,  and in particular aZ/dt as a function of x, so that the values of 2 an elementary 
time interval A r  later can be established, and the calculation repeated. 
Since even the calculation of one single interval A r  takes much time, the examination 
of a sequence of intervals may easily exceed the capacities of a n  engineer working by 
hand, and computers would have to be used. Still, the work by hand can be taken into 
consideration : firstly, for didactic reasons, t o  acquire some familiarity with the 
method on a simple example; secondly, in cases where the interface moves very 
slowly, and the first interval, o r  the first few, already cover the period in which the 
planned works are written off by depreciation; finally, one interval may be calculat- 
ed to  check a computer program. 
In calculations of this kind the lengthof the aquifer is divided by section lines into a 
sufficient number of elements of equal length A x .  The quantities cp, cp’, cp”, N ,  Z and 
dZ/at are measured on the section lines, while q and q” are measured in the fields 
between these lines. The thicknesses of the aquifers D and D“, although directly 
related to  Z ,  are measured in the fields as an average of the values on the adjacent 
lines. dcpldx is determined as AcplAx where Acp is the difference in cp between two suc- 
cessive section lines. The value of &p/ax obtained applies to the field between the lines, 

where also q is measured. i3qli3.x is determined as --, where A g  is the difference in q 

between two successive fields. 

Some difficulty arises a t  the extremities of the fresh-water body under the sea, where 
the condition q = O requires that the extremity is in the middle between two section 
lines. Since this point is moving, it may be anywhere. The condition q = O is therefore 
applied to  the whole field in which the point is located. The error is small when A x  
is small. 
The values of 2 at the beginning of the interval are used for the whole time interval, 
which introduces a recurring error, always in the same sense. This imperfection must 
be accepted if the simplicity of the method is to t e  safeguarded. 

A q  
A x  
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For each period A t  the nonsteady system, 111, is split up into two elementary systems, 
I and 11. 
System I is defined by 
- The true values of A y  
- Outside the sections A and B, cp“ = O 
- The values of 2, corresponding to the form of the interface at the beginning of the 
interval. 
- Steady flow (salt water at  rest cp” = O). 
This system can be calculated, as will be shown below. As a result, cp; is found on 
each section line. These values are different from the given cplII values. System I1 
therefore must be characterized by 

6 1  = cpL1 - cp; 

System I1 is then defined by 
- Homogeneous fluid. 
-- Outside the sections A and B, cp” = O 

- cp’11= cp;11- cp‘1 

- ZII = Z I ,  but only.as a separation between layers of different colour. 
System 11 is steady as is System I ,  but the interface (between the colours) moves, since I 

it does not coincide with a flow line. The calculation of System 11 gives as a result the 
values of dZ/at in each section line,,and thus the new value of 2 to be taken as a basis 
for the calculation of the next time interval. 

1 
I System I:  
I 

1 
I 

The operations follow the steps indicated below. 

(1) q~ on the section lines is determined by the law of discontinuity at the interface 

where Z is given, cp” = O, and A y  has the true value. 
(2) q in the fields is determined by the law of linear resistance. 

1 c p - c p c p “ = - A ~ Z  

I 
- acp 

I ax  
1 q = k D -  
I 

1 
I geometrically related to  Z .  

I 

where acp/ax is derived from cp by differentiation on finite increments, while D is 

(3) N on the section lines is determined by the law of continuity 
I 
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I 
I 

where aq/ax is derived from q by differentiation on finite increments. 
(4) 40; on.the section lines is determined by 

k' 
D N = 7 (40' - 40) 

System I1 corresponds to  that of Section 4.2.4: flow in homogeneous fluid filling a 
partly confined aquifer, where between the sections A and B, cp' (=vill - 40;) is 
given as an arbitrary function of x, and outside these limits is zero to infinity. Thus 
any physical quantity can be determined, in particular N (its values on the section 
lines). Since for each section line Z and therefore D" is known, aZ/at follows from 

D" N - az 
at Dt m 
_ _ - _ _  

Thus Z at the beginning of the next time interval can be determined, and the cycle 
repeated. 

6.3.4 Propagation o j  the tide 
Figure 82. - A phreatic aquifer with approximately constant D is bounded by two 
parallel sides. It receives a constant recharge n, while the sea level at both sides varies 
according to 

cp" = cpg sin wt 

where T = 2n/w is the period of the tide. The amplitude of the tide is small compared 
with the thickness of the aquifer. 

n Fig. a2 
I l l l r l l 1  

__ - 

I X  

- 4  

The solution can be found by superposing two systems, I and 11. 
System I is defined by 
- The true value of A y  
- Recharge I I  

- 40'' = O at both sides. 
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This is the steady-flow system examined in Section 6.2.4. The formulas from that 
section can be used. They define in particular the shape of the interface and the phreatic 
surface, or in mathematical terms, 2 and h as functions of x. 
System 11 is defined by 
- A y  = O ;  homogeneous fluid 
- No recharge : n =.O 
- Tidal movement: cp" = 'pi sin of 
This is the nonsteady flow system in homogeneous fluid, studied in Section 5.3.2. 
The formulas can be found by simple sum-mation of those of the two elementary 
systems. They will not be given here. Only some characteristics of the system will be 
analysed. 
The water surface as well as the interface describe small oscillations around their 
average position, which is that of System I. These oscillations propagate from the 
coastlines inwards. Thus the fresh-water body transforms continually, somewhat like 
a figure on a flag floating in the wind. 

The condition that the variations of D in any section are small as compared with the 
value of D must be verified. These variations. occur only in the homogeneous flow 
system, [I, which is independent of n, since n only occurs in  System I .  It was shown in 
Section 6.3.2 that in a homogeneous fluid system with n = O the variations of D are 
related to those of h by 

A D  A h  - _-___ 
D D + D" 

In  any section the amplitude Al7 is smaller than, or of the order of, the tidal amplitude, 
which is assumed small compared with the thickness of the aquifer LI-+ D". There- 
fore the condition is satisfied that the amplitude A D  is small in comparison with D. 
It should be noted that the sections near the coast are singular points in the mathe- 
matical solution of both Systems I and 111. A further analysis of the extremity of the 
fresh-water body should be made, as indicated in Section 3.2, giving special attention 
to the horizontal flow of System 11, which tends to displace the last, steep part of the 
interface. 

6.3.5 Periodic variations in recharge rate 
Figure 83. - The model is the same as in the previous section: a phreatic aquifer with 
approximately constant thickness, bounded by two parallol planes. The  sea level at  
both sides is now assumed constant (cp" = O), whereas the recharge varies according to 

n = n ,  + no COS ot 
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If the period T = 2n/o is one year, the formula corresponds to seasonal variations in 
recharge rate. 
The solution can be found by superposition of three elementary systems, following 
the same reasoning as in Section 5.3.3. 
System I :  
- The true value of d y 
- Average recharge n,  
- Constant sea levels, cp" = O 
This is the steady-state system of Section 6.2.4. The formulas are 

q = n ,  (i - x) 

System 11: 
- A y  = O Homogeneous fluid. 
- Recharge n = no cos at 
- Sea levels varying according to 

noy . cp = - sin ot 
mo 

The formulas of this system are: 

noy . no ' cp = - sin ot or h = - sin wl 
mo m o  

q = o  
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System 111: , 

- A y  = O, homogeneous fluid 
- No recharge n = O 
- Sea levels varying according to 

n Y .  cp = - 0 sin ot 
m o  

The formulas are 

n Y  
mw 

cp = - Epe- OCUsin (cot - au) 

cp h = - 
Y 

where o! = Jmo/2ykD and in the successive terms: 

p = + 1  s = - 1  u = x  
f l  . + 1  I - x  
- 1  + l  I + x  
-1 --I 21 - x 
+ I  -1 ' 21 + x 
+1 +1  31-x 
-1 + I  ~ 31 +.x 

etc. 

The formulas of the whole system can be written by summing cp, h and q of the ele- 
mentary systems, 1 ,  I1 and 111. 
It should be checked if in each section the variations of D are small compared with 
D. These variations are limited to Systems 11 and 111, since System I is steady. I n  
System 111, n = O, therefore 

A D  Ah 
D D + D" 

- _ - ~  

AD and Ah being the amplitudes of the variations of D and h, where Ah is the total 
effect of a number of damped oscillations, not in phase with one another. Since Ah 
will not be greater than the amplitude of the sea level variations in System 111, that is 
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n0 -, it suffices that this quantity be small compared with D,,which was a premise of the 
mo 
calculation. . 

In System 11, where n # O, the variations of D can be found from the formulas of 
Section 6.3.2., but a shorter reasoning is possible. In this system no flow occurs, thus 
the interface is at rest: The surface moves up and down according to 

no . h = - - sin at 
mo 

Thus the variations of D are the same as those of h, whose amplitude is n,/mw. This 
quantity cannot always be small in comparison with D, since D reduces to zero at the 
ends of the fresh-water body. Although this fact condemns the calculation in principle, 
the formulas obtained may be acceptable as an approximation of the reality, consider- 
ing that: 
- Due to the steep slopes of interface and water surface near the coast, small values of 
D occur only over a limited length of the aquifer. Since D2 is proportional to x(l - x), 
it can be seen that over 9/10 of its length the fresh-water body has a thickness of more 
than 43 % of the maximum or more than 56% of the average value. 
- The variations of D are alternately positive and negative. 
- Calculations of ground water, especially for orientation, are generally rough. 

Since the extremities of the aquifer do not entirely satisfy the assumptions underlying 
the calculation, it is recommended that in any practical problem these parts be studied 
in detail. Assuming that in a particular case superposition is feasible with a fair 
approximation, interesting conclusions can be drawn as to the periodic accumulation 
of fresh water underground. Since both the surface and the interface move, the volume 
of the lens changes. The fresh-water body acts as a storage reservoir, whose character- 
istics can be analysed on the basis of the established formulas. 
Figure 84. - Five quantities play a role, indicated schematically in Figure 84. 
- N .  The variation in recharge rate over the length I of the model, per unit breadth in 
the other direction 

N = Ino cos ot 

- E. The variation in the flow rate of exchange between the aquifer and the sea at 
both sides. This flow occurs only in System Ill, which is a homogeneous fluid system. 
It is uniformly distributed over the height of the aquifer. Since the fresh-water body 
ends in apoint, only salt water is exchanged, whereas the outflow of fresh water to  the 
sea is constant, according to System I. E is determined by the formula of q in System 
I l l  for x = O: 
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where in the respective terms: 
s = - l  u = o  

$ 1  1 
+ 1  1 

I 21 - 1  
- I  21 
+1 31 

I + 1  31 
etc. 

- I .  The variation in the volume of fresh water contained in the lens, due to the 

- S. The same for the displacements of the surface. 
- V. The variation in the fresh water volume contained in the lens. 
The five quantities N ,  E, I ,  S and V have the same dimension. They are sine functions 
of time with the same yearly period, but different phase and amplitude. They can be 
added and subtracted (either analytically o r  graphically as  vectors). The result is 
always a sine function with the same period, but the amplitude is not simply the sum 
or the difference of the amplitudes of the terms. With these remarks in mind, the 
simple notation in sums and differences may be used. 
- It follows from the incompressibility of the salt water that 

I displacements of the interface. 

, 

~ 

/ = E  

which means equality in phase and amplitude. This folmula defines I ,  since E is 
known. 
- Since the water in the aquifer is incompressible: 

N = S + E  
~ 
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which determines’s, since N and E are known. Since E = I ,  also 

N = S + I  

The right-hand side clearly equals V :  

N = S + Z =  V 

This formula, written as N = V expresses that the variations in recharge are fully 
stored in the fresh-water lens. Written S + I = V,  where S and I are known, it in- 
dicates which parts S and Z of the storage are due to the displacements of the surface 
and the interface respectively. 
Since all five quantities N,  E, I,  S and V have the same dimension, they can be made 
dimensionless when dividing them by nol, writing N’,  E ‘ ,  I’ ,  S’ and Y ’ .  Thus 

4 S‘ = N’ - I’ = COS wt + ~ 

al 

These formulas show that the relative importance of I’ and S‘ depends only on  the 
parameter 

O = U I  = I J m o / 2 y k D  
the values of u in the series being multiples of 1. 
This relationship can be analysed mathematically (not shown here). On physical 
grounds it is clear that for great values of O ,  S’ is predominant, whereas for small 
values of O ,  I’ comes to the fore. 

I 
1 
I 
I 
I 
I 
1 

This can easily be seen by attributing great values of O to great values of I and  
average values of nz and k D .  I n  an elongate model the waves of System 111 die out 
i n  the coastal zone, while the major part of the model is under the influence of 
System 11, where the interface does not move, and S’ stands for the whole accumu- 
lation. Low values of O can be attributed to average values of I,and m, and high 
values to k D .  The phreatic surface then scarcely rises above sea level an‘d does not 
accomplish important movements. Thus I predominates. 

6.3.6 Extructiort of,fresh water front a well or a gallery 
In this section the problem of extracting fresh water from a well in a two-fluid system 
will be examined. The analysis will be qualitative only.  I t  will be given first for a partly 
penetrating well in homogeneous soil and then for a fully penetrating well in aniso- 
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tropic soil (without resistance in vertical direction). Although the line of thought is 
the same in the two cases, the choice of the elementary systems is different. There- 
fore the results are difficult t o  compare. The analysis in the two hypothesis is most 
instructive and may be considered as  a preparation for a more thorough examination 
of the problem of the partially penetrating well in two-dimensional flow schemes, 
which is outside the framework of this publication. It also forms a n  introduction t o  
the study of the influence of the transition layer on water extraction from wells. The 
analysis is given for a well, but applies also to a gallery. The assumption of aniso- 
tropic soil without resistance in vertical direction would correspond fairly well t o  a 
gallery in broken limestone crossing a vertical fissure. 
The extraction from a well in a large aquifer is a local and minor phenomenon in a 
much greater two-fluid system. Its influence extends in principle to  the boundaries of 
the aquifer and can be split up, more o r  less artificially, into a local, rapid upconing of 
salt water under the well, and a wide-spread slow deformation of the whole fresh- 
water body. In order to study the first effect separately, the area around the well will 
be given artificial, steady boundary conditions, thus neglecting the second effect. 

Fig. a5 

Figure 85. - A circular boundary is assumed with a radius, two to  three times the 
thickness of the aquifer, so as t o  imply nearly horizontal flow at  the boundary. All 
around the circle cp and cp" are kept aitificially constant, which in a laboratory model 
can be done with a series of devices as shown schematically for the salt water in 
the figure. Water of the appropriate specific weight is supplied in abundance, so that 
the top overflows, which fixes the value of A", and therefore that of cp? = y"/?;. If the 
same is done for the fresh water, also cpI is fixed, and consequently the interface, 
since Z is determined by 

91 - cp; = (Y" - Y> z 
Since the diameter of the boundary is small compared with the horizontal dimensions 
of the aquifer, the recharge within the boundary may be neglected, which corresponds 
to the assumption of an  impermeable top layer. 
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Fig. 86 

The effect of water extraction will now be examined successively for a partly penetrating 
well in homogeneous soil and a fully penetrating well in  anisotropic soil (without 
resistance in vertical direction). 

Partially penetrating well 
Figure 86. - The screen is assumed to be one half of a sphere at the top of the aquifer. 
The reference level passes through the lowest point of the screen. If the extraction 
rate is limited, a steady state will eventually be reached, where the top of the cone 
remains at a certain distance under the screen. In a marginal case it will just reach the 
screen. When the law 

'p - ($3'' = - ( y "  - y)Z 

is applied for the lowest point of the screen, where Z = O, it is found that 

' po  = ( P I "  

where 'po is the potential in the well in the final state. Thus the condition that the top 
of the cone stabilizes under the screen is 

'pl" < 'po < 'p1 

which indirectly defines the marginal extraction rate. 

At any moment of the nonsteady period, the flow system (IlI), is the sum of two 
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elementary systems, 1 and 11, commonly characterized by the form of the interface at 
that moment, and further by: 

System I :  
- Homogeneous water (dy = O) 
- In the well Q = Q, (and Q” = O )  
- At the boundary cp = cp” = O 

System It: 
- The true value of d y  
- In the well Q = O, (Q” = O) 
- At the boundary cp = cp,, and rp” = rpy 
This subdivision can be made for any moment of the nonsteady period as well as for 
the final state. System I is the same at any moment, although the form of the interface 
between the coloured layers changes. It is a steady-flow system in homogeneous water. 
Its streamlines point upwards and tend to  displace the interface (between colours) in an 
upward direction, thus creating the cone. System II is characterized by nonsteady 
flow without extraction. The cone subsides by its weight. 
Thus at  any stage of the nonsteady period the interface is under the combined in- 
fluence of System I raising it and System I 1  lowering it, and these influences result in a 
rising up of the cone. In the final steady state these systems counterbalance each other, 
so as to keep the interface in place. 

In  the final state a certain instability may be expected, as can be seen from the follow- 
ing reasoning. If, as has been assumed, a final state is reached where the potential in 
the well is higher than cp;’no salt water can enter into the well. I f  now the diameter of 
the well, already assumed small, is reduced considerably further, the extraction rate 
remaining constant, the flow pattern in the aquifer will scarcely change and the poten- 
tial on the half sphere corresponding to the former screen .will remain about the same. 
But  important potential losses are created between the place of the former screen and 
the new one, so that,the potential in the well will be much lówer’and even considerably 
below cp;. Thus salt water could, in principle, enter the well, which, however, will not 
occur because of the high potential at  the place of the former screen. The question 
arises whether a second final state is possible. This problem is left for study onftwo- 
dimensional models. . .  

: .  . .  

Fully penetrating well , . .  

Figure 87. - The same problem can be posed for a fully penetrating well i n  aniso- 
tropic soil. The system (111) is again split up into two elementary systems, I .and 11, 

. .  but characterized other than in .the above analysis: 1 , ‘  
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Fig. 87 

System I :  
- d y  = O Homogeneous fluid. 
- Extraction Qo from the well. Since the fluid is homogeneous, a part (DID,) Qo is 
extracted from the upper layer, and a part (D”/DJ Q,  from the lower layer. 
- At the boundary cp = cp“ = O 

- The true difference in specific weight d y  
- Extraction of fresh water a t  a rate (D”/D,) Q, from the upper layer, and injection of 
salt water at the same quantity into the lower layer. The total extraction is zero. (The 
injection into the lower layer counterbalances the extraction of System I, while the 
extraction from the top layer brings the fresh-water supply up to Q,). 
- At the boundary cp = c p I ;  cp“ = 40;. 
System I is steady. Since the fluid is homogeneous, the streamlines are horizontal. 
The flow displaces the interface (between the colours) towards the well, which means 
that it lowers the cone. 
System JI is nonsteady. The water injected into the lower part of the well does not 
reach the boundary for the full amount. A part is stored in the rising of the interface. 
In  the same way, the water extracted from the upper part of the well is not fully 
supplied through the boundary. A part  of it is delivered from the rise Öf the interface. 
During the nonsteady period System I remains the same, but since the interface 
(between the colours) rises, the flow causes an increasing downward movement of the 
interface. System I1 changes with time. The quantities injected and extracted increase 

System 11: 

‘ 
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with increasing D". Thus the effect of cone-building becomes stronger. Finally equili- 
brium is reached, where the combined influences of Systems T and I 1  keep the inter- 
face in a steady position. 

When the flow systems of the partially and the fully penetrating well are compared, a 
fundamental difference appears. Whereas in the case of a partially penetrating well 
System I raises the cone and System 11 lowers it, the reverse applies to the fully pene- 
trating well. The difference is due to the different choice of the elementary systems, 
which is, however, in either case the most logical. The analysis of the partially pene- 
trating well systems could be repeated on the basis of the other scheme by assuming a 
second screen at the bottom of the aquifer, but the study made in this way would be 
more artificial and less instructive. 

6.4 TRANSITION LAYER 

6.4.1 Fundaarnentals 
Between fresh and salt water a transition layer develops for two reasons: ( I )  diffusion, 
which is the movement of salt molecules through the water and (2) displacement of 
water perpendicular to the interface or perpendicular to the transition zone, which is 
limited to nonsteady flow. Both factors will be examined in detail. 
Figure 88. - ( I )  Diffusion can be studied on a groundwater model, filled with fresh and 
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salt water at  rest and separated by a horizontal, sharp interface. The concentration of 
salt molecules in the salt water is higher than in the fresh water,'where it is zero. As a 
consequence the molecules move upwards. The concentration in the salt water 
decreases; that in the fresh water increases. If the salt diagram is first AA, it becomes 
successively BB, CC,  DD and after an infinitely long time EE. The latter line corre- 
sponds to total diffusion, where both layers have the same salinity. The laws governing 
this phenomenón will not be treated here in detail. Only the following remarks will be 
made : 
- The phenomenon is slow; the formation of a transition layer may take tens or 
hundreds of years. 
- The diffusion rate depends on the pore space; not on the permeability. 
- The curve is symmetrical with respect to  point M. 

Figure 89. - (2) The second factor can be studied on the same model: two fluids at 
rest, separated by a sharp horizontal interface. If an upward flow sets in, the interface 
moves upwards, but does not remain a horizontal plane. The particles in the middle of 
large pores move more quickly than those in the middle of small pores; those in the 
middle of any pore move more rapidly than those near the sides, where the velocity 
reduces.to zero; flow through vertical pores results in a faster rise than does flow 
through inclined openings. The same particle rises alternatively fast and slowly. By 
chance it may rise as a whole more quickly or more slowly than others. 
Throughout the period of flow, differences in salinity tend to develop between the 
particles flowing alongside each other in the same pore: salt water particles moving 
faster than fresh water particles, salt water flow through vertical pores meeting fresh 
water yielded by inclined pores, etc. Appreciable differences in salinity, however, 
cannot persist on distances as small as the widths of the pores. On this scale, diffusion 
is effective and creates a zone of brackish water, increasing in thickness as the flow 
continues. 
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Figure 90. - These two formative causes are counteracted by leaching, which pheno- 
menon can be studied' in its simplest form on the model of Figure 90. A parallel 
steady flow is assumed, created by uniform infiltration. The fresh groundwater flows 
towards the sea; the salt water is at rest. The intermediate layer not only constitutes a 
transition in salinity, but also in velocity. The flow rate varies gradually between the 
velocity of the fresh water and zero (salt water at rest). Thus the transition layer moves 
in all its parts, and each particle reaches the sea after a shorter or longer period. 
I n  natural conditions equilibrium is eventually reached between formation and 
leaching, resulting in a certain thickness of the transition layer. In regions near the sea 
with off flow over a short distance in a permeable aquifer,*the .transition layer will be 
thin, and the fresh water of good quality. In  regions farther from the coast, wheie the 
fresh water moves slowly ovei great distances, the transition layer may be consider- 
ably thicker, or may even reach the top of the aquifer, making the water unsuitable for 
consumption or irrigation. 
I f  the transition layer is thin, there is an advantage in conserving this favourable 
situation by preventing the undue creation of brackish water. Thus constant extrac- 
tion from a well or a gallery is, in principle, better than irregular or periodic pumping 
at the same average rate, because the vertical movements of the transition layer are 
limited. , I t  is difficult, however, to give a quantitative appraisal of this effect. 

6.4.2 Estraction of ,fresh water jrom a well or a gallery 
As will be shown in this section the transition layer has a paramount and unfavourable 
influence on the exploitation of groundwater. Two examples will be given: one of a 
well or gallery near the centre of an island, that is without horizontal flow in the fresh 
water before the well is put into operation; the other of a gallery nearer to the coast, 
where an initial lateral flow exists. In both cases the transition layer is assumed thin 
compared with the thickness of the fresh-water layer, so that comparison is possible 
with the corresponding sharp interface systems. 
For the analysis, which will be qualitative only, the transition layer may conveniently 
be replaced by a scries of some five or more layers, each of constant specific weight, 
forming a transition in steps between fresh and salt water. 
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Extraction in the centre of the island 
Figure 91. - The model is almost the same as in Section 6.3.6. The artificial boundary 
conditions are reintroduced, as well as the devices regulating the potentials and  the 
salinities of the water of the different layers. Five intermediate layers are assumed. 
The potentials at  the boundary are cpl for the fresh water, 'p2 to cps for the brackish 
water of the intermediate layers, and (p7 for the salt water (the symbol cp" being no 
longer used). At first all layers are at  rest; the interfaces are horizontal. From a 
certain moment onwards a constant quantity Q, is extracted from the well. 
When Q, is small, a final'state (shown in Figure 91) will be reached, resembling that 
of Section 6.3.6, where n o  salt water reaches the screen since the potential 'po in the 
well is intermediate between cpl and cp7.  Assuming that 'po is between (p3 and cp4, then, 
in .the final state fresh water will be extracted as well as water from the upper two 
intermediate layers, whereas the water in the three lowest layers, and the salt water, 
will be at rest. The lower layers are horizontal, since the interface between two fluids 
with different y, both at  rest, is horizontal. I t  should be noted that in the very be- 
ginning they rose under the  influence of the streamlines of System I and then subsided. 
Such behaviour, derived from deductive reasoning, should be verified on a laboratory 
model, preferably with oil as a fluid, so as to exclude diffusion, which in a scale model 
is not reduced in the proper way. 
The layers delivering into the well are separated by inclined interfaces. According to 
the same law, the velocity decreases in steps in  a downward direction each time an 
interface is passed. 
The same uncertainty exists as to the stability of the final state, when f o r a  constant 
extraction rate the diameter of the well is reduced. This question may be studied on 
two dimensional flow models, not t o  be discussed here. The water from the upper 
layers of the transition zone certainly reaches the well. The other layers eventually 
might follow one after the other, thus allowing the salt water to reach the well. The 
final state would then be stable. 

When it is admitted that the steady flow corresponds to the situation in the figure, the 

' 
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result can be studied on its technical merits by considering a series of steady-state 
systems in the same model, differing only in extraction rate. This rate is small in the 
first system and greater in each of the following, until in the last system it reaches such 
a value that the salt water cone stays just under the screen. It is clear that even in the 
first model some brackish water is extracted; in each following system this quantity is 
greater because more intermediate layers give their water. In the last system the whole 
transition layer delivers into the well. Thus extraction of brackish water is unavoid- 
able. This result contrasts with the behaviour of a two-fluid system with a sharp inter- 
face, where in all systems, even the last, the extracted water would be completely 
fresh. 
I t  should be noted that the salinity of ocean water is of the order of 18.000 p.p.m. Cl'. 
Th,us inmixing of only 2 % into fresh water results in a salinity of 360 p.p.m., which 
exceeds the limit for drinking water, and is appreciable even for irrigation purposes. 
The given reasoning explains the unexpected salt troubles encountered so often in 
groundwater exploitation in coastal regions, where the influence of the transition 
layer had been overlooked. 
It can also be seen from the above that the salt troubles increase with the thickness of 
the transition layer, expressed as a fraction of the thickness of the fresh water layer. 
Aquifers with thick transition layers may be unsuitable for extraction. 

Drain near the coast 
Figure 92 represents a steady-state parallel flow system in a phreatic aquifer, receiving 
a uniform recharge n. The model is bounded to  the left by an  impermeable wall and 
t o  the right by the sea. By diffusion a transition layer forms. 

n Fig. 92 
t I I-" 1 I 

If water is extracted at  a low rate from a gallery at  C, this water is supplied by the 
upper part of the fresh water body, whereas the lower part deliverS.int0 the sea, as  
indicated in the figure. This time the extracted water will be perfectly fresh. The ex- 
traction rate may be raised until only the brackish water flows to the sea and all the 
fresh water is collected in the gallery. 
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Although, in principle, fully fresh water is extracted, the solution should be considered 
with reserve for the following reasons: 
- The nearer the gallery is to the sea, the thicker is the transition layer as compared 
with the thickness of the fresh water layer, since brackish water forms along the entire 
distance between A and B. 
- A series of wells, replacing the gallery, would not have the same effect, since the 
division between the water extracted, and that lost to the sea would not take place in a 
vertical plane only, but also in a horizontal plane (water passing between two wells). 
If the wells are not too narrowly spaced, the flow in a cylinder around each well is 
radial, which brings the problem back to that of a well sited in the centre of an 
island, where extraction of brackish water is unavoidable. 
- In limestone, local vertical fissures crossing the galleries would upset the effect in 
the same way as wells. 

6.4.3 Double pumping 
I n  Section 6.2.8. the theoretical possibility has been examined of extracting fresh and 
salt water simultaneously, with a view to increasing the fresh water production. An 
analogous technique will be described in this section, where fresh and brackish water 
are extracted simultaneously to avoid mixing. The method is based on the consider- 
ation that the extraction of brackish water is often unavoidable and the remedy is to 
extract it separately, and then to dispose of it. 
Figure 93 represents a partially penetrating well, for instance an unlined borehole in 
finely fissured limestone, extracting fresh water as well as some brackish water from 
the transition layer. I f  the energy losses in the well are neglected, the potential at all 
points of the well face is the same. This potential depends on the extraction rate, 
regardless of whether the orifice of the pump is located in A or in B, or the same total 
quantity is extracted by two pumps in A and B, operating simultaneously. In these 
cases the flow pattern in the aquifer is the same, since it depends on the value of cp at 
the face of the well only. Whatever might be the flow pattern around the well, the 
brackish water will enter into its lower part and the fresh water into its upper part, as 
a consequence of the difference in density between the fluids. Since the flow is laminar, 
the two fluids do not mix. Thus a Section C exists, separating the fresh and brackish 
water entering into the well. 
When the extraction rates of Pumps A and B are Q A  and QB respectively, a series of 
tests can be imagined where 

QA + Qi = Qo 

is the same, but QB is respectively O%, lo%, 20%. . . loo% ofQo. In all cases Section 
C will be the same, but Section P, where the incoming water divides into an upward 
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and a downward flow inside the well, will be different. I t  is possible to choose Q B  so 
that Section P coincides with Section C, in which case Pump A extracts purely fresh 
water and Pump B all the brackish water. When Q B  is slightly further decreased in 
favour of QA, the salinity of Pump A can be raised to the maximum allowable con- 
centration. The water of this pump is used, whereas that of Pump B is disposed of. 
The application of the method depends on several factors: economic, practical, 
hydraulic, etc, which have to be examined separately in each case. The physical base 
of the method has proved to  be sound, as tests in sand, and even in fissured limestone 
formations have shown. The principle of a measuring technique developed during 
these tests will be described below. A separate section will be devoted to it,, since its 
application is not restricted to the techniques of double pumping alone. 

6.4.4 Testing saline boreholes 
Figure 94. - In this section a measuring technique will be described to establish how 
the water enters during the pumping into an uncased well, or a screen of certain length. 
The result gives the distribution of the quantities and the salinities over the height of 
the well. The example given will be that of an uncased hole in limestone, receiving 
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Fig. 94 

fresh water in its upper part and brackish water in its lower. To make the example 
more general some complicating factors will be added: an impermeable layer P, and 
a big fissure Q, yielding abundant fresh water. 
In two successive tests water is extracted at  the same rate: in the first, the orifice of the 
pump is in the highest position H, in the second in the lowest position L. If the poten- 
tial losses in the hole are neglected, cp is uniform over the entire face of the well. In 
both tests cp, and therefore the flow pattern around the well, is the same. Thus, the 
distribution over the height of the well of the quantities and the salinities of the 
entering water is the same too. 
In both tests the salinities of the water flowing inside the well are measured during 
pumping as a function of the height, either by taking a series of samples to be examin- 
ed in the laboratory, or by measuring the conductivity with an electrode sunk into the 
well. The instruments will not be described here. 
The logs are different in the two tests. 
- With the orifice in the low position the flow in the hole is downward, except in the 

. 
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small part below the orifice, where it is upward. The downward flow is fresh in the 
upper part of the well, but the salinity increases gradually in the lower part, due to 
inflow of brackish water. The upward flow under the orifice is brackish. The two 
flows mix in the pump; the salinity S,  of the mixture is that of the extracted water. 
- With the orifice in the high position the flow in the well is upward, except in the 
small part above the orifice, where it is downward. The upward flow is saline at  the 
bottom of the hole. The salinity diminishes gradually, at first slowly by inflow of less 
saline water; then more rapidly due to inflow of fresh water. The impermeable layer P 
is characterized by unchanging salinity (in both diagrams) ; the fissure Q corresponds 
to a sudden decrease of the salt content. In the pump the saline upward flow mixes 
with the weak downward flow of fresh water, which results in the same salinity S, of 
the water delivered by the pump. 
From the two logs the, distribution over the height of the well of the quantities and 
salinities of the inflowing water can be computed. The calculation is elementary and 
will not be discussed here. 
As a first check on the method the measurement can be repeated: the same logs must 
be found again. A correct repetition indicates that the turbulence of the flow in the 
borehole is strong enough to mix the water in the well with the water entering through 
the sides and that there are no turbulent circuits of so great a vertical extension as to 
upset the stratification of the rising or sinking watercolumn. 
As a second check more tests can be made with two pumps, working simultaneously 
at the same total rate, but the lower pump delivering different fractions, 10 %, 20 %. . . 
of the total. From the results already obtained, the logs of the new tests can be cal- 
culated beforehand and the results compared with the measurements. 

The same method can be used for examining the quality of the water encountered 
during drilling of an uncased hole. In normal practice a suction pipe or  a submersible 
pump is lowered to the bottom of the hole, and the lower part of the hole sealed off 
mechanically before the sample is taken. But as shown above, the orifice may be 
placed as high as possible and a sample may be taken during pumping from the bottom 
of the hole without sealing. The upward flow in the well guarantees that the sample is 
representative of the water entering the hole at the bottom. If only the conductivity 
is wanted, an electrode can be sunk in the hole. The method would fail when the 
lower part of the hole is in impermeable rock, the water being stagnant. The classical 
method would then fail as well. 
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7. N U M E R I C A L  M E T H O D S  

If the boundaries of an aquifer have an arbitrary form, or the recharge is not uniformly 
distributed over the surface, the problem is generally too complicated to be solved 
by formal integration. In these cases numerical methods can be applied, either work- 
ing 'by hand' or using computers. In the latter case one should be familiar with the 
principles of the method and should call in the aid of specialists in computer methods 
for determining the detailed program. Mechanization does not exclude calculation by 
hand. Simultaneous manual solutions may be required as a' check on the computer 
program e.g. to study one out of a series of analogous problems, or a simple scheme of 
the same kind as the more complicated problem given to the computer. 
Apart from any particular result, however, numerical methods are instructive : they are 
more suitable for the formation of ideas than is formal integration. It is therefore 
recommended that in  studying groundwater hydraulics some of the easier calculations 
be made by hand. 
Section 7.1 will deal with so-called iteration methods. The term iteration denotes the 
repetition of an elementary operation until, by successive approximations, a result of 
sufficient precision is obFained. In principle the process is infinite, but the operations 
can be terminated when it becomes obvious that continuation would not change'the 
result appreciably. The method is comparable to that of summing an infinite series. In 
both cases the proof has to be given that the method converges and that the result is 
unique. 
Section 7.2 will provide some examples of more straightforward numerical methods, 
which in general are simpler than the iteration methods. They may be used alone or in 
combination with iteration. 
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Both kinds of numerical methods can be applied to one-dimensional flow (parallel or 
radial) as well as to two-dimensional, depending on two horizontal coordinates x and 
y .  In  Section 6.3.3 an example was given of application to one-dimensional flow. In 
this chapter only the more difficult two-dimensional problem will be examined. .The 
application of the same methods to  one-dimensional flow is left to the reader. 

7.1 ITERATION METHODS 

7.1,l Elementary example 
Figure 95. - In this section an elementary example will be given, showing the method 
in its simplest, though not its most efficient form. In the following sections more 
complicated problems will be treated and some perfections of the method will be 
shown. An aquifer without recharge will be considered, bounded by two river branches 
R and a lake L. The form of the boundaries, as well as the potentials in the river 
branches are arbitrary; the potential along the lake has a constant value. The flow is 
steady. 

Fig. 95 

R 

I 

When the calculation is made by hand, the plan of the boundaries is drawn on a large 
scale in lead pencil on heavy paper. A net of triangles, as indicated in Figure 95, is 
then drawn on transparent paper. Its scale is chosen so that some twenty or thirty 
points fall within the boundaries when the transparent paper is placed on the plan of 
the aquifer. By shifting the transparent paper, the net is brought into such a position 

’ 
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that a fair number of its points coincide with the boundaries. For the rest the bounda- 
ries are slightly deformed, so as to  follow the straight lines of the net. The net in this 
position, limited by the deformed boundaries, is then drawn in ink on the heavy paper. 
The potential values along the boundaries are inscribed in ink as well. 
An estimate is than made of the value of the potential at each point of the aquifer. 
These values are a mere guess, reflecting the engineer's first idea in this matter; they 
are of course all more or less wrong and are to  be corrected in the course of the oper- 
ations. The accuracy of the first estimate is not without importance: the nearer it is to 
reality, the shorter will be the work of correction. 
As will be shown in Section 7.1.3 the value of the potential at any point, if it were 
correct, would be the average of the six surrounding values. Since it is not correct, 
there is a difference. This law of the average is the simplest form of a more complicated 
relationship in more general conditions. In the present problem it stands for the differ- 
ential equation 

azq a2q - + - = o  
ax2  ayz 

but applies to finite differences. 
When applying the most simple method, one corrects the values of the potential at  the 
nodes in a given succession, rubbing out the estimated value and replacing it with the 
average of the six surrounding values. After this has been done for all nodes, the 
definite result is not yet reached, since the new values of the potential have been 
calculated on the base of surrounding values, not all of which had been corrected at 
that moment. The operation must therefore be repeated several times. In principle an 
infinite number of repetitions is required, but the work can be terminated when it 
becomes obvious that continuation would not change the result appreciably. 

- 1  
I 
I 

The proof of convergence will be postponed to Section 7.1.4., where the problem is 
explained in a slightly different way, providing a better base for considerations on 
this point. In that same section it will be explained at what moment the work can 
be terminated. 
It can readily be seen that the solution is defined and unique. There are as many 
unknown values of cp as there are points in the field (as opposed to the points at 
the boundaries). The basic formula, which is a linear relationship between some of 
the unknowns, can be written for each field point as a centre. Thus there are as 
many linear equations as there are unknowns. The solution is therefore defined as 
well as unique. 
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7.1.2 Difeerent nets 
Figure 96. - The triangular system, which was chosen for the example, is one of three 
possibilities A, B and C .  In each of these instances each nodal point of the net is 
surrounded by respectively 3, 4 or 6 other nodes at equal distances. The nodal points 
represent the centres of elementary areas S (shaded) of such a form that they fit 
together and cover the whole aquifer. The scale of the figures has been so chosen that 
S is equal in the three cases. The distances u between the points are respectively 
defined by: 

4 
System A: u2 = - f i s  = 0,768 S 

9 
System B: u’ = S = 1,000 S 

2 
System C :  u’ = -$S = 1,15 S 

3 
Each system has its advantages and disadvantages 
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- In System A and C the nodes are aligned in three directions, which facilitates the 
adaptation of the net to arbitrary boundaries of the aquifer. In System B, they are 
aligned in two directions only. Clearly, System B has advantages if the boundaries are 
actually rectangular, as may occur in academic problems. 
- In Systems A and C each node is surrounded by 3 or 6 nodes at the same distance, 
while in System B the four nodes used in the calculation are at short distance, and the 
four others, not used, are at slightly greater distance. The system lacks elegance. 
- The hexagons of System C approach the circular form, which enables comparison 
with radial flow problems. 
In the following sections only System C will be considered. 

7.1.3. Various difference equations 
Constant D 

For steady flow in an aquifer with constant D the following equation can be established 

azcp a2cp 
- + - = A 7  
ax2 ay2 

by eliminating qx and q,, between the law of linear resistance and the law of continuity 
(see Section 1.3.2). If n is given, N is determined by 

N = n  

independent of q. If in the case of a partly confined aquifer, cp' is given, Nis  determi- 
ned by 

k' 
= 7 D (cp' - 'p) 

dependent on cp. 
Figure 97. - Since the formula is a differential equation, it establishes the relation 
between cp in a certain point and in adjacent points at  infinitely small distances. For 
numerical methods a similar relationship can be established, which relates cp in the 
nodal point M to  the cp values in the six surrounding nodes A, B,. . . F, at small, but 
finite distances. The term' difference equation' is used for this relationship. In its 
general form it reads, when n is given: 

Where ZcpA denotes + c p B  + ..... . . (PF, and 

3 a' 
2 kD 

c = - - n  
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Fig. 97 

Thus, for n = O ,  the formula assumes the form 

EVA 
(PA = - 

6 

which is the law of the average, used in the example of Section 7.1.1. If in a partly 
confined aquifer (P' is given, the difference equation assumes the form 

+ (Pkfd ( 2 )  (PM =--- 
6 + d  

where 

3 k'lD' a2 

2 kD 
d = - -  

I 
I 
1 
I Q A -  - k D b ( P M - ( P A  

I where b = - a J3. When similar expressions for the flows through the other side 

I of the shaded hexagon are established and added, the total flow leaving the shaded 
. I prism is found to be 

The derivation starts from the assumption that the elementary triangles are so 
small that the linearization usual in the establishment of differential equations is 
valid as an approximation. The flow passing through PQ is 

l 

I 3 

a 

1 -  
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I For given n, in steady flow conditions, this rate equals the volume of water nS, 
1 I received per unit time on the shaded area S,  where S = - ,/?a2. Thus I 2 

1 .  1 
- d h 2 n  = - d3kD(6cpM - Ccp,) 
2 3 

I 

I 
I 
I which corresponds to Formula (1). 
I In problems of a partly confined aquifer with given cp’, the volume of water received ’ per unit time on the shaded area S is S(cp’, - c p M )  which, equated to  ZQA 

I gives Formula (2). 

k’ 
I D 

The meaning of the difference equation may be illustrated by replacing the potential 
cp by the piezometric height h, which differs from cp by a factor y only. The varying 
value of h over the area of the aquifer corresponds to a surface, which at the boundaries 
coincides with the given values of h.  If, in the simplest case, n = O, h,  at  each point 
represents the average of the surrounding values, which means that the h surface is 
like an elastic sheet, fixed along the boundaries and stretched tightly over the area. If 
n is uniformly positive (recharge), h ,  at  each point is slightly higher than the average 
of the surrounding values: the sheet assumes a slightly convex form, as if blown u p  
from below. If n is uniformly negative (evaporation), the sheet assumes a hollow form. 
Since the river slopes down towards the lake and the surface of the lake itself is 
horizontal, the h surface, convex or concave, shows the same trend of sloping down 
towards the lake and approaching symmetry in its cross-sections (parallel to the lake), 
if the levels in the river branches are about equal. 
I t  is because of considerations of this kind that iteration meth,ods are more instructive 
than mathematical analysis: the engineer is in direct contact with the properties of the 
flow system. 

~ 

I 

‘ 

Variable D 
In problems of steady flow in phreatic aquifers, where the variations of D are con- 
sidered, the reference level is laid a t  the base of the aquifer. The difference equation 
becomes 
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1 .  Taking up the proof from the beginning, the horizontal flow between M and A is 
I 
I ' P M  - ( P A ,  QA = .kDb 

a 

I where D is the average thickness of the aquifer between M and A, that is 

( P M + ' P A  .. 
I 

I 
I D = -  

Y 2  

I Substituting this value of D in the above equation gives 

I j After summation over the six points 
I 

I 
I This off-flow is restituted by the recharge nS on the area S of the hexagon, thus I 

I 
1 
I replaced by q 2 / 2 y .  

Two-fluid system 

which corresponds to the given formula. 
The same result can be obtained if, in the formula for constant thickness, cp D is 

Similar substitutions may be applied to obtain the formulas for q in steady two- 
fluid systems .with stationary salt water. The two following cases have to be distin- 
guished, where commonly 

2 w + c  
q M  = ~ 

6 

but for different values of c. 
- In  the case of a phreatic aquifer, when the reference level is laid at sea level (q" = O), 

cp2 of the previous case may be replaced by - cp2, which gives Y" 
Y - - Y  
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- In the case of a confined or partly confined aquifer, when n is given, independent of 
Y 'I 

Y - - Y  Y 
cp, cp2 may be replaced by 'p2 if the reference level is chosen at a distance -a3 

above the top of the aquifer, where a3 is the elevation of the sea level above the top of 
the aquifer. Then 

c = 3(y" - y) a2n/k 

Once the values of cp at the points of the net are determined by means of the iteration 
method, those of h and 2 can be found by means of the formulas given in Section 
6.2.3. The corresponding problem for a partly confined aquifer where cp' is given will 
not be treated here, since the difference equation is not linear and would not form a 
good basis for an iteration method, where the elementary operation should be simple. 
In the cases of a one-fluid system with variable D or a two-fluid system, the flow 
section may reduce to zero at the boundary, which is even the rule along the coast in 
a two-fluid system. Although cp shows a singularity at  the boundary, cp2 is analytic. 
Therefore, mathematically the iteration may be applied on the value of cpz, without 
restrictions, although physically the border strip requires a detailed examination (see 
Sections 3.2 and 6.2.2). 

7.1.4 Improved procedures 
In this section some improvements of the iteration method will be discussed. There 
are two reasons for doing this. First the method given in the example of Section 7.1.1 
is not the most rapid. This argument is relevant when the operations &e executed by 
hand, but loses importance in computer programs, where it is simplicity, rather than 
rapidity, that counts. Secondly there is an interest in showing some variation in the 
procedure: more insight is gained and a better basis is laid for considerations on 
convergence. 
The example will be given for fresh water flow in a partly confined aquifer where íp' 
is given in each node, which is one of the most complicated problems studied. The 
difference equation reads: 

6 + d -  
Ccp" + dep$ 

(PH = 

where 
3 k'/D' ,2 

2 kD 
d = -  - 
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! Fig. 98 

Figure 98. - This net is drawn in ink on thick paper and on a large scale. Above each 
node, in ink as well, the local value of cp' is indicated; to the left in lead pencil the 
estimated value of cp; to the right, also in lead pencil, the correction, positive or 
negative, to be added to the value of cp to  bring this value into agreement with the sur- 
rounding values, according to the difference equation. This correction is calculated 
and indicated, but not yet added to the value of cp. 
Then, node after node, the corrections are added. This is done in the following way 
(the left-hand figure shows the position before the corrections are added, the right- 
hand figure the position after): 
- Add the correction + 9 to the cp value of 78 at M, by rubbing out the value 78 and 
replacing it with 87 (= 78 + 9); rub out the correction + 9 at  M and replace it with 
zero. 
- Still a secondary correction is required, for the following reason. When at  A the 
correction + 3  was calculated, the value cp = 78 at M was used. Once this value has 
been changed (increased by 9), the correction at  A should be changed accordingly 

or about 1,5 if d is small compared with 6 .  This must be done at  the six 
9 

adding - 
6 + d' 

nodal points surrounding M. 
To obtain rapid results by hand, the points are taken in an irregular succession,'giving 
priority to nodes with high corrections, especially when they are surrounded by cor- 

l rections of the opposite sign. The secondary correction then totally or  partly cancels 
out the values noted in the surrounding nodes. If in  the beginning all corrections have 
the same sign, this means that the values of cp have been estimated generally too high 

' 
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or too low. It may then be more efficient to start again from scratch with another 
estimate. 
Instead of adding the whole value of the correction one can better add a multiple of 
6 + d, so as to avoid accumulation of errors by rounding off. A part of the correction 
then remains indicated on the right-hand side of the nodal point. In zones where all 
the signs are alike, the desired variation in sign may be created artificially by applying 
too high a correction to some points. 
These remarks do not exhaust the matter: other methods to speed up the operation 
may exist. In the case of mechanical computation still other ways may be followed. 

It can be deduced from the above that the method converges. Even if all the correc- 
tions have the same sign, a correction p at M is replaced by six others, each equal to 
pl(6 + d )  and with the same sign. Thus the sum S of the absolute values of all cor- 
rections decreases at every elementary operation. But since d is small in comparison 
with 6, and in some problems zero, the effect is small or nil. Yet, even if the corrections 
are uniformly of the same sign and d = O, the sum S decreases each time a node ad- 
jacent to the boundary is treated, since at the border nodes no secondary corrections 
are added. Continuous decrease of the sum S of the absolute values of the corrections 
means convergence of the method, since S cannot drop below zero and cannot stop at 
another limit either, the solution being unique. 
The question then arises as to how long the calculation should be continued. Although 
at all times and for any  node the drawing shows the correction still to be added, it 
does not answer the question. The correction still to be added is comparable to  the 
next term in a series, which is not equal to the rest term. 
To answer this question physical considerations may be used. Each set of cp values in 
the nodes of the net corresponds to a true flow pattern, but with k’/D’ or cp‘ values 
different from those defining the problem. Thus the same equation 

may be used to  translate the corrections still to be added into differences with the 
given k‘/D‘ or cp’ values. If these differences are within the limits of precision admitted 
for these quantities, the operations can be terminated. In  problems where n is given, 
the corrections may be translated in differences of n. 

I .  I .5 Wells in the jîeld 
The theory given is based on the assumption that the elementary triangles cover small 
areas in which cp and q are continuous functions of the coördinates. This condition is 
not satisfied in the vicinity of a well. Therefore special methods must be developed to 
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deal with problems where water is extracted from one or more wells. 
Figure 99. - The example given will be that of an aquifer with constant D, surrounded 
by a boundary with given values of (P. The recharge n of the aquifer is given in each 
node of the net..Two wells extract water at rates Q, and Q2 respectively. 

The solution can be found by superposing the following elementary systems: 
System I, characterized by: 
- The first well, extracting at a rate Ql ,  sited in an infinite aquifer. 
- Arbitrary value cpI of the potential in ,the well. 
- No recharge (n  = O). 
This is the system where cp varies with the logarithm of the distance to the well. The 
logarithmic function gives the values cp, of cp at the nodes of the boundary (see Section 
2.3.1). 
System IT is similar to System I, but applies to the other well. Tt defines the values 
' p I I  of cp at the nodes of the boundary. 
System 111 : 
- No extraction from the wells. 
- The true values n of the recharge in each node of the net. 
- Potentials in the nodes of the boundary equal to 

V I I I  = cpt - ( c p l  + ( P I , )  

where ( P ~  are the true values. 
This system can be calculated by iteration, since cp is a continuous function of x and 
y .  The singularities have been limited to Systems I and IT, where exact integration 
accounts for them. 
It can readily be shown that the solution is independent of the arbitrary choice of cpr  
and cpz. If 'pl - x had beeti chosen instead of cpl, all cp values in System I would have 
been lower by a quantity x, hence also the values cp, at the boundary nodes. Thus the 
q l l r  values would have been that much higher, and the x terms would have cancelled 
out in the superposition of Systems I and TIT. 
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The same principle may be applied to phreatic aquifers or to two-fluid systems. The 
superposition must then be executed by adding the values of cp'. 

7.2 NUMERICAL METHODS WITHOUT ITERATION 

In this following section some examples will be given of the use of the same network 
in numerical methods without iteration. They may be used independently or in com- 
bination with iteration methods, and can be applied to  either steady or nonsteady 
flow problems. Thus the variety of possible applications is very great, and covers most 
of the problems that can be posed in the categories examined in this study. The 
operations may be long, but computers can be used. 
Long calculations are especially to be expected when a nonsteady movement is follow- 
ed over a long series of elementary time intervals A t .  Since, however, the movement 
of the interface is generally very slow, the elementary time interval A r  might be of the 
order of the period in which the new works are written off through depreciation - 
some 30 or  50 years - in which case the calculation of one interval might suffice to 
examine the feasibility of a technical execution. 
The problem is not always defined in an academic way. Studies on limited areas, not 
reaching to the boundaries of the aquifer, can be made if sufficient data are available 
from measurements. From measured values of cp" and 2 for instance, as will be shown, 
the movement of the interface can be deduced in any limited region. 
In other cases the data known from measurement may be over-abundant. The 
numerical methods can then be used in the reverse sense: when for instance in each 
hexagon the individual values of n or k'/D' are calculated, the assumed uniformity of 
these quantities is checked. 
It is not the aim of this publication to work out operation methods for complicated 
problems; only some principles are given, illustrated by some examples. 

7.2.1 Steady flow in a partly confined aqutfer (one fluid) 
Figure 100. - Section 4.2.4 dealt with parallel steady flow in a partly confined aquifer 
where cp' was given graphically, as indicated in the upper figure. One possible method 
of calculation was the superposition of elementary systems, as represented in the 
lower figures. 
Figure 101. - The same principle can be followed if cp' is given in the nodes of a net, 
within a closed boundary, while outside that boundary cp' = O to infinity. Such an 
arrangement might well be an element in a system of superposition, accounting for the 
rise or fall of the phreatic aquifer due to irrigation or drainage in a given region. 
The system can be considered as the sum of a series of elementary systems, each 
defined by the value cp; in one-of the hexagons (A, shaded), and cp' = O alì around. 
Each elementary system can.be calculated by replacing the hexagon with a circle of 
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A 0 

Fig.101 

the same area, which gives a close approximation. The problem then reduces to that of 
Section 4.3.2. With the formulas of this section, for cp' = 1 in the central hexagon, 
the cp values in the surrounding points of the net can be calculated. A tracing paper 
can be prepared, representing the nodes of the net, with the hexagon in question in the 
middle and the calculatéd cp values written under the points. 
If now, on the original drawing, the cp' values are indicated above each point, the 
combined influence of all hexagons at a point P can readily be calculated by laying the 
central node of the tracing paper at P. Above and below a point A within the boundary 
are then read respectively 
- cp;, which is the given value of cp' at A and 
- qMa, which is the cp value at A, due to cp' = 1 in the elementary hexagon around P. 
But the influence at A of a hexagon at P is the same as the influence at P of a hexagon 
at A: in formula: cpMa = c p D a M .  Thus the two papers laid one on the other show for 
any point A, written one above the other, cp; and c p D a M ,  whose product is the cp value at 
P due to the hexagon around A. When taking Xcp>cpMa over all points within the 
boundary, the y value at P is found. For another point Q the calculation is then re- 
peated, placing the centre of the tracing paper on Q, etc. 

7.2.2 Nonsteady flow 

One-fluid system ; phreatic aquifer ' 

In a phreatic aquifer surrounded by water courses the most general steady flow 
system is.defined by , 
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- The cp values at the boundary points, as functions of time. 
- The n values at the points of the field, as functions of time. 
- The cp values at the field points as an initial condition. 
From these data acp/at in the first time interval can be calculated for each field point, 
and thus A q  from 

. A q = - A t  
at 

which gives the cp values as an initial condition for the next interval A t .  The calcula- 
tion can then be repeated. A systematic error is made since the values of the beginning 
of the interval are taken instead of the average over the interval. It is difficult to avoid 
this inconvenience without compromising the simplicity of the method. The propaga- 
tion of parallel sine waves through a net of squares with sides A x  may be analysed to 
show that both A x  and A r  are bound to an upper limit if the form and the velocity of 
the waves is to be found correctly. 

Fig.102 

Figure 102. - The calculation can be made for each hexagon separately according to 

if D is considered as a constant; or according to 

if D is considered as a variable, in which case the reference level must be laid at the 
bottom of the aquifer. 
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I 
1 

The water balance of an elementary prism is established. The outward flow 
through the six sides is 

CQA = CkDb ‘PM - ” 
l 
I 

I 
I 
I 
I 

a 

where b = 1/3 a 4 3  and denotes the sum over A, B,. . . F. Otherwise written: 

This flow equals the sum of the quantities of water received from recharge and 
released by a lowering of the surface over the shaded area S per unit time, or 

CO, = 1/3 J 3 k D ( 6 ~ ,  - CV,) 

I 1 

I 
I where S = - az 4 3 .  It  follows that 

2 

I For variable D the derivation is similar.’ 

Two-fluid system; phreatic aquifer 

The next problem bears a great resemblance to the previous one. The model represents 
an island of irregular form, containing a phreatic aquifer and surrounded by the sea. 
The flow system in very general conditions is defined by: 
- The constant potential in the sea (reference level at sea level, cp“ = cp = O along the 
coast). 
- The n values in the field points, varying in an  irregular way with time. 
- The elevation of the phreatic level, h, at each field point, as an initial condition. 
- The elevation of the interface, 2, at each point, also as an initial condition. 
Figure 103. - The values of h determine those of cp, according to  

cp = y h  

The values of cp and 2 determine those of y“ according to 

cp - cp“ z - ( y ”  - y)Z 

ah az 
at at 

From these data - and - can be found for each point of the field from 
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ah aZ 2 kD 
at at 3 a 

(2)  m - = n + m - - -  ( 6 q M  - I ; q A )  

where D:' = Do + Z (Z  negative) and D = - Z + h 
Then the values of h and Z at the beginning of the new interval can be found, and the 
operation repeated. 
Equations (1) and (2)  are the mathematical expression of the water balance of ele- 
mentary hexagonal prisms around node M, with heights of D" and D respectively. 
Contrary to  the previous derivations, the flow sections on the six sides have been 
given the heights DIM and D M ,  respectively in the fresh and salt water layer.,If in 
each water layer six different values had been distinguished, the formulas would have 
been complicated. 

I The water balance of the prism of height D", is given by 

az CPL - 
I 
I - m - S =I; kbDL 

at a 

I corresponding to Equation (1). The balance over the height D, is given by 
I 

ah l3Z ' P M  - ' P A  
' I  

n =  - m -  S + m - S = C k b D ,  
at at a 

I 

I 
1 
I 
I 

corresponding to Equation (2) .  The left sides give the quantities supplied to the 
prism by the recharge and the displacements of surface and interface, where 
S = 1/2 u* 4 3  is the area of the hexagon. The right members give the outflow 
through the six sides, where b = 1/3 u 43 is the breadth of the sections. 

For the border points, where the flow section reduces to zero, reference is made to 
Section 7.1.3. 
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Two-fluid system ; partly conjîned aquifer 
Figure 104. - A similar problem can be posed for a partly confined aquifer: to  cal- 
culate the transformations of the fresh-water body under an island, under the influence 
of given cp’ values (constant or variable with time), beginning with a given shape of the 
interface. The sea level corresponds to cp;. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/ L 

This problem has been treated in Section 6.3.3 for parallel flow. It will not be repeated 
here in detail; the main points of the method will merely be indicated. 

I 
1 
I 

Two systems with the same interface are superposed for each time interval A t .  
System I is characterized by steady flow, and cp” = cp; in the salt water layer. 
From Z and y” ,  cp is calculated according to 

I 
c p ” - c p = - (  Y” - Y V  

I The equation ‘ 2 k D  I - -- (69p, - Cv,) = N 
3 a2 I 



I 
I 

accounting for the water balance in an  elementary prism over the height D of the 
fresh-water body enables N to be calculated for each node of the net. Then 

1 gives cp', since N and cp are known. This value, c p I J ,  is different from the true 
value, q f J r r ,  (which may vary from one interval t o  another). 
Thus System I1 is defined by cp' values 

CP;~ = 4~;rI - CP; 

and further by homogeneous water, and cp" = O in the sea. It can be calculated as 
indicated in Section 7.2.1. As a result the values of N can be established in each 

hexagon, and then those of - from 
az 
at 

D" N - -  az 
at Dt m 
_ -  _ _  

(see Section 6.3.2). Thus the Z values a t  the beginning of the next time interval 
can be evaluated and the calculation repeated for the next interval. 

The calculation is rathei long; moreover there is the inconvenience that the initial 
form of the under-water part of the fresh-water body is difficult to establish by borings 
and difficult to calculate. Finally the extremity of that body moves, which causes 
slight complications, since the movement in a time interval A t  generally does not 
correspond to the advancement from one point of the net to another. 

In contrast, very simple calculations can be made for the island itself or a part of it, 
when data are known from measurements. When cp and Z are known at each point, 
cp" can be calculated from 

cp - cp" = - ( y "  - y)Z 

I az 
at 

and - from the waterbalance of the salt water part of the elementary prism 

2 kD" 
at 3 a2m 

- _  - - ( 6 ~ ;  - CC~;) 
az _ -  

To give another example, if in a limited area the water levels (defining cp') are raised or 
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lowered by irrigation or drainage, the influence can be calculated from the homoge- 
neous fluid system discussed in Section 7.2.1. In particular, the change of N at each 
node of the net inside or outside the project area can be found. At any point where Z is 

known from measurements the change in -, due to  the executed works, can be 

found from 

az 
at 

D" AN 
-- 

az / A - = -  
at Dt m 

As a final example, if for constant cp"va1ues in a limited area, cp' and cp at each node 
are known from measurements, a check can be made on the assumed values of n 
and k'lD', applying / 

k' 
D' 
-(q' - cp) = n 

for each node of the net separately. 
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