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Introduction

1.1 Taking decisions for agricultural systems

Technological advancement has led to a wealth of data for agricultural systems. Large
amounts of multi-modal data are generated from different sources and agricultural practi-
tioners need assistance to make them actionable. This role is filled by decision support sys-
tems (DSS). Agricultural DSS are “human-computer systems which utilize data from various
sources, aiming at providing agricultural practitioners with a list of advice for supporting
their decision-making under different circumstances” [1]. DSS can aid with ongoing opera-
tions by analyzing the existing conditions in a system (e.g. which patches in a field have the
most fertilizer based on satellite images [2]) or by providing support for circumstances that
may occur in the future (e.g. exploring the outcome of operations for conflicting objectives
like profitability, and societal and environmental effects [3]).

Agricultural DSS have been successfully deployed on multiple levels. On the field level,
they have helped farmers to allocate irrigation water more effectively leading to improved
nutrient balance [3], and to optimize crop treatment practices to enhance their productivity
[4]. On a higher organizational level, they have been employed by water management author-
ities to balance water use between the field and district levels [3]. On the policy setting level,
agricultural policymakers have adopted DSS to take more informed decisions for the animal
and crop sectors considering socioeconomic development and greenhouse emissions [5].

Despite the accomplishments of DSS, concerns arise about their application [1]. One
such a concern is that DSS rely on static models and processes to provide support. DSS do
not adapt to their environment by continuously assimilating new data or recalibrating their
embedded models [3]. As a result, assumptions that held on the development of those models
might break when the models are transferred to the practitioner’s local conditions.

Another concern is that DSS are task specific [1]. They are designed to perform narrow
sets of operations around a main task and that is the reason for requiring multiple DSS to
manage agricultural activity. This leads to having isolated DSS that ignore the interplay of
fundamental factors [3] affecting agricultural operations (e.g. soil variability, crop diseases)
and lack a holistic view of the target system.

A final consideration is the inability of DSS to provide direct instructions to practitioners
as well as to act on their environment [1]. The reason for this behavior is that DSS are created
only with data analysis and visualization in mind, or to provide an overview of actions and
their end result, leaving the final decision to the practitioners. Requiring human intervention,
DSS impede decision-making processes by hindering automation, and may leave opportuni-
ties to go unexploited due to operators choosing suboptimal actions. These flaws have opened
discussions about new types of DSS that have proved their value in other disciplines but have
not yet found their way to agriculture.

1.2 The next generation of decision support tools

A type of DSS that has become popular are digital twins. Digital twins are used to solve
a variety of problems across several disciplines. Each discipline is using digital twins in a
different way. As a result, the definition of digital twins varies according to the discipline of
application. In this work, we are going to adopt a working definition proposed by [6] which
considers a digital twin to be “a dynamic virtual representation of a physical object or system,
usually across multiple stages of its lifecycle, that uses real-world data, simulation, or ma-
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1.3 State of digital twins in agriculture

chine learning (ML) models combined with data analysis to enable understanding, learning,
and reasoning. Digital twins can be used to answer what-if questions and should be able to
present insights in an intuitive way”. Key elements in this definition are the words dynamic
and representation. Digital twins are dynamic because they evolve over time depending on
changes in their environment. Also, digital twins are able to represent objects or systems by
individually binding to them and adapting to their local conditions.

Digital twins integrate a variety of operations. For this reason, they are comprised of
multiple components. Typical components and their purposes include:

• sensors, responsible for acquiring the current state of the physical object/system

• simulators, predicting futures states based on domain understanding

• learning algorithms, adapting to local conditions

• analytic engines, providing insight into the past, present, and future states

• actuators, being automatically activated when thresholds are reached

• user-interfaces, visualizing analytics and providing information on actuator activation

Digital twins have gained traction in a variety of industries. They are prevalent in manufac-
turing [7], where they have been used to optimize production floor procedures [8], as well as
to create safer working environments for human workers [9]. Likewise, they are commonly
found in aviation for predictive maintenance [10] and estimation of the structural life of air-
craft [11]. In healthcare, researchers are even aiming for individualized nutrition with digital
twins based on the combination of genetics, metabolism, and microbiome [12]. In agricul-
ture, digital twins are not common yet, but recently they have been gaining momentum.

1.3 State of digital twins in agriculture

Back in 2019, when this work started, it was unclear if digital twins were already adopted
in agriculture. Deployed digital twin applications were rare, the relevant literature was lim-
ited, and the articles describing digital twin applications were lacking implementation details.
Reasons behind this delay included a lack of communication for the added value of digital
twins, the risk involved in trusting technology applications for complex multidisciplinary
problems in high uncertainty environments (especially when these applications automate ac-
tions based on analytics), as well as the cost and difficulty of developing them [13].

Nowadays, the concept of digital twins in agriculture is considered attractive. Researchers
are investigating ways to materialize the benefits of digital twins promised by other disci-
plines and there are ongoing discussions on ways to utilize them. Ideas emerge for digital
twins in aquaponics to advance urban farming [14], attempts are made to improve the virtual
3D representation of leaves for digital twins in plant breeding [15], conceptual frameworks
are created to design digital twins [16], prototypes of digital twins of arable and dairy farms
[17] that monitor the nitrogen cycle are researched, and digital twins of tomato crops in green-
houses [17] that predict the effect of cultivation treatments in harvest and financial yield are
developed.
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1.4 How attractive are digital twins for agricultural appli-
cations?

In our view, the attractiveness of digital twins lies in the way they consolidate the physical
and virtual worlds. This consolidation is a process of instantiating virtual replicas of physical
systems based on a blueprint. The digital twin blueprint. Each replica (digital twin) adapts to
its corresponding individual system and is kept in synchronization with the physical world.
Here, we use the term ‘adapt’ to refer to the ability of digital twins to learn the physical
system’s local idiosyncrasies, as well as the ability to be transferable to different conditions
like different crops, locations, and fertilization treatments.

Adaptation is important for digital twins because it allows them to offer individualized cu-
ration of complex systems, giving insight into processes happening in each individual system
and providing tailored recommendations. Adaptation happens continuously and automati-
cally on digital twins based on incoming data and analytics. This method of adapting to
individual systems improves upon current agricultural practices where e.g. fertilizers are ap-
plied based on rules of thumb, pesticide doses are calculated based on generic guidelines that
only consider the type of pest, and DSS are used to simulate pasture growth across different
locations with models that are not calibrated each time.

Automation through integration is another important aspect of digital twins. By integrat-
ing a variety of operations like monitoring, analytics, automatic adaptation based on analytics,
and acting through actuators, digital twins manage to work with less human intervention than
current practices. In this way, automation also removes bottlenecks in decision-making pro-
cedures. Digital twins can take decisions faster because they operate continuously, exchang-
ing information between their components in real-time or at regular intervals. In contrast,
e.g. agricultural practitioners who need to estimate yield based on fertilizer application have
to contact an institute/company that knows how to do it, the institute/company have to find
somebody to give them the relevant data, another person has to analyze them, and finally the
results have to be communicated back to the practitioners creating in this way a chain of slow
synchronous interaction.

1.5 Elements of digital twin adaptation

In other disciplines, researchers have embedded process-based and ML models [18] into the
learning components of digital twins to make them adapt to different domains. These models
consume large amounts of data during the development of the digital twin blueprint to be pre-
liminarily calibrated and have generic domain knowledge instilled about the physical target
system. Additional data are required during digital twin instantiation to provide a first view
of the prevailing conditions on each target system and start the adaptation. Also, further data
are needed throughout the digital twin’s lifespan to regularly recalibrate/update it to reflect
changes in the target system environment.

Process-based and ML models consume combinations of historical and observation data.
Having data that satisfy the model data requirements is crucial for the initial model calibra-
tion/training, as well as for the later adaptation stages. The same applies when the models
are asked to make simulations/predictions during deployment, since they expect their inputs
to be complete. It is often the case that models are asked to estimate the future value of a
quantity. In those cases, they may require the future values of their inputs which should still
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1.6 Challenges for digital twin adaptation in agriculture

be available. Also, data should be on the same resolution as to what process-based models
expect on their input, and (usually) on the same resolution to what ML were trained on.

1.6 Challenges for digital twin adaptation in agriculture

1.6.1 Data challenges
Agricultural data are produced in large volumes. At the same time, these data cannot be used
to create digital twins because there is a discrepancy between the available data, the data re-
quirements of process-based and ML models, and the decisions that are necessary to be made.
There are several reasons behind this discrepancy. An important reason is that agricultural
experiments take a long time to complete, sometimes even yielding a single data point. There-
fore, not enough historical data exist because not many years have passed since experiments
started being recorded, or the technology existed to measure environmental quantities.

Also, there is a lack of planning for the future in agricultural experiments which leads
to the creation of seemingly large datasets that are obsolete for any other application other
than the initial conceptualization. For example, datasets of decades of pasture growing exist,
but without including cases where no fertilizer was applied, because at that time this was
something that did not interest the corresponding stakeholders. As a result, creating now a
digital twin that accounts for pasture fertilization is difficult due to the lack of such data.

Another reason is that agricultural data collection practices lack standardization. These
practices vary based on the preferences of each practitioner or the needs of each farm. Dif-
ferent practitioners gather data in different ways (e.g. sampling frequency). As a result, there
may seem to be a lot of data but they might be in different resolutions from what existing
models expect rendering them unusable.

Data collection equipment also lacks standardization. Depending on the manufacturer,
sensors may or may not collect metadata, have different error rates, and inject different levels
of noise. This leads to dropping large parts of data during preprocessing to preserve ho-
mogeneity. Another reason is that agricultural data are stored in data silos without labels
or metadata. Consequently, when they are retrieved for analysis, much of them might be
unusable due to being incomprehensible.

Finally, making estimations for future quantities, months ahead before an event occurs, is
an integral part of agricultural practices to optimize production, decrease costs and increase
profits. These estimations require future values of weather quantities or biophysical factors.
Simulators exist to produce these quantities but currently they are capable of producing semi-
accurate forecasts only days ahead in the future while also requiring careful calibration. Thus,
the further in advance an estimation is needed the more difficult it is for existing models to
work.

1.6.2 Model challenges
These data-related issues cause complications with existing process-based and ML agricul-
tural models if we try to deploy them in the same way as they do in other disciplines. Issues
can occur in the following ways:

1. Lack of historical/observation data. In this case, a process-based model cannot be
calibrated to a new location where data do not exist, and ML models are not a viable
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solution since they usually require a lot of data to be developed.

2. Available data have a different resolution than what the models expect. Process-based
models usually make simulations by using daily environmental measurements. How-
ever, the available data are often on a weekly/bi-weekly/monthly basis, constituting
these models inoperative. Similarly, ML models commonly require the input data to
be on the same resolution as the data on which they were trained on, otherwise, they
again cannot operate.

3. Future states of variables. In some cases, we need to estimate the future value of a
quantity. It may be the case that other variables are required, like future weather con-
ditions, which may not be available. Process-based models which require the complete
time-series data until that time in the future are not able to work on these occasions.

In the above cases, process-based and ML models cannot function and thus a digital twin
would become non-operational, as it would not be able to provide individualized decision
support, or to be transferred to the corresponding ‘problematic’ conditions. These three sit-
uations are regularly encountered in agricultural applications. Conclusively, the available
models are not suitable in their current state to create digital twins as the available data, the
models, and the way that we plan to use them do not fit. Therefore, it would seem appropri-
ate to alter the problem definition from ‘how to combine our existing components to create
digital twins in agriculture’ to ‘how to operationalize digital twins in agriculture’.

1.7 In this thesis

The objective of this thesis is to investigate how to operationalize digital twins. We examine
this objective from two perspectives. The first is by investigating how to enable decision
support for digital twins when the available data are not sufficient to operate process-based or
ML models. The second is by considering how to make digital twins transferable to diverse
conditions.

To achieve our goal, we use a case study of pasture nitrogen response rate prediction. Ni-
trogen is the nutrient that pasture draws from the soil in the greatest quantities [19] and thus it
becomes a growth-limiting factor [20]. Agricultural practitioners apply nitrogen-containing
fertilizer to increase pasture growth rates [21]. However, the relationship between yield in-
crease and fertilizer amount is not linear. Excessive amounts of fertilizer can harm yield,
the fertilizer itself has an adverse effect on soil [22] and freshwater [23], and it has a certain
(economic) cost. Subsequently, agricultural practitioners need tools to predict the effect of
different amounts of fertilizer on their fields’ yield, allowing them to manage the trade-off of
the aforementioned factors. For the case study, we used a synthetic dataset generated with
the Agricultural Production Systems sIMulator (APSIM) [24] and provided by AgResearch
Ltd, New Zealand.

The rest of the content is organized as follows:

• In chapter 2, we investigated the adoption of digital twins in agriculture exploring
the dimensions of technology readiness level, service provided, physical twins and
benefits. We then contemplated on their potential added value and proposed a general
roadmap for further adoption.
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1.7 In this thesis

• In chapter 3, we proposed a general method to make digital twins operational in cases
where we do not have enough observations to run ML models, or future weather data
to run process-based models, and when the available data are in different resolutions
from what the process-based models expect.

• In chapter 4, we examined whether the proposed method of chapter 3 is algorithm
independent (independent of the prediction algorithm used). We compared the perfor-
mance of algorithms that learn the latent space of the input data and checked if their
predictions were above a domain-specific error threshold.

• In chapter 5, we investigated how to make digital twins operational in diverse con-
ditions. We developed and evaluated ML metamodels containing data from different
amounts of locations, which either contained data from the target location or not, for
nitrogen response rate prediction.

• In chapter 6, we considered operationality in diverse conditions in the case where we
have data from the target location, but they are sparse, and we examine if we can
transfer knowledge (different soils, weather, fertilization rates) from other locations by
training metamodels.

• In chapter 7, we reflect on our findings, experiences working on this project, and future
prospects.
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Introducing digital twins to agriculture

Abstract

Digital twins are being adopted by increasingly more industries, transform-
ing them and bringing new opportunities. Digital twins provide previously
unheard levels of control over physical entities and help to manage complex
systems by integrating an array of technologies. Recently, agriculture has
seen several technological advancements, but it is still unclear if this com-
munity is making an effort to adopt digital twins in its operations. In this
work, we employ a mixed-method approach to investigate the added-value
of digital twins for agriculture. We examine the extent of digital twin adop-
tion in agriculture, shed light on the concept and the benefits it brings, and
provide an application-based roadmap for a more extended adoption. We re-
port a literature review of digital twins in agriculture, identifying use cases,
and comparing them with use cases in other disciplines. We compare reported
benefits, service categories, and technology readiness levels to assess the level
of digital twin adoption in agriculture. We distill the digital twin characteris-
tics that can provide added-value to agriculture from the examined digital twin
applications in agriculture and in other disciplines. Then, inspired by digital
twin applications in other disciplines, we propose a roadmap for digital twins
in agriculture, consisting of examples of growing complexity. We conclude
this paper by identifying the distinctive characteristics of agricultural digital
twins.
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2.1 Introduction

2.1 Introduction

Digital twins (DT) are being increasingly adopted by several disciplines, in-
cluding the manufacturing [25], automotive [26] and energy [27] sectors, for
addressing multidisciplinary problems. DT are digital replicas of actual phys-
ical systems (living or not), interweaving solutions of complex systems analy-
sis, decision support and technology integration. DT have gained prominence,
partially due to the uptake of Internet of Things technologies, that allow for
the monitoring of physical twins at high spatial resolutions, almost in real-
time, through miniature devices, producing ever-increasing data streams. DT
have been useful for converging the physical and virtual spaces [28], guar-
anteeing information continuity through the system lifecycle [29], system de-
velopment and validation through simulation [30], and preventing undesirable
system states [31].

The DT concept was coined by M. Grieves in a white paper [32], as a uni-
fication of virtual and physical assets in product lifecycle management. Since
then, several disciplines have adopted DT, each providing their own definition
as there is no generally accepted definition of DT. A working definition for
this study considers DT as “a dynamic virtual representation of a physical
object or system, usually across multiple stages of its lifecycle, that uses real-
world data, simulation, or ML models combined with data analysis to enable
understanding, learning, and reasoning. DT can be used to answer what-if
questions and should be able to present insights in an intuitive way” [33].

The benefits of DT applications include reduced production times and
costs, hiding the complexity of integrating heterogeneous technologies, creat-
ing safer working environments and establishing more environmentally sus-
tainable operations. DT are utilized by several leading companies and organi-
zations, including Siemens [34], General Electric, NASA, US Airforce [35],
Oracle, ANSYS, SAP, and Altair [36]. Furthermore, the recent availability
of commercial software tools to develop DT, like Predix 1 and Simcenter 3d
2 [34], is an evidence in itself of increased interest in DT applications.

Information and communication technologies can be leveraged to design
and implement the next generation of data, models, and decision support tools
for agricultural production systems [37]. Today, technologies like artificial
intelligence [38], big data [39] and Internet of Things [40] find their way
in practice, and start to converge. Benefits of this convergence have been

1Predix is a software platform that facilitates data collection, processing and analytics for industrial applications.
The product description can be found in https://www.predix.io/.

2Simcenter 3d is a software environment that integrates 3d modeling, simulation and data management. It in-
cludes modules to capture the dynamics of fluids, composites, acoustics and others. The product description can
be found in https://www.plm.automation.siemens.com/global/en/products/simcenter/
simcenter-3d.html.
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demonstrated in DT applications in other disciplines. However, DT are hardly
utilized in agricultural applications, and their added value has not yet been
discussed extensively. As a result, questions emerge regarding the benefits
of DT for agriculture, the characteristics that differentiate them from current
practices, and their design and implementation.

The purpose of this work is to investigate the potential added-value of DT
in agriculture. To achieve this goal, we will first research the extent to which
DT have already been explicitly adopted in agricultural applications, and in-
vestigate their reported benefits. Second, we examine the similarities between
DT applications in agriculture and other disciplines, to identify opportunities
of potential added-value for agricultural DT. Our research questions are for-
mulated as:

• RQ1: To what extent have digital twins been applied in agriculture?

• RQ2: What is a potential application-based roadmap for the adoption of
digital twins in agriculture?

To address these questions, we employed a mixed-method approach as
exploratory research suggested DT have not been extensively used in agri-
culture. Thus, a literature review alone would not suffice due to the limited
number of reported cases in the literature. Our approach consists of a litera-
ture review of existing DT in agriculture, and a survey of case studies in other
domains, the latter added to compare with the DT adoption level in agriculture
and investigate potential future applications. We searched for DT use cases in
agriculture, as well as in other disciplines to see how they employ DT. Note
that we did not focus on identifying specific DT applications, rather we aimed
at generalizing them into abstract, representative use cases. For the use cases
identified, we explored the dimensions of maturity, service types and bene-
fits offered. Our methodology is described in detail in Section 2.2 and the
results are presented in Section 2.3. In Section 2.4, we discuss our findings
concerning the current state of DT in agriculture, the added-value of DT, and
we potential areas for future research. Section 2.6 concludes this work.

2.2 Methodology

To answer ‘RQ1: To what extent have digital twins been applied in agri-
culture?’, we identified existing DT use cases in agriculture and extracted
attributes which helped us assess how advanced these applications were. To
identify use cases, we performed a literature review for DT in agriculture and
extracted indicators of maturity, service type and benefits. To capture the
development stage of the applications (e.g., idea, lab, production) we chose
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maturity. Limited use cases of production level DT is an indicator of less
widespread use of DT. On the other hand, increased research and deployed
applications indicate that DT are still finding their way into agriculture. To
describe the purpose of DT on an operational level, we extracted the service
type attribute. These services indicate the broader set of operations that DT
perform. From the service type, we can understand the complexity of the DT
operations, with higher complexity meaning potentially higher added value
for the application domain. Also, the service category of DT in agriculture
was compared with the service categories found in other disciplines to exam-
ine how advanced agricultural DT operations are. Next, to show what is the
added-value of DT based on existing applications, we extracted the benefits
attribute. Less materialized benefits from the applications indicate limitations
for adoption. Below we describe step-by-step how the literature review was
performed.

First, we searched in scientific databases and subsequently extended our
search to grey literature. We included grey literature because a pre-literature
search showed that the peer-reviewed corpus covering DT in agriculture is
rather limited. By including grey literature, we also cover work in progress
and commercial applications that have not been published in scientific litera-
ture.

Second, we checked the corpus for relevance. In scientific publications, we
read the abstracts to verify that the topic was about agriculture with references
to DT. For the grey literature, we scanned the entire articles to see whether
they connect DT to agriculture.

Third, we read all the selected articles and extracted use cases of DT appli-
cations. References to similar DT applications between multiple articles were
considered only once to avoid redundance. We identified each use case with a
number, summarized it in a single paragraph describing its functionality, and
extracted the reported benefits.

Fourth, we identified the services offered by each DT use case. We used the
service classification initially proposed in [28], and subsequently aggregated
in [41]. The categories we used for classifying the use cases are presented in
Table 2.1. We categorized the use cases in this way to identify the complex-
ity of operations that DT performed as operation complexity is an indicator
of the advancement of DT in agriculture. Also, this categorization helped us
compare the types of operation offered by DT in agriculture and other dis-
ciplines, and determine any potential gaps to further assess their adoption in
agriculture.

Fifth, we categorized the use cases based on their technology readiness
level (TRL) to examine whether they are in experimental stage, or if they have
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Typical components

Service Categories Definition

M
onitoring

Sim
ulation

U
ser

interface

L
earning

A
ctuator

A
nalytics

Real-time monitoring Monitor and log the status of a
system

x x

Energy consumption
analysis

Analyze the energy consump-
tion of the physical system and
find ways to minimize it

x x x x

System failure analy-
sis and prediction

Analyze the data coming from a
system to identify the source of
failure or when the system is go-
ing to need maintenance

x x x x x

Optimization /update Find the optimal parameters for
the operation of a system and
update it to run with those pa-
rameters

x x x x x x

Behaviour analysis /
user operation guide

Analyze human made opera-
tions and provide feedback

x x x

Technology integra-
tion

Bring together different already
deployed technologies under the
same umbrella to control and vi-
sualize operations more easily

x x x x x x

Virtual maintenance Allow users to virtually test dif-
ferent maintenance strategies to
find the least intrusive one

x x x

Table 2.1: The digital twin service categories used to classify the use cases identified by
the literature review. The column Typical components lists the components that are usually
needed to implement the corresponding services.

been used in production. We partitioned the European Union’s TRL scale [42]
into three generic levels shown in Table 2.2, and used them to tag the use
cases. The first level represents DT which were still in a conceptual phase, the
second consists of DT that had a working prototype even without the complete
planned functionality, and the third level covers mature DT deployments in
production.

Sixth, we identified the physical twin, i.e. the physical system that was
twinned in each use case. We classified them in the following categories:
living plants or trees, animals, agricultural products, i.e. harvested fruits;
agricultural fields, farms, landscapes, farm buildings, as barns, greenhouses
or other agricultural buildings, agricultural machinery, including equipment
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Aggregated level European Union technology readiness levels

concept 1 Basic principles observed
2 Technology concept formulated

prototype

3 Experimental proof of concept
4 Technology validated in lab
5 Technology validated in relevant environment
6 Technology demonstrated in relevant environment

deployed
7 System prototype demonstration in operational environment
8 System complete and qualified
9 Actual system proven in operational environment

Table 2.2: The European union TRL grouped into three general levels. Concept level includes
European TRL 1-2, Prototype includes levels 3-6 and Deployed includes levels 7-9.

and tractor appliances, and food supply chains and logistics.
Finally, we summarized in a table all the identified use cases, their re-

spective descriptions and the extracted three dimensions - service categories,
TRL, and physical twin - to depict the breadth of the application of DT in
agriculture. Fig. 2.1 summarizes the methodology for answering RQ1.

Figure 2.1: The steps followed to search for use cases of digital twins in agriculture.

To answer the second research question, ‘RQ2: What is a potential application-
based roadmap for the adoption of digital twins in agriculture?’, we searched
in literature for use cases aiming to identify the ways in which DT have been
successfully applied in other disciplines. Again we aimed at identifying use
cases, and extracted indicators of benefits, maturity, discipline, and service
type to understand the operations in which DT are most effective and what
problems they can solve. First, we searched for peer-reviewed review papers
of general DT applications. Second, we scanned the full texts for occurrences
of the string ‘digital twin’, to check if the reviews were related to DT. If DT
were just a brief mention and not the main point of the review paper, we
considered the reference irrelevant. Third, the remaining articles were exam-
ined in alphabetical order based on their title to extract use cases. Repeated
mentions of similar use cases were not considered. Fourth, we extracted a
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short summary of the use cases, the reported benefits that they offered, the
discipline, maturity and service categories using the same framework as for
research question 1, and the publication and application years. Fifth, we pro-
posed areas of potential application in agriculture, and identified potential
benefits based on the use cases in other disciplines. Fig. 2.2 illustrates the
methodology for answering RQ2.

Figure 2.2: The steps we followed to find digital twin use cases in other disciplines so as to
answer the second research question.

2.3 Results

2.3.1 Literature review of digital twins in agriculture

For the literature review of DT in agriculture, we first searched in Web of Sci-
ence [43] using the query "digital twin*" AND (agri* OR crop*
OR farm* OR aqua* OR animal*). This query returned results which
contain DT and derivatives of agri, crop, farm, aqua, or animal, to
capture cases of DT in subfields of agriculture. The query returned seven re-
sults. After the relevance scan the results were reduced to four [44–47]. We
then extended the search to Google Scholar [48] using the query "digital
twin" agriculture. The query returned 947 results. We examined
them until five consecutive results were irrelevant (24 results examined), and
checked for duplicate results from the previous search in Web of Science,
thus reducing the number of results to nine [49–57]. Extending to the Google
search engine [58], we used the query "digital twin" agriculture
which returned 143.000 results. We examined them until five consecutive
results were irrelevant or referring to previously found applications (38 re-
sults examined). We then checked the extracted results for duplicates from
our searches in Web of Science and Google Scholar, eventually reducing the
results to nine [59–67]. In total our search yielded 22 sources for DT appli-
cations in agriculture. From this result-set, we identified 28 use cases. Fol-
lowing the methodology described in Section 2.2, we summarized each use
case and extracted data about the expected benefits, TRL, physical twin, and

24



22

2.3 Results

service category. The results are reported in Table 2.3.
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Our search yielded 14 scientific articles. Nine of which were published in
journals and five in conference proceedings. Additionally, we identified eight
website articles from the grey literature search. Publication outlets, titles and
year of publication are summarized in Table 2.4. We observe that the first
published references to DT in agriculture date back to 2017, and most of our
sources are from 2019 onward.

Citation Use case No. Source Article type Year Title
[44] 1 Web of Science journal 2018 Getting value from artificial

intelligence in agriculture
[45] 2 Web of Science journal 2019 Multiphysics modeling of

convective cooling of non-
spherical, multi-material
fruit to unveil its quality
evolution throughout the
cold chain

[46] 3 Web of Science journal 2019 ISO 11783-compatible in-
dustrial sensor and con-
trol systems and related re-
search: A review

[47] 4 Web of Science journal 2019 AgROS: A Robot Operat-
ing System Based Emula-
tion Tool for Agricultural
Robotics

[49] 5 Google Scholar journal 2019 Digital Twin Technology for
Aquaponics: Towards Op-
timizing Food Production
with Dynamic Data Driven
Application Systems

[68] 6 Google Scholar conference 2018 Smart Livestock Farms Us-
ing Digital Twin: Feasibility
Study

[51] 7 Google Scholar conference 2019 Business Models for In-
dustrial Smart Services -
The Example of a Digital
Twin for a Product-Service-
System for Potato Harvest-
ing

[52] 8 Google Scholar journal 2020 Digital Twin for the Future
of Orchard Production Sys-
tems

[53] 9 Google Scholar journal 2019 Enabling technologies and
tools for digital twin

[54] 10 Google Scholar journal 2019 Planning Agricultural Core
Road Networks Based on a
Digital Twin of the Culti-
vated Landscape

[55] [11-16] Google Scholar conference 2017 Digital twins in farm man-
agement: illustrations from
the FIWARE accelerators
SmartAgriFood and Fractals

[56] 17 Google Scholar conference 2019 A digital twin for smart
farming
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[57] 18 Google Scholar journal 2019 Big Data Analysis for sus-
tainable Agriculture on a
Geospatial Cloud Frame-
work

[59] 19 Google conference 2018 Towards Sustainable Digital
Twins for Vertical Farming

[60] 20 Google website 2018 #twinning: Farming’s dig-
ital doubles will help feed
a growing population using
less resources

[61] 21 Google website 2019 Digital Twin Solutions for
Smart Farming

[62] 22 Google website 2019 Agility in Digital Farming
[63] 23 Google website 2019 In the digital indoor garden
[64] 24 Google website 2019 "Digital Twin Solutions for

Smart Farming", the III De-
velopment AI+HI Total So-
lution, Awarded R&D 100.

[65] 25 Google website 2020 Use Cases: Digital Twin in
Livestock Farming

[66] 26 Google website 2018 Digital Twin Excellence:
Two Shining Examples

[67] 27, 28 Google website 2020 WUR is working on Digi-
tal Twins for tomatoes, food
and farming

Table 2.4: The source, article type and publication year of the use cases for the literature
review in agriculture.

The use cases reside in different sub-fields of agriculture: In dairy farming
we found DT for the detection of mastitis in cows. Related to apiculture, we
found a DT of bee colonies aiming to control their welfare and honey pro-
duction. In plant production, a DT of tomato crops in a greenhouse aimed
to control the growing environment. In agricultural machinery, a DT of trac-
tors was used to emulate their performance prior to purchasing. Other DT
included orchards, pig farms and aquaponics production units. We noticed
that DT of animals and fields, farms and landscapes are reported with less
technical detail. In contrast, DT of agricultural machinery and food supply
chains and logistics were often described with more details about their design
and operation.

The reported benefits varied, depending on the physical twins. For twins
of living systems, like plants and animals, the benefits included early disease
identification, production optimization and identification of factors that could
degrade their welfare. For agricultural products the benefits were cost savings
and improved product quality. Support in crop management decisions allow-
ing for faster action was reported for agricultural fields and farms. Twins of
agricultural buildings reported benefits related to growing conditions manage-
ment and production increase. Lastly, DT in agricultural supply chains and
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logistics reported benefits included cost savings and more environmentally
friendly operations (Table 2.3).

Physical twins include both non-living subjects, like farm buildings such
as farm bins or livestock barns, and living subjects, such as arable farms or
individual animals. Most of the DT were found for physical twins of agri-
cultural fields, farms, landscapes and buildings. Fewer were found for living
plants and animals or agricultural products and the food supply chain. Fig. 2.3
illustrates the types of physical twins identified together with the maturity of
the use cases as TRL level.

Figure 2.3: Classification of physical twins in agriculture. The colors indicate the maturity
level of the DT.

Regarding the TRL, most DT identified in this study were on the con-
ceptual level. In Fig. 2.3 we observe that DT of agricultural fields, farms
and landscapes are mostly on the concept level. We also notice that DT in
the food supply chain and agricultural machinery have surpassed the concept
level stage. Besides, none of the identified agricultural products DT have
reached the deployment stage.

Regarding the service categories, the identified use cases of agricultural
DT perform energy consumption analysis, real-time monitoring, system fail-
ure analysis and prediction, optimization/update, and technology integration.
The majority of the DT perform monitoring and optimization operations (Fig. 2.4).
We do not observe any pattern of the TRL levels across the service categories.
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Figure 2.4: Service categories of DT use cases in agriculture. The colors show the maturity
level based on TRL.

2.3.2 Digital twins in other disciplines

For the examination of DT in other disciplines we searched in Web of Sci-
ence using the query TS="digital twin*" AND ALL=review. This
query returned results that had DT mentioned in the title, abstract, or key-
words and had the word review mentioned somewhere in the text. Instead of
filtering the type of results to reviews only, we chose to search for the word
review because some review papers are not always not explicitly tagged as
such in Web of Science, or sometimes they miss the word review from their
title. The query returned 37 results. After scanning the articles for relevance,
the results were reduced to 23 [41, 69–90]. Following the methodology of
Section 2.2, we identified 68 use cases, and extracted a short summary, bene-
fits, maturity level, discipline, service categories, year of publication and year
of application for each case, reported in Table 2.5.
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We observed that DT in other disciplines performed energy consumption
analysis, real-time monitoring, system failure analysis and prediction, opti-
mization/update, technology integration and virtual maintenance. Most of
them performed monitoring and system failure analysis operations (Fig. 2.5).
The TRL varied by the year. The earliest documented DT application (2011)
was that of an aircraft, which was used in production. From 2011 to 2016,
new use cases were scarce. After 2016, many DT applications emerged at the
concept and prototype levels, as well as some deployed ones. Applications
in the concept stage were more frequent than the ones at the prototype and
deployed stages. The reported benefits included cost reductions, energy sav-
ings, reduced equipment downtime, quantification of system reliability and
safer working environments for personnel.

Figure 2.5: The DT service categories for DT in other disciplines. The majority of the pro-
posed DT perform monitoring, optimization and system failure analysis operations.

2.3.3 Threats to validity

The results of the literature review for DT in agriculture showed that there
are only a few DT use cases reported in scientific literature. Moreover, 13
(Table 2.3, uc. 11-16, 20-26) out of 28 DT use cases were used in the com-
mercial sector and 7 (Table 2.3, uc. 20-26) out of those 13 were documented
only in non-scientific literature. This may imply that the industry is ahead of
academia in the development of DT.

Also, we limited our search to Google Scholar and Google to applications
up to 5 consecutive irrelevant or duplicate results. More DT could potentially
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be found if we examined more results or additional sources.
Another factor that the literature review of this work does not consider is

the existence of agricultural applications which are not defined as DT in liter-
ature. There are potentially applications that are used as DT but for unknown
reasons they were not tagged as such and as a result they were not included in
our results.

Besides, in our literature review we included conceptual level DT appli-
cations, which means that they are not established applications but work in
progress.

2.4 Discussion

2.4.1 Current state of DT in agriculture

In this section, we investigate the state of DT in agriculture by comparing it
to the state of DT in other disciplines. The results of the literature review in
agriculture show that the available literature is limited. Considering the year
of publication, DT have been discussed in other disciplines since 2011 (Ta-
ble 2.5, uc. 54), while in agriculture the first references occurred in 2017. Our
interpretation for this delay to investigate DT, is that agricultural researchers
are more risk-averse than in other disciplines. A reason may be that in agri-
cultural applications, firms are often small and medium farms. Such farms
can bear less risk than bigger companies in other industries, who can afford to
experiment and innovate, and thus pioneered DT. Also, DT in other domains
are mostly concerned with non-living physical twins, as complex industrial
and manufacturing applications. In agriculture, even the non-living physical
twins, as those of agricultural buildings, still indirectly interact with plants
or animals. The direct or indirect interactions with living systems introduce
more challenges for DT in agriculture.

We identified only two overlapping use cases between our searches for
agricultural DT, and DT in other disciplines. Use cases (uc. 83, 84) corre-
spond to (uc. 6, 3). We expected a larger number of overlapping use cases,
especially as our search of DT in other disciplines did not exclude agriculture-
related use cases. This may be an indication that agricultural DT have not
been adopted extensively, as they are not selected as representative use cases
in DT reviews.

The benefits of the applications mentioned in the agricultural use cases in-
clude cost reductions (uc. 6), more detailed information (uc. 3), catastrophe
prevention (uc. 15), positive economic impacts (uc. 7), aid in decision mak-
ing (uc. 4) and more efficient management operations (uc. 12). Looking at
the benefits of DT in other disciplines, we observe that they have a broader
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range. They also include safer human-machine interaction (uc. 58), build-
ing cost and energy efficiency estimation (uc. 35), and insights into complex
multidisciplinary systems (uc. 94). DT in agriculture have not yet reached the
point to demonstrate similar benefits.

Regarding the TRL, we were initially surprised to see that all levels are
approximately equally represented. This large number of field-deployed or
production-level DT could indicate a high adoption level in agriculture. How-
ever, upon closer inspection, we noticed that 6 out of 8 deployed DT were
extracted from a single article [55], reporting on the results of the FIWARE
Accelerator Programme [92], whose purpose was to create applications us-
ing the FIWARE platform3. Apart from the DT deployed by the FIWARE
program, we observe that there has been little progress in advancing DT be-
yond the concept and prototype levels to the production level, where they
can be used in real-world conditions. A reason for this may be that in other
disciplines there are greater financial incentives, and larger research capacity
to try out new technologies, or report their findings at earlier stages. Also,
some applications on the conceptual level were described abstractly without
any detailed technical design reporting, i.e. uc. 1, 3, 9. To our knowledge,
Wageningen University and Research has recently introduced an investment
theme on Digital Twins, developing twins of tomato crops and arable and
dairy farms, but they are still on a conceptual stage (uc. 27, 28).

Another interesting finding from Fig. 2.3 was that the supply chain and lo-
gistics and agricultural machinery twins were the only ones that did not have
any use cases on the conceptual level. While this could be circumstantial, it
may also indicate that agricultural DT targeting these sectors are more ma-
ture than others. As DT of agricultural supply chains and logistics build upon
relatively similar deployments in other supply chains and manufacturing, this
could explain their relatively higher level of maturity. However, we did not
check thoroughly to what extent DT of agricultural supply chains are con-
cerned with perishables. This argument also pinpoints a significant challenge
of DT in agriculture: Most agricultural operations have to do with living sub-
jects, like animals and plants or perishable products, and creating DT for such
systems is harder than for non-living human-made systems.

Another reason why most DT are on concept and prototype level might
be that agriculture is a slow adopter of technology, partly due to the grow-
ing complexity of information technology [57]. To successfully develop DT,
the community must become familiar with a variety of related technologies
including Internet of Things (IoT), ML and big data. Most of these technolo-
gies are still considered new fields of experimentation in agriculture [93], and

3A framework of open source components to develop applications for the Internet of Things.
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once the community gains confidence around them and adopt best practices
for their application, we are likely to see more DT emerging in prototype and
deployed levels.

Considering the service categories, most of the agricultural DT offer mon-
itoring and optimization services. Other service categories reported were re-
lated to energy consumption analysis, and a few of the DT acted as technology
integration tools. In other disciplines, we also came across the virtual main-
tenance category which was absent in agricultural DT. A reason for this gap
could be that implementing an advanced technology like DT with more com-
plex operations can be expensive [57], at least in the early experimental phase
of its adoption. Applications of DT performing virtual maintenance could be
useful for determining the optimal repair/maintenance strategy of agricultural
machinery before laying hands on it, similar to repairing subsea equipment in
(uc. 75).

Regarding the variety of the applications, from Fig. 2.3 we observe that a
variety of applications like livestock farming (uc. 6), cropping (uc. 4) and
apiculture (uc. 16) are encompassed. Yet, we believe that there is more room
for DT to grow in each subfield. In our view, one of the reasons for not
having a wider range of applications is the added complexity of the systems
that DT pursuit to digitize, especially as this domain is lagging in digitiza-
tion. Many agricultural systems are living systems, comprising of complex
processes, which are harder to model than DT of products or human-made
systems. This is in agreement with our findings related to DT in healthcare,
another domain that also has to do with living physical twins: Only two use
cases were identified related to healthcare (uc. 22, 46). Challenges related to
living physical twins include capturing underlying processes that are still not
well-understood, and accurately monitoring certain processes, for example
nitrogen leaching in crop systems. In agricultural systems, it is also common
that certain processes are not digitized because there are no financial incen-
tives for doing so.

Another aspect affecting the adoption of DT in agriculture is that the com-
munity has to build trust in the interplay of the DT components for its cor-
rectness. This trust is essential to create DT that can accurately represent the
inner workings of a system, propose maintenance strategies and alternative
ways of management. Yet, building this trust in agriculture is difficult, be-
cause many decisions affect living systems where, unlike in other disciplines,
consequences can be hard to reverse.

The lack of data culture also slows the adoption of DT in agriculture. DT
require large amounts of data to operate, and the expected benefits are not emi-
nent in small-scale deployments. In this respect, the lack of a data culture [94]
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and compartmentalization of agricultural systems understanding inhibits DT
development and decreases potential for adoption. As a last note, integrat-
ing DT components and updating them in real-time can be daunting. For a
community that is highly interdisciplinary and less information technology-
oriented [95], this is a major turnoff.

2.4.2 The added-value of digital twins

This review identified few applications of DT in agriculture, with several of
them being only superficially described in the corresponding articles. This
suggests that DT benefits have not been clearly communicated to the agri-
cultural community yet. Consequently, the community has not yet had the
chance to investigate how they could utilize them and include them in their
current practices. In this section, we pinpoint in the form of characteristics
the benefits that DT can bring to agriculture. The characteristics can be seen
in Fig. 2.6.

Figure 2.6: The characteristics of DT that can benefit agricultural applications.

The vision behind DT is to offer personalized curation of complex sys-
tems. This means that DT can account for system idiosyncrasies, that are
often too complex to be accounted for in a generic model. DT adapt to lo-
cal conditions in each individual physical twin, by fusing data and learning
from them. DT are customized to mimic the individual characteristics of each
system instance and deployment, and expose the system under different per-
spectives like system health, operation effectiveness, and profitability.

Streamlining of operations is another characteristic of DT. They offer an
automated pipeline of operations like data acquisition from sensors, perform-
ing simulations, creating reports and controlling actuators. These operations
are executed continuously, without requiring the attention, time and expertise
of the users. DT bring together operations that previously were offered by a
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range of tools, hide their complexity, save time and remove context switching
obstacles for the users. In this way, DT democratize technology and make it
available to a wider range of stakeholders.

A key aspect of DT is information fusion, as they integrate and enrich in-
formation originating from several heterogeneous sources. DT observe phys-
ical twins from different perspectives by using multiple sources of data and
assessing possible outcomes of actions. Information fusion combined with
the continuous nature of operations depicts the complete picture of the past
and current state of the system, and allows to estimate future states.

Uncertainty quantification is another characteristic of DT. DT can take
into account the cumulative effect of the involved uncertainties since they ob-
serve systems from different angles. This information can then be customized
and communicated to the stakeholders according to their expertise.

DT often embed permission level controls. The type of reports and con-
trolling mechanisms can vary, based on the user of the application. This
makes it possible to create different levels of transparency, depending on the
sensitivity of the handled data and the importance of the operations taking
place.

Finally, DT may demonstrate human-centered intelligence to control mech-
anisms for aspects that were neglected in the past, like human-machine inter-
action for safer working environments.

2.5 The future of digital twins in agriculture

The added value of DT has not yet materialized in agricultural applications.
DT could be used pervasively, on different spatial and temporal scales and
with varying levels of complexity, depending on their components and the de-
sired functionality. We expect that the future of DT will evolve from simpler
cases, exhibiting fewer components, to more sophisticated ones. We propose
a roadmap for the development of DT in agriculture, starting from simple
DT applications, with fewer components and simpler functionality, gradually
adding components and functionality, to demonstrate the full potential of DT.

On a fundamental level, a DT will include monitoring, user interface and
analytic components. These components are the first step towards empower-
ing a DT to monitor and analyze agricultural systems and offer a continuous
stream of operations. An example DT with these components could be de-
ployed to monitor the microclimate of a greenhouse and provide insights for
its management. In this case, the DT would monitor environmental indica-
tors like solar radiation, humidity and 𝐶𝑂2, analyze them according to user-
defined thresholds and report its findings, similar to the use case (uc. 21).
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A slightly enhanced DT could include actuator components to control fans
and windows in a greenhouse. The monitoring and control operations would
be performed continuously, notifying different stakeholders with information
that is relevant to them. For instance, in the case of consecutive stormy days,
the DT would notify the farmer that it closed the windows because the tem-
perature dropped, and notify the supply chain stakeholders that the production
will be delayed because the plants cannot grow fast enough with the current
weather. Also, the DT will report which indicators surpassed certain thresh-
olds, thus taking specific actions using its actuators, and consequently assur-
ing the stakeholders of its correct operation. Similar twins could be deployed
to food silos (uc. 12) to keep track of their stock and autonomously orga-
nize their proactive replenishment, notifying the supply chain stakeholders
and farmers respectively, and to livestock farms to keep track of environmen-
tal indicators that are known to affect animal welfare (uc. 25).

Further enhancing DT with simulation components is necessary for them
to support decision-making based on past and future predicted states of the
physical twin. A dairy farm DT could use simulation to forecast the occur-
rence of mastitis due to intensive milking for each individual cow. Utiliz-
ing this DT, a farmer could evaluate multiple milking scenarios and choose
the one that strains the cow the least (uc. 1). Data analysis and simulation
would happen in local or guaranteed cloud infrastructure to ensure data pri-
vacy. More advanced, simulations could investigate factors that have already
lead to the appearance of mastitis, and result in improved breeding decisions.
On an agricultural farm, DT of fields could use simulation to approximate
the behavior of equipment in local conditions (uc. 4). Utilizing such a DT,
a farmer could test a harvester, before purchasing it, on her local field with
different weather scenarios to measure fuel consumption and plant damage.

Incorporating a learning component brings agricultural DT to the next
level. A learning component may allow DT to assist in management oper-
ations for systems where the underlying mechanisms are unclear. In the case
of a livestock farm, a DT with learning capabilities would be able to find pat-
terns in real-time and in historical environmental data that could facilitate the
onset and spread of diseases like swine fever. This would help stakeholders
to take proactive measures to prevent not only the spread but also the ap-
pearance of diseases (uc. 6). Additionally, the DT would identify the most
important variables shaping these patterns, estimate related risks, and clearly
communicate the involved uncertainties, by presenting probability metrics for
example.

Towards Digital Earth [96], a large-scale DT of an agricultural landscape,
may consist of multiple DT of individual farms, each with several learning
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components. Such a DT will be able to consider the inter-field dynamics
regarding water flow, fertilizer dispersion and nutrient leaching. It would pro-
vide variable fertilizer rates, based on site-specific intelligence, for example
what amount can be absorbed by each field without being dispersed to other
fields, and how much each field should be irrigated considering groundwater
levels, and the availability of irrigation infrastructure. This would happen by
learning from historical data about how the amount of fertilizer and irrigation
affected the crop yield and depleted the nutrients of each field in the past.
Ultimately, the DT would constantly improve itself in defining the acceptable
fertilizer amounts and irrigation through continuous learning, also learning
from the past decisions of the individual farmer. Besides, capitalizing on this
information would lead to the creation of better cropping patterns, using dif-
ferent constraints like weather, profitability and field nutrient replenishment
rate.

Further improving agricultural twins with a human-machine interface com-
ponent would allow the establishment of safer working environments. A DT
of a harvester with a human-machine interface component could trace the po-
sition of the workers and their actions to ensure that the machine is distant
enough to avoid injuries (uc. 33). Also, a DT of grain bins could detect hu-
man presence inside the bin with cameras, and stop the procedures that cause
grain movement to prevent entrapment. This is crucial as a large number of
injuries occur every year with agricultural equipment due to the lack of safety
measures [97].

Overall, DT can be applied to several agricultural subfields like plant and
animal breeding, aquaponics, vertical farming, cropping systems and live-
stock farming. Adopting DT can start with simple setups, that can be grad-
ually enhanced with more components to make them more intelligent and
autonomous.

2.5.1 Considerations regarding the application of DT in agriculture

The application of DT in agriculture also involves potential pitfalls. As men-
tioned in [44], controlling physical twins through their virtual counterparts
may lead to a lack of attention to the real-world systems. In agriculture, such
neglect could cause irreversible damage, as DT are applied to living physical
twins, among other things.

There are also cases where DT are not yet feasible, due to the large amount
of resources they require to be developed, and the high complexity of the
physical twins [98]. This could be the case of some agricultural system in-
teractions that cannot be accurately quantified yet. There are also concerns
about the technology skills required to create DT [99]. DT development re-
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quires specialized knowledge from several technology domains, which can be
a serious threat in an already multidisciplinary domain like agriculture.

Synchronization between the physical and virtual twins is another target
that is difficult to achieve [100]. In agriculture, human-made systems like
agricultural equipment could be easier to synchronize with the virtual system,
unlike natural systems such as animals or land parcels.

Also, the integration of DT components can be difficult [13]. In agri-
culture, this could be the case for combining the simulation and monitoring
components for crops, as they rely on different infrastructures, software and
end-users.

Last but not least, the widespread success of DT in agricultural applica-
tions does not only depend on technology, skills, or data infrastructures and
availability but the involved business aspect. As with any new technology that
is to be introduced in a farm, DT need to demonstrate their added value and
the return on investment.

2.6 Conclusion

Returning to our first research question, we found that there are already a few
applications of DT in agriculture. However, they are in primary stages and
are not designed thoroughly enough to offer the benefits that other disciplines
enjoy. Exceptions included some deployed applications that were part of a
European Union-funded program. We believe that there is still a long way to
go before the agricultural community can fully seize the benefits of DT. Agri-
cultural researchers and stakeholders should make an effort to stay up-to-date
with technological advancements and seek to find links between agricultural
problems, and problems that are solved with DT in other disciplines.

Regarding the second research question, we proposed a roadmap of ap-
plications, starting from DT with simpler functionality, incrementally adding
components to gradually demonstrate the benefits that are already present in
other disciplines. As for the twins themselves, we foresee that there will be
some confusion in the coming years about what a DT is and when a technol-
ogy can be considered a DT. Research has been done to classify technologies
based on how close they are to becoming DT [25], but it is still difficult to
identify when a system can be called a DT. For the needs of most agricul-
tural applications, we suggest that a DT should have at least the monitoring,
interface and analytic components.

We identified two distinctive characteristics of DT in agriculture while re-
viewing the use cases and proposing our application roadmap. The first differ-
ence is that many agricultural DT involve directly or indirectly living systems
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and perishable products. While DT are ideal to provide insights into such
complex systems and incorporate non-deterministic processes, their integra-
tion with the physical twin can be difficult. This is further amplified due to
the idiosyncrasies of living physical twins. The second difference lies in the
spatio-temporal dimension of their operation. DT in other disciplines range
between the size of an airplane to that of a factory. Agricultural DT range
from individual plants and animals to twins of land parcels, farms, or regions.
As such, one may need to consider effects across these scales. On the tem-
poral dimension, agricultural DT differ due to the slower response rates of
their physical twins. Agricultural processes like the growing of plants tend to
evolve relatively slow, so at least initially there is no need for high-frequency
interactions between physical and digital twins. These two characteristics of
agricultural DT need to be considered when developing DT inspired by DT in
other disciplines.

As a final note, given the potential for the adoption and the benefits of
applying DT in agriculture, we strongly believe that they have the prospect to
bring a technological breakthrough in the near future.
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Abstract

In the environmental sciences, there are ongoing efforts to combine multiple
models to assist the analysis of complex systems. Combining process-based
models, which have encoded domain knowledge, with machine learning mod-
els, which can flexibly adapt to input data, can improve modeling capabilities.
However, both types of models have input data limitations. We propose a
methodology to overcome these issues by using a process-based model to
generate data, aggregating them to a lower resolution to mimic real situations,
and developing machine learning models using a fraction of the process-based
model inputs. We showcase this method with a case study of pasture nitrogen
response rate prediction. We train models of different scales and test them
in sampled and unsampled location experiments to assess their practicality
in terms of accuracy and generalization. The resulting models provide accu-
rate predictions and generalize well, showing the usefulness of the proposed
method for tactical decision support.
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3.1 Introduction

Digital twins are established in several industries, including manufacturing [101],
healthcare [102], automotive [26]. Their ability to replicate physical systems
and provide decision support through data fusion, simulation, and technol-
ogy integration makes them attractive to apply in complex multidisciplinary
problem-solving. Recently, digital twins have drawn the attention of the envi-
ronmental sciences community. Researchers are exploring digital twins in
hydrology [103], agriculture [104], smart farming [16], livestock farming
[105], remote sensing [106] and earth sciences [107]. Recently, the Euro-
pean Union has announced plans for a high-resolution Earth digital twin that
aims at actionable intelligence from (big) data streams [108, 109]. In the
US, the research agenda for intelligent systems in geosciences [110] aims to
incorporate extensive knowledge about the physical, geological, chemical, bi-
ological, ecological, and anthropomorphic factors that affect the Earth system
while leveraging recent advances in data-driven research.

Digital twins intertwine data streams from a variety of in-situ or remote
sensors with simulation and learning components. These components are then
used to estimate future system states and offer an understanding of how com-
plex mechanisms evolve. Digital twins incorporate sensor data streams with
process-based models (PBM) or ML models, to provide insights by analyzing
what-if scenarios, or provide operational decision support for managing and
controlling complex systems. PBMs implement mathematical representations
of physical processes and their interactions, and estimate future system states
by numerical integration. While PBMs embody system understanding, they
require many inputs and tend to be computationally intensive. ML models fol-
low an empirical, data-driven approach in making predictions based on large
collections of historical data. ML models are computationally fast in making
predictions and robust with noisy data, but typically harder to interpret, and
expensive to develop from data.

Digital twins need to be operational in a variety of data availability condi-
tions. Their operation depends on the ability of the underlying models to cope
with missing data streams or different resolutions. Problems with limited data
arise when digital twins have to make decisions for the not-immediate future
and quantities have to be forecasted. Also, their application in locations where
data are sparse or non-existent (unsampled locations) can be challenging. An-
other concern is that transitions between different aggregation levels may be
impossible due to the difference in the detail of the data that models expect.
Therefore, digital twins need models or techniques to create models, that are
able to handle such cases in order to provide operational decision support.

ML models can be versatile to a varying extent and resolution of input data.
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However, they generally require large volumes of data for their development,
accompanied by labels that are not easily available in environmental sciences.
Techniques like few-shot learning [111] seem promising to learn from small
datasets, but still novel research is needed to develop ML approaches that
incorporate prior knowledge about environmental processes [112] and use it
to effectively supplement the available data [110]. A path forward could be
to employ synthetically generated datasets from simulations that mimic real
conditions, which can be effectively used for developing ML models [110].

In this work, we showcase an approach to create ML models which tackles
the challenges of data availability and data resolution while providing oper-
ational decision support for digital twins. We propose a method which (a)
does not need forecasted data to be operational, (b) is applicable to locations
where data are not yet available to calibrate PBMs, and (c) is applicable in
cases where the available data do not have the resolution expected by the
PBMs. We then demonstrate its usefulness in the context of a case study. In
the case study, we create ML models of different scales to predict pasture ni-
trogen response rate (NRR) and examine their reliability by assessing their
predictive and generalization capacity.

The rest of the paper is organized as follows: in section 3.2 we describe the
requirements of PMBs, the proposed method and related work. In section 3.3,
we present the case study and the methodology to experimentally evaluate the
proposed method. Section 3.4 reports the results of our experiments, followed
by a discussion in section 3.5, and the conclusion (in section 3.6).

3.2 Simulation-assisted machine learning

3.2.1 Process-based model data requirements

PBMs typically require several high-resolution data streams as inputs to sim-
ulations [113, 114]. Data availability becomes a problem with PBMs when
applying models in new locations, where no or little data have been collected
yet. In such cases, input data need to be estimated or collected, which can
be a lengthy and expensive process. Also, when input data are available, they
are needed in a prolonged temporal horizon of interest. For example, daily
weather forecasting may be necessary for in-season crop model predictions
[115]. Without such detailed forecasts of inputs, PBMs can make estimations
only up to the present day. They may extend their reach to the near future
if quantitative short-term weather forecasts are available. Otherwise, PBMs
are used with historical data to estimate probability or risk distributions based
on simulations, e.g. as in [116], and often together with data assimilation
techniques to integrate them with sensor observations of system states [117].
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Another factor affecting the operational use of PBMs is data resolution.
Usually, sensor input is not available at the resolution required by the models.
For example, input data streams may be available on a weekly basis, while
models require daily inputs [118]. Data availability and resolution are two
factors that can prohibit the use of existing PBMs in digital twins. A depiction
of the data requirements of PBMs can be seen in Fig. 3.1a.

(a) (b)

Figure 3.1: Data requirements of PBMs (a) and our approach (b). The PBM needs 𝑛 inputs
that span through the entire duration of the simulation to produce an output at the end of
the simulation. The model of our approach requires a subset 𝑘 , 𝑘 < 𝑛, of the PBM inputs.
The required data are limited to what has been observed prior to the prediction date (i.e. the
date on which the prediction is required to be made). The red circles represent the outputs
(predictions) of the model.

3.2.2 Requirements for operational decision making

In order to have digital twins for operational decision making, we need models
which are able to operate when less data are available. Specifically, we iden-
tified three requirements. First, we need models which can make predictions
for the future with data only until the prediction date, without requiring the fu-
ture values of variables. Second, these models should be accurate in locations
where historical data are available (sampled locations1) but also in locations
where data have not been collected in the past (unsampled locations). Third,
the models should be able to work in cases where high-resolution data are not
available e.g. due to lower frequency sampling rates or when less input data
streams are available in unsampled locations. The data requirements of such
models can be seen in Fig. 3.1b.

1Throughout the manuscript we use the term location(s), but without loss of generality this can be considered as
situation(s), when considering non-spatially explicit systems.
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3.2.3 Proposed method

To satisfy the requirements for operational decision making, we can train ML
models on PBM input/output data (so they are also metamodels, see paragraph
3.2.4), discard data we do not need, and then aggregate on lower resolutions.
Having a PBM, a target variable and historical data to make simulations, we
propose the following steps from an application-based perspective:

1. Define the decision horizon, i.e. how far in the future predictions are
going to be made. Based on this boundary, we know how much data
we need to retain, as any data after the prediction date are going to be
discarded.

2. Choose an aggregation level for the retained data (wherever applicable),
with lower resolution than the original data. This will allow the ML
model to make predictions even when high-resolution data are not avail-
able.

3. Generate data. To generate data we need to define a hyperspace of input
combinations for the model. We can choose a full factorial design [119]
to contain all the possible combinations of the input variables, or decide
to retain only the physically consistent combinations.

4. If possible, discard inputs/output datastreams of the PBM. The fewer
inputs the better, because in this way the data requirements of the model
are reduced. This decision can be made based on domain knowledge or
feature selection procedures.

5. Finally, develop one or several ML models using the data resulting from
the above steps.

Evaluation is an important factor to verify that the created models are use-
ful for operational/tactical decision making. A practical way to estimate the
predictive capacity of the models is to compare their errors with a thresh-
old based on domain expertise. Also, the models should be tested for their
generalization capacity. A way to do this is to consider both sampled and
unsampled locations for testing experiments, where data from some locations
are excluded from the model training sets, and examine model performance
in the excluded locations. Another evaluation aspect is to determine the ap-
propriate training data size of the models. The more variability a model has
seen in its training data the more accurate prediction and generalization ca-
pacity it should have. In the case where more data do not increase prediction
performance it could mean that they do not add any variability and hence we
do not need to generate much data in the future. In our case, data quantity is
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controlled by the amount of data that we generate with the PBM. Therefore,
an evaluation step could be to test models of different scales by including
different amounts of locations, years, or other parameters.

3.2.4 Related work

Efforts to overcome the inherent shortcomings of PBMs for operational decision-
making have been focused on combining PBMs with ML through the concept
of metamodeling. Metamodels (also called surrogate or hybrid models) refer
to models which mimic the behavior of other models [120]. ML metamodels
have been used in agricultural and environmental sciences to cope with a va-
riety of problems. To instill domain knowledge to ML models the authors of
[121] train a neural network on PBM output using a custom loss function to
predict the water temperature in lakes. To reduce the long execution times of
PBMS, metamodels have been employed to predict maize yield and compare
the results with those of the PBMs and ML models [122, 123]. To accelerate
sensitivity analysis, metamodels have been trained on the output of agricul-
tural simulators [124]. Also, hydrological metamodels have been evaluated
for their performance in terms of speed and accuracy [125, 126], as well as
generalization capacity (domain adaptation) in unsampled areas [127]. Like-
wise, to extrapolate at regional and national levels, metamodels have been
deployed in environmental management [113]. Lastly, to work in situations
where PBM inputs are not available, the authors of [128] create metamodels
to predict pre-season maize yield for decision support.

The aforementioned studies focus on each of the advantages of metamod-
eling individually, whether it is domain knowledge imputation, faster compu-
tation times, improved generalization capacity over PBMs, or working with
less data. Also, most of these studies make an effort to create models that pre-
dict the variable of interest at any time of its evolution, similar to what PBMs
do, i.e. by predicting state variables for each simulation step. In this work,
we introduce a generic method to exploit these advantages, as well as to deal
with data resolution problems which were not explicitly mentioned in those
studies, and also we do it for a specific point in time in the future of the target
variable.

3.3 Methods

3.3.1 Overview

To assess the method described in 3.2.3 we performed a case study of grass
pasture NRR prediction in different locations (see Fig. 3.2) of New Zealand.
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The application of nitrogen along with environmental factors such as temper-
ature and time of year greatly affects pasture growth [129], so it is important
to know the nitrogen response rate.

To examine the reliability of our models we performed a sampled and an
unsampled location experiment. In the sampled location experiment, we as-
sessed the predictive capacity of the models in cases where data from the
testing locations are available. In the unsampled location experiment, we ex-
amined the generalization capacity of the models in cases where data from
the testing locations are unavailable. For both sampled and unsampled loca-
tion experiments, we iteratively considered each location to be a testing loca-
tion to be able to better establish our verdicts. To argue about the predictive
and generalization capacities we used a case study-specific example where
we compared the models’ performance with a threshold that makes sense for
crop practitioners. Also, we created models of different scales by using vari-
ous amounts of data for training, and examined how data quantity included in
training affects their performance.

3.3.2 Case study

The target of our prediction was the expected two-month nitrogen response
rate (NRR; kg of additional, i.e. compared to not applying any fertilizer) of
pasture dry matter grown in the two months after fertilizer application per
kg of N fertilizer applied. As in most countries, pastures in New Zealand
suffer a chronic deficiency of nitrogen [130, 131] and farmers apply nitrogen-
containing fertilizers to increase pasture growth rates [132, 133]. Nitrogen
fertilizer can be applied regularly (e.g. after each grazing event) or more tacti-
cally to manipulate the supply of pasture available to feed stock. As fertilizer
costs increase, environmental concerns about leaching of nitrogen increase
and/or the prices received for meat and milk decrease, farmers become more
interested in understanding when best to apply nitrogen fertilizer to obtain
the best NRR. Current NRR estimators are based on rules-of-thumb that con-
sider the month of year, soil temperature, soil nitrogen, or pasture growth rate
[134–136].

There are PBMs that can estimate NRR based on site (soil properties, pas-
ture type) and the prevailing conditions (weather) but they have limited use-
fulness as operational estimators of NRR, because the weather for the two
months after a proposed current or future application date are not known, and
such data are required to run the model. Also, while there are some NRR
data available from experiments, they are sparse and not sufficient to train
ML models.
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3.3.3 Data generation

We used APSIM v7.10 r4191 [24, 137] to generate the training and testing
data. Pasture growth was simulated with the AgPasture module [138] which
has already been demonstrated to be a reasonable estimator of pasture growth
in New Zealand [139, 140]. The range of input conditions covered eight con-
trasting locations in New Zealand (Fig. 3.2) and are given in Table 3.1.

Pasture NRR is known to be influenced by soil water and nitrogen avail-
ability, temperature, and solar radiation. The combinations of input condi-
tions were designed to provide coverage across these variables, along with 40
years of historical weather data from the New Zealand Virtual Climate Sta-
tion Network [118, 141], which gave a rich source of variation in weather
after fertilizer application.

A hyperspace of parameters was created using the full factorial of the in-
put conditions and put into APSIM. The total number of generated simula-
tions was 1,658,880. After removing the control simulations, (see Table. 3.1)
1,382,400 remained.

Figure 3.2: The eight locations included in the generated dataset.

3.3.4 Data preprocessing

The data generated by APSIM were processed to form a regression problem
where the target variable was the NRR and the inputs were the weather, treat-
ment options regarding the fertilizer and irrigation, and biophysical variables.
First, the NRR was calculated at two months after fertilization for each non-
control simulation. Second, from the generated daily data only the samples in
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Table 3.1: The simulation parameters of APSIM. The factorial of those parameters was used
to create a hyperspace of input combinations.

Simulation parameters

Location daily weather from eight sites spanning the country
Soil water 42, 67, 110 and 177 mm of plant-available water stored to 600 mm deep
Soil fertility carbon concentration in the top 75 mm of 2, 4, and 6%
Irrigation irrigated with a centre-pivot or dryland
Fertilizer year years 1979-2018
Fertilizer month January-December
Fertilizer day 5th, 15th and 25th of the month
Fertilizer rate 0 (control), 20, 40, 60, 80 and 100 kg N /ha

a window of 28 days before fertilization were retained. This window was se-
lected because in the experience of the authors, pasture ’loses memory’ of past
conditions relatively quickly provided it is not under- or over-grazed. Weather
data after the fertilization were also not considered as such data would be un-
available under operational conditions. Third, the generated data were split
into 80/20% training/test sets based on years to avoid information leakage
during the later stages of preprocessing. The training and test sets included
the year ranges 1979-2010 and 2011-2018, respectively. Fourth, the weather
and biophysical variables were aggregated using their weekly mean values.
Finally, only a subset of the variables was preserved. This subset included
weather variables, simulation parameters (soil water, soil fertility, irrigation,
fertilizer month, fertilizer rate), and biophysical variables produced by AP-
SIM (above ground pasture mass, net increase in herbage above-ground dry
matter, potential growth if there was no water and no N limitation, soil wa-
ter stored from 0 to 300mm, soil temperature at 300mm, soil temperature
at 50mm, herbage nitrogen concentration in dry matter). These variables
were preserved because they were considered to be likely drivers and also
known prior to fertilization (to ensure operational usefulness), based on ex-
pert knowledge of the authors.

3.3.5 Model scale

Different models were created using different amounts of data. We considered
models on three scales: local, regional, and national, each including a differ-
ent number of locations. The criterion for selecting the locations differed,
based on whether the experiment was performed in sampled or unsampled
locations.

In the sampled location experiment, the locations were selected based on
a climate matching process. The degree of climatic similarity between sites
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was assessed using the CLIMEX “Match Climates” algorithm [142]. This
algorithm produces a composite match index (CMI, from 0 to 1) which indi-
cates the similarity between two locations in weekly average maximum and
minimum temperatures, total annual rainfall, seasonal pattern of rainfall, rel-
ative humidity and modelled soil moisture. The required climate data were
obtained for the nearest 0.05° location from NIWA’s Virtual Climate Station
Network [141] for the period 1979 to 2010, i.e. using data only from the train-
ing set. The results were expressed as a matrix of pairwise CMIs between all
sites. In this experiment, the local model included data from the sampled loca-
tion, the regional model from the sampled location and the best two matches
for this location, and the national model data from all the locations.

In the unsampled location experiment, the locations included in each model
were selected based on minimum haversine distances from the testing loca-
tions. The reason for not using climate matching with CLIMEX was the as-
sumption that data from the unsampled locations were not available, and as
a result climate matching could not be performed. The local model included
data from the nearest neighbor of the unsampled location, the regional from
the three nearest neighbors, and the national from all the locations except the
unsampled one. See Fig. 3.3 for a visualization of training models of different
size, and Table A.2 in the appendix for the locations included in each model.

Figure 3.3: The splitting of the processed data to create models for testing in sampled and
unsampled location experiments.

3.3.6 Machine learning pipeline

The models were developed with the Random Forest algorithm. Random For-
est was selected based on the results of preliminary exploration (see Table A.3
in the appendix). Feature selection was not performed since we had only
a few features, which were all considered explanatory. Training data were
standardized for each location and experiment, and test set data were stan-
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dardized with the corresponding scaler. Categorical variables like irrigation
(on/off ) were converted to ordinal. Hyperparameter tuning was performed us-
ing Bayesian optimization with 25 iterations and the 5-fold cross-validation
score as a metric for each iteration. The tuned parameters can be seen in
Table 3.2.

Table 3.2: Tuned parameters of Random Forest and their ranges.

Random Forest parameters

n_estimators 50-800
max_depth 3-12
min_samples_split 30-500
min_samples_leaf 30-500
max_features 0.33

3.3.7 Evaluation

The predictive capacity of the models was evaluated using the root mean
squared error and the residuals of the models on a monthly and yearly ba-
sis. A threshold of 5 kgDM/ha/KgN2 (NRR) was selected, based on expert
knowledge, to investigate if the models were accurate enough from a practi-
cal perspective. To test the generalization of the models, RMSE and residuals
were also examined against the threshold of 5 in unsampled locations.

3.3.8 Experimental setup

The data preprocessing stage was carried out utilizing the Apache Spark frame-
work in standalone mode. The ML models were developed using the scikit-
learn library in Python. The experiments took place in a computing node with
an Intel Xeon E5-2630 v4 CPU and 120GB of RAM.

3.3.9 Software availability

The code used for the case study of this paper can be found on GitHub 3.

3.4 Results

In the following sections we present RMSE values and residual plots for sam-
pled and unsampled locations. The errors of the models fluctuated depending

2kg of dry matter/ha/kg of nitrogen
3https://github.com/BigDataWUR/simulation-assisted-ML
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on model scale, location, month and year of application, and whether the lo-
cation was considered to be sampled/unsampled. None of the models proved
to be universally better on all the locations or in both the sampled/unsampled
testing experiments. However, some of them showed higher performance and
generalization capacity than others in certain cases.

3.4.1 Sampled locations experiment

For the sampled location experiment, regional models had lower RMSEs than
the local and national in 4 out of 8 locations, but the error differences between
the models were smaller than 0.03. National models had the second-best per-
formance. RMSEs for each model and location can be seen in Table 3.3.

Prediction residuals are illustrated in Fig. 3.4. We observe that errors
were mostly below the operational threshold of 5 kgDM/ha/KgN. Exceptions
were the months January and February which showed errors close to 5 in
some cases. On a closer inspection, we observed large fluctuations based on
whether there was irrigation or not (Fig. A.1). In the non-irrigated case, we
noticed that for January, February and December the residuals were larger
than our threshold of 5 kgDM/ha/KgN. For the other months the performance
was well below our threshold. In the irrigated case, the residuals took consid-
erably smaller values.

On a yearly basis (Fig. 3.5), the candles of the residuals were below 2.5,
except for Ruakura in 2016 and some years in Lincoln which were higher than
2.5 but still lower than 5. Separating the irrigated and non-irrigated cases,
we found that the irrigated cases had residuals consistently lower than our
threshold. For the non-irrigated cases (Fig. A.3) we observed that the years
2015, 2016 had larger residuals in several locations.

3.4.2 Unsampled location experiment

In the unsampled location experiment (Fig. 3.4), we observed that the per-
formance of the models generally decreased compared to the sampled ex-
periment. This decrease was more evident in Lincoln and Kokatahi while
in the rest of the locations the differences are minor. The regional models
outperformed the national and local models in 4 locations (Fig. 3.3). The per-
formance of the regional models was close to that of the national models in
many cases. The only location where a local model outperformed the other
two was in Mahana.

From the residual plots on a monthly basis (Fig. A.2) we observed consid-
erable variation in the residuals between the irrigated and non-irrigated cases.
Also, we noticed that the interquartile ranges had been increased compared to
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Table 3.3: The test set RMSEs of the models in the sampled/unsampled location experiments.

Experiment Model
size

Waiotu Ruakura Wairoa Marton Mahana Kokatahi Lincoln Wyndham

Local 2.42 2.84 2.7 2.92 3.16 1.97 3.86 2.13
Sampled lo-
cations

Regional 2.32 2.83 2.65 2.63 3.08 1.99 3.47 2.13

National 2.3 2.78 2.76 2.72 3.26 2.09 3.56 2.1

Local 2.53 2.94 3.15 2.93 3.26 3.15 4.57 2.44
Unsampled
locations

Regional 2.4 2.82 2.86 2.66 3.97 2.4 3.88 2.28

National 2.39 2.8 2.96 2.83 3.46 2.27 3.92 2.34

the sampled locations, especially for the local models, and were higher than 5
in many occasions, with the largest errors happening in Lincoln.

From the residual plots on a yearly basis (Fig. A.4), we observed that the
interquartile ranges had been increased compared to the sampled location ex-
periment. Again, the years 2014-2016 had the widest interquartile ranges,
with those of the Lincoln local model displaying the largest errors. Except for
those years, we could say that the performance of each model is stable across
the years, for each location.
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(a)

(b)

Figure 3.4: Monthly test set residuals of models for sampled (a) and unsampled (b) location
experiments.
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(a)

(b)

Figure 3.5: Yearly test set residuals of models for sampled and (a) and unsampled location
experiments (b).
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3.5 Discussion

In our experiments, the models captured in most cases sufficient variation
from the data to achieve RMSEs lower than the threshold of 5 kgDM/ha/KgN.
This means that they could be potentially used in practical applications where
weather data after fertilization are missing, or data are on a lower resolution
than those that APSIM expects. These results persisted in the unsampled
location experiment, thus providing evidence that the models are operational
in locations where data do not exist to calibrate PBMs, as well as locations
not included in the training set of the models. In the following sections, we
interpret the results of the local, regional and national models, and discuss the
models as a product of the proposed model development methodology.

3.5.1 Predictive capacity (sampled locations)

When separately analyzing the irrigated/non-irrigated cases, we observed that
the lack of irrigation hindered the predictive capacity of the models. The rea-
son for this impediment is that when no irrigation is provided, the weather
conditions become the driving factor of the NRR, because the grass relies
solely on rain to grow. Therefore, as several uncertainty factors pile up (weather
volatility, NRR sensitivity to weather, predictions two months in the future
without knowing the weather), the results are expected to deteriorate, but they
are not indicative of the general model performance. The deterioration was
sharper during the spring/summer months November, December, January and
February because irregular rainfall is most critical in these seasons. Also,
the performance degradation was not the same in all the locations since some
locations have more favorable weather conditions than others.

Comparing the models, we observed small differences in model perfor-
mance. At first glance, this seems counter-intuitive since bigger models were
trained on supersets of the smaller model data. This means that they have the
same information to learn from, and thus they should perform at least equally
well. However, this is not the case since the smaller models seem to bene-
fit more from additional data from locations with similar climates than from
having more data from locations with less similar climates. Regarding the na-
tional models, they have somewhat higher RMSEs than the other two models
because they include data from all the locations, which makes them harder to
adapt to local conditions.

The models showed good performance through each month of the year for
the irrigated case. Interquartile ranges were mostly below 5 which means that
50% of the values lie within this range. In different locations we see different
months having the largest residuals. This has to do with the variation in their
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microclimates, since rainfall and temperatures can be disparate. Residuals
went as high as 7.5 in Lincoln, which is characterized by low precipitation
amounts as can be seen in Fig. A.5.

Also, we observed that the errors of the models are consistent throughout
the years. There is some variation for 2016 and 2018 in Kokatahi and Wairoa,
mainly due to local weather conditions and extreme events which the models
were unable to capture. This aligns with our expectation, since extreme events
are rare (so there are only a few in the dataset) and also because their presence
may be imbalanced between the training/test sets. Yet in most cases the model
shows adequate predictive capacity, even eight years after the last year that
was included in the training set.

From the perspective of model operationalization, the models proved that
they can complement the PBMs to provide predictions of adequate accuracy,
and overcome the problem of data availability to a certain degree. This de-
gree depends on the level of uncertainty involved in the predictions and the
ML pipeline used to build the models. In a digital twin, these models could
provide the first line against working with limited data. Several models could
be included with different tasks. For example, a model providing predictions
for the irrigated case of a specific location with a specific soil type, one trained
on extreme weather, one on non-irrigated cases and so on. These ensembles
of models could potentially capture a large degree of variation while waiting
for more data to become available.

3.5.2 Model generalization (unsampled locations)

In the unsampled location experiment, the differences between the models be-
came more evident, as the local models’ performance deteriorated more than
the others (Fig. A.2). The reason behind this difference is that the local mod-
els had data from only one location, which was not the location where the
testing happened. On the other hand, the bigger models were favored in this
experiment since they included data from multiple locations and could extrap-
olate better. This phenomenon is more noticeable in the non-irrigated cases
(Fig. A.2a) where the local model shows high deviations from the simulated
NRRs. Having said that, with the exception of January, February and Decem-
ber, the RMSEs were below 5 for all models. Those three months included
temperatures higher than 25°C (Fig.A.6) which can be harmful to the grass,
and when combined with the non-irrigated case the uncertainty for the future
increases.

On the monthly residual plots of the unsampled location experiment (Fig. A.2a)
we saw a more detailed picture of model performance with respect to size.
Many times the residuals surpassed our threshold, especially those of the local
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and regional models. From these cases we can deduce that the national mod-
els are superior to the local and regional ones. The cases where the national
models had increased interquartile ranges happened on the same months and
locations as in the sampled location experiment (e.g. January-February in
Ruakura, February-March in Marton). The latter observation means that the
increased ranges are not a matter of hindered generalization among locations,
but of an inability to capture variability in those climates due to the features
included in the models.

From the residuals on a yearly basis we observed that the errors are mostly
consistent across the years in each location. The local models showed the
highest fluctuations throughout the years (like in Ruakura and Lincoln). The
regional models had the second-highest discrepancies throughout the years
(like in Mahana, Lincoln). The national models were the most stable ones.
This behavior can be attributed to the amount of data included in each model,
because the more data from different locations a model includes the more
divergent weather conditions it has seen. This means that it can generalize
better in the weather conditions of the years to come. Also, it is interesting
to see that models can generalize in unsampled locations many years (8) later
since the last year included in the training sets.

From an operational perspective, the models showed a capacity to gener-
alize in previously unseen conditions. A recommendation we would make
when starting modeling in unsampled locations would be to begin with a na-
tional model rather than a model from the single nearest/similar location. In
digital twins where existing models cannot be applied due to lack of calibra-
tion data or insufficient observation training data, these models can provide
a first impression of variables of interest in the future, even though there are
still limitations. Again, the model performance could be improved by training
for more specific scenarios and using more advanced ML techniques.

3.5.3 Future Work

This line of research could be improved further by generating data from multi-
ple PBMs, and by trying different aggregation levels to find a balance between
performance and working with low-resolution data. Also, it would be benefi-
cial to evaluate model performance against ground truth data, which were not
available for this case study. Regarding the case study, the data preprocessing
and ML procedures could be adapted to better fit the domain of the application
by using custom features, performing training/test splits which better balance
underrepresented phenomena between the sets, or using stratified sampling to
select which simulations are going to be included in each set. More elaborated
ML model architectures could further improve performance metrics.
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3.6 Conclusions

In this work, we introduced a method to develop operational digital twins by
creating models which overcome the problems of data availability and data
resolution. We showcased this method using a grass pasture nitrogen response
rate case study.

Experimental results verified that this method is able to produce digital
twins to offer tactical advice in highly non-linear situations where local con-
ditions and treatment options affect the outcome of the predictions.

The ability of the models to provide accurate predictions in different loca-
tions, for both sampled and unsampled experiments, indicates that they can
adequately capture the variability encoded in process-based models. The de-
veloped models were able to capture the target variable, even without having
the complete weather and biophysical time series. This practically allows
to develop operational digital twins in cases of limited data availability. Also,
model predictions were made on field-level using weekly data instead of daily
data that a process-based model would require. As a result, digital twins us-
ing these models are capable of operating in situations where process-based
models cannot. These advantages, combined with the fact that we did not
need to forecast any future weather values to get those results, differentiate
this method from the creation of metamodels which just summarize process-
based models, and demonstrate that simulation-assisted machine learning is
able to offer advice in practical conditions.
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Abstract

Learning latent representations has aided operational decision-making in sev-
eral disciplines. Its advantages include uncovering hidden interactions in data
and automating procedures which were performed manually in the past. Rep-
resentation learning is also being adopted by earth and environmental sci-
ences. However, there are still subfields that depend on manual feature engi-
neering based on expert knowledge and the use of algorithms which do not
utilize the latent space. Relying on those techniques can inhibit operational
decision-making since they impose data constraints and inhibit automation.
In this work, we adopt a case study for nitrogen response rate prediction and
examine if representation learning can be used for operational use. We com-
pare a Multilayer Perceptron, an Autoencoder, and a dual-head Autoencoder
with a reference Random Forest model for nitrogen response rate prediction.
To bring the predictions closer to an operational setting we assume absence
of future weather data, and we are evaluating the models using error metrics
and a domain-derived error threshold. The results show that learning latent
representations can provide operational nitrogen response rate predictions by
offering performance equal and sometimes better than the reference model.
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4.1 Introduction

Latent representation learning has been adopted in several disciplines to ex-
tract and handle hidden interactions between the input variables allowing for
more informed decisions. In geosciences, representation learning algorithms
emerge [143] that perform visual analogies in the latent space, similar to how
Word2vec can be leveraged to learn how words appear in similar contexts. In
medicine, latent representation learning is used [144] to work with incomplete
multi-modality data to learn independent representations for the prediction of
Alzheimer’s appearance. In biology, latent representations are used to model
unmeasured quantities like pain and stress [145]. Representation learning has
also found its way to the earth and environmental sciences. Examples in-
clude learning better representations of 2D coordinates [146], and extracting
unknown basin characteristics [147]. However, it has been observed [148]
that this is not the case for several subfields, where practitioners prefer to use
features based on expert knowledge and already proven algorithms that do
not explore the latent space. This creates missed opportunities to examine
whether improved predictive performance can be achieved, or new interac-
tions to be found, or even to automate prediction pipelines. A representative
case of such a missed opportunity is with estimating nitrogen application for
fertilization purposes.

Nitrogen is the nutrient that crops and pasture draw from the soil in the
greatest quantities [19] and thus it becomes a growth-limiting factor [20]. Ni-
trogen deficiency has been associated with low yields [21], and pastures in
several countries suffer from it [130, 131]. Farmers apply nitrogen-containing
fertilizer to increase pasture growth rates but environmental concerns rise as
nitrogen has been linked to soil[22], freshwater and atmosphere pollution[23].
Subsequently, agricultural practitioners are asked to control nitrogen appli-
cation with precise doses based on NRR1. To control nitrogen application,
research is being directed towards modern systems like digital twins [149]
which can aid decision support through automation and data integration. How-
ever, digital twins require components, such as process-based and ML mod-
els, that are able to predict NRR across several months in the future to be
considered operational. Process-based models that can calculate NRR exist
but they are of limited use as the weather months after nitrogen application is
unknown yet required to run the model. Also, while NRR observations exist
from experiments, they are sparse and not enough to train ML models.

In a recent study [150], we presented a methodology to tackle these data-
related problems by training ML models based on process-based model out-

1Amount of extra 𝑘𝑔 of yield for every 𝑘𝑔 of nitrogen applied (𝑘𝑔𝑦𝑖𝑒𝑙𝑑/ℎ𝑎/𝑘𝑔𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛)
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put. We predicted pasture NRR two months ahead of the prediction date,
assuming an absence of intermediate weather data. However, we performed
common practices of environmental sciences like selecting features solely
based on expert knowledge, averaging weather variables, and feeding all those
to Random Forest (RF) [151]. Hence, the latent space of data was not ex-
plored, and it was left unchecked if we could achieve similar performance
with higher resolution data by learning the latent space. That would be im-
portant to examine since methods that learn the latent space have shown to
perform equally or better than approaches that do not, as they may capture
interactions that are not yet understood. Also, it would promote automation
in systems like digital twins by removing the step of manual feature extrac-
tion. In this work, we are going to treat this study as a stepping stone, as it
proved that we can have accurate NRR predictions in limited data settings,
in a situation where an ML model and a process-based model alone were not
operational.

Here, we perform a systematic comparison of different architectures to
learn the latent space of a synthetic dataset for NRR prediction. We adopt
the case study and data provided by [150] and we use RF as a reference for
comparing the performance of the architectures. We learn the latent repre-
sentations of the inputs/outputs of a process-based model and predict NRR
with a Multilayer Perceptron (MLP), an autoencoder (AE), and a dual-head
autoencoder (DAE). We perform multiple runs for each architecture as well
as RF to verify the robustness of each model. We then evaluate the results
using error metrics as well as a domain-derived error threshold.

4.2 Materials and Methods

4.2.1 Case study & Data generation

The case study was concerned with finding the pasture NRR for two sites
(Fig. B.7) in New Zealand. The prediction target was the NRR of pasture
dry matter grown in the two months after fertilizer application. Data genera-
tion was performed with APSIM [24]. The simulation parameters of APSIM
covered conditions that are known to affect pasture growth. The full factorial
[119] of those parameters was created and put to APSIM. The range of each
parameter can be seen in Table B.4.

4.2.2 Data preprocessing

The generated data were processed to form a regression problem. The tar-
get variable was the NRR and the input variables were the weather, fertilizer
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amount, fertilization month, irrigation and a subset of biophysical variables
produced by APSIM. From the generated daily data, only the data within the
first 28 days prior to fertilization were preserved because pasture is supposed
to ’lose memory’ of past conditions after that time frame. Weather data af-
ter that these 28 days were also discarded as they would be unavailable
in operational conditions. The remaining data were split into 67.5% train-
ing, 12.5% validation, and 20% test sets, based on years, to avoid information
leakage during later processing stages. The validation set included the years
[1979, 1987, 1999, 2007], the training set years [1979-2010] excluding the
validation years, and the test set [2011-2018].

4.2.3 Architectures

4.2.3.1 Multilayer Perceptron

An MLP was put in the comparison to examine how its latent space learning
capabilities compared with learning compressed representations of an AE.
The loss was given by equation 4.1. The network topology can be seen in
Fig. 4.1. Training parameters can be found in Appendix 7.4.

Figure 4.1: The topology of the MLP.

4.2.3.2 Autoencoder

An AE was selected to create a compressed representation of the input vari-
ables. The AE included skip connections similarly to [152] from the encoder
to the decoder to lessen degradation [153]. The reconstruction loss was given
by equation 4.2. After training the AE, the decoder was removed and replaced
by an MLP. Training was performed again for the MLP (with loss given by
equation 4.1, and a frozen encoder) to learn to predict NRR. The autoencoder
topology can be seen inside the dashed line of Fig. 4.2.
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𝐿𝑛𝑟𝑟 =
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1
𝑁
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425∑︁
𝑗=1

(𝑦𝑖 𝑗 − 𝑦𝑖 𝑗 )2 (4.2)

where 𝑁 = 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒.

4.2.3.3 Dual-head autoencoder

The encoder and decoder parts were the same as of the ’simple’ AE. The
addition was that the compressed representation was then directed to an MLP
which carried out the NRR prediction task. The network topology can be seen
in Fig. 4.2. Both the AE and the MLP were trained simultaneously, with the
total loss being the summation of the equations 4.1, 4.2.

Figure 4.2: The topologies of the AE (inside the dashed border), and the DAE (altogether).

4.2.4 Evaluation

The performance of the different architectures was compared using the mean
absolute error (MAE), the variance learned from the latent representations
using 𝑅2, and the standard deviation of the predictions. Also, the predictive
capacity of the models was assessed using a domain-derived error threshold of
5 𝑘𝑔𝑦𝑖𝑒𝑙𝑑/ℎ𝑎/𝑘𝑔𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛. Prediction residuals systematically above that thresh-
old constituted a model incapable for operational use. Each architecture, as
well as RF, were ran 5 times with different seeds to verify the robustness of
the results.
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4.3 Results

In Table 4.1, we see the error metrics for each architecture and location aggre-
gated over the runs. RF has the lowest error and highest explained variance
for both locations. AE has the largest error and lowest 𝑅2. DAE has the lowest
errors among the architectures with just a slight edge over MLP. Regarding
the standard deviations of the predictions, AE has the lowest deviation and
DAE the highest.

Table 4.1: Error metrics for each architecture and RF aggregated over the runs. 𝜎 refers to the standard
deviation of the predictions of the runs.

RF MLP AE DAE
MAE 𝑅2 𝜎 MAE 𝑅2 𝜎 MAE 𝑅2 𝜎 MAE 𝑅2 𝜎

Waiotu 1.55 0.68 3.53 1.85 0.62 3.63 2.26 0.45 3.34 1.72 0.65 3.62
Mahana 1.87 0.61 4.16 2.19 0.53 4.57 2.72 0.38 4.02 2.07 0.5 4.9

In Fig. 4.3, we can see how the residuals of the different architectures
compared to RF across months. The residuals were aggregated over years and
the five runs. For the first location, Waiotu, we observe that all candle bodies
are below the domain-derived threshold that we set, with some upper whiskers
overcoming the threshold. DAE seems to be the best performing architecture,
since it has the shortest body of the three and also lower medians. Also, DAE
appears to have slightly lower errors than RF in several cases. AE appears
to have the largest errors, with large candles and extended upper whiskers.
For Mahana, most candles are below our threshold but with larger bodies than
Waiotu and taller upper whiskers. For January and December AE is above
and close to the threshold respectively, generally having the highest errors.
MLP and DAE seem to outperform RF for January, February, and December.
Again, DAE has the best performance of the three architectures with candles
being lower than the rest and lower medians.
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Figure 4.3: Residuals for each architecture and RF aggregated over years and runs. The hori-
zontal dashed line indicates the domain-derived threshold. The body of the candles represents
50% of the values, and the bottom and top whiskers 25% each. The horizontal lines inside
the candles show the median.

4.4 Discussion

From a performance-oriented perspective, we could deduce that RF is the best
model by looking at the error metrics. However, we cannot judge how much
better it is from MLP and DAE or how well the different architectures learned
because their errors and standard deviations were similar. A more clear case
is that of AE, which underperforms the rest of the models considerably. The
standard deviation of its predictions might be the smallest but this may be
due to learning a small part of the lower dimensional manifold, created on the
output of the encoder, and thus not being able to offer varied predictions.

Examining the residuals of the architectures, we observe that they provide
predictions mostly within our domain-derived threshold. The multiple runs
and yearly aggregation demonstrate the stability2 of the models, showcasing
their robustness. This conveys that the models were able to extract latent rep-
resentations which allow them to be potentially used in an operational setting.
AE appeared to be the weakest model since its candles were generally larger,
exceeding our threshold in Mahana. The two stage training (first autoencoder,
then replacing then decoder with an MLP) may have caused it to weigh more
on learning how to reconstruct its inputs rather than how NRR is connected
with them. On the other hand, the MLP was able to extract more meaningful
representations for NRR predictions something evident from the fact that in

2Variation between the months exists due to seasonality. December to February is summer in New Zealand with
conditions that increase uncertainty for pasture growth and thus NRR errors.
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many months it was on par and sometimes better than RF. Similarly, DAE
performed equal or better than RF in most months for both locations. This
may imply that the latent space that MLP and DAE learned covered aspects
which were not represented in the manually derived expert features of RF.
Also, the performance gap between AE and DAE showed that optimizing si-
multaneously for two tasks when one task depends on the other can make the
network learn better representations in the context of this study.

An aspect potentially affecting the results of the architectures is how well
input features can be represented in the latent space learned by the models.
APSIM has a binary input variable to control the existence of irrigation which
materially changes NRR. This variable is the only signal outside of APSIM
that indicates this type of change. In our architectures there are several layers
and this signal may be difficult to be preserved and projected in the latent
space. On the contrary, for algorithms like RF this signal is not lost and can
easily change how predictions are made. This may be a reason for not having
higher performance with the different tested architectures and something to be
accounted for when learning latent representations from environmental data.

4.5 Conclusion and Future work

In this study, we assessed the ability of three neural network architectures to
learn the latent space of process-based model output for operational decision
support. We compared the results with those of RF which was already proved
operational in another study. The results were promising since all architec-
tures were able to learn representations that captured enough variation to be
considered operational. The MLP and DAE outperformed RF in certain cases,
showing that they can uncover latent factors from the input space which ac-
counted for more variability than manually selected features based on domain
knowledge. This is an important step towards providing operational decision
support in modern systems like digital twins, avoiding feature engineering in
certain cases and automating prediction pipelines.

In the future, we would like to experiment with more synthetic datasets
to examine if we can generalize our findings to other case studies. Also, we
would like to validate the models using observation data to further verify how
operational the created models are. Another important aspect would be to ex-
periment with architectures that provide explicit interpretability of the latent
space and examine how this space compares with expert-derived features.
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Abstract

In this work we compare the performance of a location-specific and a location-
agnostic machine learning metamodel for crop nitrogen response rate pre-
diction. We conduct a case study for grass-only pasture in several locations
in New Zealand. We generate a large dataset of APSIM simulation outputs
and train machine learning models based on that data. Initially, we examine
how the models perform at the location where the location-specific model was
trained. We then perform the Mann–Whitney U test to see if the difference in
the predictions of the two models (i.e. location-specific and location-agnostic)
is significant. We expand this procedure to other locations to investigate the
generalization capability of the models. We find that there is no statistically
significant difference in the predictions of the two models. This is both inter-
esting and useful because the location-agnostic model generalizes better than
the location-specific model which means that it can be applied to virgin sites
with similar confidence to experienced sites.
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5.1 Introduction

Environmental data are growing in an unprecedented way [154]. Many do-
mains of Environmental Research utilize those data and combine them with
Machine Learning (ML) techniques [155] to enable understanding. However,
there are domains like grassland-based primary production systems where
certain areas (e.g. pasture production, nitrogen leaching) have limited, low
quality data, making them poor candidates for ML applications. In such ar-
eas, dynamic models are deployed to seek causality and make predictions
based on first principles but sometimes they need data that is not available.

ML has been used in a complementary way with dynamic models to sum-
marize them and capture their embedded knowledge. The resulting ML mod-
els are also known as metamodels, surrogate models or emulators. The knowl-
edge summarization is achieved by training ML models using the output of
dynamic model simulations. Advantages of this technique include the reduc-
tion in need of observation data [156], the use of fewer inputs [113] and faster
computation times [157] for large scale systems than the dynamic models.
The paradigm of summarizing dynamic models is applied in several disci-
plines from physics [158] to hydrology [125].

Dynamic model summarization has also been studied in agriculture [159].
Several studies have examined the application of ML surrogate models for
sensitivity analysis [124], the performance of different ML algorithms for
crop model summarization [128] and the amount of data needed for accurate
predictions [128]. In these works, the authors trained ML models in gener-
ated datasets to examine how well the models can generalize, using either
one or all the available locations, and not testing in other locations. How-
ever, the generalization capability of a model over multiple locations does not
mean that it performs better than a model specifically trained for that location.
Since there are cases where the interest lies in absolute performance or gener-
alizability of the summarization model it would be compelling to investigate
how location-specific and location-agnostic models compare in those aspects.

The purpose of this work is to investigate the performance difference of
location-specific and location-agnostic ML metamodels using a case study
approach. To achieve this goal, we first generate a large dataset across sev-
eral locations using a crop simulation framework. Second, we aggregate the
generated data and train a ML model using all the available locations, and a
second ML model using only one location. Next, we test the ML models on
a dataset comprised of samples of the latter location. We compare the results
using statistical metrics, and examine if they are statistically different using
the Mann–Whitney U test [160] which has been used for comparing ML mod-
els in other works [161]. Finally, we investigate the trade-off between model
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performance and generalizability by testing the models in the rest of the loca-
tions of our dataset.

5.2 Materials and methods

5.2.1 Case study, data description

A case study was performed to predict the grass-only pasture NRR in differ-
ent locations in New Zealand. The application of nitrogen along with envi-
ronmental factors such as temperature and time of year greatly affects pasture
growth [129] so it is important to know the NRR. Our dataset consisted of
grass pasture growth simulations performed with the APSIM modeling and
simulation framework [24]. A hyperspace of parameters was created and put
to the simulator. The simulation parameters for APSIM included daily his-
torical weather data from eight locations in New Zealand and management
treatment options which can be seen in Table 5.1. The cross-product of those
parameters was used to create a hyperspace of input combinations for APSIM.
The total number of simulations was 1,658,880 which should have yielded
1,382,400 NRRs. However, the input combinations included application of
fertilizer at times when pasture growth was near zero because of dry soil con-
ditions or cold temperatures. These were excluded from the analysis as the
calculated N response rate was known to be unreliable. In total there were
1,036,800 response rates available for further analysis. Our target was to pre-
dict the 3-month NRR – the additional pasture dry matter grown in the three
months after fertilizer application over that from a non-fertilizer control di-
vided by the kg of nitrogen in the fertilizer applied. The outputs of APSIM
consisted of the NRR, biophysical variables related to fertilizer concentration
in grass and moisture in soil.

Table 5.1: The simulation parameters of APSIM. The cross-product of those parameters was
used to create a hyperspace of input combinations.

Simulation parameters

Location weather from eight sites spanning the country
Soil water 42 or 77 mm of plant-available water stored to 600 mm deep
Soil fertility carbon concentration in the top 75 mm of 2, 4, or 6%
Irrigation irrigated with a centre-pivot or dryland
Fertilizer year all years from 1979 to 2018
Fertilizer month all months of the year
Fertilizer day 5th, 15th and 25th of the month
Fertilizer rate 0 (control), 20, 40, 60, 80 and 100 kg N /ha

90



55555

5.2 Materials and methods

5.2.2 Data preprocessing

The generated data were preprocessed to formulate a regression problem where
the target variable was the NRR and the inputs were the weather, some treat-
ment options regarding the fertilizer and irrigation, and some biophysical vari-
ables. The generated data were aggregated from a daily to a simulation basis,
to imbue memory to the data. First, the data were split into training and test
sets to avoid information leakage during the latter stages of processing. The
split happened based on the year, taking one year to the test set every five
years and the rest to the training set. The resulting percentage of training and
test samples was 80/20%. Second, from the generated daily data only the
samples in a window of 28 days before fertilization were kept. This range
was selected because grass pasture is known to not be affected by past condi-
tions further than this window provided it is not under- or over-grazed. Also,
weather data after the first fertilization was not considered because prelimi-
nary work has shown that it is not needed to achieve meaningful results. Third,
only the variables related to the weather, simulation parameters, NRR and to
some of the biophysical variables were preserved which were considered to
be likely drivers, based on expert knowledge of the NRR. Fourth, the weather
and biophysical variables were aggregated using their weekly mean values.
Finally, the aforementioned steps were repeated once to form an aggregated
dataset containing all the locations, and once for each of the eight locations
contained in our dataset. The output of those steps was an aggregated dataset
(training set) for the location-specific model, an aggregated dataset (training
set) for the location-agnostic model, and an aggregated dataset (test set) for
each location.

5.2.3 Machine learning pipeline

The aggregated datasets were then passed to the ML stage. In this stage,
the training and test data were standardized using the same data transformer
to keep the same mean for both transformations. To clarify further, each
test set was using the scaler of the location-agnostic model and the location-
specific model so that each model can have a version of the test set accord-
ing to the mean of its training set. Categorical variables were converted to
ordinal by substituting them with numbers. Then, hyperparameter optimiza-
tion was performed to the Random Forest algorithm using gridsearch with
5-fold cross-validation. The gridsearch parameters were n_estimators {200,
300, 400, 500}, max_depth {3, 5, 7, 11}, min_samples_split {2, 3, 4, 8, 16},
min_samples_leaf {1, 2, 4, 8, 16} and max_features {0.33, sqrt, None}. The
out-of-bag score was used for the building of the Random Forest trees. No fea-
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ture selection was performed because the number of features was small (64)
compared to the size of the training datasets (1, 044, 060 and 130, 095 sam-
ples for the multiple and single locations correspondingly). After training, the
optimized models of the location-agnostic and location-specific models were
tested using the test set of location Waiotu where the location-specific model
was trained. The pipeline of the ML stage is shown in Fig. 5.1.

5.2.4 Evaluation

The performance of the location-specific and location-agnostic models was
first evaluated by comparing error metrics (MAE, RMSE, 𝑅2) of their re-
sults on the test set. Then, the Mann–Whitney U test was performed on the
models’ results on the test set to see if the differences were significant. The
Mann–Whitney U test examines if the distributions of the populations of two
groups are equal and it was preferred among other statistical tests because
first it is non-parametric, second it assumes that the pairs in the samples do not
come from the same populations and third that the observations are ordinal, all
of which fit our problem. Consequently, error metrics and the Mann–Whitney
U test were calculated for the rest of the locations to test the models’ general-
izability.

5.2.5 Implementation

The data preprocessing stage was developed utilizing the Apache Spark frame-
work. The ML models were developed using the scikit-learn library in Python.
The experiments took place in a Databricks node consisting of 96 cores and
384GB of RAM to speed up procedures through parallelization.
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Figure 5.1: The pipeline for the training and testing of the models on the location where
the location-specific model was trained. At the end there is also the evaluation stage. The
process starts by taking the training and test datasets from the preprocessing stage. It has to
be explicitly noted that hyperparameter tuning was performed only on the training set. More
specifically the test set was the same for both models but it was standardized for each model
individually to preserve the same mean which was used for each training set.

5.3 Results

The hyperparameter tuning procedure selected the following parameters for
both models: n_estimators 400, max_depth 11, min_samples_split 2, min_samples_leaf
1, max_features 0.33. The results of the ML models on the training and test
sets are shown in Figure 5.2, along with the distributions of the simulation and
the model predictions. We observe that the angle between the identity and re-
gression lines on the test set is smaller for the location-specific model which
means that it fits better the location-specific test data. The data points on the
test set of the location-agnostic model are more dispersed. Also, we notice
that the distributions of the location-specific and location-agnostic model pre-
dictions on the test set appear to be similar. The mean and variance of the
distributions appear to be close as it can be seen in Table 5.2.

Regarding the error metrics, in Table 5.3 we observe the MAE, RMSE and
coefficient of determination (𝑅2) for both models on the test set of each loca-
tion. For the location where the location-specific model was trained (Waiotu),
we observe that the location-specific model performs better than the location-
agnostic model. For the rest of the locations, the location-agnostic model
outperforms the location-specific one.

In Table 5.3 we also observe the results of the Mann–Whitney U test for
each location. For the location where the location-specific model was trained
(Waiotu) we see that there is no statistically significant difference between the
models. The same applies to the location Ruakura.
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Figure 5.2: The results of the location-specific model (top row) and location-agnostic
model (bottom row) for the training (left) and test (right) sets. The test set is common
for both models and contains data from the location where the location-specific model was
trained (Waiotu). On the vertical axes are the predictions of the model and on the horizontal
axes the simulated values. On top and right of the plots are the distributions of the simulated
and predicted values correspondingly. The black lines are the identity lines. The red lines are
the regression of Prediction on Ground truth. Darker spots indicate that more predictions fall
on the same area.

Table 5.2: The distribution characteristics of the two models for the test set predictions on the
location where the location-specific model was trained.

Location-specific Location-agnostic

Mean 18.47 18.44
Variance 44.73 40.99
Skewness 0.11 0.18
Kurtosis -0.90 -0.82
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Table 5.3: The error metrics of the location-specific and site agnostic models on the different locations. On
the first row are the locations existing in our dataset. Waiotu is the location where the site specific model
was trained. On the second row are the MAE, RMSE and 𝑅2, for each model and location. The blue and
red colors indicate the models with the highest and lowest performance correspondingly, for each location
and error metric. On the third row, statistically significant difference on Mann–Whitney U test between the
predictions of the two models is denoted with as asterisk.

Waiotu Ruakura Wairoa Marton Mahana Kokatahi Lincoln Wyndham

Location-specific MAE 2.37 2.72 2.92 3.27 3.44 4.36 4.96 5.62
RMSE 3.19 3.62 4.03 4.41 4.2 5.81 6.63 7.29
𝑅2 0.85 0.78 0.68 0.66 0.66 0.5 0.41 0.38

Location-agnostic MAE 2.71 2.13 2.71 2.06 2.29 2.56 2.88 2.31
RMSE 3.55 2.95 3.91 2.83 3.04 3.33 4.08 3.06
𝑅2 0.81 0.85 0.7 0.86 0.82 0.83 0.78 0.89

Mann–Whitney U test * * * * * *

5.4 Discussion

The results showed slightly better error metrics for the location-specific model
over the location-agnostic model for Waiotu. The reason may be that the
location-specific model learns the local conditions better since they are only
from this location and fewer than those included in the training of the site-
agnostic model. For the rest of the locations, the location-agnostic model
performs better because it was trained with more data, which also included
these locations and as a result, it can generalize better. An interesting finding
is that the errors of the location-specific model increase as we move further
away from Waiotu, as shown in Fig. 5.3. The locations can be seen in Fig. 5.4.
This finding indicates that the further away a prediction is made from the
training location, the higher the error will be for a location-specific model.
On the other hand, the location-agnostic model is not affected since it was
trained in a larger dataset which included data from those locations.

Another finding was that there was no statistical difference between the
predictions of the two models for Waiotu. The location-specific model may
perform better but it seems that the gain is marginal and is lost when moving
to other locations. The second location with no statistical difference between
the models’ predictions is Ruakura. We assume that this happens because
Ruakura and Waiotu are close to each other and as a result, environmental
factors do not vary substantially between those locations.

We deduct that there seems to be a trade-off between accuracy and gen-
eralization performance. The location-specific model is trained on a smaller
dataset and overfits the data. As a result it performs better for Waiotu but the
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Figure 5.3: MAE of the location-specific and agnostic models for all the locations in our
dataset. On the vertical axis is the error and on the horizontal the locations. The orange and
blue colors indicate the results of the location-specific and agnostic models respectively.

Figure 5.4: The locations in New Zealand which were included in our dataset. On the top
right is Waiotu which was used to train the location-specific model. Right next to Waiotu is
Ruakura. The rest of the locations are further away.
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5.5 Limitations

location-agnostic model generalizes better. In our opinion, the decision for
which model to deploy depends on the use. We emphasize though that the
performance difference in this case study is not dramatic for Waiotu. On the
other hand, the generalization performance is evident especially as we move
further away from the location where the location-specific model was trained.

5.5 Limitations

A limitation of our study regarding the performance comparison of the ML
models is that the location-agnostic model was trained using data from all the
locations. As a result we did not test how the models would perform in a
location that would be new to both of them.

Another limitation is that the performance of both models was affected
by the way we partitioned years into the training/test split. That is due to
seasonality in the generated data, which was not taken into account when
performing the split.

5.6 Conclusion & future work

In this work, we examined the performance difference between a location-
specific and a location-agnostic metamodel using error metrics and the Mann–Whitney
U test. We tested the models in different locations including the location
where the location-specific model was trained. We found that the location-
specific model performs better for the location where it was trained, although
not in a statistically significant way. Also, the error metrics in other locations
showed that the location-agnostic model generalizes better.

Future work could include the setup of the methodology in a way to test
location-specific models for all the available locations to examine if the re-
sults will be the same. Also, a location could be left out of both training sets
to allow testing in a new location for both models. Besides, different machine
learning algorithms could be deployed and tuned even further. The perfor-
mance of the models could also be improved by adding complex features and
features based on agronomic knowledge.
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Abstract

Domain adaptation is important for agricultural applications because the un-
derlying systems have their own individual characteristics. Applying the same
treatment practices (e.g. fertilization) to different systems may not have the
desired effect due to those characteristics. Domain adaptation is also an inher-
ent aspect of digital twins. In this work, we examine the potential of transfer
learning to be used for domain adaptation in pasture digital twins. We use
a synthetic dataset of grass pasture simulations to pretrain and fine-tune ma-
chine learning metamodels for nitrogen response rate prediction. We investi-
gate the outcome in locations with diverse climates, and examine the effect on
the results of including more weather data and more agricultural management
practices during the pretraining phase. We find that transfer learning seems
promising to make the models adapt to new conditions. Moreover, our ex-
periments show that adding more weather data on the pretraining phase has
a small effect on fined-tuned model performance compared to adding more
management practices but more work is needed to further study this behav-
ior.
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6.1 Introduction

DSS are widely used in agriculture to convert data to practical knowledge
[1, 162]. A paradigm of DSS that has recently found its way to agriculture is
that of digital twins [104]. Digital twins are expected to merge the physical
and virtual worlds by providing a holistic view of physical systems, through
data integration, adaptation to local conditions, and continuous monitoring.
They have started gaining traction with data architectures and applications for
greenhouses [163, 164], conceptual frameworks for designing and developing
them [16], and case studies in aquaponics [14].

A factor differentiating digital twins from existing systems is their ability
to adapt to local conditions [165]. Following the digital twin paradigm, in
contrast to generic models which apply global rules across all systems, we
can create a blueprint that contains a high-level view of how a system works,
and then instantiate it to systems with diverse conditions and let it adjust to
them. In agriculture, adaptation to local conditions (or domain adaptation) is
important because systems are affected by multiple local factors, and charac-
terized by high uncertainty, due to nature’s variability. Decisions have to ac-
count for the variability in weather conditions, types of soil, and agricultural
management (i.e. fertilization, irrigation, crop protection actions). Examples
of failing to adapt include wrong estimations of yield [166], failure to detect
plant drought stress [167], and expensive equipment that does not work the
way it is supposed to be [168].

A challenge to applying domain adaptation techniques in agricultural dig-
ital twins lies in data-related issues. These issues occur because the process-
based and ML comprising the digital twins have difficulties operating with
missing data, or data do not conform with their input requirements. ML mod-
els usually require large amounts of data to be trained, along with labels that
are not readily available in agriculture. Also, it is beneficial for them to have
data that cover large variability of the original domain but usually the major-
ity of the agricultural field observations are concentrated in a few locations
with similar weather and the same agricultural practices. On the other hand,
process-based models require their inputs to be complete. This can be a prob-
lem when those inputs are from future states of variables (e.g. weather, bio-
physical factors) and requires bringing in additional tools to estimate them.

A workaround to data-related challenges is to use surrogate models, of-
ten also called metamodels. Metamodels mimic the behavior of other (typi-
cally more complex) models [120]. ML metamodels combine the advantages
of ML models (learning patterns from data, operating with noisy data) and
process-based models (operating based on first principles). A way to develop
ML metamodels is to apply ML algorithms to the output of process-based
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model simulations. In this way, the ML algorithms can use a large corpus
of synthetic data, and more importantly extract the embedded domain knowl-
edge contained in them. This technique has been proven to work well for
instilling domain knowledge of water lake temperature to models [121], and
working with data of different resolutions and absence of future weather val-
ues in NRR prediction [150]. However, the effectiveness of metamodels has
not been investigated in conjunction with domain adaptation techniques in the
context of agricultural digital twins.

Domain adaptation can be achieved with techniques like data assimilation
and transfer learning. Data assimilation refers to the practice of calibrating a
numerical model based on observations. This technique has been applied for
grassland management digital twins [169], and digital twins for adaption to
climate change [109]. Transfer learning refers to the utilization of knowledge
obtained by training for a task, to solve a different but similar task. To the
best of our knowledge, domain adaptation through transfer learning has not
been thoroughly discussed in the context of digital twins for agriculture. An
application we found was for plant disease identification, where the authors
used a pretrained version of ImageNet and then continued training on a dataset
containing images of diseased plants [170]. However, in other sectors we find
that transfer learning has been considered in several cases for digital twins
[171–173]. Consequently, the applicability of transfer learning as a domain
adaptation practice has not been extensively examined for agricultural digital
twins.

In this work, we explore the potential of transfer learning to be used for
domain adaptation in digital twins. To this end, we use a case study of digital
twins predicting pasture NRR1 at farm level. We use a synthetic dataset of
grass pasture simulations and develop ML metamodels with transfer learning
to investigate their adaption to new conditions. Our main question is:

• Q: How well can we transfer field-level knowledge from one location to
another using transfer learning?

To answer this question, we examine it from different angles and form the
following sub-questions:

• q1: How domain adaptation with transfer learning is affected by includ-
ing more variability in agricultural management practices?

• q2: How domain adaptation with transfer learning is affected by includ-
ing more variability in weather data?

• q3: How well does domain adaptation with transfer learning perform
when applied to locations with different climate from the original one?

1additional kg/ha of dry matter harvested per kg of nitrogen fertilizer applied
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6.2 Methodology

6.2.1 Overview

To assess how well we can transfer field-level knowledge from one farm to
another we performed a case study of grass pasture NRR prediction in dif-
ferent locations across New Zealand. We have a dataset of pasture growth
simulations based on historical weather data from sites with different climates
(Fig. 6.1), soil types, and fertilization treatments. Based on these data we pre-
trained ML metamodels in an origin location and fine-tune them in a target
location to predict NRR and see how tuning affects model performance in
both pretraining and fine-tuning test sets.

To obtain more dependable results, we pretrained in an origin climate and
fine-tuned in two target climates that differ from each other. Also, we exper-
imented with the amount of weather data included in the models as well as
the number of soil types and fertilization levels. We created different setups
and examined their results across several years, and for multiple runs using
different seeds.

Figure 6.1: The sites contained in our dataset. With the brown color is the site in the origin
climate (Marton, climate 1), and with the blue the sites in the target climates, (Kokatahi and
Lincoln, climate 2 and 3 respectively)

6.2.2 Data generation

The simulations comprising our dataset were generated with APSIM [24] us-
ing the AgPasture module [138]. This module has been proven to be an accu-
rate estimator of pasture growth in New Zealand [139, 140]. The simulation
parameters covered conditions that are known to affect pasture growth. The
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full factorial [119] of those parameters was created and given as input to AP-
SIM. The range of the parameters can be seen in Table 6.1.

Table 6.1: The full factorial of the presented parameters was used to generate simulations
with APSIM.

Parameter Range

Weather daily weather from 8 sites
Soil water capacity 42, 67, 110 and 177 mm of plant-available water
Soil fertility 2, 4, and 6% of carbon concentration
Irrigation irrigated, non-irrigated
Fertilization year 1979-2018
Fertilization month January-December
Fertilization day 5𝑡ℎ, 15𝑡ℎ and 25𝑡ℎ of the month
Fertilizer amount 0, 20, 40, 60, 80 and 100 kg N / ha

6.2.3 Case study

In our experiments, we considered only the simulations where no irrigation
was applied because this scenario is closer to the actual pasture growing con-
ditions in New Zealand. Additionally, we only considered the autumn (March,
April, May) and spring (September, October, November) months because
these are the months in which agricultural practitioners are most interested
in deciding how much fertilizer to apply.

To derive the NRR from the growth simulations, we calculated the addi-
tional amount of pasture dry matter harvested in the two months after fertilizer
application per kg of nitrogen fertilizer applied.

Regarding the prediction scenario, we assumed to have weather and bio-
physical data only four weeks prior to the prediction date since pasture is
supposed to not have memory beyond that point. Also, from the prediction
date until the harvest date (two months later) we assumed that no data were
available.

6.2.4 Experimental setup

Throughout the setup we create two types of models. The first type is trained
on the data of the original location, and we call it ’origin model’. The second
type is fine-tuned with the data of the target location, by using the origin
model as a basis, and we call it ’target model’. We train different models using
various setups which help us answer the sub-questions q1-q3. To answer
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q1, we considered two setups where variability comes from the number of
agricultural management conditions included in the pretraining datasets:

• 1 type of soil and 2 types of fertilization treatments

• 3 types of soil and 5 types of fertilization treatments

To answer q2, we considered two setups where the digital twin blueprint con-
tains training data from:

• 10 years of historical weather

• 20 years of historical weather

Consequently, for q1 and q2 there are four setups namely:

• Low weather and agromanagement variabilities (s1)

• High weather variability, low agromanagement variability (s2)

• Low weather variability, high agromanagement variability (s3)

• High weather and agromanagement variabilities (s4)

containing varying amounts of training data based on soil type, fertilization
treatment, and the number of historical weather years. The details for each
setup can be seen in Table C.10. To answer q3, we considered three locations
from our dataset with diverse climates. The origin location (location 1) where
pretraining takes place, and two target locations. The target locations were
selected based on the climate similarity index CCAFS [174], to be dissimi-
lar with the origin location to varying degrees (see Fig. C.8). Also, weather
factors that are known to affect pasture growth were considered, namely pre-
cipitation and temperature. Location 2 is characterized by more frequent rain-
fall and lower temperatures than the origin location 1, and location 3 by less
frequent rainfall and a wider range of temperatures than location 1. The re-
spective plots can be seen in Fig. C.9.

Finally, we took measures to make the results more dependable. To alle-
viate the effect of imbalanced sets due to anomalous weather, we examined
how transfer learning works across several years by sliding the correspond-
ing training/validation/test sets across five years. Also, to see how robust were
the models we trained each one of them five times with different seeds in each
setup and sliding year.
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6.2.5 Data processing

The APSIM synthetic dataset was further processed to form a regression prob-
lem whose inputs were weather and biophysical variables as well as manage-
ment practices. Initially, the NRR was calculated at two months after fertiliza-
tion. Then, data was filtered to contain only simulations for the non-irrigated
case. After that, only daily weather data in a window of four weeks prior to the
prediction date were retained. Weather data between the prediction and target
dates were also discarded because such data would be unavailable under oper-
ational conditions. Next, simulations with NRR less than 2 were removed as
they were attributed to rare extreme weather phenomena which were not rel-
evant to model for this study. From the remaining data only the daily weather
variables regarding precipitation, solar radiation, minimum and maximum
temperature were preserved. From the biophysical outputs of APSIM only
above ground pasture mass, herbage nitrogen concentration in dry matter, net
increase in herbage above-ground dry matter, potential growth if there was no
water and no nitrogen limitation soil, and temperature at 50cm were preserved
because they were considered likely drivers of yield (and known prior to the
prediction date) based on expert knowledge. Additionally, from the simula-
tion parameters only soil fertility, soil water capacity, fertilizer amount and
fertilization month were retained to be put to the models as inputs. The data
were then split into training/validation/test sets according to the experimental
setup. Z-score normalization followed, with each test set being standardized
with the scaler of the corresponding training set. The fertilization month col-
umn was transformed into a sine/cosine representation.

6.2.6 Neural network architecture

The selected architecture was a dual-head autoencoder which proved to be
accurate for NRR prediction tasks in another study [150]. The architecture
consisted of an autoencoder with LSTM layers whose purpose is to learn to
condense the input weather and biophysical time series, and a regression head
with linear layers whose task is to predict the NRR (Fig. 6.2). The combined
loss is derived by summing the reconstruction loss and the NRR prediction
loss.

The hyperparameters of the origin model were selected based on a pre-
liminary study and were the same across all setups and years. For the target
model, hyperparameter tuning was performed with gridsearch for each setup,
year, and seed. The hyperparameters of the origin models and the search
space for the target models can be seen in Table C.6 and C.7.

For the part of tuning the network in different climates, no layer was
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Figure 6.2: The autoencoder architecture used to pretrain and fine-tune the models. The
numbers on the top and bottom of the architecture indicate the number of features in the
input/output of each component. The inputs to the encoder were nine time-series variables.
The compressed representation of those time-series (output of LSTM 2) along with five scalars
were concatenated and directed to a multi-layer perceptron

frozen.

6.2.7 Evaluation

Pretrained and target models were evaluated on the test set of the origin loca-
tion as well as the target location. This was done to examine how well they
absorbed new information and fast they were forgetting old information. The
difference in performance between the origin and target models was measured
with 𝑅2. 𝑅2 was reported as an average across the five seeds, for each setup,
and each year. Also, the standard deviations of 𝑅2 between the seeds were
examined to see how stable the performance is across the runs.

6.3 Results

For both target locations we observe that fine-tuning increased the average
𝑅2 across the runs on the target location test set for most setups. For s1,
s2 this behavior was consistent in both location 2 (Fig. 6.3) and location 3
(Fig. 6.4). For s3, tuning offered marginal improvements in both locations. In
the case of s4, the results varied between the locations, as in location 2 there
was no improvement and even degradation in years 2004-2005 (Fig. 6.3d),
and in location 3 minor improvements (Fig. 6.4d). The standard deviations of
the target models on the target location test sets were within the [0.01, 0.08]
range (Fig C.11, C.12).
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(a) Setup s1: Low weather and agromanage-
ment variabilities

(b) Setup s2: High weather variability, low
agromanagement variability

(c) Setup s3: Low weather variability, high
agromanagement variability

(d) Setup s4: High weather and agromanage-
ment variabilities

Figure 6.3: 𝑅2 for the setups of the origin models (climate 1), and target models in climate 2.
The results are presented as averages across the 5 seeds for each setup and year. On Fig. 6.3a
the brown and blue colors indicate which training, validation and test set correspond to each
experiment due to the sliding years. Same colors represent sets of the same experiment.
For example, with the brown color the training set of the origin model included years 1992-
2001, validation set 2002-2003, and both test sets years 2004-2005. On the experiment with
the blue color the training set included years 1993-2002, validation 2003-2004, and both
test sets 2005-2006. The leftmost cell of the results is colored (green, yellow, pink) as the
corresponding set is colored, and has a width equal to the amount of training years included
in it. For the other 4 sliding years, only the last year of each set is shown with grey color

Tuning also increased the average 𝑅2 on the origin location test set for s1
(Figs. 6.3a, 6.3b) and s2 (Figs. 6.4a, 6.4b). However, on s3 and s4 the perfor-
mance remained stable or deteriorated depending on the year. The standard
deviations of the target models on the origin location test sets were within the
[0.01, 0.3] range. The standard deviation of the target models on the pretrain-
ing test sets for s1 and s2 were within the range [0.03, 0.32], and for s3 and
s4 [0.02, 0.19].

Another observation is that the 𝑅2 of the origin model on s1 was negative
in both locations for all years (Figs. 6.3a, 6.4a). The corresponding standard
deviations were also high as shown in Figs. C.11a, C.12a.

A remark is also the high volatility of 𝑅2 depending on the year, of both
origin and target models in the origin and target locations test sets. Perfor-
mance becomes more stable as more weather and agromanagement variabil-
ity are added (e.g. s1 to s2, s1 to s3) but there were years like 2004-2005
in location 2, 2008-2009 on location 3 where 𝑅2 dropped substantially. The
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standard deviations (Figs. C.11, C.12) also became lower across the years as
more agromanagement variability was added.

(a) Setup s1: Low weather and agromanage-
ment variabilities

(b) Setup s2: High weather variability, low
agromanagement variability

(c) Setup s3: Low weather variability, high
agromanagement variability

(d) Setup s4: High weather and agromanage-
ment variabilities

Figure 6.4: Average 𝑅2 for the various setups of the origin models (climate 1), and target
models in climate 3. The figures should be read following the pattern of Fig. 6.3a

One more finding is that adding more weather variability while keeping
the agromanagement practices unchanged had a negligible (positive) effect
on the performance of the target models. This pattern can be observed for
both locations when transitioning from s1 to s2 (e.g Fig. 6.3a to 6.3b), and
from s3 to s4 throughout the years (e.g Fig. 6.3c to 6.3d). Also, in those
scenarios, the standard deviations of the target models on the pretraining test
sets did not decrease when extra weather variability was added. On the other
hand, increasing the management practices while keeping the same weather
variability seemed to increase the 𝑅2 of both models in both test sets. This
can be seen when transitioning from s1 to s3 (e.g Fig. 6.4a to 6.4c), and from
s2 to s4 (e.g Fig. 6.4b to 6.4d).

6.4 Discussion

Starting with some general remarks about model performance, for transfer
learning tasks there is usually a model that works well which then undergoes
further training. Here, the first impression is that the performance of the origin
model on s1 and s2 is inadequate. This is potentially due to the selected
architecture and the way training was performed. In those setups the samples
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were too few (see Fig. C.10), and the architecture had a lot of weights. As a
result, the network may not have been able to extract meaningful features in
those cases. Also, the performance increase on the pretraining test set after
tuning may indicate that extra information is included in the tuning training
data, but it could also mean that the worse performance was due to training
for too few epochs.

Another remark is that the target models achieve considerably higher 𝑅2 on
location 2 than on location 3. This behavior could be attributed to the weather
conditions of each location. Location 2 is characterized by more precipitation,
reducing in this way the uncertainty of having less water during the period of
sixty days that for which we assume that no weather data are available from
the prediction to the target date. As a result, the NRR values concentrate on a
narrower range, and models have an easier task explaining variance.

Regarding fine-tuning, it seems to make the models able to generalize bet-
ter in the target locations than the models which have not seen this extra infor-
mation before. Especially for setups s1 and s2, the results indicate that trans-
fer learning adds value when the available soil, and fertilization management
data are limited in quantity. This statement is supported by the consistency of
the results which come from several years, and two diverse locations, suggest-
ing that this behavior is not year or location dependent. For the same setups,
the decrease in the standard deviation after fine-tuning strengthens the claim
that the improved performance is not a coincidence.

On the contrary, when there is sufficient variability in the soil and fertil-
ization management practices, the role of fine-tuning becomes ambiguous. It
may seem that transfer learning increases the generalization capacity of the
models for most of s3 and s4 cases, even though improvements are marginal.
However, these improvements are so small that they get counteracted by the
standard deviation of the successive runs. Also, depending on the year (e.g.
2004-2005 for location 2) fine-tuning may be harmful as it decreases 𝑅2 fur-
ther than the standard deviation of the five runs. Performing more runs with
different seeds or testing in different years could potentially yield different
results than those observed. Consequently, we cannot assess the merits of
fine-tuning in those cases.

Moving on to the effect of adding more weather variability in the origin
models, we saw that the differences in performance were small. This pattern
was observed for both target locations, and the reasons behind its appearance
may vary. We could presume that adding weather variability does not help
the models enough to extract information relevant to NRR prediction. This
could be the case if in those extra years the weather was very different from
the weather of the target locations. Another case would be that since we have
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a gap of sixty days between the prediction and target dates, and assuming the
absence of extreme phenomena, the weather is more loosely connected to the
NRR prediction than other factors like soil type and fertilization practices.

A more apparent reason for the effect of adding more weather variability is
that we potentially observe the effect of increasingly higher sample sizes. In
Fig. C.10 we see the number of samples in each setup. Adding more weather
data (s1 to s2, or s3 to s4) doubles the samples included in the pretraining
data. However, with the current experimental setup, adding soil types and
fertilization treatments (s1 to s3, or s2 to s4) increases the number of samples
by a much higher degree. Therefore adding more weather variability to the
pretraining sets has little (but positive) effect on the model test sets, which
seems small compared to adding more soil types and fertilization treatments
because with the latter we have many more samples. The increase of 𝑅2 of
the target models on the pretraining test sets seems to support this argument.
Adding more weather data to a model from a target location could help explain
the variability in that location. However, here we see that it also helps to
explain variance in the original location, prompting that this increase is not
due to the so different conditions supposedly existing on the new data but just
an increased sample size. For this reason, this phenomenon is more evidently
expressed at s1 and s2 where sample sizes are lower.

6.5 Limitations

There are cases where it is unclear if the improvement in 𝑅2 on the tuning
location test set comes from adding samples with information about local
conditions or from just the continuation of training with extra samples. To
be able to better deduct those cases the set sizes should be equal between the
different setups s1-s4. The challenge there would be to create representative
sets for all setups, sliding years, and target locations.

Another limitation is that we used the same neural network architecture for
all the setups. This architecture has many weights that need to be calibrated
and in setups with fewer samples it may not be appropriate to use. A simpler
architecture might have given different results.

With the provided experimental setup we created two types of models, the
’pretrained’ (origin) and ’fine-tuned’ (target). The origin models contained
an increasing number of samples from the origin location based on the setup,
and the fine-tuned a fixed number of samples from the target location. How-
ever, we did not include in the study the results of models trained only on the
data from the target location. Preliminary tests with the chosen architecture
showed that such models had negative 𝑅2 in all setups and high standard de-
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viations, so they were omitted. A more thorough investigation would include
such models with simpler architectures, or different algorithms with features
aggregated on a weekly/biweekly basis to decrease the number of parameters
that have to be calibrated.

In regards to the data splits, in a more practical application the test set
years would be closer to the training set years. With the current setup the
training and test sets are 2 or 3 years apart. With such gaps the weather may
change substantially leading to non-representative sets. An alternative setup
would be to have these years closer and maybe remove the validation set and
perform a k-fold cross validation for hyperparameter tuning instead.

6.6 Conclusion

In this work, we examined the application of transfer learning as a way to
make field-level pasture digital twins adapt to local conditions. We employed
a case study of pasture NRR prediction, and investigated factors that affect the
efficiency of the adaptation procedure. Different setups had varying outcomes
but generally transfer learning seems to provide a promising way for digital
twins to learn the idiosyncrasies of different locations.

Revisiting q1, based on our experiments variability in soil type and fertil-
ization treatment seemed to help the models explain a large fraction of vari-
ance in the target locations. Therefore, for field-deployed applications prac-
titioners could try to gather as much data as possible with this kind of vari-
ability or generate them. On the other hand, for q2 we found that the addition
of extra weather variability had a small impact on model performance. Thus,
adding more variability in soil and agricultural management practices should
be of higher priority. In both cases, more work is needed to verify the degree
to which large sample sizes start to affect the results. Regarding q3, transfer
learning appears to work for diverse climates with performance differences
depending on the prevailing local conditions. Again, more work is needed to
test its efficiency in climates that are even more diverse and characterized by
more extreme phenomena.

Finally, to answer our main question, the above are evidence that we can
transfer field-level knowledge to a degree that models can explain an adequate
portion of variance in the target locations. In this respect, transfer learning has
the potential for making digital twins adapt to different conditions by work-
ing in different climates, and with different types of variability. Practitioners
could create blueprints of digital twins with origin models and then adapt to
different locations by instantiating them there preferably with samples that
contain varied soil types and fertilization treatments.
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Synthesis

This chapter is separated into three parts. The first part (Section 7.1) contains
the findings of this thesis based on the five previous chapters. The second
(Section 7.2), contains reflections on the findings, and expands on the ex-
periences acquired regarding the interplay of data, experimental design, and
collaboration. The third (Sections 7.3,7.4), discusses the impact of this work
and possible future directions.

7.1 Research findings

The purpose of this thesis was to examine ways to operationalize digital twins
in two respects. First, by enabling decision support in cases where the avail-
able data are not sufficient in volume. Second, by making them transferable
to different conditions. Table 7.1 summarizes the findings of our investiga-
tion.

Table 7.1: Contribution of papers to objectives. Cells with ’auxiliary’ indicate work which helped us to better
identify the objectives.

Objective
Chapter Enabling

decision
support

Transferability Contribution to objectives

2 (auxiliary) (auxiliary) Literature review to identify the adoption rate, benefits, and
prospects of digital twins in agriculture

3 x A metamodeling framework to enable decision support by
overcoming data issues

4 x Examination of the framework generality in terms of ML
algorithms

5 x Investigation of transferability with rich data or no data from
the target conditions

6 x Exploring transferability with a few data from the target
conditions, through domain adaptation with transfer learning

Chapter 2

In this chapter, we examined the adoption of digital twins in agriculture by
searching for reported applications in the literature and comparing those with
other disciplines. We found that most agricultural digital twin applications
had low technology readiness levels and did not provide advanced services
reported in other disciplines. Reported reasons for this delay were the diffi-
culty of synchronizing living systems with their virtual counterparts, issues
with data accessibility, maintenance, and standardization, difficulties in trust-
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ing complex technological systems, and lack of investment. Also, we pro-
posed a roadmap describing how digital twins could be further developed in
agriculture based on recent developments in other disciplines. The literature
review aided us in understanding a practical dimension of digital twin adop-
tion, pointing us to the direction of operationalization. The review also made
evident that digital twins are not yet widespread for decision support due to
data related issues, and because they cannot perform operations that make
digital twins special like adaptation to local conditions.

Chapter 3

In this work, we proposed a methodology based on ML metamodels to enable
decision support for digital twins in the following cases:

• There are not enough observations available to train ML models

• We have data from the domain where we want to deploy a digital twin,
but they are in a different temporal resolution from what process-based
models expect (e.g. we might have weekly soil moisture data but our
model requires data on a daily resolution)

• Process-based or ML models require data that are not available yet (e.g.
future weather)

We tested the methodology using a case study of pasture NRR prediction in
New Zealand. Several metamodels containing different amounts of data were
created and tested in scenarios where data samples from new locations were
either available or not available. The metamodels were evaluated using a
domain-specific error threshold, and in most cases, they were able to provide
accurate predictions. Embedding such models to digital twins would allow
them to make predictions in data limited settings and be operational in cases
where other existing tools fall short.

Chapter 4

The methodology of chapter 3 was further evaluated with various neural net-
work architectures to examine whether it is algorithm independent. The ar-
chitectures were a multilayer perceptron, and two types of autoencoders. The
first autoencoder reconstructed weather variables and after training the de-
coder was replaced with a multilayer perceptron performing our prediction
task. The second autoencoder optimized simultaneously for weather recon-
struction and NRR prediction. The results showed that the metamodeling
methodology is independent to the types of architectures we tested. This find-
ing is important for enabling decision support in digital twins because their
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embedded models’ algorithms are selected based on the available data (e.g.
data modality, number of samples), and the type of application (e.g. transfer
learning, explainability).

Chapter 5

In this study, we compared the performance of a metamodel developed with
training data in New Zealand from only one location (‘location-specific’ meta-
model), with a model trained with data from all the available locations in our
dataset (‘generic’ metamodel). We tested the models iteratively in each loca-
tion of our dataset and evaluated their accuracy1 with common error metrics.
Also, we compared if the differences in the distributions of their predictions
were statistically significant with a statistical test. The results verified that
if we do not have data from the location where we want to bring our digital
twin, the larger amount of synthetic data with more variability we generate
the better. Based on this finding, in case we do not have data from a target
location, we can attempt to make our digital twins transferable there by devel-
oping ML metamodels on historical data from surrounding or other locations.
In this way, we may enable decision support for that location in contrast to
other models or tools which are not calibrated for that domain.

Chapter 6

The purpose of this chapter was to examine the potential of transfer learning
for domain adaptation in pastoral digital twins. We chose a location in our
dataset and created training datasets with different combinations of weather
years, types of soil, and agro-management practices. We then used these
datasets to train metamodels (‘origin’ models). Next, we took the metamodels
and transferred them to locations with different climate conditions based on a
climate similarity index. Training continued in those new locations, and the
resulting metamodels (‘target’ models) were compared with the origin models
in the target locations. Domain adaptation with transfer learning appeared to
have potential for operating digital twins in diverse domains but there is more
work to be done in order to pinpoint the factors that affect it. This finding
provided evidence that ML metamodels are promising for domain adaptation
in digital twins. As a result, the benefits of the metamodeling approach re-
ported in the previous chapters are also applicable here. More importantly,
this study showcased that decision support can be enabled in diverse domains
by transferring digital twins through domain adaptation.

1Degree of closeness of measurements of a quantity to that quantity’s actual value. Not classification accuracy.
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7.2.1 Metamodeling as a versatile way to enable decision support

The proposed methodology of chapter 3 is based on the generation of simu-
lations from which we can extract the embedded domain knowledge and re-
model it with ML algorithms to fit our task. A few years of historical weather
data accompanied by a set of agro-management practices (fertilization or irri-
gation events) were enough to create a space of inputs based on which a large
synthetic dataset was created to satisfy the needs of ML models for sample
representativeness, data quantity and variability. This comes as a stark con-
trast to observation agricultural datasets, which lack representativeness due to
practitioners employing the same agro-management practices based on rules
of thumb in all their fields. With such non-contrastive data, it is difficult to
create digital twins that learn and adapt to individual conditions. Another,
implicit, benefit of operating with simulated data generated by a well-tested
and broadly accepted process-based model is that we can focus on extracting
the domain knowledge embedded in the data rather than be concerned about
the effect of noise in them.

Employing synthetic data to enable decision support is an active field of
research [175], as it can benefit disciplines where data are hard to acquire.
Applications based on this principle are found in other disciplines, such as
recognizing human actions based on generated data from 3D models [176],
creating autonomous driving systems trained on simulated traffic conditions
[177], and detecting fraud in networks with models trained on synthetic logs
[178]. These examples exhibit the versatility of this approach and motivate
its broader use. Agriculture and environmental sciences are characterized by
poor data management practices, and they could find relief by adopting this
paradigm for developing models using simulators and deep generative models
(e.g. VAEs, GANs).

Regarding the generality of this approach to making predictions in agri-
culture, another line of research was conducted to predict potato tuber weight
with generated data from the TIPSTAR crop growth model. This is still a
work in progress but the impression we have from a preliminary examination
with a small sized generated dataset is that we could enable decision support
with accurate predictions, which strengthens our confidence in this method.
In the same way, multiple case studies across different crops may be com-
bined to further assess the usefulness of this method across different domains,
process-based models, and ML algorithms.

117



Synthesis

7.2.2 To validate on observations, or not to validate on observations

Regarding the evaluation of the metamodels, a mix of common error metrics
(e.g. R2, RMSE), domain-specific error thresholds, and statistical tests was
used. For the studies of chapters 3 and 4, we evaluated the metamodels based
on their residuals from what APSIM predicted, and an error threshold commu-
nicated with experts from New Zealand. For chapters 5 and 6 we used error
metrics to assess accuracy and a statistical test to compare them with each
other. Consequently, the metamodels have been trained on synthetic data and
have been evaluated against the corresponding process-based model. No ob-
servations were involved in the testing phase and as a result we cannot deduce
about their performance with data collected from sensors on fields. There
is a compelling argument though, that since APSIM is actually used to pro-
vide decision support to agricultural practitioners and has been validated with
observations, we could presume that approximating the accuracy of APSIM
would create adequately accurate ML metamodels for field-deployed appli-
cations. Also, considering the accuracy of APSIM as the upper bound for
the ML metamodel performance would seem reasonable, but there are cases
in literature [179][176] where metamodels showed improved generalization
capacity over their training data generators. Therefore, lack of observation
data for testing purposes during experimental design, should not inhibit the
exploration of synthetic datasets and the benefits they may provide.

7.2.3 Inputs to data generators, variability, and metamodel performance

An integral part of the proposed metamodeling method is to create a space
of inputs for the process-based model that is representative of the problem at
hand. The input space should cover as much variability as possible from the
conditions expected to be found during the inference time of the metamod-
els. If the input parameters are not varied, the simulated quantities may be
constrained to ranges that do not cover enough variability for our modeling
task.

This effect became noticeable in chapter 5 where we compared a location-
specific model containing training data from only one location, with a generic
model which included data from multiple locations. The performance of the
location-specific model was deteriorating when tested in climates dissimilar to
the climate of its training data location, because it was trained on simulations
that did not include enough climate variability. In contrast, the generic model
made accurate predictions for all the locations where it was tested because
it had seen samples with similar weather patterns. Similarly, in chapter 6
we found that target models containing limited variability on their pretraining
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data (either climate or agro-management practices) did not perform as well as
those which had seen more variable conditions.

To decide the number of parameter sets and the ranges of the parame-
ters, researchers working with synthetic data should make a judgment of how
complex their generator is and how its subsystems interact. Usually, agri-
cultural and environmental process-based models combine multiple modules
which include cross-scale effects, thus exhibiting complex behavior. Small
differences in their initial conditions may significantly affect the outcome of
simulations. Therefore, it is important to create input spaces that can capture
this variability in the output.

7.2.4 Decision support through ML algorithm independence

As described in chapter 4, the applied metamodeling methodology is inde-
pendent of the ML algorithm employed to create the models. This flexibility
makes it applicable to various problems and domains while also preserving
the benefits of overcoming the data issues mentioned in chapter 3. For exam-
ple, in environmental sciences tabular datasets are common. As a result, many
researchers aim to create decision support systems by using algorithms that
perform well with such data, like random forest. Besides, other datasets have
to do with evolving quantities, like weather attributes, so they are represented
as time-series. Algorithms that learn the latent space of input data, such as
neural networks, may be more relevant to time-series prediction tasks than
random forest. Similarly, researchers can alternate between time-series and
tabular data representations, (or even representations suitable for CNNs) de-
pending on the number of samples in the datasets. These representations will
result in different performances depending on the algorithm used. All those
cases can be accommodated with the proposed methodology and a model se-
lection procedure can assist in selecting the algorithm. Also, applications for
providing decision support to different domains or creating more explainable
metamodels can be facilitated since some algorithms can accommodate new
data points after training, and others are inherently explainable. Consequently,
the proposed method to overcome limited numbers of observations, different
resolutions, and working without forecasted data, while also enabling these
applications is important to create operational digital twin applications.

7.2.5 Transferability with no data from the target location

The first step towards transferability is to enable decision support in new do-
mains without having to perform domain adaptation. Ideally, a digital twin
should have a broad sense of the prevailing conditions in a target domain be-
fore trying to adapt to it. Towards this direction, in chapter 5 we investigated
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how metamodels performed in different domains (climates in this case) when
they have no data versus rich data from a target domain. We recommended
having a blueprint of a digital twin developed on multiple sites around the lo-
cation of interest. An observation in our experiments was that the further away
(in distance) the target location was from the location where the location-
specific metamodel was trained, the worse its accuracy was. This finding is
related to the similarity of the involved climates and not the distance of the
corresponding locations. Therefore, our recommendation still applies, with
the reservation that for nearby locations with disparate weather characteris-
tics it may not be enough to make the digital twins have an initial sense of the
prevailing conditions in the target area.

Making predictions without data from the target domains is something that
the AI (Artificial Intelligence) community has experience doing. Techniques
like zero-shot/few-shot learning [180] are applied to differentiate new dis-
eases from previously known ones, to make autonomous driving cars recog-
nize unknown objects (concept cars, signs with graffiti), and to identify new
species of animals [181]. There is growing interest in such techniques, since
ML applications enter increasingly more fields of research where data are
scarce due to the expertise required to annotate them, or the rarity of events.
Digital twins could benefit from those methods, especially those which syn-
chronize to ‘open-world‘ systems and are more likely to encounter unforeseen
events.

The work described in chapter 5 could also be interpreted as a case of
zero-shot learning. That’s because we investigated how to transfer models to
new locations from which we do not have any data, in a way similar to how
zero-shot methods work. Zero-shot methods achieve making predictions by
connecting seen and unseen domains through properties of the dataset sam-
ples [182]. For example, a classifier which outputs the species of an animal
in an image, can be modified to classify new species by outputting properties
like color or number of legs instead of the species. Likewise, the proper-
ties we used were soil characteristics, agro-management options, and weather
conditions. More elaborate properties could have potentially yielded better
results.

7.2.6 One generic model to rule them all

In chapter 5 we saw that the generic metamodel outperformed the location-
specific one in all the locations except for the location where the location-
specific model was trained. A question arising for practical applications is
how many models we need to include in our digital twin in case we want to
provide decision support for multiple locations. Should we use a location-
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specific model for each location or combine everything into a generic model?
The answer lies in the application needs. If the application needs models with
better generalizability we should opt for generic models. Alternatively, if
absolute performance is essential, we could create individual models for each
domain. Development time and maintenance of these models should also be
considered. Depending on the algorithm that we use to create models we may
need to find important variables, balance datasets, perform augmentations,
and tune models individually for each of these domains. Similarly, during
operational use the incoming data and model predictions should be checked
for drifts. This can become tedious when there are a lot of models involved,
especially since they will be part of a larger entity (digital twin) where they
are intertwined with other monitoring and optimization operations.

7.2.7 Transferability with sparse data from the target location

For chapter 6, we initially experimented with transferring knowledge between
locations about pasture yield by considering changes in multiple domains (cli-
mate, non-fertile soil to fertile, low fertilization levels to high, etc.) simulta-
neously. This was a setup that closely resembled how a digital twin would be
applied in a practical situation. However, it proved to be a more complex prob-
lem than expected as the target models could not achieve a meaningful perfor-
mance improvement. Thus, we scaled back to changing only the climate and
creating setups with incrementally more variability in the pretraining datasets.
The number of domains and the variability in them is an important factor to
consider when making agricultural digital twins, since learning local condi-
tions is important but trying to adapt to multiple domains simultaneously can
be challenging. As a result, a digital twin which considers fewer domains or
lower resolutions to limit variability may be more appropriate.

Domain adaptation with transfer learning may also work or not, depending
on the combination of how well we model the problem into our algorithms
and the quality of the data. For example, we might have a lot of variability
in our dataset around nitrogen application. We can set up our algorithm to
understand differences in yield coming from nitrogen application, not just
providing the nitrogen amount as an input, and thus it might perform well
in this case. However, if we try to transfer on the same location for another
quantity (e.g. biomass, NDVI), it might not work due to the dataset not being
varied enough to capture this relationship, or due to containing extreme cases
that affect the quantities of interest disproportionately. Consequently, when
making digital twins adapt to new domains, it would be beneficial to have
several variables that can help us get the information we want, in case we are
unable to estimate some of them.
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Pretraining on synthetic datasets and performing domain adaptation with
observations is a technique gaining ground in AI applications. Companies
[183] use this technique to first simulate traffic, then to train autonomous
driving systems based on them, and finally to adapt these systems using ‘real’
traffic footage. Similarly, when we started working in chapter 6, we attempted
to pretrain models with synthetic data from the New Zealand dataset and fine-
tune them using observations from pasture trials in the Netherlands. A large
part of the effort was devoted to trying to preserve as many observation sam-
ples as possible. That was challenging due to differences in agro-management
practices, and variables with no exact counterpart (soil fertility, soil water
capacity) between the observation and synthetic datasets. We attempted to
restructure the problem to better match the designs of the two datasets, to
no avail. We also contacted people experienced in running relevant process-
based models to assist us in running simulations, but due to time constraints
these collaborations did not work. A lesson we learned is that when attempt-
ing to pretrain models on synthetic data and fine-tune them on observations,
there should be a preliminary examination of the observation data, to ensure
that the generated data fit the setup of the observation dataset.

7.2.8 Data as a factor that inhibits digital twin adoption

In chapter 2, we found that one of the reasons for the delayed adoption of
digital twins in agriculture was the lack of data culture. Our experiences con-
cur with this finding. To build on our ideas to operationalize digital twins we
needed data either in the form of observations or simulations.

We realized that data are difficult to find. If in Wageningen it is challenging
to create a registry for relevant datasets and their contents, then what can be
expected from other places where agricultural research is not so advanced? As
so, it appears to be a disparate relation of important agricultural research hap-
pening, in an environment which facilitates the creation of quality datasets,
but data end up being ‘hidden’.

Another finding was that data are difficult to acquire. Even if you learn
about the existence of data relevant to your project it is challenging to get
them. The trust of the data owners has to be earned and their interest in your
work has to be developed. A collaboration has to be formed where both parties
are going to benefit from. This process is not always straightforward since
the involved parties may have divergent goals. Expectation management is
important to make the data owners aware of the risks entailed for the outcomes
of the experiments, so that they do not feel let down when things do not go as
expected but they have already shared their data.

Also, we found that data are not well maintained. Datasets suffer from
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labelling and documentation issues. A considerable amount of time and ef-
fort has to be spent understanding what the measured variables represent and
how they connect to each other. There are also data organization problems.
Usually, data lie in databases in multiple tables. These tables are poorly doc-
umented and designed. Involving data owners to understand how data are
organized or what columns mean, may not lead to significant progress, either.

Contemplating on these findings we realized that data do exist but not re-
ally. With considerable effort data can be found and acquired, but they are
mostly unusable for the type of decision support that digital twins are meant
to provide.

7.2.9 Thoughts on collaborative data-driven research

Effect of multidisciplinary teams

From the beginning of this project, it became evident that support from mul-
tidisciplinary parties would be beneficial to create experimental designs that
better address practical problems. Involving these parties allowed us to have
a panoramic view of the problems they faced and adjust our designs appropri-
ately. Also, different parties had expertise in different domains and were more
effective at explaining the results under different perspectives. For example,
in chapter 3 the metamodels were overestimating the NRR in the range of 0 to
5. To find out why that happened we had to combine the knowledge of peo-
ple who knew about growing pasture, how the simulations were generated,
and why this effect appears from a data science perspective. Additionally, we
were able to have a better understanding of how accurate our results were due
to domain-derived error metrics communicated with these parties.

The devil is in the details

A realization regarding experimental design was from how many angles a
problem could be tackled depending on the problem formulation. For exam-
ple, in chapter 5 we had to decide whether we are going to make predictions
using regression or classification. In a practical setting, regression may have
had more sense as practitioners could work easier with a number. However,
the same problem could be solved with classification by predicting ranges
of NRR. Also, we had to decide whether we were going to treat our sensor
data as tabular, time-series, or in another format. This decision was taken
considering the number of samples available and the number of weights of
each neural network architecture. Similarly, in chapter 6 we had to choose
for the data splits between what is more correct from a ML perspective versus
what is more prevalent in relevant agricultural studies. The criterion here was
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the time required to carry out the experiments. In another case, in chapter 3
we had to decide whether we were going to pursue good predictions for ex-
treme weather conditions or not. That would be interesting from a research
perspective, but in reality, agricultural practitioners already know based on
experience in what ranges the yield will be when such events occur. All those
choices made sense from different perspectives. Alternatives paths may had
produced similar or better outcomes. Yet, at some point decisions had to be
made in order to move on and produce an output.

Technical resource availability

Available technical infrastructure was an important factor affecting experi-
mental design. Several times we had to migrate between the research group’s
servers, Google Colab, AWS, and Azure, to make sure that we have the avail-
able computational resources to run the experiments to the extent that we
wanted to. This includes a budget to cover the expenses, and a balance be-
tween fast iteration versus more organized development practices. Switching
between these platforms can sometimes take time since the codebase has to
be adjusted and their internals to be learned. Also, moving large datasets
between the platforms can be time-consuming.

Another technical challenge is to create datasets consisting of simulations
with process-based models. Operating these models may not always be a
straightforward process as many of them are incrementally built over time and
they rely on old undocumented codebases and combinations of outdated pro-
gramming languages. The situation is improving over time with efforts like
PCSE [184] which is an environment that allows using multiple process-based
models under a common interface. An alternative solution is to containerize
[185] these models when a working setup has been achieved. The models
can then be executed through the containers in any system, without additional
setup. Getting a working setup though is a time-consuming process that does
not contribute to the actual purpose of the experiments.

Therefore, moving towards a more data-driven way of working and in-
corporating different tools for data wrangling and analytics, one should not
underestimate the time needed to choose these tools or combine them into
workflows when creating experimental designs.
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Research community

From the beginning of this work, we tried to reach out to the agricultural
research community as well as the AI audience, through conferences, work-
shops, and networking, to show the types of problems that agriculture faces
when attempting to apply ML solutions. We made the first steps to defining
the state of digital twins in agriculture and we created a roadmap for their
evolution. Next, we focused on how a digital twin would be useful in practi-
cal applications by discovering ways to operationalize it. Emphasis was given
to the distinction between integrating technologies to create digital twins and
how these integrations could actually become useful. We showed that there
are several obstacles that have to be surpassed to develop digital twins to a
stage where they can offer the type of decision support that we find in other
industries. Additionally, we showed that data-driven techniques are integral
for digital twins, but they also have limitations. To this end, we pushed to-
wards a combined use of process-based and ML models. We showed the ben-
efits of such applications, demonstrating in this way that the debate for which
type of model is better is non-relevant and in effect damaging to the progress
of agricultural technological applications. Our applied research is relevant for
agriculture, environmental sciences and maybe even a broader range of AI
applications, since it a) exposes the difference between having the available
resources (large databases, technological and mathematical tools) and being
able to make them actionable, and b) provides ways to constitute the resources
actionable.

Society

Regarding ties to society, a large part of the Dragon project (funding source)
concerned the dissemination of data-driven techniques to the agricultural com-
munity. Within this framework we organized a workshop in a summer school
in Novi Sad, Serbia, about the use of tools to handle large amounts of data in
agricultural applications. We included a practical use case where participants
could experiment with data. The audience had varied backgrounds, from aca-
demic researchers to company representatives, and agricultural practitioners
who were curious about these technologies. Another initiative was the cre-
ation of a MOOC in edX 2 about the application of Big Data technologies in
the agri-food domain. The material of the course was designed to be accessi-
ble to a wide range of audiences. Students can solve exercises and experiment

2https://www.edx.org/course/big-data-for-agri-food-applications
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with relevant tools and data in a cloud platform, without needing to download
or install anything on their system. The course has already run for a sec-
ond year in a row, with more than a thousand students enrolled from around
the world. Furthermore, throughout this work we collaborated with a variety
of agriculture stakeholders to find ways to jointly solve practical problems.
An outcome of such a collaboration was that a fertilization company in New
Zealand got interested in our metamodeling methodology to operationalize
digital twins and provided funding to continue this research. Finally, the code
developed during this work is publicly available along with documentation on
GitHub 3.

Agricultural community

In this work we pointed to how the lack of data culture inhibits the adoption
of digital twins in agriculture. We provided evidence that the lack of data
sharing, and data management practices restrict the evolution of agriculture
in this direction. We believe that by pinpointing these factors and showcasing
that they give birth to additional obstacles (that need additional research and
funding to be dealt with), the agricultural community will become more aware
of them and take steps toward improving its practices. Even more, because
the technology to handle large amounts of (sensitive) data exists to facilitate
this process, as well as the practices to do so, which have been evolved to a
great extent by other industries.

7.4 Future work

Related to the metamodeling methodology

Throughout this work, we developed and evaluated models based mostly on
synthetic data. Consequently, we cannot deduct about the predictive capacity
of the models in actual field conditions. A question arising here is to what
extent our models are transferable to field conditions. It would be interesting
to validate these models using observation datasets that come from fields and
see if and how the outcome diverges from our previous results.

On another note, to showcase the proposed metamodeling methodology,
we used a case study where we had to make a prediction 60 days in advance
without any intermediate data. An alternative research direction would be to
examine how large we can make this data gap and still have accurate predic-
tions, or how performance is affected by the size of the gap. The same study
could be extended by investigating the performance difference between these

3https://github.com/BigDataWUR
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experiments and their counterparts, which have the gaps filled with simulated
data. Potential questions to be answered are whether there is any performance
gain, and if this gain is worth the effort of acquiring/generating data to fill the
gaps.

Continuing the line of experimenting with synthetic data, another unex-
plored approach would be to train metamodels based on the output of multiple
process-based models. Different models might contain knowledge fragments
of how a system evolves, which combined may give a more complete picture
of the system under inspection. The question here would be whether ML al-
gorithms can explore this space of simulations and combine this information
to potentially outperform individual process-based models.

Related to transferability

Regarding the transferability of the metamodels, a topic not examined here
that could enable greater transferability would be to investigate the factors
affecting different kinds of domain adaptation. For example, our domain of
adaptation might be the type of crop, climate, soil and so on. In the case
of crops, are either weather or soil conditions of the origin and target loca-
tions more important? In the case of climate, is it soil or agro-management
practices? Similarly, for other domains.

An alternative line of research would be to obtain observations from dif-
ferent domains (weather, soil, crop) and investigate whether it is possible to
pretrain on synthetic data and transfer to observations. A difficulty in such
a study would be to match the agro-management practices of the synthetic
and observation datasets, as well as the prediction designs. For example, the
fertilization strategies might be different (single vs multiple applications) or
the growing period might differ. Another obstacle would be to match the vari-
ables contained in the synthetic data with the observations. The reason is that
simulations usually contain richer data than what can be measured in field
conditions (e.g. daily plant growth, soil nutrients), and metamodels created
based on those extra variables will need to have them also from the observa-
tion data. Research questions could include how the performance changes be-
tween the pretrained (simulated data) and fined-tuned models (simulated data
+ observations) on the target domains; in which domains the performance is
more sensitive; and what the successful types of transfer are (between cli-
mates, soils, crops etcetera).

More general issues

A driving factor of agricultural systems is the weather. An important research
direction would be to examine how to better incorporate extreme weather phe-
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nomena to synthetic datasets and examine how to create metamodels that per-
form well in weather extremes. An inhibiting factor for these tasks is that
weather timeseries are limited in size, since accurate weather measurement is
being performed only for decades, and in most places even less than that. Re-
search questions could include how to balance extreme phenomena in these
datasets to allow metamodels to learn better, and how metamodels trained
solely on extreme weather data would perform.

Lastly, a line of research could involve the level of individualization that
we want our digital twins to have. Individualization could be embedded in
the variables/features of our ML algorithms. For example, throughout this
work the variables/features used did not pinpoint the location where they
come from. There was no year, longitude, latitude, or other identifying fac-
tors that could help the models identify where a sample comes from and ‘re-
member’ properties of that domain to aid the predictions. This information
was excluded in order to check whether the models can connect climate and
agro-management practices to yield prediction. Other digital twins may have
the objective to achieve absolute predictive accuracy. In such cases, our case
studies could be repeated to answer if we can achieve different levels of indi-
vidualization using more personalized variables/features.
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Chapter 3: Locations included in each model

Table A.2: Location data included in each model. The locations of the sampled location experiment were chosen
based on climate similarity while the ones of the unsampled location experiment were based on haversine distance.

Scenario
Target
location

Sampled location Unsampled location

Local Regional Global Local Regional Global

Waiotu Waiotu Waiotu, Wairoa, Ruakura, all Ruakura Ruakura, Wairoa, Marton all but Waiotu
Ruakura Ruakura Ruakura, Marton, Wairoa, all Wairoa Wairoa, Marton, Waiotu all but Ruakura
Wairoa Wairoa Wairoa, Ruakura, Waiotu all Marton Marton, Ruakura, Mahana all but Wairoa
Marton Marton Marton, Mahana, Ruakura all Wairoa Wairoa, Mahana, Ruakura all but Marton
Mahana Mahana Mahana, Marton, Ruakura all Marton Marton, Kokatahi, Lincoln all but Mahana
Kokatahi Kokatahi Kokatahi, Waiotu, Wairoa all Lincoln Lincoln, Mahana, Wyndham all but Kokatahi
Lincoln Lincoln Lincoln, Mahana, Marton all Kokatahi Kokatahi, Mahana, Wyndham all but Lincoln
Wyndham WyndhamWyndham, Marton, Mahana all Lincoln Lincoln, Kokatahi, Mahana all but Wyndham
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Table A.3: The gridsearch and RMSE results of different machine learning algorithms for
training in Ruakura and testing in Waiotu, with the yearly split mentioned in the text, as a
preliminary test to choose an algorithm. The gridsearch parameters as denoted as found in
scikit-learn’s documentation. The parameters in bold are those that gridsearch selected for
each algorithm.

Gridsearch parameters RMSE

Random
Forest

n_estimators:[100, 200]
max_depth:[3, 7, 12]

min_samples_split:[10, 20]
min_samples_leaf:[10, 30]

max_features:[0.33]

2.51

Gradient Boosting
Trees

learning_rate:[0.05, 0.1, 0.2]
n_estimators:[100, 200]

min_samples_split:[10, 20]
min_samples_leaf:[10, 30]

max_depth:[3, 7, 12]
max_features:[0.33]

2.52

Linear Support
Vector Regression

C:[0.2, 0.5, 1]
epsilon:[0.05, 0.1, 0.2]

loss:[epsilon_insensitive, squared_epsilon_insensitive]
2.68

Elastic
Net

alpha: [0.2, 0.5, 1]
max_iter: [500, 1000, 2000]

l1_ratio: [0.2, 0.5, 0.8]
2.69

Support Vector
Regression

kernel:[rbf]
C:[0.2, 0.5, 1]

epsilon:[0.05, 0.1, 0.2]
2.78

Multi-Layer
Perceptron

hidden_layer_sizes:[(40,), (40,40), (60,60)]
activation:[relu]

batch_size:[32, 64]
max_iter:[100]

early_stopping:[True]
n_iter_no_change:[20]

3.98
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Chapter 3: Rainfed vs irrigated plots

(a)

(b)

Figure A.1: Monthly test set residuals of models for sampled locations in rainfed (a) and
irrigated cases (b).
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(a)

(b)

Figure A.2: Monthly test set residuals of models for unsampled locations in rainfed (a) and
irrigated cases (b).
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(a)

(b)

Figure A.3: Yearly test set residuals of models for sampled locations in rainfed (a) and
irrigated cases (b).
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(a)

(b)

Figure A.4: Yearly test set residuals of models for sampled locations in rainfed (a) and
irrigated cases (b).
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Chapter 3: Weather plots

Figure A.5: Average rainfall per month and location for the four weeks that we assume to
have data.

Figure A.6: Average maximum temperature per month and location for the four weeks that
we assume to have data.
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Chapter 4: Case study sites

Figure B.7: New Zealand sites. Sites on the red circles are the ones included in this work.

Chapter 4: APSIM simulation parameters

Table B.4: APSIM simulation parameters and their ranges. The full factorial of those param-
eters comprised the input to APSIM.

Parameter Range

Weather daily weather from 3 sites
Soil water 42, 67, 110 and 177 mm of plant-available water
Soil fertility 2, 4, and 6% of carbon concentration
Irrigation irrigated, non-irrigated
Fertilizer year 1979-2018
Fertilizer month January-December
Fertilizer day 5𝑡ℎ, 15𝑡ℎ and 25𝑡ℎ of the month
Fertilizer amount 0, 20, 40, 60, 80 and 100 kg N / ha

Chapter 4: Tuning and training

The training data were standardized for each location independently. The test
and validation data were standardized with the corresponding training scaler,
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to have the same mean and standard deviation.

The number of layers, nodes in each layer, optimizer parameters, and
dropout rate for each architecture were based on the results of a preliminary
study. The MLP had two hidden layers with 480 nodes each, optimization
with Adam (lr=0.001, weight_decay=0.0001), dropout rate 20%, batch size
64 and 100 epochs. The AE had five hidden layers (300, 200, 120, 200, 300
nodes), optimization with AdamW (lr=0.0003, weight_decay=0.01), dropout
rate 10%, batch size 64 and 60 epochs. After training, the decoder was re-
placed with an MLP with two hidden layers of 180 nodes each and training
for 60 epochs. The DAE had the same autoencoder and optimizer as AE, with
an addition of an MLP connected to the output of the encoder. The MLP had
two hidden layers (80, 40 nodes). The whole network was trained with batch
size 64, for 100 epochs.

RF took as input weekly aggregated features which were only a few and
were considered explanatory so no feature selection took place. Hyperpa-
rameter tuning was performed using Bayesian optimization with 25 iterations
and the 5-fold cross-validation score as a metric for each iteration. The tuned
parameters can be seen in Table B.5.

Table B.5: The parameters tuned during Bayesian optimization for RF.

Parameters Range

n_estimators 50-800
max_depth 3-12
min_samples_split 30-500
min_samples_leaf 30-500
max_features 0.33
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Chapter 6: Climate similarity

Figure C.8: CCAFS similarity index across New Zealand. The weather parameters for the
similarity were precipitation and average temperature. Location 1 (Marton) is colored in
brown, and locations 2 (Kokatahi), 3 (Lincoln) in blue. The darker the color on the map, the
more similar the climate is to location 1. Location 2 had index value 0.354, and location 3
0.523

(a) Precipitation (b) Maximum temperature

Figure C.9: Weather parameters known to affect pasture growth for the climates included in
this study. The parameters are presented across the months and are aggregated over the years
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Chapter 6: Experimental setup simulation parameters and amount of
samples

Figure C.10: Number of parameters and total samples used in each training/validation/test
set of each setup

Chapter 6: Model hyperparameters

Table C.6: The fixed hyperparameters of the origin models.

Hyperparameter Value

learning rate 4 ∗ 10−5
batch size 64
epochs 60

Table C.7: The search space for the hyperparameters of the target models.

Hyperparameter Values

learning rate [4 ∗ 10−5, 10−4]
batch size [2, 74]
epochs [7, 15, 30]
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Chapter 6: Results - standard deviations

(a) Setup s1: Low weather and agromanage-
ment variabilities

(b) Setup s2: High weather variability, low
agromanagement variability

(c) Setup s3: Low weather variability, high
agromanagement variability

(d) Setup s4: High weather and agromanage-
ment variabilities

Figure C.11: Standard deviations of the various setups for origin models (climate 1), and
target models in climate 2

(a) Setup s1: Low weather and agromanage-
ment variabilities

(b) Setup s2: High weather variability, low
agromanagement variability

(c) Setup s3: Low weather variability, high
agromanagement variability

(d) Setup s4: High weather and agromanage-
ment variabilities

Figure C.12: Standard deviations of the various setups for the origin models climate 1, and
target models in climate 2
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Summary

Agricultural applications produce data at a fast rate and decision support sys-
tems are called to extract insights from them. However, current agricultural
decision support systems rely on static models, they are task specific, and
they lack automation. This hinders a more advanced type of decision support
that modern agricultural systems require. At the same time, the paradigm of
digital twins is becoming more prominent in other disciplines. Digital twins
seem to be able to overcome the aforementioned limitations and offer benefits
that have yet to be realized in agriculture. Despite their success in other dis-
ciplines, the potential of digital twins has not been actualized in agriculture.
In this thesis we investigate ways to operationalize digital twins, first by en-
abling them to make predictions when the data are insufficient in amount or
temporal resolution, and second by considering their ability to be transferred
to diverse conditions.

In chapter 1, we argue about the appeal of digital twins for agricultural
applications and describe the challenges that inhibit their adoption. In chap-
ter 2, we review the state of digital twins in agriculture through a literature
review. We record technology readiness level, benefits, and types of services
they provide in other disciplines, and compare them with their applications in
agriculture. Based on the benefits and services provided to other disciplines,
we propose a roadmap for their advancement in agriculture.

In chapter 3, we focus on enabling digital twins to provide decision support
in situations where data are not in sufficient amounts, or they are in different
temporal resolutions from what existing machine learning and process-based
models expect. We propose a methodology based on metamodeling to allow
making predictions in such cases. We then showcase it, with a case study
of pasture nitrogen response rate. We train machine learning metamodels on
simulated data produced by APSIM and evaluate them in different conditions
with a domain specific error threshold.

For the experiments of chapter 3, we used a single machine learning algo-
rithm to make predictions, Random Forest. Different applications have differ-
ent needs in terms of data quantity, computational resources, interpretability
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and others. Consequently, it is important to examine the generality of chap-
ter’s 3 methodology. In chapter 4, we revisit the nitrogen response rate case
study to assess whether the proposed metamodeling methodology is algorithm
independent. We transition to neural networks and compare a multilayer per-
ceptron, and two variations of autoencoders for predicting nitrogen response
rate.

In chapter 5, we examine the transferability of digital twins between lo-
cations with diverse conditions. We examine how data variability affects the
results when no data from the target locations are available. We develop a
machine learning metamodel with training data from a single location, and
another one with data from multiple locations. The two models are then eval-
uated in each location of our dataset iteratively using common error metrics
and a statistical test to indicate whether differences in the distributions of their
predictions are different.

In contrast to chapter 5, chapter 6 regards the case where sparse data are
available from the target locations. In this chapter, we examine the transfer-
ability of digital twins by performing domain adaptation with transfer learn-
ing. The locations between which we transfer the models are chosen based
on a climate similarity tool. We investigate how the amount of weather data
and variety of agro-management practices included in the training set of the
pretrained models affect adaptation.
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