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Abstract
Plant diseases affect the quality and quantity of agricultural products and have an impact 
on food safety. These effects result in a loss of income in the production sectors which are 
particularly critical for developing countries. Visual inspection by subject matter experts 
is time-consuming, expensive and not scalable for large farms. As such, the automation of 
plant disease detection is a feasible solution to prevent losses in yield. Nowadays, one of 
the most popular approaches for this automation is to use drones. Though there are several 
articles published on the use of drones for plant disease detection, a systematic overview 
of these studies is lacking. To address this problem, a systematic literature review (SLR) 
on the use of drones for plant disease detection was undertaken and 38 primary studies 
were selected to answer research questions related to disease types, drone categories, 
stakeholders, machine learning tasks, data, techniques to support decision-making, ag-
ricultural product types and challenges. It was shown that the most common disease is 
blight; fungus is the most important pathogen and grape and watermelon are the most 
studied crops. The most used drone type is the quadcopter and the most applied machine 
learning task is classification. Color-infrared (CIR) images are the most preferred data 
used and field images are the main focus. The machine learning algorithm applied most 
is convolutional neural network (CNN). In addition, the challenges to pave the way for 
further research were provided.
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Introduction

Global agricultural food production has to increase by at least 70% to meet the needs of 
the increasing world population (Ahirwar et al., 2019). This is a challenging goal because 
the agricultural sector depends largely on conditions that are not fully controlled such as 
the weather, soil condition and the quality and quantity of irrigation water. Therefore, it is 
crucial to adopt precision technologies such as drones to make optimum use of resources 
and improve agricultural productivity.

Drones have been used for diverse application purposes in precision agriculture and new 
ways of using them are being explored. Many drone applications have been developed for 
different purposes such as pest detection, crop yield prediction, crop spraying, yield estima-
tion, water stress detection, land mapping, identifying nutrient deficiency in plants, weed 
detection, livestock control, protection of agricultural products and soil analysis (Celen et 
al., 2020).

Plant disease detection is one of the application areas of drones and has been investigated 
extensively (Veroustraete, 2015). One of the benefits of using drones is the early detection of 
diseases and the prevention of the spread of infection to mitigate crop loss (Kitpo and Inoue 
2018). Previous review studies on the application of drones in precision agriculture are 
limited in scope. Mogili & Deepak (2018) reviewed the literature on the types of drones and 
their use for spraying pesticides. Likewise, Devi & Priya (2021) focused on the recognition 
of plant diseases using images captured by drones. Decision-support systems using drones 
can lead to better decisions, increase production, improve the quality of products and save 
labor (Sinha, 2020).

Drones are used for many different crop types and diseases. Some diseases show visible 
symptoms, while other diseases can only be detected by measuring temperature. Although 
drones have been proven to be promising tools for disease detection, a detailed systematic 
overview of the state-of-the-art on the adoption of drones for disease detection is lack-
ing. Recently, a large number of studies have been published on the application of drones. 
For example, pesticide spraying and crop monitoring studies have been reviewed recently 
(Hafeez et al., 2022), however, the review was not conducted systematically. Similarly, a 
traditional review study has been published on the use of drone technology for sustainable 
weed management focused only on weed management (Esposito et al., 2021). Some recent 
studies explain the design of drones for precision agriculture (de Oca and Flores, 2021; 
Hajare et al., 2021).

The objective of this study was to present a systematic review of the literature on disease 
detection using drones. The systematic literature review (SLR) presented in this paper is 
different from traditional reviews and aims to identify all relevant scientific papers related 
to the main theme of this study.

Background and related work

Disease detection

Traditional farming related to disease detection relied on naked-eye observation, which is 
time-consuming and expensive and requires a lot of expertise (Sandhu & Kaur, 2019). Cur-
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rently, there are many methods to detect diseases in agricultural crops. Two main categories 
can be distinguished: direct and indirect detection methods. Direct detection methods consist 
of polymerase chain reaction, fluorescence in-situ hybridization, enzyme-linked immuno-
sorbent assay, immunofluorescence and flow cytometry. Indirect detection methods consist 
of thermography, fluorescence imaging, hyperspectral techniques and gas chromatography. 
The focus of this study lies within the indirect detection methods, especially thermography 
and hyperspectral techniques that are supported by drones. Thermography is based on dif-
ferences in the surface temperature of plant leaves and canopies. Hyperspectral imaging can 
measure the changes in reflectance resulting from the biophysical and biochemical charac-
teristics changes upon infection. Indirect methods can be used to identify biotic, abiotic and 
pathogenic diseases (Fang & Ramasamy, 2015).

Related work

A lot of research studies on disease detection using drones have been undertaken. All of 
these studies have had different focii, and different diseases and detection methods have 
been investigated. In Table 1, an overview of the current literature reviews and surveys on 
disease detection by drones is presented.

Methodology

To perform this study, an SLR protocol was followed. The SLR covers the last decade of 
papers on this research topic. The SLR answers several research questions that were defined 
in this study. The selected primary studies are used to extract data and which was analysed 
to respond to the research questions.

As there is no overview of the published papers on disease detection using drones, the 
goal of this research was to present an overview of the state-of-the-art. Wright et al. (2007) 
designed a guideline to conduct an SLR, which was followed in this study.

Research questions

The motivations for the SLR were to identify the.

1. diseases detected by drones,
2. drone type used in disease detection,
3. actors/stakeholders involved in disease detection by drones,
4. executed tasks in disease detection,
5. main parameters for stakeholders to work with,
6. techniques used to support decision-making in disease detection by drones,
7. product types that drones are used for, and.
8. problems of using drones in disease detection.

Following these motivations the following research questions were formulated:

1. What kind of diseases are detected by using a drone?
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ID Reference 
and year

Publication type 
& venue

Title

1 Panday et 
al. (2020)

Journal / Drones A Review on Drone-Based 
Data Solutions for Cereal 
Crops

2 Messina 
& Modica 
(2020)

Journal / Remote 
Sensing

Applications of UAV Ther-
mal Imagery in Precision 
Agriculture: State of the Art 
and Future Research Outlook

3 Tsouros et 
al. (2019)

Journal / 
Information

A Review on UAV-based 
Applications for Precision 
Agriculture

4 García-
Berná et al. 
(2020)

Journal / Applied 
Sciences

Systematic Mapping Study 
on Remote Sensing in 
Agriculture

5 Daponte et 
al. (2019)

Conference / 
IOP Conference 
Series: Earth and 
Environmental 
Science

A Review on the Use 
of Drones for Precision 
Agriculture

6 Mogili & 
Deepak 
(2018)

Conference / 
International 
Conference on 
Robotics and 
Smart Manu-
facturing 
(RoSMa2018)

Review on Application of 
Drone Systems in Precision 
Agriculture

7 Kim et al. 
(2019)

Journal / IEEE 
Access

Unmanned Aerial Vehicles 
in Agriculture: A Review 
of Perspective of Platform, 
Control, and Applications

8 Boursianis 
et al. (2022)

Journal / Internet 
of Things

Internet of Things (IoT) 
and Agricultural Unmanned 
Aerial Vehicles (UAVs) in 
smart farming: A compre-
hensive review

9 Hassler & 
Baysal-
Gurel 
(2019)

Journal / 
Agronomy

Unmanned Aircraft System 
(UAS) Technology and Ap-
plications in Agriculture

10 Abdullahi 
et al. (2015)

Conference / 
International 
Conference on 
Wireless and Sat-
ellite Systems

Technology Impact on 
Agricultural Productivity: A 
Review of Precision Agricul-
ture using Unmanned Aerial 
Vehicles

11 Zhang & 
Kovacs 
(2012)

Journal / Preci-
sion Agriculture

The Application of Small 
Unmanned Aerial Systems 
for Precision Agriculture: A 
Review

12 Khanal et 
al. (2017)

Journal / 
Computers and 
Electronics in 
Agriculture

An Overview of Current and 
Potential Applications of 
Thermal Remote Sensing in 
Precision Agriculture

Table 1 Related review works on 
the use of drones for precision 
agriculture
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2. What is the drone type used in disease detection?
3. What are the actors/stakeholders involved in disease detection by drones?
4. Which tasks are executed to support decision-making in disease detection by drones?
5. Which data are generated by drones to support disease detection?
6. Which techniques are used to support decision-making in disease detection by drones?
7. For which agriculture product types are drones used for disease detection?
8. What are the challenges to the application of drones in disease detection?

Search string

To determine the search string, a number of test searches were done on Scopus and ACM 
with the following terms:

(drone OR uav) AND disease AND detection.
(drone OR uav) AND “disease detection”.
(drone OR uav) AND (“bacteria*” OR “fun*” OR “vir*” OR blight OR wilt OR rot) 

AND detection.
Based on the insights obtained, the following search string was used to carry out the SLR:
(Drone OR UAV) AND Disease AND Detection.
The databases selected were ScienceDirect, IEEE, ACM Digital Library, Springer, Wiley 

and Scopus.

Selection criteria

The first step of selection was filtering by reading the title, abstract and introduction in order 
to determine if the paper is relevant. The second step was to exclude papers using the exclu-
sion criteria given in Table 2.

Quality Assessment

All of the selected papers were scored based on eight quality assessment questions given 
in Table 3 (Kitchenham et al., 2009). Papers were assigned either 1 (good quality), 0.5 (fair 
quality), or 0 (bad quality) scores. Papers with a total score lower than four were excluded 
from the research.

Table 4 presents the distribution of papers based on databases where they were found 
at different selection stages. After the initial search, 1852 papers were retrieved, of which 
58 remained after applying the selection criteria. After quality assessment, 38 papers were 

Number Description
EC 1 Article published before 2010.
EC 2 Article not published in English or Dutch.
EC 3 Full text is not available.
EC 4 The paper is not about the use of drones 

in precision agriculture.
EC 5 An experimental result is not available.
EC 6 It is a review article.
EC 7 It is not a peer-reviewed journal article.

Table 2 Exclusion criteria 
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selected as primary studies. The 38 papers were carefully read in full and the required data 
for answering the research questions were extracted.

Data collection

The data extraction form is presented in Table 5. All the collected articles are listed in 
Table 6.

Results

RQ 1: What kind of diseases are detected by using a drone?

There was a wide variety of diseases that have been studied (Fig. 1). Blight accounted for 
8 out of 44 identified diseases. The number of counts of wilt is six. All of the other diseases 
are more or less evenly distributed.

The identified diseases were classified into major categories; the categorization scheme 
that was selected is related to the disease-causing pathogens, which are: fungus, bacteria, 
virus, nematode and abiotic (Abdulkhadir & Alghuthaymi, 2016). A major finding is that, 
according to Fig. 2, fungus alone accounted for 64% of the diseases investigted. Bacteria 
was second place with a percentage of 26%. The remainder of the disease-causing patho-

Source After search 
string

After selection 
criteria

After 
quality 
assessment

ScienceDirect 27 9 8
IEEE Xplore 34 1 1
ACM Digital Library 1 0 0
Springer 1566 7 5
Wiley 21 1 1
Scopus 203 40 23
Total 1852 58 38

Table 4 The process of selecting 
primary studies
 

Number Question
Q1 Are the aims of the study clearly stated?
Q2 Are the scope and context of the study clearly 

defined?
Q3 Is the proposed solution clearly explained and 

validated by an empirical study?
Q4 Are the variables used in the study likely to be 

valid and reliable?
Q5 Is the research process documented adequately?
Q6 Are all the study questions answered?
Q7 Are negative findings presented?
Q8 Are the main findings stated clearly in terms of 

creditability, validity and reliability?

Table 3 Quality assessment 
questions
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gens accounted for the rest of the diseases. This means that viruses, nematodes and abiotics 
were only responsible for 10% of diseases.

According to Fig. 3, there were a wide variety of plants for which drones were used to 
detect disease causing pathogens. The two crops that stand out in this figure are grape and 
watermelon. They both have a large representation of fungus. Citrus seems to be vulnerable 
only to bacterial diseases and wheat to fungus diseases. Tomato has three disease-causing 
pathogens, namely fungus, bacteria and viruses.

RQ 2: What is the drone type used in disease detection?

Five different drone types were distinguished. The fixed-wing has a very different design in 
comparison with the other drones; it has two wings for an aerodynamic shape that makes it 
look like an airplane. A single-rotor helicopter has one big rotor on top of it and one small 
rotor at the end of the tail, it looks like a helicopter. The quadcopter is a design that has four 
rotors; two of them rotate in the clockwise direction and the other ones in the counter-clock-
wise direction. The hexacopter has six rotors and the octocopter has eight rotors (Mogili & 
Deepak, 2018). Due to the fact that the single-rotor helicopter is not mentioned in anyone 
of the extracted papers, this drone type is left out of the categorization. The drone type most 
used, according to Fig. 4, is the quadcopter, namely 14 times. The hexacopter is used in 9 of 
the identified papers. The remainder of the papers used the fixed-wing and octocopter. This 
means that the quadcopter is the dominant drone type used in disease detection.

Number Element Extracted Content
1. Title
2. Author(s)
3. Year
4. Journal
5. Source
6. Disease (RQ 1)
7. Drone type (RQ 2) Fixed wing, quadcopter, hexa-

copter or octocopter.
8. Actors/stakehold-

ers (RQ 3)
Farmer, research community, 
consumer, the environment and 
tourism sector.

9. Task (RQ 4) Detection, categorization, clas-
sification, monitoring, mapping, 
discrimination, quantification, 
identification and predicting.

10. Data (RQ 5) RGB image, CIR image, V-NIR 
image, thermal image and MS 
image.

11. The technique 
(RQ 6)

12. Product type 
(RQ 7)

13. Challenges (RQ 8)

Table 5 Data extraction form 
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Reference Title Source
Dang et al., 2020a UAV based wilt detection system via convolutional neural networks Science-

Direct
Abdulridha et al., 
2020a

Detecting powdery mildew disease in squash at different stages using 
UAV-based hyperspectral imaging and artificial intelligence

Science-
Direct

Kerkech et al., 
2020a

Vine disease detection in UAV multispectral images using optimized 
image registration and deep learning segmentation approach

Science-
Direct

Kerkech et al., 2018 Deep learning approach with colorimetric spaces and vegetation indices 
for vine diseases detection in UAV images

Science-
Direct

Chen et al., 2020a Early detection of bacterial wilt in peanut plants through leaf-level hyper-
spectral and unmanned aerial vehicle data

Science-
Direct

Castrignano et al., 
2021

 A geostatistical fusion approach using UAV data for probabilistic estima-
tion of Xylella fastidiosa subsp. pauca infection in olive trees

Science-
Direct

Bagheri, 2020 Application of aerial remote sensing technology for detection of fire 
blight infected pear trees

Science-
Direct

Selvaraj et al., 2020 Detection of banana plants and their major diseases through aerial images 
and machine learning methods: A case study in DR Congo and Republic 
of Benin

Science-
Direct

Chen et al., 2020b An AIoT based smart agricultural system for pests detection IEEE
Javan et al., 2019 UAV-based multispectral imagery for fast citrus greening detection Springer
Abdulridha et al., 
2020b

Detection of target spot and bacterial spot diseases in tomato using UAV-
based and benchtop-based hyperspectral imaging techniques

Springer

Alberto et al., 2020 Extraction of onion fields infected by anthracnose-twister disease in 
selected municipalities of Nueva Ecija using UAV imageries

Springer

Calderon et al., 
2014

Detection of downy mildew of opium poppy using high-resolution multi-
spectral and thermal imagery acquired with an unmanned aerial vehicle

Springer

Wiesner-Hanks et 
al., 2018

Image set for deep learning: field images of maize annotated with disease 
symptoms

Springer

Wu et al., 2019 Autonomous detection of plant disease symptoms directly from aerial 
imagery

Wiley

Kerkech et al., 
2020b

VddNet: Vine disease detection network based on multispectral images 
and depth map

Scopus

Viera-Torres et al., 
2020

Generating the baseline in the early detection of bud rot and red ring 
disease in oil palms by geospatial technologies

Scopus

Dang et al., 2020b Fusarium wilt of radish detection using rgb and near infrared images 
from unmanned aerial vehicles

Scopus

Deng et al., 2020 Detection of citrus huanglongbing based on multi-input neural network 
model of UAV hyperspectral remote sensing

Scopus

Abdulridha et al., 
2020c

Laboratory and UAV-based identification and classification of tomato 
yellow leaf curl, bacterial spot, and target spot diseases in tomato utiliz-
ing hyperspectral imaging and machine learning

Scopus

Di Nisio et al., 2020 Fast detection of olive trees affected by xylella fastidiosa from UAVs 
using multispectral imaging

Scopus

Wang et al., 2020a A plant-by-plant method to identify and treat cotton root rot based on 
UAV remote sensing

Scopus

Savian et al., 2020 Prediction of the kiwifruit decline syndrome in diseased orchards by 
remote sensing

Scopus

Wang et al., 2020b Automatic classification of cotton root rot disease based on UAV remote 
sensing

Scopus

Siebring et al., 2019 Object-based image analysis applied to low altitude aerial imagery for 
potato plant trait retrieval and pathogen detection

Scopus

Bohnenkamp et al., 
2019

In-field detection of yellow rust in wheat on the ground canopy and UAV 
scale

Scopus

Table 6 Selected primary studies
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RQ 3: What are the actors/stakeholders involved in disease detection by drones?

According to Table 7, several stakeholders were involved in disease detection by drones. 
At first, the farmer was always involved. He or she needed to operate the drone, interpret 
the data or take action after the data is analyzed. The research community was identified as 
a stakeholder in the 29% of the papers because the studies were used for future work and 

Fig. 1 The number of articles 
per disease in the 38 studies that 
used drones for disease detection

 

Reference Title Source
Kalischuk et al., 
2019

An improved crop scouting technique incorporating unmanned aerial 
vehicle-assisted multispectral crop imaging into conventional scouting 
practice for gummy stem blight in watermelon

Scopus

Zhang et al., 2019  A deep learning-based approach for automated yellow rust disease detec-
tion from high-resolution hyperspectral UAV images

Scopus

Abdulridha et al., 
2019

UAV-based remote sensing technique to detect citrus canker disease 
utilizing hyperspectral imaging and machine learning

Scopus

Xavier et al., 2019 Identification of ramularia leaf blight cotton disease infection levels by 
multispectral, multiscale uav imagery

Scopus

Heim et al., 2019 Multispectral, aerial disease detection for myrtle rust (Austropuccinia 
psidii) on a lemon myrtle plantation

Scopus

Huang et al., 2019 Detection of helminthosporium leaf blotch disease based on UAV 
imagery

Scopus

Franceschini et al., 
2019

Feasibility of unmanned aerial vehicle optical imagery for early detection 
and severity assessment of late blight in potato

Scopus

Albetis et al., 2019 On the potentiality of UAV multispectral imagery to detect Flavescence 
dorée and Grapevine Trunk diseases

Scopus

Zhang et al., 2018 Detection of rice sheath blight using an unmanned aerial system with 
high-resolution color and multispectral imaging

Scopus

Albetis et al., 2017 Detection of Flavescence dorée grapevine disease using Unmanned 
Aerial Vehicle (UAV) multispectral imagery

Scopus

Di Gennaro et al., 
2016

Unmanned Aerial Vehicle (UAV)-based remote sensing to monitor grape-
vine leaf stripe disease within a vineyard affected by esca complex

Scopus

Calderon et al., 
2013

High-resolution airborne hyperspectral and thermal imagery for early 
detection of Verticillium wilt of olive using fluorescence, temperature 
and narrow-band spectral indices

Scopus

Table 6 (continued) 
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especially because the data is donated to researchers for research. This indicates that disease 
detection with drones is still an active area of research. From the consumer perspective, 
early disease detection leads to better quality of products and safer products; 24% of the 
papers explicitly mention this issue. 8% of the papers state that drone use has a positive 
impact on the environment because it leads to less usage of fertilizers. One paper was related 
to the tourism sector due to the relationship between plants, landscape and tourism.

Actor/Stakeholder Total Counts As % of Total
Farmer 38 100%
Research Community 11 29%
Consumer 9 24%
Environment 3 8%
Tourism Sector 1 3%

Table 7 Actors/stakeholders 
involved or influenced by disease 
detection

 

Fig. 4 Drone type used for 
disease detection
 

Fig. 3 Disease-causing patho-
gens related to the product type
 

Fig. 2 Proportion of disease-
causing pathogens related to the 
identified diseases
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RQ 4: Which task is executed to support decision-making in disease detection by 
drones?

Figure 5 shows that the main task of supporting decision-making in disease detection is a 
classification task, which was done in 27 selected papers. There are 15 papers that applied 
a detection task for data processing. A total of 8 studies applied a mapping technique to 
analyze data. Other tasks executed were categorization, monitoring, discrimination, quanti-
fication, identification and prediction.

RQ 5: Which data are generated by drones to support disease detection?

The results show that mainly CIR images were generated by drones to support decision-
making, as shown in Fig. 6. CIR images were the most frequently used with the occurrence 
of 20 out of the 38 papers. RGB images were the second most used in disease detection 
(14 times). Other types of images used for disease detection were visible and near-infrared 
(V-NIR) image, thermal image and multispectral (MS) image and together account for 9 of 
the 38 selected papers.

There are 3 different kinds of images distinguished based on the subject of the image, 
namely leaf, plant or field-based. Field-based images are the dominant type as shown in 

Fig. 6 Categorization of image 
type used for disease detection
 

Fig. 5 The most performed 
tasks among the 38 studies 
summarized
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Fig. 7. Most, 58%, of the papers made use of field-based images. The rest of the papers 
made use of plant and leaf-based images, which accounted for 28% and 14%, respectively.

RQ 6: Which techniques are used to support decision-making in disease detection 
by drones?

The results show that a wide variety of techniques were used to support decision-making 
in disease detection using drones. Largely the CNN-based models were applied in disease 
detection using drones (Fig. 8). CNN-based models were applied in 10 of the 38 selected 
papers. The CNN-based model category consists of the following models: GoogleNet, 
VGG16, RetinaNet, YOLO and VGG-Net.

Support vector machines (SVM) is another algorithm that stood out in Fig. 9 with a 
count of 6. Both RBF and RF have 3 counts each. Other algorithms identified were K-means 
clustering, AKAZE, Segnet, MLP, SDA, LSC, QSVM, LDA, unsupervised clustering, 
KMSVM, KMSEG and KNN.

RQ 7: For which agriculture product types are drones used for disease detection?

As shown in Fig. 9, a wide variety of agricultural crops were analyzed for disease detec-
tion using drones. Grape occurred 6 times in the 38 selected papers. Olive, citrus, cotton 
and wheat were all counted 3 times. The rest of the product types were more or less evenly 
distributed.

Fig. 8 The techniques most used 
in the 38 summarized studies
 

Fig. 7 Overview of image (Leaf, 
Plant, Field)
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RQ 8: What are the challenges of the application of drones in disease detection?

The results show that there are several challenges encountered in the application of drones 
for disease detection (Table 8). The challenges can be categorized into two core categories, 
namely dataset and model building. Challenges related to the dataset were deformations on 
the image dataset, the limited number of expert-labeled data, strong randomness in data and 
the lack of classes in the dataset. Challenges related to model building were the small size 
of the training sample, long training time and long processing time. As seen in Table 8, only 
2 papers proposed possible solutions for the encountered challenges.

Category Challenge Possible 
Solutions

Reference

Dataset Deformations in the 
image dataset

Kerkech et 
al. 2020a

The limited number 
of expert-labeled 
data

Enriching the 
UAV multispec-
tral images data-
base, with plots 
and new diseases 
samples

Kerkech et 
al. 2018

Strong randomness 
in data

Deng et al. 
2020

Lack of classes in 
the dataset

Including extra 
parameters

Heim et al. 
2019

Model 
Building

The small size of 
the training sample

Kerkech et 
al. 2020b

Long training time Selvaraj et 
al. 2020

Long processing 
time

Chen et al. 
2020a, Wang 
et al. 2020a, 
and Wang et 
al. 2020b

Table 8 The encountered chal-
lenges in the application of 
drones in disease detection

 

Fig. 9 The most investigated 
crop types in the 38 studies that 
apply drones in disease detection
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Discussion

General discussion

Blight and wilt were the two major diseases studied using drone data because both of these 
two disease categories exhibit very visible symptoms in the picture. In addition, the major 
disease-causing pathogen that was identified using drones was fungus. This is also in line 
with the fact that fungus diseases show visible symptoms. It shows that drones are mainly 
used for detecting diseases that show visible symptoms.

The dominant drone type used was the quadcopter. According to the reviewed papers, 
this is mostly due to financial motives. When a large area must be covered, either multiple 
drones are flown at the same time as a swarm or a drone with a larger range is used. There-
fore, the relation between drone type and field size must be carefully analyzed.

According to the reviewed papers, drones have been used more often to detect disease in 
grapes and, to a lesser extent, in olive, citrus, cotton and wheat production. Grapes, water-
melon and tomatoes were mentioned often in relation to disease-causing pathogens. This 
indicates that drones are probably used for multiple purposes. The diversity of techniques 
identified indicates that either different techniques are used for different types of decisions 
or plants, or the researchers are still exploring diverse techniques. The results clearly show 
that classification is the dominant task performed in disease detection by drones. This means 
that a plant or part of the field is assessed as healthy or not healthy in relation to the investi-
gated disease but not necessarily detecting the disease.

Farmers seem to be involved in all cases because they need to take action after the data 
gathered by the drones is analyzed. A significant finding is that 29% of the identified papers 
stated that their data is available for the research community for future work.

The data gathered in disease detection is diverse. This could be because of the fact that 
this is an active area of research. Researchers are experimenting with cameras that need 
to be mounted on drones flown at various heights and conditions. That is probably an 
additional reason why many different algorithms are applied. The challenges encountered 
where papers did not come up with possible recommendations indicate the need for further 
investigations.

While traditional machine learning algorithms such as SVM may provide satisfac-
tory results in many precision agriculture studies, researchers should also consider using 
advanced deep learning algorithms that can utilize the increasing amount of data avail-
able and have better performance (Oikonomidis et al., 2022a, b; Kaya et al., 2019). For 
disease detection using drones deep learning algorithms, such as transformers, long short 
term memory (LSTM) and autoencoders, can be investigated for various problem scenarios. 
More research can also be done in detecting diseases that do not have visible symptoms.

This study has also identified some challenges and potential solutions for the challenges. 
For example, the processing time and training time were mentioned in some studies as 
potential challenges. Advanced data infrastructures and techniques such as distributed 
machine learning and hierarchical federated learning should be considered in future studies.
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Threats to validity

There are a number of threats to validity in relation to the conducted SLR, which include 
construct, internal, external and conclusion validity threats.

Construct validity refers to measuring to what degree the test measures what it claims, 
or purports, to be measuring. In other words, the SLR should be the right method for the 
goals of the study. Databases are a very effective source for literature searching, but they 
are highly susceptible to query phrasing. Minimal differences in a search query can result 
in major differences in the outcome of relevant literature. The databases also have different 
formats, therefore, the search method is slightly different. Some papers might have been 
missed due to the search criteria used, but the 38 primary studies helped to respond to all 
the research questions. Six widely used electronic databases have been covered, but there 
might be some papers that are not indexed by these databases. Many papers can be found 
using Google Scholar, but many of them are not peer-reviewed. As such, Google Scholar 
was excluded as a literature database in this research because the targets were only peer-
reviewed and high-quality studies.

The quality assessment could be vulnerable to subjective decisions. This threat has been 
minimized by following the standards for this procedure. The main objective of the qual-
ity assessment is to identify low-quality papers instead of assigning a precise quality score 
per paper. As such, while the assessment can be considered subjective, the overall strategy 
has generally been adopted in SLR studies. In addition to this, the extraction of data could 
be incomplete because of the fact that data is not available or missed in the papers. This is 
reduced by formulating a clear, unambiguous data extraction form. Since categories were 
widely used, there might be some risk of incorrect categorization. However, the impact 
of such misinterpretation should be minimal because of the large number of items in each 
category.

Internal validity is the extent to which a study establishes a trustworthy cause-and-effect 
relationship between a treatment and an outcome. In this SLR, all of the research ques-
tions are formulated to investigate the necessary elements for disease detection by drones 
in precision agriculture. Because of the fact that all of these elements are well-defined, the 
relationship between the questions and the research goal is satisfactory.

External validity is the extent to which the outcome of a study can be expected to apply 
to other settings. In other words, this validity refers to how generalizable the findings are. 
Because of the fact that algorithms can be applied to other areas without major modifica-
tions, it will be possible to use these for other (new) disease detection methods by drones. 
Since this research field is very active and many articles are published, results might be 
different in a new SLR study that includes recent papers. During this research, the aim has 
been to cover all the papers published so far. However, due to the formal review processes 
that took substantial time, new papers may have been published and high-quality primary 
studies might not have been included by the time the study is published.

The reproducibility of the SLR is measured by reliability. The procedure of Wright et al. 
(2007) was followed in this study. The processes of question design, search process, screen-
ing criteria and quality evaluation all comply to the standards. The results of the collected 
data were analyzed with tables and graphs to formulate objective conclusions.

In addition to these potential threats, emphasis should be given to two particular exclu-
sion criteria. One of them excludes review articles. Review articles were excluded because, 
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in SLR studies, only primary studies are included. The other excluded papers were those 
that did not present experimental results. That is because the answers to research questions 
require studies that have experimental results. If there is valuable information in papers that 
are either review papers or are not experimental studies, they might have been missed in this 
research. However, the main objective was to respond to the research questions defined in 
this research instead of presenting all the information discussed in the literature.

Conclusion

Results show that blight and wilt are the most widely studied disease types. More than 10 
disease types were covered by a single study. To have a better understanding of the use 
of drones for disease detection, the diseases were categorized into five categories and the 
results show that fungus accounts for 64% of the diseases for which drones were used. 
Virus, nematode and abiotic were studied only in 10% of the studies. This observations 
indicate that while researchers can perform new research for the less studied disease cat-
egories, practitioners can apply drones to detect fungus-related diseases because there is 
already substantial scientific evidence. Grape and watermelon have been widely studied in 
different studies. There are few studies on kiwi, squash, pear, lemon, onion and rice, which 
shows the potential of the utility of drones but further and in-depth research is needed. Most 
researchers apply drones for classification tasks. Most of the studies (58%) utilized field 
images and very few papers used leaf images (14%) or plant images (28%). Research on 
small-scale objects such as leaves and plants requires higher-resolution visual inspections 
and this might not be possible in some cases where the available equipment and sensors do 
not support very precise inspections. The most used algorithm is CNN probably because 
this algorithm has been the basis for complex deep learning-based models such as VGG16, 
GoogleNet and VGG-Net and because many researchers represented the underlying prob-
lem as a classification task. However, if the problem is represented in a different way rather 
than a classification task, the corresponding appropriate algorithm could be a different one.
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