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Abstract
Historical data on food safety monitoring often serve as an information source in
designing monitoring plans. However, such data are often unbalanced: a small frac-
tion of the dataset refers to food safety hazards that are present in high concentrations
(representing commodity batches with a high risk of being contaminated, the positives)
and a high fraction of the dataset refers to food safety hazards that are present in low
concentrations (representing commodity batches with a low risk of being contaminated,
the negatives). Such unbalanced datasets complicate modeling to predict the probabil-
ity of contamination of commodity batches. This study proposes a weighted Bayesian
network (WBN) classifier to improve the model prediction accuracy for the presence
of food and feed safety hazards using unbalanced monitoring data, specifically for the
presence of heavy metals in feed. Applying different weight values resulted in different
classification accuracies for each involved class; the optimal weight value was defined
as the value that yielded the most effective monitoring plan, that is, identifying the high-
est percentage of contaminated feed batches. Results showed that the Bayesian network
classifier resulted in a large difference between the classification accuracy of positive
samples (20%) and negative samples (99%). With the WBN approach, the classifica-
tion accuracy of positive samples and negative samples were both around 80%, and the
monitoring effectiveness increased from 31% to 80% for pre-set sample size of 3000.
Results of this study can be used to improve the effectiveness of monitoring various
food safety hazards in food and feed.
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1 INTRODUCTION

In order to protect animal and human health, the European
Union (EU) has set maximum legal limits (MLs) for the pres-
ence of certain food safety hazards in feed and food materials
and their derivatives. For instance, the MLs for chemical haz-
ards such as mycotoxins, heavy metals (HMs), and dioxins in
feed materials are specified in Directive 2002/32/EC (Euro-
pean Commission, 2002). Food safety monitoring is in place
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to make sure these MLs are met (Focker et al., 2018; van
Asselt et al., 2018). A monitoring plan prescribes how moni-
toring resources are allocated: which food and feed products
and which food safety hazards should be sampled and ana-
lyzed, and how many samples should be collected (Wang et
al., 2022). EU regulation 2017/625 recommends risk-based
monitoring, that is, allocating resources toward feed or food
batches and contaminants that pose a high risk for ani-
mal and/or human health. This risk-based approach entails
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monitoring those batches that have a high probability of being
contaminated. Risk-based monitoring could reduce the prob-
ability that contaminated food or feed will enter the food
chains and, consequently, avoids expensive recalls or harm
to animal or human health.

Feed batches with a high probability of contamination can
be identified using predictive models based on historical food
safety data (Kuhn & Johnson, 2013). However, historical
food safety monitoring data are often unbalanced, that is, the
majority of the analytical results refer to low concentrations
of the food safety hazards in food/feed products (e.g., below
their respective MLs or other thresholds, representing batches
with a low risk of being contaminated, the negatives) and the
minority of the analytical results refer to analytical results of
high concentrations of the food safety hazards (e.g., above
respective MLs or other thresholds, representing batches
with a high risk of being contaminated, the positives). Using
unbalanced historical data to set up future monitoring plans
through classification modeling may lead to a low classifi-
cation accuracy for the minority class (positives), and high
classification accuracy for the majority class (negatives).
This is particularly problematic when the aim of risk-based
monitoring is to focus on batches with a high probability of
contamination, in other words, when requiring also a high
classification accuracy of the minority class.

Previous studies have applied Bayesian network (BN)
modeling for the prediction of food safety contamination
in food, with food safety hazards present in high concen-
trations usually being the minority class (Liu et al., 2018;
Liu et al., 2021). They showed that the developed mod-
els can more accurately predict the samples with low-level
contamination than those with high-level contamination. Sev-
eral methods can be applied to deal with the unbalanced
nature of data to improve the prediction performance of
the model for the high-level contaminated samples, such
as thresholding (Sheng & Ling, 2006), weighting (Ting,
2002), adjusting prior probabilities (Weiss & Provost, 2001),
sampling1 (Chawla et al., 2002; Sheng & Ling, 2007), or cost-
sensitive learning (Johnson & Wichern, 2002). Some studies
have explored cost-sensitive BN (CSBN) to deal with unbal-
anced data (Akila & Srinivasulu Reddy, 2018; Jiang et al.,
2014; Nashnush & Vadera, 2017; Xu et al., 2018). How-
ever, these studies face the problem of trade-off between the
classification accuracy of the minority versus the majority
class. That is, an improvement of the classification accuracy
of the minority class leads to a reduction of the accuracy
of the majority class. Any of the abovementioned methods
can obtain a series of classification accuracies (by applying
different model parameters), but to date no study has been
conducted to find the optimal settings.

The aim of this study was to explore the use of weight-
added BN classifier to improve the model classification
accuracy in the context of unbalanced food safety monitor-

1 This terminology of sampling approach is different from the sampling for food safety
monitoring. Here, sampling refers to the approach to improve the balance across
minority class and majority class.

ing data. WBN models were applied to the case of historical
monitoring data related to the presence of HMs in feed, with
the monitoring effectiveness—the probability of identifying
the contaminated feed batches—as the criterion to select the
optimal weight.

2 MATERIALS AND METHODS

Historical data on sampling and analyses results for food
and feed batches can be used as an information source for
designing risk-based food safety monitoring plans. Such data
contain information on, for example, product category, prod-
uct name, product country of origin, hazard name (e.g.,
contaminant or pathogen), and the analyzed concentration
of the food safety hazard. Different batches have different
likelihoods of being contaminated (i.e., the hazard in the
batch is present in a concentration above a predefined thresh-
old), due to differences in origin, the hazard of interest,
processing procedures, weather conditions, and other possi-
ble reasons. Modeling can identify and analyze patterns in
such datasets to classify a batch as contaminated/positive or
uncontaminated/negative. Due to the unbalanced nature of
food safety monitoring data, a BN classifier was firstly used
in this study to make this classification, and then WBN was
applied to find a better balance between the positive classifi-
cation accuracy (Ap) and the negative classification accuracy
(An) (see Section 2.3). By improving the balance between
Ap and An, the monitoring effectiveness was improved (see
Section 2.4).

2.1 Data

A food safety monitoring dataset containing the analytical
results for the presence of HMs (e.g., arsenic, cadmium, lead,
and mercury) in animal feed batches (e.g., feed and feed addi-
tives) was retrieved from the official national control program
animal feeds (15,672 records) and private industry monitor-
ing (5804 records) in the Netherlands. The results span a
12-year period from January 1, 2005 to December 31, 2016
(21,476 records in total). Most of the monitoring data were
collected following Regulation (EC) No. 333/2007 (European
Commission, 2007). The monitoring records were retrieved
from the Quality of Agricultural Products (KAP) database2.

Each row (record) in the HM dataset represents the ana-
lytical result from one sample from a feed batch analyzed
for one HM. Each record covered the following informa-
tion: product name, product subgroup, hazard name, country
of origin, country of analysis, analysis method, determined
concentration, analysis lab, and respective legal limit (added
manually). The determined concentration of the HM in the
feed sample was compared to the respective legal maximum
level (ML), as laid down in Commission Regulation (EU)
2019/1869 amending to Directive 2002/32/EC, to represent

2 https://www.narcis.nl/research/RecordID/OND1304218/Language/en.
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WEIGHTED BAYESIAN NETWORK FOR THE CLASSIFICATION OF UNBALANCED FOOD SAFETY DATA 3

TA B L E 1 Variable names, descriptions, and labels of the heavy metal (HM) dataset

Nodes Descriptions Labels

Year Registration year [2005, 2006, …,2016]

Product name (Pn) Type of feed product [P1, P2, …,Pn]

Product subgroup (Ps) The feed product subgroup [Ps1, Ps2, …,Psn]

Hazard name (Hc) The particular heavy metal [H1, H2, …,H4]

Country of origin (Co) The country of origin of the feed product [Co1, Co2, …,Con]

Country of analysis (Ca) The country where the product was analyzed [Ca1, Ca2, …,Can]

Analysis method (Am) The analytical method applied [Am1, Am2, …,Amn]

Analysis lab (Al) Laboratory where analysis was conducted [Al1, Al2]

Legal limit (Ll) The maximum legal limit for the hazard—product [L1, L2, …,Ln]

Above or below ML Above or below the maximum legal limit [Positive, negative]

the compliance condition (positive/negative). In this case, one
record in the HM dataset was assumed to represent one feed
product batch. The analytical result was assumed to represent
(with 100% certainty) whether the batch was contaminated or
not. These records were assumed to represent the actual dis-
tribution of HMs in feed. The variables of the HM dataset,
together with their corresponding descriptions and labels, are
listed in Table 1. The HM dataset was highly unbalanced; it
included 138 positive records and 21,338 negative records (an
unbalanced ratio of 0.65%).

2.2 Introduction of Bayesian network and
weight-added Bayesian network

2.2.1 Bayesian network

BN is a powerful classification model that has been widely
used in the prediction of food safety hazards in food and feed
(C. Liu et al., 2018; N. Liu et al., 2021; Marvin & Bouzem-
brak, 2020; Marvin et al., 2020; Wang et al., 2022; Xu et al.,
2018 ). It is a probabilistic graphical model that consists of
two steps (Pearl, 1987): (i) learning the graphical structure
between the nodes/variables and linking them to represent
their relationships and (ii) learning the model parameters
such as the conditional probabilities to quantify the extent
of the relationships between the nodes/variables (Neapolitan,
2004). This study used the tree-augmented naive bayes (TAN)
structure learning algorithm (Friedman et al., 1997). Earlier
research demonstrated its promise for food safety monitoring
(Bouzembrak and van der Fels-Klerx, 2018). For apply-
ing TAN, conditional probabilities are calculated using the
expectation–maximization algorithm (Dempster et al., 1977).
The posterior probability for each class label is calculated as
the product of the prior probability and the conditional prob-
ability. Given a set of observations X1, …, Xn, with known
class labels, the BN model estimates the posterior probabili-
ties for each class label: P(C|X1, …, Xn) for any Xi. Then, a

posterior probability is calculated with the TAN algorithm as:

P (C|X1, … ,Xn) = P (C) × P(Xroot|C)
∏n

i=1
P
(
XI|C,Xparent

)
,

(1)
P(C|X1, …, Xn) represents the posterior probability of one

event belonging to class C. The sum of all posterior proba-
bilities of one event equals one. P(C|X1, …, Xn) is calculated
as the product of the prior probability P(C), the conditional
probability of the root variable P(Xroot|C), and the condi-
tional probability of all the attributes P(Xi|C, Xparent). The
classification result is calculated based on the posterior prob-
ability, meaning one sample is classified into the class label
with the highest posterior probability. Usually, the classifica-
tion accuracy for each class is unbalanced when analyzing
unbalanced data.

2.2.2 Weight-added Bayesian network

WBN classifier can balance the classification accuracy for
each class. The WBN classifier is designed by applying Bayes
Minimum Risk (BMR) theory to a BN classifier. BMR the-
ory assigns different weights to the posterior probabilities
obtained from the BN classifier, and thus changes the original
classification decision, such as changing Ci into Cj, to result
in a balanced classification accuracy (Ghosh et al., 2006).
BMR theory consists of the classification weight matrix, loss
function, and minimum risk classification.

The classification weight matrix (Elkan, 2001) includes
the assigned differential weight values for each classification
decision. The weight matrix is represented by a |C|*|C| rank
matrix, where |C| is the number of target class labels. The loss
occurs when the predicted class is different from the actual
class.

The loss function is defined as:

L (Ci, x) =
∑c

j=1
W

(
Ci,Cj

)
P(Cj|X1, … ,Xn), i = 1, … c, j = 1… .c,

(2)
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4 WANG ET AL.

where Ci and Cj represent classes i and j, and W (Ci, Cj)
represents the weight of classifying Cj into Ci. L(Ci, x) repre-
sents the classification loss when classifying one sample into
Ci. L(Ci, x) is calculated as the product of W(Ci, Cj) and the
posterior probability P(Cj| X1, …, Xn).

The classification decision determines to which class label
a sample should be assigned. The classification result is con-
sidered optimal when the classification losses are minimal
(Elkan, 2001; Juang et al., 1997). The classification formula
is defined as:

Class = argminL (Ci, x) , i = 1, … , c. (3)

The classification performance is evaluated using a con-
fusion matrix and the classification accuracy. A confusion
matrix compares the actual label with the predicted label
of the target class. The classification accuracy is calculated
based on the confusion matrix and describes the prediction
accuracy for each class.

2.2.3 Binary classification task

In food safety monitoring, classifying whether one feed/food
batch is contaminated/positive or uncontaminated/negative is
a binary classification task. For the sake of similarity, formula
(2) was reformulated into formula (4) and formula (3) into
formula (5) for the specific case of a binary task. Then, the
classification weight matrix is expressed as W (Cn, Cp), W
(Cn, Cn), W(Cp, Cn), and W(Cp, Cp), and the classification
losses as L(Cp, x) and L(Cn, x):

L
(
Cp, x

)
= W

(
Cp,Cn

)
P(Cn|X1, … ,Xn)

+W
(
Cp,Cp

)
P(Cp|X1, … ,Xn)

(Cn, x) = W
(
Cn,Cp

)
P(Cp|X1, … ,Xn)

+W (Cn,Cn) P(Cn|X1, … ,Xn)

, (4)

Class = argminL (Ci, x) , i = p, n. (5)

According to the BMR decision, if L(Cp, x)≥ L(Cn, x), the
sample is classified into class Cn, else Cp.

Applying the BMR decision to the BN model to develop
the WBN model could change the original classification deci-
sion, such that Cn changes into Cp, or Cp changes into
Cn. For example, when W (Cn, Cp), W (Cn, Cn), W(Cp,
Cn), and W(Cp, Cp) were set at, respectively, 100, 0, 1,
and 0, the posterior probability P(Cn | X1,…, Xn) and P(Cp
| X1,…, Xn) of one sample, calculated by the BN model,
was 0.9 and 0.1, respectively. If only the BN result was
used, the sample was classified as Cn. When applying WBN,
L(Cp, x) was calculated as 1 × 0.9 + 0 × 0.1 = 0.9, and
L(Cn, x) was calculated as 100 × 0.1 + 0 × 0.9 = 10;
because L(Cp, x) < L(Cn, x), the sample was classified as
Cp.

2.3 BN and WBN for food safety
monitoring

The BN model was constructed using the HM dataset to iden-
tify the compliance condition (positive/negative) of a feed
batch, meaning whether it presents a high or low risk of being
contaminated with the particular HM. Model input variables
were product name, product subgroup, hazard name, coun-
try of origin, country of analysis, analysis method, analysis
lab, and respective legal limits. The model output variable
was the compliance condition (positive/negative). Five-fold
cross-validation (a process when all data are randomly split
into k folds, in our case k = 5, and then the model is trained
on the k − 1 folds, while one fold is left to test a model)
was performed to present the overall performance of the
model, and one of the five-fold cross-validation results was
used as input for WBN model development. Since this study
uses unbalanced data and aims to improve the model perfor-
mance and the monitoring effectiveness, additional analysis
was undertaken, such as value of information analysis and
sensitivity analysis. The results of this additional analysis of
the Bayesian network were obtained using Hugin 8.9 soft-
ware (https://www.hugin.com/) and presented in Appendices
figure A2 and figure A3. Value of information aims to assess
the effect of a specific variable on the output variable node
(Cover & Thomas, 2006), which in this case is the HM
concentration being “above or below legal limit.” Sensitiv-
ity analysis aims to assess the effect of changing a specific
input variable on the change of an output variable (Castillo
et al., 1997). For example, if a reduction in the likelihood
of the causal factor attached to one feed product is assumed,
sensitivity analysis estimated the reduction in the probabil-
ity of concentration of HM in feed product above the legal
limit.

A WBN was constructed with the parameter setting of
weight value W (Cn, Cp), W (Cn, Cn), W(Cp, Cn), and W(Cp,
Cp) to balance the classification result from BN. Food safety
expert knowledge indicated that the weight of misclassifying
contaminated samples to the negative class was much higher
than the weight of misclassifying uncontaminated samples to
the positive class3. Then, W(Cp, Cn) = 1 and W(Cn, Cp) = 1,
10, …,1 × 107 were set for the sake of simplicity. In this
way, the ratio of W(Cp, Cn) to W(Cn, Cp) was changed by
adjusting the value of W(Cn, Cp). At the same time, we set
W(Cp, Cp)= 0 and W(Cn, Cn)= 0 because no loss occurred in
case of a correct classification. Based on the abovementioned
weight values and formulas (4) and (5), the classification
results were obtained for the actual contaminated feed/food
batch (Cp) classified as being contaminated (Cp) (true pos-
itive (TP), the actual uncontaminated batch (Cn) classified
as contaminated (Cp) (false positive [FP]), the actual uncon-
taminated batch classified (Cn) as uncontaminated (Cn) (true

3 Misclassifying contaminated samples to the negative class increases the chance of
human consumption of contaminated food; misclassifying uncontaminated samples to
the positive class increases the chance that more food/feed products are collected for
sampling and analysis, wasting resources in the case of risk-based monitoring.
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WEIGHTED BAYESIAN NETWORK FOR THE CLASSIFICATION OF UNBALANCED FOOD SAFETY DATA 5

negative [TN]), and the actual contaminated product (Cp)
classified as uncontaminated (Cn) (false negative [FN]).

The classification accuracy was calculated as:

AP = NTP ÷ (NTP + NFN) , (6)

An = NTN ÷ (NTN + NFP) , (7)

At = (NTP + NTN) ÷ (NTN + NFP + NTP + NFN) , (8)

where Ap represents the prediction accuracy of the positive
samples, An represents the prediction accuracy of the nega-
tive samples, and At represents the prediction accuracy of all
(positive and negative) samples. NTP, NTN, NFP, and NFN rep-
resent the number of samples classified as TP, TN, FP, and
FN. Given the different settings of W(Cn, Cp), the balance
between Ap and An was different.

2.4 Monitoring effectiveness as a criterion
for optimal balance

Given limited resources, a monitoring plan usually has a
pre-set number of samples (Ns) that can be collected and ana-
lyzed. Risk-based monitoring recommends collecting more
samples from batches with a higher likelihood of being con-
taminated (and fewer samples from batches with a lower
likelihood of being contaminated) to increase the probability
of detecting batches that are contaminated. The effective-
ness of the monitoring plan (Em) was defined as the ratio
between the number of identified contaminated batches rel-
ative to the total number of actual contaminated batches,
expressed as a percentage. Em varies both under different
Ns and according to the balance between Ap and An, and
thus can be used as a criterion to determine the optimal
weight.

The effectiveness of the monitoring plan (Em) was
expressed as:

Em =
Number of identified contaminated batches

Number of actual contaminated batches
.

When there is no pre-set Ns, the number of identified
contaminated batches is NTP. The number of actual contami-
nated batches is NTP+NFN. However, Ns is usually pre-set in
practice, implying only a small quantity of batches can be
sampled and analyzed. When the number of batches clas-
sified as contaminated (NTP+NFP) ≥ Ns, Ns samples are
collected from the NTP+NFP; when (NTP+NFP) < Ns, Ns
samples are collected from NTP+NFP and the remaining
ones (Ns − NTP − NFP) from NTN+NFN. The probabil-
ity of an actual contaminated batch (NTP) being chosen
from the “flagged” contaminated batches (NTP+NFP) is
Pp = NTP/(NTP+NFP); the probability of an actual contami-
nated batch being chosen from the predicted un-contaminated
batch is Pn = NFN/(NTN+NFN).
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6 WANG ET AL.

F I G U R E 1 The structure of the Bayesian network (BN) model and attributions of several model parameters for the prediction of the presence of heavy
metal in feed products (positive).

Then, we get:

Em =

⎧⎪⎨⎪⎩

NTP

NTP+NFN
×

Ns

NTP+NFP
,Np > Ns

(NTP + NFP) × PP +
[(Ns−(NTP+NFP))×Pn]

NTP+NFN
,Np < Ns

.

(9)
Ns was set as 50, 100, 5000, 1000, 2000, … 6000, an

approximate annual range in historical monitoring records.
The classification results (TP, TN, FP, and FN) and the bal-
anced classification accuracy between Ap and An, as well as
Em were calculated using formulas (4–9). The optimal weight
value was determined as the one that resulted in the highest
Em.

3 RESULTS

3.1 BN model result

The BN model was composed of (i) a set of 11 variables,
namely year, product name, product subgroup, product group,
hazard name, country of origin, country of analysis, analy-
sis method, analysis laboratory, the legal limit, and above or
below respective limits; (ii) a set of labels for each variable
(i.e., the node above or below ML has the following labels:
positive and negative); and (iii) a set of directed links between
the variables with an assigned conditional probability for
each variable. Figure 1 presents the BN model structure and
the attributions of several model parameters for the prediction
of the presence of HMs in feed products. The table list for
each variable reflects the variation (based on posterior prob-
ability) of model parameters given the evidence of “above or
below legal limit” is “positive.” For example, the yearly vari-
ation for positive records over the years was presented next to
the node “year.” Heavy metals present in feed at “above legal

limits” and “below legal limits” displayed simply random
variation but decreased in general over the years 2005–2016.
One reason was that fewer samples of feed were collected for
analyzing the presence of HMs. The yearly variation of HMs
present in feed at “above legal limits” and “below legal lim-
its” over the 12 years period are presented in Appendix figure
A1. Heavy metals present in feed at “above legal limits”
generally have low levels. However, when the plants (used
to process feed) grow in a strongly contaminated environ-
ment, the HM concentration in feed materials of plant origin
can increase due to adhering soil particles and/or uptake of
the plant (EFSA, 2004a, 2004b, 2005, 2008). A significant
increase of HMs present in feed at “above legal limits” was
seen in 2006 and 2013.

Table 2 shows the first few records of the classification
results derived from the BN classifier, including the observa-
tion information of the feed batch, the actual class of the feed
batch, the posterior probabilities of each class, and the pre-
dicted class of the feed batch. For instance, the first row shows
the information for a feed batch of rabbit food, belonging to
the pet food group, originating from France, and analyzed in
the Netherlands in the laboratory of WFSR for the presence
of Arsenic using the “Am1” analytical method in 2005. The
actual class was negative, meaning that the determined con-
centration of arsenic was below ML (ML for rabbit food is
2 mg/kg). The posterior probabilities (calculated by the BN
classifier) indicating the probability that the batch was clas-
sified as negative and positive, respectively, were 0.99 and
1.47 × 10−6. The batch was classified into the negative class
because the posterior probability of the feed batch being pos-
itive was higher than the posterior probability of it being
negative. The overall classification accuracy using five-fold
cross-validation was 0.99.

Table 3 presents the classification result using the BN clas-
sifier. The classification accuracies Ap (20%) and An (99%)
were highly unbalanced. In the confusion matrix, NTP, NFP,
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WEIGHTED BAYESIAN NETWORK FOR THE CLASSIFICATION OF UNBALANCED FOOD SAFETY DATA 7

TA B L E 3 Confusion matrix and classification accuracy of the classification results using the Bayesian network (BN) classifier

Classification result Number of samples and classification rate

Confusion matrix NTP 28

NFP 28

NTN 21,310

NFN
1 110

Classification accuracy Negative 99.87% (21,310/21,338)

Positive 20.29% (28/138)

Total 99.36% (21,200/21,338)

1The numbers of batches predicted into the four categories of TP, FP, TN, and FN.

TA B L E 4 Confusion matrix and classification accuracy of the classification result using the weighted Bayesian network (WBN) classifier

Classification result

Weight value

1 1 × 101 1 × 102 1 × 103 1 × 104 1 × 105 1 × 106 1 × 107

NTP 28 62 75 87 100 110 111 117

NFP 28 203 535 1001 1530 2298 3293 4473

Confusion matrix NTN 21,310 21,135 20,803 20,337 19,808 19,040 18,045 16,865

NFN 110 76 63 51 38 28 27 21

Negative 0.99 0.99 0.97 0.95 0.93 0.89 0.85 0.79

Classification accuracy Positive 0.2 0.45 0.54 0.63 0.72 0.8 0.8 0.85

% Total 0.99 0.99 0.97 0.95 0.93 0.89 0.85 0.79

NTN, and NFN were, respectively, 28, 110, 28, and 21,310,
meaning that only 28 positive batches were predicted cor-
rectly out of a total of 138 actual positive batches, and 21,310
negative batches were predicted correctly out of a total of
21,420 actual negative batches.

3.2 WBN model result

Table 4 shows the classification results using the WBN clas-
sifier. The WBN classifier provides more balance between Ap
and An compared to the BN classifier (Table 3). For example,
given the weight value (W(Cn, Cp)) of 1 × 105, the values
of NTP, NFP, NTN, and NFN were 110, 2298, 19,040, and 28,
respectively. The classification accuracy of 85% for Ap and of
79% for An (using WBN), compared to a classification accu-
racy of 20% for Ap and of 99% for An (using BN). Although
the balance of Ap and An improves using WBN, it is still hard
to identify the optimal weight. Therefore, we used the mon-
itoring effectiveness (Em) to determine the optimal weights
(see Section 4.3).

3.3 Monitoring effectiveness

Table 5 and Figure 2 present the Em under different pre-set
sample sizes (Ns). Em changed with different weight values
(and its corresponding classification accuracy of Ap and An).

In this case, the highest Em was used as the criterion to choose
the best balance between Ap and An. For instance, when the
Ns was pre-set at 3000, Em was the highest at 80% with a
weight value of 1 × 105. Thus, here the corresponding clas-
sification accuracy Ap of 80% and An of 89% (Table 4) were
the optimal values. For the average number of about 2000
samples per year in the historical monitoring dataset, the Em
varies from 0.28 to 0.73 (Table 5).

4 DISCUSSION

In our study, we used the WBN classifier to improve the
balance between the positive and negative classification accu-
racy when using unbalanced food safety data and to find the
criterion to determine the best balance. We demonstrated this
approach for the case of monitoring HMs in animal feeds,
where we explored the use of the monitoring effectiveness to
determine the optimal balance between the negative and posi-
tive classification accuracy. To the best of our knowledge, this
is the first study that explored choosing the best balance using
monitoring effectiveness as the criterion.

Some studies apply techniques prior to (e.g., sampling)
or after (e.g., thresholding) an existing total accuracy-based
classifier to deal with unbalanced data, to get a more balanced
classification accuracy for each class (Ling, 2006 ; Sheng &
Ting, 2002). Our study applied the BMR method after the
existing accuracy-based BN classifier which is in line with
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8 WANG ET AL.

F I G U R E 2 Monitoring effectiveness of the weighted Bayesian network (WBN) classifier using different weight values and pre-defined sample sizes.

previous methods. BMR allows for cost-sensitive learning,
as it considers the misclassification cost by adding weight to
each classification decision. Some studies have shown that
the CSBN performs better than normal BN (Jiang et al.,
2014; Nashnush & Vadera, 2017; Xu et al., 2018). These
studies evaluated the model performance and the impact of
weight values in terms of misclassification cost and classi-
fication accuracy. Our study results are consistent with the
findings of these studies. The applied WBN highly improved
the modeling classification accuracy as compared to BN.
Xu et al. (2018) compared the CSBN model with BN, and
the Synthetic Minority Over-sampling Technique (SMOTE)
sampling method. Their results showed that the CSBN model
performed the best. Nashnush and Vadera (2017) and Jiang
et al. (2014) compared the CSBN classifier to the original BN
classifier on more than 30 datasets, showing that the perfor-
mance of CSBN classifier is indeed superior. These studies
showed that it is possible to balance the classification accu-
racy for each class, but did not investigate how to choose
the optimal weight. Compared to the abovementioned studies,
our study first confirmed that the WBN could result in a more
balanced prediction accuracy and, second, it explored the
criterion (the highest monitoring effectiveness) for choosing
the optimal weight. Using another method such as thresh-
olding can achieve similar results. In this study, we provide
the WBN method, instead of thresholding, because (1) WBN
works for binary classification and multi-classification cases
as we provided in the method section using formula (1–5).
The threshold method works easily for binary classification
cases but not for multi-classification cases. (2) There is no
clear principle for threshold selection using the thresholding
method, but WBN could use expert knowledge to assess the
loss of misclassification for each class and thus set the weight
for each class.

In our study, we used the structure of the TAN Bayesian
network (Friedman et al., 1997) in which the class vari-
able has no parents and each attribute has as parents the
class variable and at most one other attribute. Thus, each
attribute can have one augmenting edge pointing to it. Stud-
ies in food safety domine (Marvin et al., 2016 ;Wang et al.,
Wang et al., 2022) and other domains used a similar struc-
ture of TAN (Jayech & Mahjoub, 2012; Madden, 2009). This
TAN structure was learned based on a data-driven approach
which captured the directed probabilistic relationship (con-
ditional probability tables) and not the causal relationship.
TAN differs from a causal BN, which captures the causal rela-
tionship between attributes and specifies what happens under
any variable intervention. The causal BN structure could be
built using expert judgment to decide the causal relationships
between attributes and replace the conditional probability for
the variables with a new table. Both approaches of building
BN structures have their limitations: (1) expert knowledge
elicitation is time-consuming and relies on experts having
knowledge of the full domain and (2) a data-driven approach
often leads to inefficiencies given small datasets (Flores
et al., 2011). We compared the model performance of these
two structures (data driven vs. expert based, here the expert
knowledge means the causal relationships were built based
on the authors’ knowledge), and the model performance was
almost the same. This may be because the current dataset
was large enough to derive the causal relationships between
attributes. However, using export knowledge to build the
structure is an advantage of BN compared to other machine
learning (ML) methods, especially when a “black swan” issue
could happen (i.e., extreme and relatively unknown circum-
stances) and no related data are available in the context of
food safety monitoring. For example, the conflict between
Russia and Ukraine, which started in early 2022, resulted in
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disturbances in the agro-food supply chains and severe dam-
age to farming operations in these regions, thus changing
the availability of feed commodities, and patterns of trade.
Therefore, it is highly recommended to incorporate expert
knowledge as new information into a data-driven monitor-
ing plan, especially under extreme and relatively unknown
circumstances. What is more, due to very limited “posi-
tive records,” our study focused on dealing with unbalanced
data to improve the model performance and the monitoring
effectiveness, and using extra data (either simulated data or
collected data) to test the model performance was not tak-
ing into account in our study. Further research could explore
the predictive accuracy of the method with a simulated power
analysis, by hypothesizing a change in the contamination rate
for the next year. Using new data when available to sequen-
tial update the model (maybe once per year) is recommended.
The periodic updating could allow quicker detection of the
change in the data and keep the model parameters up to date.
Our proposed monitoring plan focuses on collecting samples
from batches with a high likelihood of being contaminated,
assuming that the sample collection and analyses allow detec-
tion of batch contamination (when present) with certainty.
Besides the performance of the analytical method, detecting a
contamination also depends on the distribution of the hazard
in the batch. The likelihood of sampling a contaminated spot
in the batch is higher with homogenously distributed food
safety hazards such as HMs, but much lower for heteroge-
neously distributed food safety hazards such as mycotoxins.
Bouzembrak and van der Fels-Klerx (2018) investigated
various sampling strategies and showed that the detection
probability was affected by the numbers of collected samples,
the contamination level, and the sampling strategy (simple
random sampling, stratified random sampling, and systematic
sampling). Therefore, in the design of a complete sampling
plan for food safety monitoring, it is important to combine
research insights on the identification of high-risk batches
and on the sampling strategy, especially for heterogeneously
distributed food safety hazards (such as mycotoxins).

In addition to food safety monitoring data, the approach
explored in our study can be applied in other classifica-
tion tasks to deal with unbalanced data in different contexts,
for example, using disease diagnosis data or fraud detec-
tion data. Moreover, our study provided a methodology of
finding the criterion for determining the optimal weight val-
ues. This methodology can provide insights for researchers
in other research fields to consider the practical criterion for
determining an optimal balance.

5 CONCLUSION

This study explored the use of a WBN classifier for balanc-
ing the classification accuracy of each class in the context of
unbalanced food safety monitoring data. In our specific case
study, based on historical data on HMs in feed, the optimal
weight for the modified BN classifier was set as the value
that maximized the monitoring effectiveness. Results showed
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10 WANG ET AL.

the WBN resulted in a better balance between the positive and
negative classification accuracy (both around 80%) compared
to the BN classifier (positive classification accuracy of 20%
and negative classification accuracy of 99%). The approach
proposed in this study can also be used to increase the mon-
itoring effectiveness for other hazards in food, animals, or
plants.
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A P P E N D I X
Figure A1, Figure A2, Figure A3

F I G U R E A 1 The yearly variation of heavy metals presented in feed “above legal limit” (left) and “below legal limit” (right) over the 12-year period. X
axis represents the years, and Y axis represents the count of records.

F I G U R E A 2 Value of information of parameters. The variables product name (0.01) was identified as having the greatest influence on the results
(concentration of heavy metal [HM] in feed product above the legal limit) of the model.
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F I G U R E A 3 An example of the sensitivity analysis related to the parameter “grains” of the variable “product group” that affects the results
(concentration of heavy metal [HM] in feed product being above the legal limit). If a reduction in the likelihood of the causal factor attached to the parameter
grain is assumed, no reduction in the probability of the concentration of HM in the feed product of being above the legal limit was observed.
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