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Abstract: Red palm weevil (RPW) is widely considered a key pest of palms, creating extensive
damages to the date palm trunk that inevitably leads to palm death if no pest eradication is done.
This study evaluates the potential of a remote sensing approach for the timely and reliable detection
of RPW infestation on the palm canopy. For two consecutive years, an experimental field with
infested and control palms was regularly monitored by an Unmanned Aerial Vehicle (UAV) carrying
RGB, multispectral, and thermal sensors. Simultaneously, detailed visual observations of the RPW
effects on the palms were made to assess the evolution of infestation from the initial stage until palm
death. A UAV-based image processing chain for nondestructive RPW detection was built based
on segmentation and vegetation index analysis techniques. These algorithms reveal the potential
of thermal data to detect RPW infestation. Maximum temperature values and standard deviations
within the palm crown revealed a significant (α = 0.05) difference between infested and non-infested
palms at a severe infestation stage but before any visual canopy symptoms were noticed. Furthermore,
this proof-of-concept study showed that the temporal monitoring of spectral vegetation index values
could contribute to the detection of infested palms before canopy symptoms are visible. The seasonal
significant (α = 0.05) increase of greenness index values, as observed in non-infested trees, could not
be observed in infested palms. These findings are of added value for steering management practices
and future related studies, but further validation of the results is needed. The workflow and resulting
maps are accessible through the Mapeo® visualization platform.

Keywords: date palm; red palm weevil; UAV; photogrammetry; segmentation; decision tree; remote
sensing; vegetation index

1. Introduction

Red palm weevil (RPW) is considered the most dangerous pest for palms worldwide;
it causes rapid palm death and has high economic and environmental consequences. The
pest originates in South East Asia and has rapidly extended its geographical and host range
within the last few decades. Despite tremendous efforts to stop its further proliferation, the
pest is spreading globally. Insufficient participation of farmers and other stakeholders, weak
quarantine enforcement, and difficult early detection are major obstacles to its successful
management and control [1,2].

RPW adults cause feeding damage to the leaves, but the larvae induce the most
destructive damage as they chew up the fibers inside the palm tree, resulting in boreholes
in the trunk. Since these damages occur inside the trunk, the first signs are hard to detect.
As the infestation progresses, the tree starts rotting from the inside, resulting in yellowing
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and wilting of the leaves. When these latter symptoms become visible, the palm tree is
already severely damaged and dies.

So far, the RPW detection relies on weevil traps and visual inspections by palm owners
themselves or, in some countries, by private or public organizations. The visual inspection
of each individual palm tree, in either public areas or commercial plantations, is very
laborious because it must be repeated at least every month to be meaningful. It is also
very costly, especially when the visual inspection is entrusted to private companies or
administrations. An accurate and cost-effective early detection technology could thus
contribute to a more efficient and successful RPW control and eradication program [3].

Therefore, various approaches for the detection of RPW infestations have been re-
cently studied and evaluated [4,5], including acoustic sensors [6–11], and sniffer dogs or
electronic noses [12–14]. However, these methods have shown their shortcomings: odor
sensing is neither accurate nor selective since it is impacted by other volatiles [15]. Noise
detection requires a sound probe to be inserted into the tree trunk, which is intrusive to the
plant growth and might create a nest for insects, including RPW. This latter problem was
mitigated by [15] using an optical fiber DAS. However, this solution is still very site-specific
and specifically meant to detect infestations in local nurseries or plantations.

Another main limitation in many of the studies that can be found in literature is the
absence or lack of precision as to the degree of the infestation and the correct recognition of
the symptoms. Until now, none of the above-mentioned technological techniques provided
the desired results for monitoring RPW at a large scale. Scientists are still making efforts
to discover some effective, efficient, and environmentally safe methods for RPW early
detection. If an infestation is discovered early, treatment efficacy is higher, but as long as
the heart of the palm is not yet damaged and the trunk is still stable, the palm can be treated
and will probably recover [16].

By reviewing the existing literature, it became clear that remote sensing is the preferred
method to use for continuous, proper monitoring of RPW over extensive areas. Further-
more, a complete set of contextual, structural, spatial, spectral, thermal, and temporal
information available from remote sensing is needed for successful detection. All this
should be supported with detailed and accurate ground observations.

Satellite and aerial-based sensors allow the identification of regions with high concen-
trations of palms and even individual palm trees over vast areas [17–22]. Yet, they often lack
the detail needed to detect subtle disease symptoms. Bannari et al. [23,24] did a preliminary
study to detect RPW-infested palm trees with very high resolution (30 cm) spaceborne
WorldView-3 imagery (not freely available). They concluded that chlorophyll-related spec-
tral indices offer a potentially viable and important alternative for discrimination and
mapping different levels of RPW stress. The study, however, lacks detail on the description
of the symptoms on which the different infestation levels were selected. It is, therefore,
hard to know to what degree they could detect infested trees before the symptoms were
clearly visible.

In addition to the optical domain, thermal cameras have also been used for years in
remote sensing studies to assess plant stress in agriculture (e.g., [25]). Starting from the
hypothesis that RPW larvae cut off the vascular system while feeding on the date palm
trunk tissues, in [16,26], the authors examined the possibility of generating quantitative
remote sensing products of RPW infection by manned airborne thermal imaging. They
concluded from their study that thermal RS is potentially a non-invasive tool for assessing
RPW infection in palm trees. However, they also noted the relatively high costs and
suggested testing this technique on lower-cost platforms. Available literature suggests that
baseline information on temperature profiles of RPW-infested date palms acquired from IR
cameras has the potential to mark the damage. However, this method is unreliable when
the surface and inside temperature do not differ much [5]. Furthermore, fixed cameras can
only gather information in a limited area.

The very high (cm) resolution of UAV-based images can provide detailed information
on the palm health status [21]. Zheng et al. [27] demonstrated the potential of a multi-class
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oil palm detection model (MOPAD) for individual oil palm tree detection and observation
of growing status (healthy, dead, mismanaged, smallish, and yellowish palms) from UAV
RGB images. They concluded that multispectral imagery would be even more appropriate
to detect diseases in palms.

Though spatially detailed multidate observations are rare, they can provide infor-
mation on the phenology and might significantly improve the accuracy and time of the
RPW detection throughout the season. Wood et al. [28] successfully identified plant-level
phenological differences (i.e., differences in growing season length and timing within vege-
tation functional groups) and demonstrated improved vegetation classification accuracy by
utilizing multi-flight UAV classification approaches.

Ecke et al. [29] reviewed 99 papers covering the last ten years of research on UAV-
based monitoring of forests threatened by biotic and abiotic stressors. Despite the many
advantages of UAVs, such as their flexibility, relatively low costs, and the possibility to fly
below the cloud cover, they also mentioned some shortcomings: (1) multitemporal and long-
term monitoring of forests is clearly underrepresented; (2) the rare use of hyperspectral and
LiDAR sensors must drastically increase; (3) complementary data from other RS sources are
not sufficiently being exploited; (4) a lack of standardized workflows poses a problem to
ensure data uniformity; (5) complex machine learning algorithms and workflows obscure
interpretability and hinder widespread adoption; (6) the data pipeline from acquisition to
final analysis often relies on commercial software at the expense of open-source tools.

As described above, many studies on the detection of RPW attacks in palms are per-
formed due to this pest’s economic and ornamental impact, but all with their shortcomings.
Based on these previous findings and the main gaps or limitations described in RPW- and
UAV-related publications and reviews, the objective of this research is to evaluate and
present a novel, objective, and user-friendly red palm weevil detection approach based on
RGB, multispectral, and thermal UAV monitoring combined with detailed in-situ observa-
tions. An automatic, standardized UAV processing workflow is developed and presented.
Our proposed approach, as such, addresses some of the defined shortcomings in UAV-
based forest disease studies, as stated by [29]. More specifically, it addresses multitemporal
monitoring, standardized workflow development, and the need for a detailed description
of observed field-based RPW symptoms throughout time. Spectral vegetation indices and
tree-based decision models are used to select features related to a RPW infestation.

Therefore, we believe our study is of interest to the UAV forest disease detection
community in terms of multitemporal disease monitoring and standardized algorithm
development and visualization. Furthermore, we hope to give better insights to the RPW
experts in the field. Once further validated, we expect this approach to help in better
steering palm management in rural and urban areas, leading to economic benefits for
countries worldwide. We demonstrate the potential of thermal UAV imagery and temporal
image analysis for RPW detection at a stage before symptoms at the crown level become
visible. Furthermore, we show that a temporal pattern in spectral characteristics exists in
non-infested palm trees and that deviations from this pattern are found in infested ones.
The presented approach can be utilized in regions with a high infestation probability. These
at-risk regions can be obtained from airborne or spaceborne studies, e.g., [17–22].

2. Materials and Methods
2.1. Study Area and Experimental Set-Up

An experimental plot set-up was outlined by Estación Phoenix (Phoenix Research
Station, or PRS) in Aspe, near the city of Elche in the province of Alicante, Spain, in a
semi-arid climate region. A total of 43 palms were planted, from which only 30 palm trees
remained for this experiment (Figure 1), to be monitored with RGB, MSP, and thermal
cameras mounted on a UAV. The other 13 trees died due to forced RPW infestations in a
preliminary trial (2019–2020).
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Figure 1. Overview of the experiment, with red circles referring to RPW-infested palm trees of the
Medjool variety; green circles referring to non-infested palms of the Medjool variety, and blue circles
referring to non-infested palm trees remaining from a previous experiment.

The trial under investigation (2020–2021) consisted of eighteen date palms (Phoenix
dactylifera), from which nine palms were infested (red, Figure 1) with RPW adults recently
caught in a network of traps around the town of Aspe. The other nine palms (green,
Figure 1) were kept pest-free with chemical treatments. The experimental setup was done
in a completely randomized way. The palms used for this experiment were clones of the
Medjool variety, known to be susceptible to RPW, and are therefore assumed to behave
similarly because they have the same genetics. At the start of the experiment, the palms
examined had a trunk height of 40 to 80 cm. From that size to 2–3 meters in height,
date palms are sensitive to RPW because they produce offshoots, known to be the first
entry point for RPW. The remaining petiole bases in the trunk’s lower part also constitute
oviposition sites.

2.2. Dataset

All the infested palms were inspected carefully, especially around the date of the UAV
flights, to observe the symptoms and assess the infestation progress. All the symptoms
were photographed. The palm trees were also regularly (Table 1) monitored by UAV (DJI-
Inspire 1 and DJI Matrice 210 RTKmodels). Image datasets were recorded with different
types of cameras (Table 2): an RGB Zenmuse FC350 camera with a focal length of 3.61 mm;
a Sequoia multispectral camera; a Micasense Red Edge-MX camera; and a FLIR Duo Pro R
Thermal camera (7.5–13.5 µm). May 2021 will be discarded from further research due to bad
weather leading to imagery of suboptimal quality. Flights were performed at altitudes of
20–25 m, resulting in image resolutions of around 1 cm for RGB and 2 cm for multispectral
and thermal imagery.



Remote Sens. 2023, 15, 1380 5 of 21

Table 1. Overview of the UAV flight campaigns and the acquired imagery.

Acquisition Date RGB Multispectral Thermal

29/9/2020
√ √

No sensor available

15/12/2020
√ √

No sensor available

11/05/2021 Bad weather Bad weather Bad weather

23/06/2021
√ √ √

22/07/2021
√ √ √

06/09/2021
√ √ √

Table 2. UAV sensor characteristics.

Sequoia

Lens Bandwidth Central Wavelength Resolution

Green 40 nm 550 nm 1280 × 960

Red 40 nm 660 nm 1280 × 960

Red-edge 10 nm 735 nm 1280 × 960

NIR 40 nm 790 nm 1280 × 960

RGB 4608 × 3456

Micasense RedEdge-MX

Lens Bandwidth Central Wavelength Resolution

Blue 20 nm 475 nm 1280 × 960

Green 20 nm 560 nm 1280 × 960

Red 10 nm 668 nm 1280 × 960

Red-edge 10 nm 717 nm 1280 × 960

NIR 40 nm 840 nm 1280 × 960

Zenmuse FC350

RGB 1280 × 960

FLIR Duo Pro R

Thermal 7.5–13.5 µm 640 × 512

2.3. Methodology

The first infestations took place in July 2020. Our method of infestation mimicked the
removal of offshoots, which is one of the main reasons for the local explosive dispersion of
the RPW in natural conditions. This management action creates wounds of sufficient size
that can lead to successful oviposition if the wound is not immediately protected [28]. We
therefore adopted the following method for infestation: (1) a small wound was realized in
the trunk, (2) adults were placed in this hole, and (3) a net was placed around the whole
trunk to prevent adults from escaping.

Initially, three adult females and two adult males were inserted in each wound on the
16th of July 2020. According to the estimated degree of infestation during the following
inspections, new infestations were realized to, as closely as possible, simulate the natural
evolution of infestation progress (Figure 2). This graph was realized by the PRS team (Ferry
and Gomez) based on knowledge and previous expertise.
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Figure 2. Rough estimation of the exponential reproduction and spreading (red arrow) of the RPW
females, based on the results obtained for one of the infested palms that presented the earliest
symptoms of deep infestation.

Re-infestations in the same wound or a new wound were necessary to have similar
exponential reproduction processes in all the palms. As only nine palms were available
for infestation, it was the only way to have as many palms as possible at more or less the
same degree of infestation at the time of each UAV flight. In addition, under the climatic
conditions, mortality was high during the winter period, requiring re-infestation in the
spring to obtain the desired infestation grades before the planned end of the trial. Therefore,
re-infestations were done in November 2020 and May and July 2021.

The collected UAV images were processed with the structure from motion (SfM)
photogrammetry technique through the Mapeo® processing platform (https://mapeo.vito.
be/, accessed on 15 November 2021). Mapeo® is an end-to-end image processing solution.
It provides an easy-to-use interface for ordering and visualizing UAV-based products,
extracting statistical information, and downloading the data products. The SfM workflow
consisted of: (1) tie-point extraction and matching (alignment), (2) geometric camera self-
calibration and refinement of the georeferencing (optimization), (3) dense point cloud
generation, (4) dense point cloud classification, (5) digital surface model (DSM) generation,
(6) digital terrain model (DTM) generation, and (7) ortho-mosaic generation based on the
DTM. More details can be found in [30,31]. The thermal imagery was calibrated based on
simultaneous pyrometer measurements of white and black targets that were placed in the
field. An empirical line approach [32] was applied to transform the digital number (DN)
values into meaningful temperature values.

The canopy height model (CHM) was calculated by extracting the DTM from the
DSM. Subsequently, the background was removed by excluding all pixels with CHM
values below 0.4 m for further analysis. As this action did not remove all background, the
individual trees were subsequently segmented and smoothed using the i.segment GRASS
GIS function called from R [33].

Vegetation indices (VI) are often used in remote sensing studies, as they minimize
the influence of distorting factors, such as ground reflectance, solar irradiance, the sun
elevation angle, and the atmosphere. In this study, the vegetation indices listed in Table 3
were explored. Moreover, zonal statistics (median, min, max, minority, majority, variety,
and variance) per palm segment were calculated.

https://mapeo.vito.be/
https://mapeo.vito.be/
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Table 3. List of calculated vegetation indices with formula and citations.

Acronym Indices Definition Author

RCC Red Chromatic Coordinate index R/(R + G + B) [34]

GCC Green Chromatic Coordinate index G/(R + G + B) [34]

BCC Blue Chromatic Coordinate index B/(R + G + B) [34]

ExG Excess green index 2G − B − R [34]

ExG2 Excess Green Index v2 (2G − B − R)/(R + G + B) [34]

ExR Excess Red Index (1.4R − G)/(R + G + B) [35]

ExGR Excess Green minus Excess Red ExG2 − ExR [35]

GRVI Green Red vegetation index (G − R)/(G + R) [36,37]

GBVI Green Blue Vegetation Index (G − B)/(G + B) [38]

BRVI Blue Red Vegetation Index (B − R)/(B + R) [38]

GR Simple red–green ratio G/R [39]

G_R Green-Red Difference G − R [38]

B_G Blue-Green Difference B − G [38]

VDVI Visible-band Difference Vegetation
Index (2G − R − B)/(2G + R + B) [40]

VARI Visible atmospherically resistant
index (G − R)/(G + R − B) [37]

MGRVI Modified green–red vegetation index (Gˆ2 − Rˆ2)/(Gˆ2 + Rˆ2) [41]

CIVE Colour Index Of Vegetation 0.441R − 0.881G + 0.385B + 18.787 [40]

VEG Vegetative Index G/(Rˆ(0.667)*Bˆ(0.334)) [42]

WI Woebbecke Index (G − B)/(R − G) [34]

CLG Green-band Chlorophyll Index (RE/G) − 1 [43]

CTVI Corrected Transformed Vegetation
Index

((NDVI + 0.5)/abs(NDVI +
0.5))*sqrt(abs(NDVI + 0.5)) [44]

EVI2 Two-band Enhanced Vegetation
Index G * (NIR − R)/(NIR + 2.4R +1) [45]

GEMI Global Environmental Monitoring
Index

(((NIRˆ2 − Rˆ2) * 2 + (NIR * 1.5) +
(R * 0.5) )/(NIR + R + 0.5)) * (1 −
((((NIRˆ2 − Rˆ2) * 2 + (NIR * 1.5) +
(R * 0.5) )/(NIR + R + 0.5)) * 0.25))
− ((R − 0.125)/(1 − R))

[46]

GNDVI Green Normalised Difference
Vegetation Index (NIR − G)/(NIR + G) [47]

KNDVI Kernel Normalised Difference
Vegetation Index tanh(((NIR − R)/(NIR + R)))ˆ2 [48]

MCARI Modified Chlorophyll Absorption
Ratio Index ((RE − R) − (RE − G))*(RE/R) [49]

MSAVI Modified Soil Adjusted Vegetation
Index

NIR + 0.5 − (0.5 * sqrt((2 * NIR +
1)ˆ2 − 8 * (NIR − (2 * R)))) [50]

MSAVI2 Modified Soil Adjusted Vegetation
Index 2

(2 * (NIR + 1) − sqrt((2 * NIR + 1)ˆ2
− 8 * (NIR − R)))/2 [50]

NDVI Normalised Difference Vegetation
Index (NIR − R)/(NIR + R) [51]

NDRE Normalised DifferenceRed Edge
Index (NIR − RE)/(NIR + RE) [52]

NDWI Normalised Difference Water Index (G − NIR)/(G + NIR) [53]
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Table 3. Cont.

Acronym Indices Definition Author

NRVI Normalised Ratio Vegetation Index (R/NIR − 1)/(R/NIR + 1) [54]

RVI Ratio Vegetation Index R/NIR

SR Simple Ratio Vegetation Index NIR/R [55]

TTVI Thiam’s Transformed Vegetation Index sqrt(abs((NIR − R)/(NIR + R) + 0.5)) [56]

TVI Transformed Vegetation Index sqrt((NIR − R)/(NIR + R) + 0.5) [57]

NGRDI Normalized Green-Red Difference
Index (G − R)/(G + R) [58]

GLI Green Leaf Index (2G − R − B)/(2G + R + B) [59]

CIVE Color index of vegetation extraction 0.441R − 0.81G + 0.385B + 18.7874 [60]

CCCI Canopy Chlorophyll Content INDE ((NIR − RE)/(NIR + RE))/((NIR −
R)/(NIR + R)) [52]

WDVI Weighted Difference Vegetation Index NIR − 2R

CIred Chlorophyll index (NIR/R)-1

A non-parametric statistical Wilcoxon Signed-Rank Test was applied to test whether
or not there was a significant difference between the non-infested and infested palm VI
population means [61]. Next to this, all obtained features of the palm segments were used
as input for a tree-based model (TBM) (rpart) [62]. Tree-based modeling is a non-parametric
supervised classification method that does not require the assumption of probability distri-
butions. Other advantages are that specific interactions can be detected without previous
inclusion in the model, non-homogeneity can be taken into account, mixed data types can
be used, and dimension reduction of high-dimensional datasets is facilitated [63]. The
TBM technique presented here could classify palm canopy features based on ‘recursive
partitioning’. Single tree models were pruned based on the complexity parameter to avoid
overfitting. This is the minimum improvement the model needs at each node and is based
on the cost complexity of the model. The most informative features were selected from
the tree. The rpart method uses Gini impurity to select splits when performing classifica-
tion. This Gini Impurity measures the disorder of a set of elements. It is calculated as the
probability of mislabeling an element, assuming the element is randomly labeled. This is
done according to the distribution of all the classes from the set [62]. An overall measure of
variable importance was calculated as the sum of the goodness of split measures for each
split for which it was the primary variable. Plus, the goodness (adjusted agreement) for all
splits in which it was a surrogate.

Since a palm canopy consists of leaves of different ages, from very young sprouting
leaves in the central part of the canopy to senescing leaves at the outer canopy, a concentric
ring approach was performed (Figure 3).

Rings of 0.5, 1, 1.5, 2, and 2.5 m diameter were created to address the different groups
of leaves in a palm canopy. The group of spear leaves (grey) has not yet opened. They are
growing vertically and have limited photosynthetic activity. In the high crown leaves (light
green) group, the leaves are opening and progressively inclining from the vertical to the
horizontal position. Their photosynthetic activity is gradually increasing. The leaves in
the group of mature leaves (darker green) are fully open and mature. They have reached
the maximum length and have high photosynthetic activity. The leaves belonging to the
low crown leaves (very dark green and yellow) inclined below the horizontal position are
senescing. Their photosynthetic activity is low, and they will eventually dry.

Based on the previously mentioned methodological steps, a dedicated RPW detection
image processing workflow (Figure 4) was built to ensure a standardized way of processing,
from raw image data to the final RS-derived detection method.
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The resulting maps were uploaded on a viewer platform, Mapeo©, to share the
findings with the end-user.

3. Results
3.1. Visual Inspection

During visual inspection, clear RPW infestation symptoms were observed at the
trunk level from 1.5 months after the first infestation, when chewed fiber and oozing
were observed in all the infested palms. In some palms, larvae, cocoons, adults, and dry
offshoots were detected, and the areas of infestation were distinct from the initial ones. A
typical strong smell could be perceived in some of the infested palms. During the following
inspections (Figures 5 and 6), these symptoms became more apparent. However, this
increasing severity of symptoms slowed down noticeably from October 2020 to March
2021. On the contrary, from May to September 2021, the symptoms increased very quickly,
and all the palms, except one (palm No. 37), collapsed. In September, the first infestation
symptoms at the canopy level (dry central leaves) appeared for four infested palms (No.
14, 29, 30, 38).
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the infested palms. 

The results of the infestation protocol were satisfactory, as eight out of nine of the 
infested palms were so deeply infested that the RPW killed them. Palm No.37 was very 
infested, although not enough to be killed, so we were able to sanitize it. 

Based on the results, we present a classification of the palms in six classes of infesta-
tion after the Start of Infestation—SoI: Low-L, Low to Medium—L-M, Medium-M, Me-
dium to Very Infested—M-VI, Very Infested—VI, Totally infested—VVI (Table 4). This 
classification is based on the observations at the moment of the inspection but also, retro-
spectively, on the results of the observations on the following date. 

Table 4. Classification of infested palm symptoms (Start of Infestation—SoI: Low-L, Low to Moder-
ate—L-M, Moderate-M, Moderate to Very Infested—M-VI, Very Infested—VI, Extremely or Very 
very infested—VVI). 

Palm n° 04/09/20 17/11/20 30/03/21 25/05/21 07/07/21 03/09/21 13/09/21 
14 SoI– L-M M M VI VI VVI 
16 SoI M M M-VI VI VI VVI 
26 SoI L-M L-M M M_VI VVI VVI 
28 SoI M M M-VI VI VI VVI 
29 SoI M M VI VVI VVI VVI 
30 SoI L-M L-M L-M VI VI VVI 
37 SoI L-M L-M M M-VI M-VI M-VI 
38 SoI-L L L L L M VI 
41 SoI M M M M-VI M VI 

All of the infested palms were dissected except palm No.37. The dissection results 
showed a large and diverse population of weevils (larvae of different stages, pupae, adults 
in cocoons, or free) (Figure 6). In all the cases, larvae reached the terminal bud. 

From the observations in this experiment and the known evolution of the infestation, 
as illustrated in Figure 2, the challenge to detect infestation signals early by remote sensing 
becomes even more clear. The intensity of the infestation signal, related to RPW-induced 
physiological changes in the case of remote sensing, will remain weak for many months. 

3.2. UAV Image Analysis 

Figure 5. (left) Two pictures from November 2020: Chewed fiber, oozing, presence of larvae and
adults two and half months after the first infestation. (right) Two pictures from May 2021: more
cocoons, more and deeper holes, more chewed fiber, noise produced by the larvae easy to detect.
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Figure 6. (left) Two pictures from the 21st of September: A lot of chewed fiber, big holes, many
cocoons and adults, visible symptoms at the crown level; (right) Two pictures of the dissection of the
infested palms.

The results of the infestation protocol were satisfactory, as eight out of nine of the
infested palms were so deeply infested that the RPW killed them. Palm No. 37 was very
infested, although not enough to be killed, so we were able to sanitize it.

Based on the results, we present a classification of the palms in six classes of infestation
after the Start of Infestation—SoI: Low-L, Low to Medium—L-M, Medium-M, Medium to
Very Infested—M-VI, Very Infested—VI, Totally infested—VVI (Table 4). This classification
is based on the observations at the moment of the inspection but also, retrospectively, on
the results of the observations on the following date.

All of the infested palms were dissected except palm No. 37. The dissection results
showed a large and diverse population of weevils (larvae of different stages, pupae, adults
in cocoons, or free) (Figure 6). In all the cases, larvae reached the terminal bud.
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Table 4. Classification of infested palm symptoms (Start of Infestation—SoI: Low-L, Low to
Moderate—L-M, Moderate-M, Moderate to Very Infested—M-VI, Very Infested—VI, Extremely
or Very very infested—VVI).

Palm n◦ 04/09/20 17/11/20 30/03/21 25/05/21 07/07/21 03/09/21 13/09/21

14 SoI– L-M M M VI VI VVI

16 SoI M M M-VI VI VI VVI

26 SoI L-M L-M M M_VI VVI VVI

28 SoI M M M-VI VI VI VVI

29 SoI M M VI VVI VVI VVI

30 SoI L-M L-M L-M VI VI VVI

37 SoI L-M L-M M M-VI M-VI M-VI

38 SoI-L L L L L M VI

41 SoI M M M M-VI M VI

From the observations in this experiment and the known evolution of the infestation,
as illustrated in Figure 2, the challenge to detect infestation signals early by remote sensing
becomes even more clear. The intensity of the infestation signal, related to RPW-induced
physiological changes in the case of remote sensing, will remain weak for many months.

3.2. UAV Image Analysis

RGB and multispectral-based vegetation indices were calculated, and the index values
per palm crown were extracted using the segmentation output.

As mentioned in Section 2, a first soil background masking was applied using a CHM
threshold of 0.2 m. An additional segmentation algorithm was applied to exclude the
remaining background pixels. The result of this segmentation step is shown in Figure 7
(left). In the central image of Figure 7, the extracted palm canopy NDRE values are shown,
ranging from low (red) to high (green). Our concentric ring approach is demonstrated in
the right image, where median values of the NDRE rings were calculated and displayed on
the same color scale (red = low, green = higher median NDRE values).
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Figure 7. (Left) Palm (No. 30) segmentation result based on CHM threshold of 0.4 m (06/09/2021);
(center) NDRE vegetation index calculated on the palm crown pixels; (right) mean NDRE
ring statistics.

To assess the seasonal behavior of palm tree VIs, we looked into all available UAV
data (from September 2020 to September 2021) and performed a multitemporal analysis on
the indices. When looking into the NDRE ring statistics, a significant difference between
non-infested and infested palm population means could be made (Wilcoxon Signed-Rank
Test, alpha = 0.05). The infested trees always appeared to have higher NDRE values for
each part of the canopy (shown only for the inner ring and the whole canopy in Figure 8).
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Figure 8. Boxplots of median NDRE ring values for all inner rings (left) and the whole canopy (right)
for September and December 2020, June, July, and September 2021 (red: infested, green: non-infested).
Outliers are indicated with little circles.

The difference between the infested and non-infested populations decreased toward
the end of the experiment. This is due to a steady increase in NDRE values of the inner
parts of the non-infested palm canopies (green) throughout the monitoring period. In
contrast, the NDRE values for the inner canopy parts of the infested trees (red) did not
show this trend (Figure 8). No significant differences (alpha = 0.05) were found between
the mean NDRE value populations of the infested palm trees throughout time. From
visual observations, rather, a decreasing trend throughout time was observed. For the
non-infested palm trees, a significant increase (alpha = 0.05) in NDRE mean values was
observed from September 2020 to September 2021, from June 2021 to September 2021, and
from July 2021 to September 2021.

For the whole canopy (Figure 8 at the right), the non-infested palms exhibit a seasonal
effect with overall increasing NDRE values towards the end of the season (a significant
increase from June until December 2021). This seasonal pattern is no longer observable in
the infested trees in 2021.

From Figure 9, where we zoomed in on one specific acquisition date, we observe
that NDRE values (and also the values of other greenness-related indices–not shown here)
decrease from the inner to the outer part of the palm canopy. This happens especially for
the infested trees (significant difference between population means of the inner and outer
rings). The standard deviations of the infested trees’ mean values are larger than those of
the non-infested palms.

Figure 10 shows these findings on an RGB orthophoto from the UAV mission per-
formed on the 6th of September 2021, overlaid with median NDRE ring values.
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Figure 10. RGB orthophoto (6 September 2021) overlaid with median NDRE ring values. A graduate
color scale from red to green was applied, with green circles corresponding to high NDRE and red
circles corresponding to low NDRE values. Dashed red boxes indicate infested palms.

In addition to the multispectral VIs, RGB VIs were also tested. The indices were used
as input in a tree-based model. The model selected the RCC index of July 2021 as the best
indicator to distinguish between infested and non-infested palm trees (Figure 11). If the
index value was equal to or higher than 0.38, the palm tree was expected to be non-infested.

Notwithstanding this, no significant difference (alpha = 0.05) was found when com-
paring the non-infested and infested RGB VIs populations with a Wilcoxon Signed Rank
Test. p-values ranged from 0.07 to 0.86. The best results were obtained for the RCC and
BCC indices for July 2021 and the WI index for September 2021, all with p-values of 0.07.
Although RCC was found to be a good indicator of RPW infestation in July 2021, it was not
in September 2021. Temporal analysis was not feasible due to the RGB data acquisitions,
for which no radiometric calibration panels were available.
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As the last step, we added thermal information to the canopy features list. Statistics
were calculated per segmented canopy. Applying a Wilcoxon Signed-Rank Test with
alpha = 0.05 resulted in significant differences between the mean of infested and non-
infested palm groups from June 2021 onwards (Table 5).

Table 5. Results of the Wilcoxon Signed-Rank Test (alpha = 0.05) applied on thermal canopy information.

Temperature
Statistics

June 21
p Value

July 21
p Value

September 21
p Value

Mean 0.377 0.055 0.017 *
Median 0.999 0.348 0.022 *

Standard deviation 0.042 * 0.016 * 0.010 *
Min 0.791 0.487 0.447
Max 0.033 * 0.002 * 0.001 *

Range 0.051 0.005 * 0.010 *
Minority 0.791 0.487 0.447
Majority 0.536 0.236 0.028 *
Variety 0.133 0.030 * 0.008 *

Variance 0.042 * 0.016 * 0.010 *
* significant p < 0.05.

Table 5 shows that the most relevant features were maximum temperature, standard
deviation, and variance to detect the infestation in an earlier stage. However, the infes-
tation had been severe since the beginning of the thermal data acquisitions (June 2021).
In September, all thermal features, except for minimum and minority, could differentiate
between infested and non-infested palms. Boxplots of the most promising features (maxi-
mum and variance/standard deviation) are shown in Figure 12 for the three groups under
investigation (“Non-infested palms remaining from previous trial”, “Non-infested Medjool
palms from this trial”, and “Infested Medjool palms from this trial”) for the successful
thermal UAV campaigns (June, July, and September 2021).

The processed imagery is accessible through the Mapeo® platform upon request of
the account details: www.mapeo.be accessed on 24 February 2023. A screenshot of the
visualization platform is shown in Figure 13.

www.mapeo.be


Remote Sens. 2023, 15, 1380 15 of 21

Remote Sens. 2023, 15, 1380 15 of 22 
 

 

Table 5. Results of the Wilcoxon Signed-Rank Test (alpha = 0.05) applied on thermal canopy infor-
mation. 

Temperature 
Statistics 

June 21 
p.Value 

July 21 
p.Value 

September 21 
p.Value 

Mean 0.377 0.055 0.017 * 
Median 0.999 0.348 0.022 * 

Standard deviation 0.042 * 0.016 * 0.010 * 
Min 0.791 0.487 0.447 
Max 0.033 * 0.002 * 0.001 * 

Range 0.051 0.005 * 0.010 * 
Minority 0.791 0.487 0.447 
Majority 0.536 0.236 0.028 * 
Variety 0.133 0.030 * 0.008 * 

Variance 0.042 * 0.016 * 0.010 * 
* significant p < 0.05. 

Table 5 shows that the most relevant features were maximum temperature, standard 
deviation, and variance to detect the infestation in an earlier stage. However, the infesta-
tion had been severe since the beginning of the thermal data acquisitions (June 2021). In 
September, all thermal features, except for minimum and minority, could differentiate 
between infested and non-infested palms. Boxplots of the most promising features (max-
imum and variance/standard deviation) are shown in Figure 12 for the three groups under 
investigation (“Non-infested palms remaining from previous trial”, “Non-infested Me-
djool palms from this trial”, and “Infested Medjool palms from this trial”) for the success-
ful thermal UAV campaigns (June, July, and September 2021). 

   

   Figure 12. Boxplots of (top) the maximum temperatures in the palm canopies (from left to right:
June, July, and September 2021) and (bottom) the variance of the temperature in the palm canopies
(from left to right: June, July, and September 2021) for non-infested (remaining palms of the first
experiment (green); Medjool variety (yellow)) and infested (Medjool variety (orange)) palms. Black
dots represent outliers.
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4. Discussion

In this study, a controlled experiment was set up to get a better insight into the
impact of RPW attacks on the spectral signature of the palm crown. Furthermore, we
wanted to assess how canopy-level spectral and thermal changes caused by RPW attacks
developed and evolved over the growing season. The field-based monitoring confirmed
that, similar to natural infestation processes, an exponential reproduction and spreading
of RPW females occurred. This was based only on symptoms observed at the trunk level.
No visual symptoms at the canopy level could be observed before September 2021, which
corresponded to the end of the experiment. This reflects the huge challenge of this research,
i.e., early detection of signals of infestations by remote sensing again. During the slow
RPW population growth period, few weevils will escape from the infested palms. Most
weevils will remain in the infested palm until serious damage occurs. At that moment, the
risk of successful and significant spreading of the pest occurs. Therefore, even if remote
sensing cannot detect an infestation at an early stage, it is still instrumental in detecting the
infestation before the final massive dispersal of the weevils.

From our results, it was clear that the concentric approach is recommended to study
the impact of RPW infestations. The spectral variety within a canopy is too high to interpret
observed spectral changes correctly. We advise following this approach for future studies
on palm canopies.

The RGB VIs did not show satisfactory results in discriminating between non-infested
and infested palm trees, with no significant differences between the means of the two
populations (non-infested and infested). This did not confirm the findings from the hyper-
spectral field-based study of Yones et al. [65], who concluded that specific waveband zones
in the RGB domain (514–664 nm) were sufficient to identify non-infested trees. According
to them, the spectral ranges (529–589 nm) and (693–695 nm) could be used to identify
moderately infested, and (720–724 nm) severely infested date palm trees.

The multispectral greenness VIs presented higher values for infested palm trees in
our study. This is inconsistent with what was expected. Greenness VI values are usually
higher for non-infested plants compared to diseased plants. This was also found by [23].
The authors stated that the Green Normalized Difference Vegetation Index (gNDVI) was
sensitive to palm tree bio-physiological agitation caused by RPW attacks, with significant
discrimination performance between non-infested, moderate, and severely infested trees.
We could not confirm this finding. However, looking into the temporal profile, the NDRE
values of the non-infested palm canopies in September were remarkably higher than those
from June and July, while the opposite tendency was observed for the infested palm trees.
Over the whole period, the overall NDRE values were higher for infested palm canopies
than for non-infested ones. The standard deviations of the infested trees were also larger
than those of the non-infested palms.

As high NDRE values correlate with better overall health status than low NDRE values,
it is not the health status of the palms that could explain the inverse and paradoxical result
that was obtained. In addition, it is doubtful that small damages created by the larvae in the
trunk only two months after infestation could cause a physiological change detectable at
the crown level. However, NDRE mean values comparison allows distinguishing the two
groups of palms from the beginning. Furthermore, at the last stage of infestation, drying of
the central leaves was clearly visible for half of the infested palms, when the central leaves
of the non-infested palms were perfectly green and consequently should have presented
notable higher NDRE values, and not the contrary, if these values were linked to infestation.
Although all the palms were of the same variety, of the same age, and cultivated in the same
conditions, they inevitably present developmental and morphology differences. Between
the two groups of palms, we observed that the medium crown diameter of the non-infested
ones was overall a bit smaller than the ones of the infested palms. This difference most
probably originated from a difference in the mean canopy density between the two groups
of palms. This could partially explain why the NDRE mean values of the non-infested
palms are lower than those of the infested ones (at least until the infested palms present
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visible symptoms of infestation at the crown level). In addition, the risk of residual soil
bias, due to partial overlapping of the soil by the leaves, is higher for the palms that present
a less dense canopy. This is true, especially, in the more external part of the crown but
even in the central ring zone (0.5 m radius from the center of the palm) for the palms with
a smaller crown. Concerning the canopy density and differentiated leaves development
between the two groups of palms, differences in the leaves’ geometrical features (especially
the angles that leaves and leaflets make with the vertical) could have also interfered with
the reflectance values. Finally, a parameter, partially linked to the previous ones, could
have also contributed meaningfully to the production of the paradoxical result regarding
NDRE values: the difference in the shadow bias between the two groups of palms created
by part of the leaves on the part of the other leaves of the same palm, especially the central
ones. The importance of the shadow problem, in particular in the central part of the crown,
is visible in the RGB images. For this parameter, the difference between the two groups of
palms is especially visible when the infested palms reach the last stage of infestation. We
could expect more shadow in non-infested palms with a denser canopy structure than in
infested ones. We would therefore recommend monitoring the structural changes of the
canopy due to RPW attacks in future studies. Furthermore, applying shadow masking
algorithms on the UAV imagery should be investigated. However, this is a very tough task
since removing shadow pixels without losing informative data is hard.

One important conclusion we can draw from our paradoxical result is that the natural
variability in the physical crown features between palms could produce reflectance and
VI differences. Consequently, that could mask the effect of RPW infestation and even lead
to erroneous conclusions if only a single-date image is available. Multispectral images
must be analyzed with care for the detection of RPW-infested date palms and require
testing complementary methods to eliminate the various biases resulting from the natural
heterogeneity in the crown’s physical characteristics.

Notwithstanding this, we could conclude that temporal multispectral monitoring
allows for RPW infestation detection, since no significant increase in greenness values
throughout time could be observed in the infested palms. This, however, requires mul-
tiple flights, making this approach more expensive and less operational-friendly than
originally aimed.

Although our experiment consisted of a limited number of palm samples, the thermal
UAV data did result in interesting insights into the RPW presence. It indicates that the
previous findings using manned aircraft imagery [26,66–68] can, to a certain extent, be
extrapolated to UAV-based thermal sensing. We could only make a good discrimination
between non-infested and infested palm groups based on mean thermal canopy values in a
well-advanced infestation stage. Before this stage, only maximum temperatures, variance,
and standard deviation of the thermal information made it possible to distinguish between
both populations. For this, it is of utmost importance that the segmentation process of the
palm canopy is accurate and eliminates all soil backgrounds. If the soil in the background
is still present, high maximum temperature values will correspond to soil pixels and result
in misleading results. The thermal results are, therefore, promising but should be validated
on larger datasets.

To summarize, a novel and user-friendly red palm weevil detection approach is
presented in this paper. An automatic processing workflow for RGB, multispectral, and
thermal UAV imagery was generated and validated with detailed in-situ observations.
Maximum canopy temperatures and temporal spectral monitoring showed the potential to
detect the presence of RPW before symptoms were visible at the canopy level. Additional
experiments, including regular field observations for validation, are needed to make final
conclusions. As mentioned earlier, our proposed approach may be of high importance in
terms of optimized management in rural and urban areas. It will lead to economic benefits
for countries around the world.
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5. Conclusions

In recent years, palm trees have increasingly been infested by red palm weevils.
To limit the palm trees’ loss and to control this pest, nondestructive detection of this
infestation is needed. Therefore, the main objective of this study was to investigate the
capacity of RGB, multispectral, and thermal UAV imagery to predict the presence of RPW
infestations. A dedicated processing workflow was set up with concentric canopy statistics
to limit the impact of the intrinsic heterogeneity inside the palm crown on the detection
results. The experimental results indicate that thermal imagery is the most valuable
information for RPW infestation prediction. This finding corresponds to the conclusions of
earlier studies [16,26,67,68], in which the authors concluded that RPW infestations cause a
significant increase in the internal temperature of a palm trunk compared with non-infested
palms. However, the internal temperature does not always correspond with external
crown temperatures, which makes RPW infestation detection based on UAV imagery more
challenging and the thermal effects less pronounced. Only maximum temperature and
standard deviations of the temperature within the crown revealed good discriminatory
performance between infested and non-infested palms from June onwards. Mean crown
temperatures were only informative at a progressed infestation stage.

These experimental results should be validated on larger datasets before more con-
clusive findings can be made. However, this study provides highly valuable information
concerning further research intending to develop an operational RPW infestation detec-
tion system.
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