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A B S T R A C T   

With the development of cloud manufacturing (CMfg), a huge amount of services appears on the Internet, which 
makes recommender systems in CMfg service a promising research field. To this end, recent studies mainly focus 
on solving individual recommendation to meet the requirements of every user. However, due to the time 
complexity problem, ‘Many-to-Many’ recommendation mode is increasing in real applications. To implement 
such a group recommendation is very challenging, because the system not only needs to achieve high recom-
mendation quality but also satisfies user clusters in an even way. Therefore, we propose a similarity-enhanced 
hybrid group recommendation approach named HGRA for cloud manufacturing. Specifically, we implement 
the HGRA system by three main components. Firstly, an enhanced user similarity measuring approach is 
designed to identify a similar user group based on the non-linear model Proximity-Significance-Singularity (PSS) 
and Kullback-Leibler (KL) distance algorithms. Secondly, a set of user subgroups are further clustered using K- 
medoids algorithm, in which additional information similarity is calculated by making full use of functional 
information about the users. Thirdly, a weighted ranking aggregation model is established to generate a 
recommendation list according to the representative user of each subgroup. The performance of our system is 
tested by two data sets from real-world cloud manufacturing systems. The experimental results demonstrate the 
feasible and effectiveness of our approach, compared with some state-of-the-art benchmark solutions, especially 
in CMfg systems.   

1. Introduction 

In recent years, cloud manufacturing (CMfg) (Li et al., 2010; Zhang 
et al., 2014) becomes a new paradigm due to the development of 
Internet and the emerging information technologies, such as Big Data 
(Li, Tao, Cheng, & Zhao, 2015), Cloud Computing (Xu, 2012), Internet of 
Things (Lu & Cecil, 2016). For manufacturing industry, global business 
model is gradually transformed from traditional off-line mode to 
platform-based and service-oriented mode in the Industry 4.0 
manufacturing systems (Mourtzis, Fotia, Boli, & Vlachou, 2019; Papa-
kostas & Ramasubramanian, 2022). The main purpose of CMfg is to 
collect a huge amount of distributed manufacturing resources and ca-
pabilities in cloud pool, and provide services based on these cloud data 
to fulfill the requirements of users. With the increasing number of 

services published in the CMfg systems, it is urgent to take an effective 
strategy to solve the large-scale service issue. 

Under this circumstance, cloud service recommendation is becoming 
a promising research field. Recommender Systems (RSs) has been 
employed in various studies within some research field, such as tourism 
(Baker & Yuan, 2021), news (Bach, Do Hai, & Phuong, 2016), e-com-
merce (Mao, Lu, Han, & Zhang, 2019), etc. Inspired by the application of 
Web service, in CMfg environment, RSs (Azadjalal, Moradi, Abdollah-
pouri, & Jalili, 2017; Gohari, Aliee, & Haghighi, 2018) is mainly used to 
provide appropriate recommendation by discovering the subset of CMfg 
services among all the alternatives that are able to satisfy the active user. 
By doing so, users don’t need to take extra time to look for specific 
services and make a hard decision when facing massive services on a 
cloud platform. 
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Collaborative Filtering (CF) algorithm (Breese, Heckerman, & Kadie, 
2013; Desrosiers & Karypis, 2011; Su & Khoshgoftaar, 2009), as a 
common tool and technique in the traditional RSs, has been widely 
applied to provide accurate recommendation for the active user. There 
are two popular CF algorithms: neighbor-based and model-based 
algorithm. 

Neighbor-based CF (Wu et al., 2012), also called K-nearest neighbors 
(KNN) algorithm, is based on a basic idea that users who have similar 
historical information are likely to share similar preference. Thus, some 
traditional similarity measuring approaches, like Pearson Correlation 
Coefficient (PCC) (Yu, Wang, Zhang, & Niu, 2016) and their variants, 
have been widely used in neighbor-based CF to calculate user similarity. 
Accordingly, the effectiveness of neighbor-based CF is highly impacted 
by the similarity computation. However, these similarity measures 
mainly focus on the co-invoked information and most part of them is 
described by a linear way, which are not suitable for cloud recommen-
dation in CMfg systems. So, neighbor-based CF has relatively low 
recommendation quality, especially in the sparsity condition. 

Model-based CF is another well-known approach for cloud service 
recommendation, which is also called matrix factorization (MF) (Koren, 
Bell, & Volinsky, 2009; Luo, Xia, & Zhu, 2012). The main idea of MF- 
based algorithm is to train a model using the invoked information in 
the user-service matrix, and then learn the latent factors which are able 
to make a further recommendation. However, most of the MF-based 
algorithm assumed that each user is independent of others. It is 
obvious that the MF-based algorithm is a kind of objective method, and 
cannot achieve a good performance without considering the similarity 
computation, since users usually exchange their information in dynamic 
environment. In addition, it is often time-consuming and costly to 
retrain a new net-based model for different needs in CMfg systems. 

Although, ‘Many-to-One’ traditional recommender systems are 
ubiquitous and do have achieved success in many applications, it is 
limited by the similarity computation among the users and its inner 
complexity. Apart from that, a large majority of traditional recom-
mender systems usually cannot get satisfactory feedback from individual 
user, when the group needs and preferences are not considered. All these 
lead to the apply difficulty of RSs in CMfg systems. 

Indeed, ‘Many-to-Many’ Group Recommender Systems (GRSs) 
(Castro, Yera, & Martinez, 2018; Garcia, Sebastia, & Onaindia, 2011) 
has emerged as an effective solution to help group of users to find some 
suitable service according to their similar needs and preferences, and 
thus GRSs play an important role in some specific domains, such as 
tourist attractions (Garcia, Pajares, Sebastia, & Onaindia, 2012). This is 
because GRSs not only use the similar group needs and preferences to 

discover the most reliable service, but also make the recommendation 
list diverse as the differences always exist. So far, many CF-based tech-
niques have been used in GRSs to improve group recommendation 
quality by integrating user individual information (Castro, Yera, & 
Martínez, 2017), and try to satisfy group users to the greatest extent. As 
a result, more and more researchers focus on the preferences-based 
model (Abolghasemi, Engelstad, Herrera-Viedma, & Yazidi, 2022; Seo, 
Kim, Lee, & Kim, 2021) from both user and service side, or extract a 
latent interest of user group in profile aggregation way (Nam, 2021). 
Furthermore, deep neural network (Lee & Kim, 2022), as a new learning 
tool, has also been involved in the process of GRSs. 

However, at the background of CMfg platform, the characteristics of 
group users are various, like inconsistent preferences, information 
interaction, complex content of request with field terms. So, it is very 
challenging to achieve effective group recommendation of high satis-
factory without considering them. That is one of the research gaps of 
GRSs in CMfg systems. The research position of this paper is presented in 
Table 1. 

The disadvantages of both the traditional recommender systems and 
group recommender systems greatly inspire the design of our system. To 
implement the group recommendation of CMfg service, we focus on the 
development of a new group recommender systems, called similarity- 
enhanced hybrid group recommendations approach (HGRA). In 
HGRA, a new user similarity measure is proposed to identify similar 
group of users. After that, another information similarity measure is 
proposed to make a clustering of user subgroup based on the K-medoids 
algorithm. Then, a weighted ranking aggregation model based on the 
Collaborative Filtering is employed to generate the group recommen-
dation list. The main contributions of this paper are summarized as 
follows. 

(1) To overcome the low accuracy and stability of traditional simi-
larity computation, we introduce a hybrid similarity model for 
discovering similar group in different condition, and apply this 
model into our HGRA approach to help subsequent group 
recommendation.  

(2) To improve recommendation quality and averaged satisfaction, 
we also propose a K-medoids clustering algorithm and weighted 
ranking aggregation model as off-line group recommendation 
modules for studying the characteristics of CMfg service in 
‘Many-to-Many’ mode. We also integrate these three modules 
into a group recommender system, and seems that the idea of our 
HGRA could alleviate the recommendation problem in CMfg 
systems.  

(3) We conduct a series of experiments on two real-world data sets to 
verify the effectiveness of the proposed approach, especially in 
CMfg systems. 

The rest of this paper is organized as follows. Section 2 introduces the 
related work. Section 3 introduces the problem statement. Section 4 
presents the details about HGRA. Section 5 presents the experiments and 
results based on the proposed approach. Finally, we conclude our work 
in Section 6. 

2. Related work 

Group Recommender Systems (GRSs), as an important tool and 
technique in Cloud Manufacturing domain, have aroused a great deal of 
interests in both academia and industry. To the best of our knowledge, 
GRSs consists of three main steps. The first step is to calculate the user 
similarity which is used to identify similar group of users. The second 
step is that clustering the similar users into several subgroup according 
to the distance measurement. The last step is to generate ranked 
recommendation list for a group of users by utilizing the aggregation 
technique. In this section, to place our work in a state-of-art context, we 
give a brief review of the related work on the main steps in GRSs. 

Table 1 
Research position of HGRA.  

Recommender systems Web service CMfg service 

Traditional systems Baker & Yuan, 2021 
Bach et al., 2016 
Mao et al., 2019 
Su & Khoshgoftaar, 2009 
Desrosiers & Karypis, 2011 
Breese et al., 2013 
Wu et al., 2012 
Yu et al., 2016 
Koren et al., 2009 
Luo et al., 2012 

Azadjalal et al., 2017 
Gohari et al., 2018 

Group systems Castro et al., 2018 
Garcia et al., 2011 
Garcia et al., 2012 
Castro et al., 2017 
Seo et al., 2021 
Abolghasemi et al., 2022 
Nam, 2021 
Lee & Kim, 2022 

HGRA  
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2.1. Similarity-based approaches 

Similarity measure is a popular tool which is usually used to identify 
a set of similar objects in recent studies. In both user-service side, the 
basic idea of the similarity measure is that ones who have a high simi-
larity, then they may share same preference or function. For example, 
Ekstrand, Riedl, and Konstan (2011) integrated PCC into CF-based 
approach to calculate the linear correlation between a pair of services. 
Then, Feng and Huang (2020) presented an extended PCC similarity 
model to make quality-of-service (QoS) prediction in CMfg systems. 
Similar to PCC, cosine similarity is another widely used similarity 
measure. Ahn (2008) presented an adjusted cosine similarity measure 
and a new similarity called PIP (Proximity-Impact-Popularity) for 
personalized recommendation. 

To improve the performance of similarity measure, many researchers 
have designed some novel similarity measures recently. For instance, 
Liu, Hu, Mian, Tian, and Zhu (2014) designed a non-linear similarity 
model called PSS (Proximity-Significance-Singularity) to overcome the 
linear-relationship problem, which not only considers the local context 
information of user ratings, but also the global preference of user 
behavior. Although the experimental results demonstrated the superi-
ority of PSS model, it still cannot be used independently without enough 
co-invoked ratings. To alleviate the problem, Wang, Deng, Gao, and 
Zhang (2017) first consider the vectors in a row-column way, and 

employ Kullback-Leibler (KL) distance to correct the output in recom-
mender systems. By doing this, it seems to be more effective than the 
other similarity measures. But this novel idea hasn’t been proved in 
CMfg systems yet. 

2.2. Clustering-based algorithms 

Clustering-based algorithm, as a well-known unsupervised classifi-
cation method, whose aim is to reduce the search space and discover 
similar group of patterns (users, services, etc.) (Ghazanfar & Prügel- 
Bennett, 2014). In general, there are three main clustering-based algo-
rithms being applied in recommender systems: K-means algorithm, K- 
medoids algorithm (Guo, Zhang, & Yorke-Smith, 2015) and Hypergraph 
partition algorithm (Selvitopi, Turk, & Aykanat, 2012). 

The basic idea of K-means clustering algorithm is that finding a 
center of pattern by averaging all the values of each attribute. For 
example, Ghazanfar and Prügel-Bennett (2014) presented a classic K- 
means clustering algorithm which is used to decrease the recommen-
dation error by identifying the similar users. Different from K-means, K- 
medoids clustering algorithm selects a real user as the center, which 
makes the similarity measure can be directly used to calculate the dis-
tance. It seems to be more understandable and easier to implement. 
Thus, Guo et al. (2015) proposed K-medoids clustering algorithm to 
make a multi-view clustering, in which the personalized influence of 

Fig. 1. Overview of the main steps of HGRA.  
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group users can be preserved to some extent. Hypergraph partition al-
gorithm is a new clustering method in current RSs and has been widely 
applied to many large-scale applications (Wu, He, & Han, 2014). For 
example, Yang, Wang, Bhuiyan, and Choo (2017) designed a novel 
vertex hypergraph partitioning method, called EQHyperpart, to achieve 
high quality clustering results by integrating all the entropy information. 
Although demonstrated to be more effective and scalable to large-scale 
datasets, it is very time-consuming to make a clustering with high 
complexity. 

2.3. Aggregation-based model 

Apart from similarity-aware model and clustering-based algorithm, 
aggregation-based model is also a critical part to complete the whole 
process in CMfg systems. In general, aggregation-based models in GRSs 
are either based on the generation of an integrated group profile or on 
the integration of recommendations built for every user independently 
(Baltrunas, Makcinskas, & Ricci, 2010). In other words, there are two 
typical aggregation-based models: Preference aggregation model 
(Wang, Zhang, & Lu, 2017) and Ranking aggregation model (Baltrunas 
et al., 2010). In recent studies, Yu, Zhou, Hao, and Gu (2006) took 
advantage of the first model by merging the individual preferences to 
obtain a group profile for group recommendation. However, the most 
important decision-making process regarding the group users with 
different characteristics are not clear. Baltrunas et al. (2010) employed 
ranking aggregation model to make a group recommendation, in 
which all the individual recommendation are integrated into a final 
list. In addition, Seo, Kim, Lee, Seol, and Baik (2018) also presented an 
enhanced aggregation method, called upward leveling (UL), to help 
the group recommendation. During the aggregation process, there are 
some strategies in the ranking model, such as Averaged, Least Misery, 
etc. However, the biggest limitation is that recommendation generated 
with ranking aggregation model seldom satisfy the group users in an 
even way, namely, the personal influence of users in the group has 
been ignored. As far as we are concerned, an effective group recom-
mendation approach that not only matches the group’s preferences, 
but also takes the averaged satisfaction of group users into 
consideration. 

Based on the above analysis, in this paper, we develop a hybrid group 
recommendation approach to improve the recommendation quality and 
averaged satisfaction. To identify a similar user group, an enhanced user 
similarity is designed by combining the Proximity-Significance- 
Singularity (PSS) and Kullback-Leibler (KL) distance. Then, we inte-
grate a new information similarity into K-medoids clustering algorithm 
to search for the subgroup. After that, we also employ a weighted 
ranking aggregation model to generate the recommendation lists 
considering the entropy information among the representative users in 
each subgroup. Finally, we conduct a series of experiments on two real- 
world data sets to verify the effectiveness of HGRA. 

3. Problem statement 

Generally, a GRSs correlates to the historical interactions between 
users and services in CMfg systems. The main purpose of GRSs is not only 
about higher recommendation quality, but also about more friendly to 
user group. So, in this work, we aim to cope with the following two 
questions: (1) how to improve the recommendation quality in GRSs; (2) 
how to achieve a higher averaged satisfaction based on the group 
recommendation list. 

In our recommendation scenario, GRSs include a lot of users and 
services, in which users have various needs and preferences, while ser-
vices contain different functional and nonfunctional information. Thus, 
recommendation quality mainly depends on the accuracy of similarity 
computation and specific recommendation strategy. Different from 
traditional systems, averaged satisfaction in GRSs is greatly affected by 
the quality of user subgroup, which is further clustered based on the 

similar user group. Also, aggregation mode is another impact factor 
according to the personalized needs and preferences in a cluster. 
Therefore, our overall framework can be separated into 3 sections: (1) 
user similarity; (2) clustering; (3) QoS prediction & recommendation. 

For simplicity, we should comply with the following assumptions:  

(1) Each user has a historical recommendation list;  
(2) Each user has a specific need and preference; 
(3) Each user can be satisfied by a service when there is an interac-

tion between them;  
(4) Each service interacted with at least one user before. 

4. Hybrid group recommendation approach 

In this section, main steps of the proposed similarity-enhanced 
hybrid group recommendation approach (HGRA) are presented, 
including: (1) Identifying the similar group users, (2) Clustering 
personalized subgroup based on the K-medoids algorithm, (3) Weighted 
ranking aggregation model for group recommendation. The overview of 
the proposed approach and the overall recommendation process of GRSs 
in CMfg systems are illustrated in Fig. 1, and the details of the main steps 
are described in the following sections. 

4.1. User similarity 

To identify a similar user group, we develop a new user similarity 
by combing the non-linear model Proximity-Significance-Singularity 
(PSS) and Kullback-Leibler (KL) distance, in which all the informa-
tion in the user-service matrix can be explored as much as possible. And 
the details of these two concepts are described in the following 
subsections. 

4.1.1. PSS model 
Firstly, to better calculate the non-linear relationship between users, 

we employ the Proximity-Significance-Singularity (PSS) model which 
not only computes the similarity based on the co-invoked services, but 
also generates some specific variables in other dimensions. Here the PSS 
model is defined as follows:  

S1(rus, rvs) = Proximity(rus, rvs)×Significance(rus, rvs)× Singularity(rus, rvs)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Proximity(rus, rvs) = 1 −
1

1 + exp( − |rus − rvs| )

Significance(rus, rvs) =
1

1 + exp( − |rus − ru|⋅|rvs − rv| )

Singularity(rus, rvs) = 1 −
1

1 + exp
(
−
⃒
⃒rus + rvs

2
− rs

⃒
⃒
⃒

)

(1)   

where S1(rus, rvs) is the similarity between user u and user v computed 
based on the co-invoked service s, rus is the rating value, ru is the aver-
aged rating value rated by u, and rs is the averaged rating value of s. 

Here, function Proximity is computed according to the absolute 
difference between rus and rvs, while function Significance aims to 
measure the impact of the rating pair to the similarity value. And 
function Singularity means the difference between one rating pair to 
other ratings. 

Then, the similarity between user u and user v based on the PSS 
model is defined as below:  

S1(u, v) =

∑

s∈S
S1(rus, rvs)

|S|
(2) 

J. Liu et al.                                                                                                                                                                                                                                       



Computers & Industrial Engineering 178 (2023) 109128

5

where S = Su ∩ Sv represents the set of services that are co-invoked by 
both u and v. If they are similar, then the value of S1(u, v) are larger than 
an expected value. 

Although the non-linear PSS model seems to be an important tool to 
calculate the user similarity, yet it still cannot be employed indepen-
dently. The reason is that the PSS model mainly focuses on the co- 
invoked part, however, it is impossible that there are always exist co- 
invoked services in real applications. 

4.1.2. KL distance 
Kullback-Leibler (KL) distance is another similarity measure that 

considers the difference between two sequences from the perspective of 
probability distribution (Kullback & Leibler, 1951). Thus, it can alle-
viate the co-invoked problem to some extent, and fully utilize all the 
ratings between two users. Considering the fact that KL distance is 
asymmetric, the KL distance between user u and user v is calculated as 
follows:  

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D(u, v) =
D(u||v ) + D(v||u )

2

D(u||v ) = D(pu||pv ) =
∑r

i=1
puilog2

pui

pvi

(3)   

whereD(u||v ) ∕= D(v||u ), r is the maximum value in rating scale, and 
pui =

|i|
|u| represents the probability of rating value i on user u, in which |u|

denotes the number of all services rated by user u and |i| is the number of 
rating value i. 

It is obvious that the larger the KL distance is, the less similar the two 
users are, and vice versa. Thus, the similarity measure based on the KL 
distance is defined as follows:  

S2(u, v) =
1

1 + D(u, v)
(4)  

Based on the PSS model and the KL distance, we can obtain a new 
user similarity measure, and the formula is defined as below:  

S(u, v) = λ× S1(u, v)+ (1 − λ)× S2(u, v) (5)   

where S(u, v) represents the user similarity between user u and user v. 
λ(0 < λ < 1) is a parameter to determine how much the user similarity 
relies on S1(u, v) and S2(u, v), and the sensitivity of λ will be studied in 
the experiment section. 

4.2. Clustering personalized subgroup 

After the similar user group has been identified, in this section, we 
aim to make a clustering based on K-medoids algorithm to obtain several 
personalized subgroups. And the key process of clustering is described in 
the following subsections. 

4.2.1. Information similarity 
Before introducing the K-medoids clustering algorithm, we first 

propose another similarity measure, called information similarity, to 
identify the personalized subgroups. Since there are multiple functional 
information (regular requirements and personalized needs) involved in 
the users’ profile, it is very challenging to discover same-class user 
subgroup from the similar users, especially in CMfg systems. In this 
subsection, the information similarity is enhanced to further calculate 
the similarity between users by integrating the information interactions. 

And the information similarity between user u and user v is defined as 
follows: 

Sim(u, v) = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑f

j=1
wj(u, v)⋅D

(
FuncInforj(u) − FuncInforj(v)

)2

√
√
√
√ (6)  

where f is the dimension of functional information, wj(u, v) is the weight 
distribution vector corresponding to the functional information. 

In this paper, we use the frequency of information interactions to 
measure the weights. And, a log function (Seo, Kim, Lee, & Baik, 2017; 
Vosecky, Leung, & Ng, 2014) is also employed to measure the frequency, 
and the formula is as follows:  

Fj(u, v) =
{ log10

(
1 + qj(u, v)

)
, if qj(u, v) < 10

1, if qj(u, v) ≥ 10
(7)   

where Fj(u, v) is the frequency of jth information between user u and 
user v, and qj(u, v) denotes the number of information interactions. 

Based on the frequency of information interactions, the weights are 
shown as follows:  

wj(u, v) =
Fj(u, v)

∑f

j=1
Fj(u, v)

(8)  

D
(

FuncInforj(u) − FuncInforj(v)
)

is the attribute quantization dis-

tance (Xiang, Jiang, Xu, & Wang, 2016) of functional information, in 
which FuncInforj(u) represents the jth functional information of u . And 
the formula is as follows:  

D
(
FuncInforj(u) − FuncInforj(v)

)
=

⃒
⃒FuncInforj(u) − FuncInforj(v)

⃒
⃒

|FuncInformax − FuncInformin|
(9)   

where 
⃒
⃒FuncInformax − FuncInformin

⃒
⃒ is the charge range of the threshold. 

A noteworthy point is that the calculation of attribute quantization 
distance must be executed in same type of items, otherwise, the distance 
is maximum. 

4.2.2. K-medoids clustering algorithm 
In this subsection, we integrate the information similarity into K- 

medoids clustering algorithm to identify the personalized subgroup. 
Different from the existing clustering algorithm, K-medoids clustering 
algorithm considers a real user as the center and thus preserve the group 
characteristics to some extent (Guo et al., 2015). Thus, K-medoids is very 
suitable for grouping users who have complex features in CMfg systems. 
And the objective function is presented as follows:  

{ J = min
∑

c∈C

∑

u,v∈c
d(u, v)

d(u, v) = 1 − Sim(u, v)
(10)   

where C is a set of user subgroup, user u and user v belong to the sub-
group c ∈ C, and d(u, v) denotes the distance between u and v. 

In order to discover the personalized subgroup, information simi-
larity is used as the distance metric to cluster the similar users. In other 
words, the higher information similarity the users have, the closer the 
users are located. The pseudocode of K-medoids clustering algorithm is 
presented in Algorithm 1. 
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4.3. Ranking aggregation for group recommendation 

After the process of K-medoids clustering, we can obtain K repre-
sentative users in the subgroups. In this section, we first utilize Collab-
orative Filtering to rate all the candidate service from the perspective of 
QoS prediction. Then, we establish a weighted ranking aggregation 
model to make a Top-N group recommendation. 

All the candidate services can be predicted with these K represen-
tative users, and the rating value is calculated as follows: 

Ruk (CSi) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R’
uk (CSi), if CSi has been rated by uk

Rk(CSi) +

∑

ua∈c(uk)

Sim(uk, ua) × (Rua (CSi) − Ra )

∑

ua∈c(uk)

Sim(uk, ua)
, others

(11)  

where Ruk (CSi) denotes the rating value of ith candidate service rated by 
kth representative user (uk), while R’

uk (CSi) denotes the authentic rating 
value if CSi has been invoked by uk. Rk(CSi) denotes the averaged rating 
value among the users in kth subgroup, like ua. 

To improve the recommendation accuracy and averaged satisfaction, 
we design a new ranking aggregation model by taking the personalized 
influence of these representative users into consideration, which called 
entropy information (Feng & Huang, 2020). And the entropy of uk is 
defined as: 

E(uk) = −
1

ln(|S*| )

∑

s∈S*

puks × ln
(
puks

)
(12)  

where S* is the set of service that has been invoked by uk, and puks =
Ruk (s)∑

s∈S*
Ruk (s)

. 

Based on the entropy information, we can compute the weight of K 
representative users as the personalized influence, and the formula is as 

Table 2 
The complexity of HGRA.  

(1) Similarity 
computation 

(2) Clustering 
algorithm 

(3) Ranking and group 
recommendation 

(4) 
HGRA 

O
(
m2n

)
O(mn) O(mn) O

(
m2n

)
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follows: 

Wk =
1 − E(uk)

K −
∑K

k=1
E(uk)

(13) 

Then, our weighted ranking aggregation model can be established to 
satisfy the maximum possible number in user clusters according to the 
rating value from K representative users. And the formula is presented as 
below: 

R(CSi) =
∑K

k=1
Wk ×Ruk (CSi) (14)  

where R(CSi) represents the rating value of CSi based on the weighted 
ranking aggregation model. 

To sum up, in this study, we first identify the similar users group 
using a new user similarity measure (See in Section 4.1). Then, we 
integrate an enhanced information similarity into K-medoids clustering 
algorithm to discover the personalized subgroup (See in Section 4.2). 
After that, we also utilize Collaborative Filtering and weighted ranking 
aggregation model to obtain a final ranking list of all candidate services 
(See in Section 4.3). Finally, Top-N group recommendation can be 
generated according to the final rating results. 

4.4. Time complexity 

The computational complexity is another critical metric to show the 
performance of HGRA, in this paper, the total complexity can be 
accordingly divided into three phases: (i) Similarity computation, (ii) 
Clustering algorithm, (iii) Ranking and group recommendation. 

There are two kind of similarity measure during the process of sim-
ilarity computation, namely, user similarity and information similarity. 
Firstly, we assume that there are m users and n services, and the 
computation time of user similarity is around O(mn(m − 1) ). Then, we 
need to further identify the subgroup using the enhanced information 
similarity in Section 4.2.1, and the computation time is around 
O(mn(f − 1) ). Considering the fact that f is the constant number refers to 
dimension of functional information, and the total complexity of simi-
larity computation is around O(mn(m − 1) )+ O(mn(f − 1) ) ≈ O

(
m2n

)
. 

For K-medoids clustering algorithm, the computation time is 
O(pKmn), where p is the maximum number of iterations, and K is the 
number of user subgroup. Since p and K are constant, the total 
complexity is around O(mn). 

As for the final ranking process, we first calculate the entropy in-
formation of K representative users, and the computation time is around 
O(Kmn). Then, Top-N group recommendation is listed based on the 
ranking aggregation model, and the complexity is about O(Nmn). 
Because of K and N are also constant value, the computation time is 
around O(Kmn)+ O(Nmn) ≈ O(mn). 

Based on the above analysis, the total computational complexity of 
HGRA can be concluded in Table 2. As we can see, our time complexity is 
still in a reasonable range compare to others. However, in a long-term 
view, HGRA may shows a lower computational cost due to GRSs mode. 

5. Experiment 

In this section, we present an empirical study of our approach HGRA 
on two real-world data sets. The experimental environment and data sets 
are introduced in Section 5.1.1 and Section 5.1.2. And the metrics 
employed to evaluate the performance of HGRA are shown in Section 
5.1.3. The performance comparison from the proposal and baseline 
methods and discussion are presented in Section 5.2. The sensitivity 
analysis is also studied in Section 5.2.1. 

5.1. Experiment setup 

5.1.1. Environment 
Note that the experimental environment in this paper is constructed 

in an off-line way. To carry out the verification, all the experiments are 
run on a computer with Quad-Core Intel Core i5 2GHz CPU processors 
and 16GB RAM. As for the software of HGRA development, we mainly 
apply MATLAB R2019b in this part to conduct relevant experiments. 

5.1.2. Data sets 
In our experiments, we use two different real-world data sets which 

are employed in individual recommendation scenario. One is classic 
Web service data set, called WSDream, which is collected from 339 users 
on 5825 services by Zheng, Ma, Lyu, and King (2010). Inspired by Xiang 
et al. (2016), another is private CMfg service data set collected from the 
relative machinery industry platform, which contains about 463 users 
and 7548 services. It is note that all these data sets have updated some 
additional information to meet the experimental requirements, espe-
cially CMfg services, such as personalized needs of user and nonfunc-
tional information of service. 

For more realistic, different baseline methods are also employed to 
demonstrate the effectiveness of our approach. Although different 
characteristics of Web service and CMfg service, HGRA can be applied to 
both scenarios without any modification. The experimental parameters 
are summarized in Table 3. 

5.1.3. Metrics 
To evaluate our approach HGRA based on a list of recommendations, 

in this subsection, we use both normalized discounted cumulative gain 
(nDCG) (Seo et al., 2018) and group satisfaction (GS) (Villavicencio, 
Schiaffino, Diaz-Pace, & Monteserin, 2019) as the metrics in two data 
sets. Recently, nDCG has been widely used to measure the effectiveness 
of group recommendation approaches. The main reason is that it not 
only considers the prediction accuracy but also takes the recommen-
dation quality into account. More specifically, nDCG is easily measured 
based on a key rule: more high-ranked services in the list. 

The nDCG metric is defined as: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

DCGu,N = Ru,l1 +
∑N

i=2

Ru,li

log2(i)

nDCGu,N =
DCGu,N

IDCGu,N

(15)  

where l1⋯lN denote the recommendation lists, and DCGu,N measures the 
accuracy of a list of recommendation that is ordered by ratings. And 
IDCGu,N is the optimal possible gain value for users where the lists are re- 
ordered by ratings. 

Different from nDCG, group satisfaction (GS) is measured to show 
the averaged satisfaction degree of the group users when a list of services 
being recommended to them. And the GS metric is defined as: 

Table 3 
Experimental parameters.  

Parameters Web service CMfg service 

f: the dimensional number of functional information 20 50 
n: the number of candidate services 500 500 
λ: a parameter determines the user similarity 0.5 0.5 
K: maximum cluster number 6 8 
N: the number of group recommendation 30 30  
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

GS(li) =

∑

GroupSize
S(li)

GroupSize

GS =

∑N

i=1
GS(li)

N

(16)  

where GroupSize is the number of users in a group, S(li) is the satisfaction 
degree of li measured by the interactions of each user in a group, and 
GS(li) is the group satisfaction degree of li. We assumed that a service 
would satisfy the user if there is a interaction between them. 

Without loss of generality, we repeat the experiment for ten times to 
avoid possible inconclusiveness caused by randomness. And the evalu-
ation metrics nDCG and GS are employed to show the performance of 
HGRA, where higher nDCG and GS values mean better group recom-
mendation performance. 

5.2. Performance comparison 

To make a better performance comparison, we compare HGRA with 
other baseline methods, including the following: 

EPCC: EPCC (Feng & Huang, 2020) is an enhanced PCC similarity 
model to make QoS prediction in CMfg systems, in which neighborhood 
information has been extracted. 

PSS: PSS (Proximity-Significance-Singularity) (Liu et al., 2014) is a 
non-linear similarity model to overcome the linear correlation problem, 
which not only considers the local context information of user ratings, 
but also the global preference of user behavior. 

H-US: H-US (Wang, Deng, et al., 2017) is a hybrid user similarity 
model to improve prediction accuracy and recommendation quality, in 
which KL distance has been first integrated. 

Our model: We propose an enhanced user similarity model in this 
study (See in Section 4.1). 

K-Mean: K-Mean clustering algorithm (Ghazanfar & Prügel-Bennett, 
2014) is a classic method which is designed to identify the similar users 
and could decrease the recommendation error. 

K-medoids: K-medoids clustering algorithm (Guo et al., 2015) is also 
presented to make a recommendation, in which the PCC similarity 
model is integrated to measure the inter-distance among the users. 

EQHyperpart: EQHyperpart (Yang et al., 2017) is a novel vertex 
hypergraph partitioning method that is able to achieve high quality 
clustering result based on information entropy modularity. 

RACF: RACF (Baltrunas et al., 2010) is a common group recom-
mendation algorithm based on the rank aggregation model and 
Collaborative Filtering. 

UL: UL (Seo et al., 2018) is an enhanced aggregation method, called 
upward leveling, which considers deviations for group 
recommendation. 

Table 4 
nDCG of Web service.  

Methods Group Size  

5 10 15 20 25 30 

EPCC 0.470 0.493 0.520 0.554 0.596 0.648 
PSS 0.503 0.533 0.568 0.609 0.657 0.713 
H-US 0.507 0.538 0.572 0.614 0.660 0.722 
Our model 0.518 0.548 0.579 0.629 0.682 0.741 
vs H-US (%) 2% 2% 1% 2% 3% 3%  

Table 5 
nDCG of CMfg service.  

Methods Group Size  

5 10 15 20 25 30 

EPCC 0.492 0.514 0.543 0.575 0.611 0.652 
PSS 0.530 0.566 0.607 0.654 0.708 0.771 
H-US 0.536 0.574 0.618 0.669 0.722 0.788 
Our model 0.543 0.582 0.621 0.676 0.727 0.793 
vs H-US (%) 1% 1% 0.5% 1% 1% 1%  

Table 6 
nDCG of Web service.  

Methods Group Size  

5 10 15 20 25 30 

K-Mean 0.458 0.479 0.502 0.535 0.566 0.607 
K-Mediods 0.496 0.525 0.554 0.589 0.641 0.698 
EQHyperpart 0.472 0.496 0.523 0.561 0.602 0.654 
RACF 0.437 0.456 0.479 0.503 0.530 0.567 
UL 0.505 0.534 0.563 0.602 0.646 0.708 
HGRA 0.518 0.548 0.579 0.629 0.682 0.741 
vs K-Mediods (%) 4% 4% 5% 7% 6% 6% 
vs UL (%) 3% 3% 3% 5% 6% 5%  

Table 7 
nDCG of CMfg service.  

Methods Group Size  

5 10 15 20 25 30 

K-Mean 0.475 0.496 0.523 0.554 0.586 0.619 
K-Mediods 0.525 0.559 0.601 0.648 0.702 0.765 
EQHyperpart 0.493 0.516 0.545 0.578 0.614 0.656 
RACF 0.453 0.478 0.502 0.528 0.565 0.612 
UL 0.532 0.569 0.611 0.658 0.712 0.771 
HGRA 0.543 0.582 0.621 0.676 0.727 0.793 
vs K-Mediods (%) 3% 4% 3% 5% 4% 4% 
vs UL (%) 2% 2% 2% 3% 2% 3%  

Fig. 2. Performance comparison between HGRA and IndiG.  
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IndiG: IndiG (Lee & Kim, 2022) is an inductive learning method, 
which combines both Bayesian modeling and deep neural networks in 
group recommendation. 

HGRA: HGRA is a similarity-enhanced hybrid group recommenda-
tion approach proposed in this paper, including an enhanced user sim-
ilarity model, new information similarity measure, K-medoids clustering 
algorithm and weighted rank aggregation model (See in Section 4). 

5.2.1. nDCG 
In this part, we vary the group size from 5 to 30 with a step value of 5 

to study the group prediction accuracy and recommendation quality of 
our approach in terms of nDCG. Table 4 and Table 5 show the results of 
different similarity-based methods in two data sets, respectively. In 
addition, the nDCG results of different group recommendation methods 
are also illustrated in Table 6, Table 7 and Fig. 2 for a performance 
comparison. 

We employ different user similarity measures in our HGRA, such as 
EPCC and PSS, and the group recommendation results can be found in 
Table 4 and Table 5, in which the nDCG value of all methods increase as 

the group size goes up. It is obvious that our enhanced user similarity has 
a better performance than other baseline methods. Although the H-US 
shows a great performance in both data sets, our user similarity model 
still has a relative higher nDCG value in different condition of group size. 
This is because our model takes the advantage of both PSS and KL dis-
tance in a more reasonable way, and could get more accurate similarity 
with less co-invoked entry. 

The experimental results of Table 6, Table 7 and Fig. 2 show that:  

(1) In these two Tables, all the group users are identified by our user 
similarity model. For the clustering-based approaches, we can 
find that our HGRA has a slight advantage compared with other 
baseline methods, like K-Mean and Hypergraph-based algorithm. 
K-Mediods clustering algorithm does have a great performance, 
but information similarity as an effective distance measure is 
totally ignored by Guo et al. (2015).  

(2) It is obvious that the nDCG value of HGRA is relative higher than 
two classic aggregation-based models RACF and UL. This is 
because HGRA make a ranking aggregation from perspective of K 
representative users, instead of a single user’s preference or all 
the users’ profile. In addition, in HGRA, we also consider the 
personal influence of K representative users, namely, entropy 
information. By doing this, the weighted ranking aggregation 
model can make a contribution to the group recommendation to 
some extent.  

(3) In Fig. 2, we can observe that the nDCG value of HGRA is relative 
higher than IndiG in most condition, due to the implement of 
understandable model. But as group size goes up, the improve-
ment of IndiG is faster than HGRA, especially when group size =

Fig. 3. Performance comparison of group satisfaction.  

Table 8 
Qualitative analysis of different GRSs.  

Method Domain Datasets Scalability 

RACF Movie Large [MovieLens100k 
(943*1682)]  

UL Movie Large [MovieLens100k 
(943*1682)]  

HGRA Manufacturing 
industry 

Large [WSDream(339*5825) / 
CMfg(463*7548)] 

√  

Fig. 4. Impact of λ.  
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30. The reason is that Bayesian inductive learning method can 
extract more latent information from a larger group, and thus get 
a better inductive train model. However, deep neural network- 
based methods, like IndiG, urge more and more information 
with high dimension, and also take a large amount of time to 
complete the train process. In contrast, HGRA achieves a stable 
performance and is more suitable to fine-grained CMfg systems.  

(4) To sum up, the HGRA approach significantly outperforms the 
clustering-based algorithms and the ranking aggregation-based 
methods for group recommendation of both web service and 
CMfg service under different group size. This is due to that, our 
approach is like a systematic method which considers every part 
of group recommendation in CMfg systems, and takes the 
advantage of an enhanced user similarity model, new information 
similarity measure, K-medoids clustering algorithm and weighted 
rank aggregation model to achieve a superior performance than 
each single one. 

5.2.2. GS 
In addition to nDCG, we employ another important metric to eval-

uate the performance of group recommendation, namely, group satis-
faction (GS). In the Fig. 3, we can see that HGRA shows a highest GS 
value with the weighted ranking aggregation model. As the group size 
increases, we can also find that the higher the group size is, the GS value 
becomes lower, which indicates that it is hard to satisfy the larger group 
users, especially in CMfg systems. 

In order to make a classification, Table 8 represents the qualitative 

analysis of these three GRSs in terms of scalability. It seems to be that 
our HGRA performances more friendly and could be applied to other 
domains since others haven’t prove it yet. This is because our three- 
sections structure could be composed to work in most scenarios. 

5.3. Sensitivity analysis 

In this section, we aim to explore the effects of different parameters 
on the performance of our approach HGRA. In general, we vary the 
value of a specific parameter while holding the others consistent in 
Table 3, then study the nDCG results under different group size. And the 
detail analysis process is presented below. 

5.3.1. Impact of λ 
In the HGRA, λ is a critical parameter that determines the accuracy of 

user similarity and then affects the quality of group recommendation. To 
study the impact of λ, we carry on a set of experiments under three 
different group size of 10, 20 and 30, respectively. And the other pa-
rameters are same as Table 3. 

As shown in Fig. 4, our HGRA achieves the highest nDCG value of 
both Web service and CMfg service when λ = 0.5, indicating that the 
optimal point of λ is not influenced by the group size. Considering the 
fact that λ(0 < λ < 1) is a parameter to determine how much the user 
similarity relies on the non-linear PSS model and KL-distance. Since 
when λ < 0.5, the effect of the non-linear PSS model is less to be 
considered, while when λ > 0.5, the effect of KL-distance is also 
decreased. Thus, according to the experimental results, we set λ = 0.5 as 

Fig. 5. Impact of K.  

Fig. 6. Impact of N.  
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the default value in our experiments. 

5.3.2. Impact of K 
In HGRA, K is another critical parameter that determines the number 

of subgroup and then affects the quality of group recommendation. To 
study the impact of K on nDCG, we investigate the impact of Kunder 
three group size of 10, 20 and 30, respectively. And the other parameters 
are same as Table 3. 

In Fig. 5, the experimental results show that the value of K signifi-
cantly impacts the quality of group recommendation (nDCG), and a 
proper value of K in HGRA will present better result in different data 
sets. This is because too small value of K cannot obtain the personalized 
subgroup. Although large value of K will keep the better performance, it 
is very time-consuming and costly to do that. Thus, we set K = 6 in the 
data set of Web service, and K = 8 in the data set of CMfg service. 

5.3.3. Impact of N 
N is always a critical parameter in the group recommendation sys-

tems, and it determines the number of Top-N recommendation list in 
HGRA. To study the impact of N on group recommendation quality, we 
investigate the impact of N in the value range of 10 to 50 with a step 
value of 10, while holding other experimental parameters unchanged. 
Fig. 6 shows the nDCG value of Web service and CMfg service under 
three group size conditions of 10, 20 and 30, respectively. 

As shown in Fig. 6, our approach HGRA achieves the highest group 
recommendation quality when N = 30, indicating that the optimal 
value of N is almost not affected by the group size. Another observation 
is that, an appropriate value of N will come out better recommendation 
in two given data sets. In general, too large number of Top-N recom-
mendation list would decreases the individual recommendation quality, 
but not in the group recommendation systems. Thus, we set N = 30 as 
the default value in our experiments. However, the value of N can be 
adjustable according to real scenario. 

6. Conclusion 

In this paper, we proposed a hybrid group recommendation 
approach (HGRA) as an alternative to the traditional approaches. To 
address the group recommendation problem in CMfg systems, we first 
split up the whole process into three successive components, including 
enhanced user similarity model, K-medoids clustering algorithm and 
weighted rank aggregation model. In the enhanced user similarity 
model, we improved the user similarity measure which aims to identify 
the set of group users by incorporating non-linear PSS model and KL 
distance model. Based on the similar user group, we then integrated a 
new information similarity into K-medoids clustering algorithm to 
discover the personalized subgroup, in which the information in-
teractions have been taken into account. Considering the personal in-
fluence of representative users in the subgroup, we also established a 
weighted rank aggregation model by exploring the entropy information 
among them, so as to obtain the final Top-N list in a group recommen-
dation way. The results of the experiments showed that our HGRA not 
only can greatly improve the quality of group recommendation, but also 
increase the level of group satisfaction to some extent. 

In our future work, we plan to further extend our HGRA system from 
the following two perspectives. Firstly, exploiting more context factors 
in CMfg systems to make a multi-objective group recommendation, such 
as trust in collaborative network, location information from both user 
and service side. Also, we think there still have some latent factors 
hidden in the user profile that need to be further expressed and repre-
sented, especially in the manufacturing industry. Secondly, we would 
like to optimize the group recommendation systems in terms of time 
complexity. For example, more refined and understandable model 
should be established to improve the similarity, and try to design a high- 
dimension clustering algorithm with some advanced operations as well. 
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