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Abstract
We investigate the spillover effects in farmers’ adoption decisions of a novel
pesticide-free wheat production system. To this end, we exploit the variability
and asymmetry in the social ties among neighboring farmers. We find evidence
of spillover effects in farmers’ adoption decisions as well as in farm and farmer
characteristics. Our results further highlight the importance of accounting for
potentially heterogeneous social ties in farmer networks beyond pure measures
of spatial proximity: spillover effects are only robust once we account for the
strength of social ties through farmers’ stated tendency to consult peers on agri-
cultural decisions. Our findings highlight the relevance of peer influence in the
diffusion of sustainable agriculture practices even in contexts of well-functioned
institutions and high interest in environmental protection such as European
agriculture. We discuss implications for the design of policies and programs
for sustainable agriculture, which are currently in the center of attention in
agricultural policymaking.
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1 INTRODUCTION

Reducing the environmental and human health impact of
agriculture without compromising food supply is a major
challenge for the agricultural sector. Establishing sustain-
able pest management practices is at the heart of this
challenge, with ramifications for food security and sustain-
ability of agriculture. Innovative adaptations in the agricul-
tural systems featuring reductions of harmful input play an
important role in agricultural productivity and sustainabil-
ity (OECD, 2013; Tilman et al., 2011). Farmers’ reluctance in

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
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switching to new agricultural practices imposes additional
challenges for the adaptations to take effect (Le Coent
et al., 2021). Understanding the mechanisms for farm-
ers’ adoption decisions is, therefore, central for large-scale
diffusion of sustainable agricultural systems.
In this article, we investigate farmer’s uptake decisions

in a novel pesticide-free, but non-organic, wheat pro-
duction system. It is the first large-scale pesticide-free
production program in Europe, breaking new grounds in
shifting agricultural production systems towards being
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more environmentally sustainable. In this production
system, farmers cannot use synthetic pesticides in wheat
production, but can still make use of synthetic fertilizer
and are not restricted in pesticide use in other parts of the
crop rotation (Möhring & Finger, 2022). Thus, it entails
substantially fewer adoption barriers than organic farm-
ing, and bears high potential for large-scale sustainable
intensification of agriculture (Finger & Möhring, 2022).
The relevance of such pesticide-free but non-organic
production systems is of increasing relevance in Europe
(e.g., Jacquet et al., 2022). Meanwhile, its novelty brings
about high levels of uncertainty in production, invest-
ment, institution, and marketing. In this setting, farmer
networks, in particular exchange of information with
peers, can be especially effective in reducing uncertainty
and establishing innovative pesticide-free production
systems, since peer influence has been shown to play an
important role in farmers’ adoption of other types of agri-
cultural practices (e.g., Bandiera & Rasul, 2006; Conley &
Udry, 2010; Moser & Barrett, 2006). Yet, the relationship
between peer influence and individual decision-making
in the context of input-reducing adaptations in agriculture
has not yet been fully understood (e.g., Yoder et al., 2019).
Farmers’ actions and characteristics create spillover

effects in the diffusion of innovations on their peers.
Spillover effects in peer farmers’ actions imply multiplier
effects, such that the impact of an intervention can be
extended beyond the target group via social interactions
(Moffitt, 2001). In the context of agricultural production,
spillover effects in farmers’ characteristics can also be of
interest to policymakers and stakeholders such as industry
and non-governmental agencies. This especially applies to
characteristics that facilitate or impede farmers’ adoption,
for instance, peer farmers’ relevant experience, knowl-
edge, and/or access to necessary machinery. Presence of
spillover effects in these characteristics may inform indus-
try and policymakers in terms of effective provision of
infrastructure to facilitate adoption. In the text that fol-
lows, we refer to spillover effects in farmers’ actions as
“peer effects” (i.e., a farmer’s adoption decision is influ-
enced by their peers’ actions), and spillover effects in farm
and farmer characteristics as “contextual effects” (i.e., a
farmer’s adoption decision is influenced by peers’ char-
acteristics such as experience, knowledge, and access to
machinery), following terms defined in Manski (1993).1

1We describe spillover effects with the terminology in the peer effects lit-
erature following studies on farmers’ adoption decisions of agricultural
practices (e.g., Di Falco et al., 2020; Krishnan& Patnam, 2014; Sampson&
Perry, 2019). In the spatial econometrics literature (with peers often solely
defined by spatial locations), “peer effects” are equivalent to the effects
of the spatial lag of the dependent variable when the social matrix has
zero-diagonal, and “contextual effects” are equivalent to the effects of the
spatial lag of the independent variables.

In the context of novel pesticide-free, but non-organic
production systems, these spillover effects are so far
undocumented in the literature (e.g., Jacquet et al., 2022).
We here aim to address this gap and investigate the

spillover effects in farmers’ adoption decisions of pesticide-
free wheat production system, especially exploiting the
variability and asymmetry in the social ties among neigh-
boring farmers. The focus on pesticide-free production
systems particularly contributes to adoption of emerging
practices and efforts to reduce or remove harmful inputs
in agricultural production. The challenges in designing
pesticide-free production programs have recently received
substantial attention from the research community (ERA,
2020; PPR, 2021; B. Zimmermann et al., 2021), as well as
policymakers in the ongoing policy debates in Europe on
reducing the environmental and human health footprints
of plant protection, for example, as part of the New Green
Deal of the European Union (Möhring et al., 2020). Recent
literature has highlighted the importance of the social
aspects of farmers’ decisions to adopt sustainable practices
(Kuhfuss et al., 2016; Läpple et al., 2017; Villamayor-Tomas
et al., 2019), in particular, the mechanisms for the social
aspects to influence farmers’ decision-making still lacks
attention (Yoder et al., 2019). Our study furthers the under-
standing in how far the adoption decisions, experience,
knowledge, and machinery from peer farmers could serve
as pathways in program and policy designs to increase
adoption of pesticide-free production systems. Due to
the growing importance of such production systems, we
moreover expect our results to lay the ground for the
design of pesticide-free production programs in other
countries and crops.
Furthermore, our study adds to the literature on the role

of social interactions in the diffusion process of innova-
tive agricultural practices. In particular, in addressing the
challenges in defining and quantifying information links
in peer networks, we combine spatially defined farmer
network with farmers’ tendency to consult peers on agri-
cultural decisions. This approach allows us to exploit
additional variability and asymmetry in information links
(and therefore strength of social ties) within a spatial net-
work, which contributes to the relatively small literature
that combines information exchange among farmers and
spatial effects in understanding technology adoption and
diffusion (e.g., Genius et al., 2014).
Our analyses are based on survey data from 1029 wheat

growers eligible to participate in the large-scale pesticide-
free production program in Switzerland, a country with
strong institutional support, well-functioning extension
services, and farmerswith a high average level of education
and relatively high environmental awareness. Our results
confirm the importance of accounting for varying informa-
tion linkswithin farmer networks,which distinguishes our
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study from studies that rely only on spatial proximity in
addressing the role of social interactions in the adoption of
agricultural innovations (e.g., Krishnan & Patnam, 2014;
Sampson & Perry, 2019; Ward & Pede, 2015).
The remainder of this article is structured as follows:

Section 2 provides background of the pesticide-free wheat
production system; Section 3 introduces the conceptual
background for our analysis; Section 4 presents the empiri-
cal strategy; Section 5 describes the data; Section 6 presents
the results, followed by discussions; Section 7 concludes.

2 BACKGROUND ON PESTICIDE-FREE
WHEAT PRODUCTION

We focus on farmers’ adoption of a novel pesticide-free
but non-organic wheat production standard in Switzer-
land. It is the first program of its kind and is expected
to lead to a large-scale reduction of pesticide risks in
Switzerland, paving the way for pesticide-free production
in other crops and countries. The program was first intro-
duced as a pilot in 2018/19 and is open to all farmers since
2019/20. Farmers substitute pesticide reliance using, for
example, (naturally bred) resistant varieties, mechanical
weed control, crop rotations and other agronomic mea-
sures. In contrast to requirements in organic farming, the
pesticide-free wheat program neither restricts the use of
artificial fertilizer, nor does it restrict pesticide use in the
rest of the crop rotation (see also Böcker et al., 2019; Fin-
ger & Möhring, 2022; Möhring & Finger, 2022; for further
details). Due to these less stringent requirements, aver-
age expected crop yields in pesticide-free production (5.2
t/ha) are higher than in organic production (4.4 t/ha), but
lower than in conventional production (7 t/ha) (Möhring
& Finger, 2022).
The pesticide-free production system builds on an exist-

ing low-input wheat production scheme, which requires
farmers to not use any fungicides, growth regulators and
insecticides, though herbicide and seed treatment are still
allowed (see, e.g., Finger & El Benni, 2013). To switch to
the novel pesticide-free production, farmers need to addi-
tionally substitute all herbicides and seed treatment, that
is, operate fully without synthetic pesticides in wheat pro-
duction. In this new production system, pesticides are
substituted, among others, by adjustments in crop rota-
tions, the use of naturally bred resistant varieties, and
mechanical weed control. These requirements might lead
to lower yields in pesticide-free production and intro-
duce uncertainty to farmers who have limited information
on and experience in such a novel production system.
As a compensation, participating farmers receive addi-
tional direct payments andpricemarkups for pesticide-free
production on top of the existing low-input production

scheme (see also Möhring & Finger, 2022, for details). Fur-
ther supporting the program, the biggest Swiss retailer
Migros announced to only sell bread from “pesticide-free”
wheat by 2023.2 On average, the direct payments combined
with the pricemarkup are expected to offset the yield losses
and additional costs associated with the new production
system (Böcker et al., 2019).
The development of pesticide-free production was

fueled by strong societal and political debates around
pesticides in Switzerland in recent years (Finger, 2021).
Moreover, pesticide-free production is specifically in the
focus of European agricultural policymaking as a promis-
ing pathway to reach policy targets on pesticide reduction
(e.g. the “Proteger et cultivar autrement” program in
France (Jacquet et al., 2022; PPR, 2021).
To understand the patterns of farmers’ adoption deci-

sions, Möhring and Finger (2022) provide, based on the
here used survey, a descriptive analysis and a detailed dis-
cussion of economic costs and benefits of the program.
Findings in the study lay the foundation of understanding
the mechanisms that drive individual farmer’s decisions
to adopt pesticide-free production. However, the underly-
ing mechanisms of adoption, that is, how to best address
farmers’ expectations of and access to pesticide substitutes,
remain unclear. Our study complements the existing study
by investigating farmer networks as an important potential
driver of adoption of pesticide-free production.

3 CONCEPTUAL BACKGROUND

Information on uptake of pesticide-free production sys-
tems is limited, due to the novelty of these systems on
a large scale in Europe. However, encouraging farmers
to adopt more environmentally sustainable production
systems or participate in agri-environmental schemes via
monetary compensations has been a common practice in
Europe (see A. Zimmermann & Britz, 2016 for a review).
Despite a long history of agri-environmental schemes,
well-functioning agricultural extension services, and
a general interest in environmental protection among
farmers, participation in these schemes in Europe has
been limited (Tyllianakis &Martin-Ortega, 2021). Previous
literature has investigated a number of factors associated
with farmers’ adoption decisions in the European setting.
While the determinants of adoption depend on the produc-
tion system or agri-environmental measure (Knowler &
Bradshaw, 2007), several factors appear to play a role

2 This would imply that until 2023 more than 20% of Swiss wheat produc-
tion will have to be under this production scheme. In 2022 this share is
at ca. 10%. See Böcker et al. (2019) and Möhring and Finger (2021) for a
detailed overview of both production systems.
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YANBING et al. 259

in farmers’ adoption decisions. At the individual or
farm level, farm and farmer characteristics such as farm
size, agronomic conditions, off-farm income, and age,
and behavioral factors such as environmental and risk
attitudes, contribute to farmers’ decision-making (e.g.,
Dessart et al., 2019; Läpple & Kelley, 2015; Marton &
Storm, 2021; Schmidtner et al., 2012). Recent research has
also highlighted the relevance of social norms arisen from
social interactions in shaping farmers’ decision-making
(Dessart et al., 2019; Yoder et al., 2019). In particular, social
interactions can serve as an important channel for the dif-
fusion of agricultural innovations (Bandiera&Rasul, 2006;
Foster & Rosenzweig, 1995). Several studies provide qual-
itative and quantitative evidence that social interactions
may contribute to both positive and negative spillover of
adopting environmentally sustainable agricultural produc-
tion in Europe (Bakker et al., 2021; Läpple & Kelley, 2013,
2015; Marton & Storm, 2021). Yet overall, the social aspect
of farmers’ decision-making regarding environmentally
sustainable practice still requires attention, in particular
on the mechanisms that the social aspects influence
farmer behavior (Läpple et al., 2017; Yoder et al., 2019).
To illustrate how social interactions could influence

farmers’ adoption of the pesticide-free wheat production
system, we build on the conceptual framework inMöhring
and Finger (2022) and discuss how spillover effects could
arise from different elements of the framework. Möhring
and Finger (2022) propose that farmer 𝑖 maximizes their
expected utility defined by

max
𝐷𝑖𝑡

𝐸
[
𝑈
(
𝜋𝑖𝑡

(
𝐷𝑖𝑡, 𝑋𝑖𝑡, 𝐸𝑛𝑣𝑖𝑡, 𝜀

𝐷
𝑖𝑡

)
, 𝑃𝐸𝑖𝑡

)]
(1)

𝑈 is the von-Neumann-Morgenstern utility function of
the farmer. 𝜋𝑖𝑡(𝐷𝑖𝑡, 𝑋𝑖𝑡, 𝐸𝑛𝑣𝑖𝑡, 𝜀𝐷𝑖𝑡 ) is the profit function,
where 𝐷𝑖𝑡 denotes the farmer’s adoption decision on the
pesticide-free wheat production system, 𝑋𝑖𝑡 contains a
set of farm and farmer characteristics related to farm
profit, 𝐸𝑛𝑣𝑖𝑡 denotes the farm’s environmental conditions,
which include soil conditions, pest pressure, and weather
conditions, and 𝜀𝐷

𝑖𝑡
represents uncertainty in production

and depends on the production system (pesticide-free or
conventional). 𝑃𝐸𝑖𝑡 denotes the farmer’s perception about
the pgram that lies beyond the aspects that influence
profit, which includes the farmer’s behavioral characteris-
tics such as preferences, attitudes, and expectations about
the program.
For a utility-maximizing farmer to adopt pesticide-free

production, the following condition needs to be satisfied:

𝐸
[
𝑈
(
𝜋𝑖𝑡

(
𝐷𝐷 = 1
𝑖𝑡

, 𝑋𝑖𝑡, 𝐸𝑛𝑣𝑖𝑡, 𝐴𝑑𝑗𝑖𝑡, 𝜀
𝐷 = 1
𝑖𝑡

)
, 𝑃𝐸𝑖𝑡

)]

≥ 𝐸
[
𝑈
(
𝜋𝑖𝑡

(
𝐷𝐷 = 0
𝑖𝑡

, 𝑋𝑖𝑡, 𝐸𝑛𝑣𝑖𝑡, 𝜀
𝐷 = 0
𝑖𝑡

)
, 𝑃𝐸𝑖𝑡

)]
.(2)

The left and right side of the inequality denotes the
expected utility when the farmer chooses to adopt or not to
adopt the pesticide-free wheat production system, respec-
tively. 𝐴𝑑𝑗𝑖𝑡 denotes the adjustment cost associated with
switching to the new system.
We extend the framework in Möhring and Finger (2022)

by incorporating social interactions into Equation (2),
which adapts to:

𝐸
[
𝑈
(
𝜋𝑖𝑡

(
𝐷𝐷 = 1
𝑖𝑡

, 𝑋𝑡, 𝐸𝑛𝑣𝑡, 𝐴𝑑𝑗𝑡, 𝜀
𝐷 = 1
𝑖𝑡

)
, 𝐷𝑗𝑡, 𝑃𝐸𝑡

)]

≥ 𝐸
[
𝑈
(
𝜋𝑖𝑡

(
𝐷𝐷 = 0
𝑖𝑡

, 𝑋𝑡, 𝐸𝑛𝑣𝑡, 𝜀
𝐷 = 0
𝑖𝑡

)
, 𝐷𝑗𝑡, 𝑃𝐸𝑡

)]
. (3)

That is, the utility from choosing either production
system is not only fluenced by farmers’ own adoption deci-
sion (𝐷𝑖𝑡), characteristics (𝑋𝑖𝑡), environmental conditions
(𝐸𝑛𝑣𝑖𝑡), and perceptions about the program (𝑃𝐸𝑖𝑡), but also
those of their peers’, that is, 𝐷𝑗𝑡, 𝑋𝑗𝑡, 𝐸𝑛𝑣𝑗𝑡, and 𝑃𝐸𝑗𝑡.
More specifically, we consider that some peer characteris-
tics (𝑋𝑗𝑡) and environmental conditions (𝐸𝑛𝑣𝑗𝑡) influence
farmer 𝑖’s utility through the profit function, and peer
adoption decisions (𝐷𝑗𝑡) and perceptions about the pro-
gram (𝑃𝐸𝑗𝑡) influence farmer 𝑖’s utility via aspects beyond
profit (see more discussions below). Therefore, we drop
the subscript 𝑖 from 𝑋𝑖𝑡, 𝐸𝑛𝑣𝑖𝑡, and 𝑃𝐸𝑖𝑡 in Equation (2),
and additionally incorporate 𝐷𝑗𝑡 in the utility function.
Spillover effects thus entail effects from 𝐷𝑗𝑡 (peers effects),
as well as from 𝑋𝑗𝑡, 𝐸𝑛𝑣𝑗𝑡, and 𝑃𝐸𝑗𝑡 (contextual effects).
Next, we discuss the elements from which spillover

effects may arise. In the context of adopting a sustain-
able agricultural production system, a particularly relevant
mechanism for spillover effects to arise is social con-
formity. Farmers may adopt an agricultural practice in
order to comply with social norms established among fel-
low farmers (e.g., Bandiera & Rasul, 2006; Chen et al.,
2009; Le Coent et al., 2021). In the specific context of
reducing pesticide use in agriculture, social norm has
also been considered a relevant factor, though it has not
been explored quantitatively in the context of a novel pro-
gram (e.g., Bakker et al., 2021; Pedersen et al., 2012). Due
to social norms, farmers may derive utility from choos-
ing practices (e.g., pesticide-free production) similar to
their peers, or disutility from non-conforming practices.
Such social norms also contribute to explanations of why
farmers’ behaviors do not strictly follow expected profit
maximization, for example, the lack of adoption of certain
agricultural practice even in the case of expected increase
in profit or financial compensations, and vice versa (Le
Conte et al, 2021). Under the framework in Equation (3),
social norms could lead to peer effects, that is, spillover
effect in farmers’ choice of production system, such that
farmer 𝑖’s utility depends on peer farmers’ adoption deci-
sions (𝐷𝑗𝑡), particularly how their own choice deviates

 15740862, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/agec.12766 by W

ageningen U
niversity and R

esearch Facilitair B
edrijf, W

iley O
nline L

ibrary on [15/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



260 YANBING et al.

from the peer group’s choices. Social norms could also
give rise to contextual effects, namely spillover effects in
farmers’ perceptions about the program, such that their
utility depends on 𝑃𝐸𝑗𝑡.
Apart from social norms, spillover effects could

also arise due to agglomeration benefits (Bartolini &
Vergamini, 2019; Läpple & Kelley, 2013; Lewis et al., 2011).
This could apply to areas that share similar soil condition
or pest pressure, or neighborhoods where farmers could
easily access machineries for the new production system
(e.g., via sharing or borrowing). Access to machinery via
peers also help reduce the investment uncertainty asso-
ciated with the new production system. Agglomeration
benefits could give rise to both peer effects (𝐷𝑗𝑡) and
contextual effects, namely ownership of machinery by
peer farmers, which are contained in 𝑋𝑗𝑡 and therefore 𝑋𝑡,
as well as environmental conditions faced by peers, which
are contained in 𝐸𝑛𝑣𝑡. Furthermore, social learning or
knowledge transfer could also help reduce the uncertainty
in the costs and benefits of the new production system
(Foster & Rosenzweig, 1995; Foster & Rosenzweig, 2010;
Genius et al., 2014; Ward & Pede, 2015). Similar to the
other sources, social learning could give rise to peers
effects (𝐷𝑗𝑡), and contextual effects (𝑋𝑡, which includes
prior knowledge of similar production system).
In terms of defining a peer network, farmers’ percep-

tions about new agricultural practices have been shown
to be influenced by their immediate environment, that
is, neighboring (spatially proximate) farmers’ behaviors
and characteristics (Burton et al., 2008; Case, 1992). This
arises both because farmers can easily observe practices on
neighboring farms, and that information exchange related
to agricultural practices occurs conveniently among neigh-
boring farmers (Burton et al., 2008; Burton & Schwarz,
2013; Defrancesco et al., 2018; Moser & Barrett, 2006). As
such, spillover effects in the context of agriculture are
largely spatially mediated. Accordingly, spillover effects
are often assumed to arise through interactions of farmers
in peer networks defined by spatial proximity (e.g., Bar-
tolini & Vergamini, 2019; Lewis et al., 2011; Schmidtner
et al., 2012; Storm et al., 2015).
Yet, spatial proximity alone does not guarantee an

impact on each other’s perception or behavior. In partic-
ular, the diffusion of innovative technologies and practices
also relies on information exchange among farmers, and
peer farmers make up a crucial component in farmers’
information source (Genius et al., 2014). This is especially
relevant for a newly-launched program, where farmers
neither have much own prior experience to rely on, nor
do they have much observation of the adoption outcomes
of other farmers, which would help resolve the uncer-
tainty in the costs and benefits of the new production
system. In this case, information exchange with peers

could be crucial in reducing uncertainty about adopt-
ing the production system. Although spatial proximity
does not necessarily guarantee social interaction, and thus
information exchange, among farmers (Conley & Udry,
2010), in studies that examine spatially mediated peer
effects, it has been a common assumption that informa-
tion exchange automatically occurs among neighboring
farmers (Läpple et al., 2016). An alternative approach that
assures information transmission among peer farmers is
to use qualitative tools to identify self-reported peers with
whom farmers communicate (e.g., Bandiera&Rasul, 2006;
Conley & Udry, 2010; Matuschke & Qaim, 2009). Due to
the limited number of peers that researchers are able to
identify with this type of approach, sampling issues are
likely to arise (Blume et al., 2015;Maertens&Barrett, 2013).
Furthermore, it is possible to overlook spillover effects in
the spatial dimension, which is particularly relevant in the
context of agricultural practice. Thus, in investigating the
adoption of novel farming practices, accounting for both
the spatial dimension of agricultural practices, and infor-
mation exchange among peer farmers in the network is
crucial. Yet, to our knowledge, previous studies have pre-
dominantly focused on either one of these two important
aspects when measuring social ties (e.g., Krishnan & Pat-
nam, 2014), or account for information exchange only via
covariates in the empirical model (e.g., Läpple & Kelley,
2015).
To create a combined measure of social ties incorporat-

ing both spatial proximity and the tendency of information
exchange regarding agricultural practices, we refine the
measurement of social ties in a spatially defined peer net-
work with the tendency for farmers to consult their peers
when it comes to agricultural decisions. We extract farm-
ers’ response to the statement: “For important agricultural
decisions I often consult my neighbors/colleagues,” mea-
sured on a scale from 1 (does not apply) to 5 (applies
perfectly). The intuition for why this variable introduces
relevant information regarding social ties in terms of agri-
cultural decisions is as follows: for a farmer relativelymore
willing to consult peers’ opinions, the actions of their peers
would be valued more compared to a farmer less willing
to consult peer opinion, even if they have the same peers.
In other words, this variable captures the extent to which
neighbors’ opinions actually “matter” to a farmer, and
therefore introduces additional variation (on top of spatial
proximity) in the weights in the social matrix. The weights
in the new social matrix, which contain information on
both spatial proximity and farmers’ tendency to consult
peers on agricultural practices, proxy for social ties in the
context of agricultural decisions. The strength of social ties
influences how social interactions shape individual (envi-
ronmental) behavior (Videras et al., 2012). The information
on social ties among farmers therefore allows us to assess
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YANBING et al. 261

the extent to which spillover effects rely on effective infor-
mation exchange within farmer peer networks.We discuss
the measures of social ties in more details in the next
section.

4 EMPIRICAL STRATEGY

We next empirically analyze the spillover effects discussed
under the conceptual framework. Let 𝜔𝑖 be the action of
farmer 𝑖,𝜔𝑖 ∈ {0, 1} in the context of adopting the pesticide-
free production system, 𝜔𝑖 = 1 if farmer 𝑖 adopts the
system, and 0 otherwise. Following Möhring and Finger
(2022), we estimate the following linear probability model
Pr( 𝜔𝑖 = 1|𝑥) = 𝑥𝛽:

Pr( 𝜔𝑖 = 1|𝑥) = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2
∑
𝑗

𝑐𝑖𝑗𝑥
𝑐
𝑗
+ 𝛽3

∑
𝑗

𝑎𝑖𝑗𝜔𝑗 + 𝑢𝑖

(4)
social matrices 𝐴 =

∑
𝑗
𝑎𝑖𝑗 and 𝐶 =

∑
𝑗
𝑐𝑖𝑗 define the

strengths of social ties between farmer 𝑖 and peers 𝑗 ≠ 𝑖

in the network for peer effects contextual effects, respec-
tively. Elements in the social matrices indicate the extent
to which farmer 𝑖 is influenced by each peer 𝑗. 𝑥𝑖 is a
vector of characteristics of 𝑖, and 𝑥𝑐

𝑖
is a subset of 𝑥𝑖 ,

which comprises characteristics that could influence oth-
ers’ adoption decisions. As such, the parameter 𝛽2

∑
𝑗
𝑐𝑖𝑗𝑥

𝑐
𝑗

captures the contextual effect, which is a weighted average
of peers’ characteristics in the network. 𝛽3

∑
𝑗
𝑎𝑖𝑗𝜔𝑗 cap-

tures peer effects, and 𝛽1 captures effects of farmers’ own
characteristics.
Following Möhring and Finger (2022), we classify farm-

ers who already decided to adopt (“adoption pioneer”)
or intend to adopt (“intended adopter”) the pesticide-
free wheat production system in the 2019/20 season as
“adopters.” That is, 𝜔𝑖 = 1 for both “adoption pioneer”
and “intended adopter.” For a very recently launched
program such as the pesticide-free wheat production sys-
tem, farmers’ intention to adopt the production system
also bears implications for understanding the adoption
and diffusion of the system. To ensure the estimated
spillover effects also apply to realized adoption, we per-
form robustness checks with separate analyses of realized
and intended adoption. We define the strength of social
ties in a network of farmers in two ways: based on spatial
proximity alone, and based on spatial proximity combined
with tendency to consult peers in a network, respectively.
Under both setups, we define the peers of each farmer as
the 10 nearest neighbors in the main estimation. Under
the first setup (only spatial proximity), we define both
the social matrices for peer effects 𝐴1 =

∑
𝑗
𝑎𝑖𝑗 and con-

textual effects 𝐶1 =
∑

𝑗
𝑐𝑖𝑗 based on distance between

farmers, weighted by inverse distances: 𝑎𝑖𝑗 = 𝑐𝑖𝑗 = 𝑑𝑖𝑗 ,

where 𝑑𝑖𝑗 is the row-standardized inverse distance weights
for farmer 𝑖 with peers 𝑗 = 1…10. In the second setup
(spatial proximity and tendency to consult peers), we fur-
ther scale each row of the peer effects social matrix with
the tendency to consult peers on agricultural decisions,
which we discuss in the conceptual background section.
Let 𝑝𝑖 denote this scaling variable, then 𝐴2 = 𝐴1 ⋅ 𝑝𝑖 . To
make estimates based on the two social matrices for peer
effects comparable, we define 𝑝𝑖 as the raw response from
the question, which ranges from 1 to 5, divided by the
median, 3, such that 𝑝𝑖 has a median value of 1. As such,
the spatially defined peer effects matrix 𝐴1 corresponds to
a case where all farmers have the same tendency to con-
sult peers regarding agricultural decisions (with 𝑝𝑖 = 1

for all 𝑖). The rows of 𝐴2, therefore, do not all sum to
1, but rather depend on 𝑝𝑖 . This set up also adds further
asymmetry to the strength of social ties between a pair of
farmers, which facilitates identifying peer effects (Blume
et al., 2015). Figure A1 in the Appendix provides an exam-
ple with a special case where two farmers have the same
peers in their respective networks, yet the social ties with
these peers differ due to the difference in their tendency to
consult peers.
We separate general farm and farmer characteristics

into pure individual characteristics, and characteristics
that could potentially generate spillover effects such that
they could influence peers’ adoption decisions. The former
set of variables include land ownership, farm succession,
and the fraction of income from non-farming activi-
ties. For the general farm and farmer characteristics that
could exert contextual effects, we include farmers’ age
and education, farm size, experience with pesticide-free
wheat production, enrollment in soil conservation pro-
grams, and accessibility of machinery required to switch
to mechanical weed control.3 We further include farmer
behavioral characteristics that are particularly relevant
to the pesticide-free wheat program in the set of farmer
characteristics that may generate contextual effect. These
behavioral characteristics include farmers’ perception of
potential environmental benefits of pesticide-free produc-
tion system, openness to innovation, expected yield risk
and yield decrease due to the production system, and will-
ingness to take risks in plant protection. Since spatial
spillovers are likely to exist in the production condi-
tions, we further control for biophysical characteristics
relevant to wheat production, including soil conditions,
topography, climate conditions, pest pressure, potential

3We note that some covariates already partially capture peer character-
istics, for example, the variable access to machinery accounts for access
via a neighbor or colleague, and the variable prior experience in herbicide
production reflects both personal and others’ (neighbor, friend, advisor)
experience.
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262 YANBING et al.

resistances to herbicides, and average wheat yield levels
over the past 10 years as contextual effects (the latter two at
themunicipality and postcode levels, respectively). Finally,
since pesticide-free production involves similar production
strategies and equipment as organic farming,4 we control
for the density of organic farms in themunicipality of each
farm. For the set of characteristics with potential spillover
effects, we expect both positive and negative spillovers.
For example, high value of the environmental and health
benefits of a production system may generate a positive
spillover to neighbors’ willingness to adopt the pesticide-
free system, whereas pest pressure can spillover to nearby
farms (e.g., through dispersion of seeds by wind) impeding
pesticide-free production (Fenichel et al., 2014; Frisvold,
2019).
The estimation of spillover effects often involves a num-

ber of econometric challenges. Below we discuss the chal-
lenges relevant in our context and our strategies tomitigate
such challenges in estimation. The first challenge, termed
the reflection problem in the framework of Manski (1993),
relates to separately identifying endogenous peer effects
and contextual effects. The issue arises when only aggre-
gate data of group behavior and group characteristics are
available, or individuals are assumed to interact with all of
the others within a peer group and none outside of it, such
that the expected group behavior is linearly dependent on
the expected group characteristics. As a result, one cannot
determine whether an individual’s behavior is influenced
by the peers, or it is a result of their influence on the
peers. Aswe discuss in the previous sections, in the context
of adopting innovative agricultural production systems,
both peer effects and contextual effects could potentially
facilitate the diffusion of agricultural innovations. Given
the different policy implications they bear, however, we
are interested in separately estimating the two effects.
Previous literature has discussed various conditions with
positive identification results under the linear-in-means
model (e.g., Blume et al., 2015; Bramoullé et al., 2009;
Calvó-Armengol et al., 2009; Davezies et al., 2009; Lee,
2007). Particularly relevant to our context are the condi-
tions discussed in Bramoullé et al. (2009) and Blume et al.
(2015) which exploit the variations in individual-specific
peer networks. Specifically, Bramoullé et al. (2009) show
that the overlaps of individuals’ networks create “intran-
sitive triads,” such that for an individual 𝑖, some of their
peers’ peers (i.e., those that are two links away from 𝑖)
are not in 𝑖’s own network, and they can only influence
𝑖 indirectly through 𝑖’s direct peers. Such overlaps allow
for linear independence between the social matrices that
characterize the direct peer network and the network of

4 For example, the transition from chemical to mechanical weed control
requires equipment and knowledge that is available at organic farms.

indirect peers two links away, that is, 𝐶 and 𝐶2, both of
which can serve as instruments for expected peers’ behav-
ior. In our study, overlaps between the individual-specific
peer networks exist by definition, which allow us to sep-
arately estimate the peer effects and contextual effects as
long as the linear independence conditions are met. In the
specification of the peer social matrix that incorporates the
tendency to consult peers (setup two), the asymmetry in
the strength of information links between peers further
facilitates identifying the parameters of interest (Blume
et al., 2015). We estimate a two-stage least squares model
using weighted characteristics of direct peers and indirect
peers that are two links away, that is, (𝑋𝑐, 𝐶𝑋𝑐, 𝐶2𝑋𝑐), as
instruments for peer action.
A second challenge is related to separating spillover

effects from correlated effects. Correlated effects can arise
due to unobserved common factors that are correlated
with the behaviors of individuals in a network, such that
the similar behaviors between peers are driven by the
common unobservables rather than peer effects or con-
textual effects. This would lead to omitted variable bias
(Goldsmith-Pinkham & Imbens, 2013). We control for
a rich set of covariates that could commonly influence
multiple individuals in a network as they are spatially
correlated and correlate with farmers’ decisions to adopt
pesticide-free production. These include soil conditions,
topography, climate conditions, weed pressure and poten-
tial resistances to herbicides. To the extent that there
still exist unobserved common factors that lead to simi-
lar behaviors of farmers in a network, in the case that the
unobserved common factors are not correlated with the
formation of links in a network, the issue can be addressed
by incorporating network fixed effects (Bramoullé et al.,
2009; Lin, 2010). In our context, potential unobserved
common effects could arise due to policy measures that
support adoption of certain agricultural practices or agri-
environmental schemes. Interaction with extension ser-
vice is another important potential source of influence
in farmers’ agricultural decision-making (Genius et al.,
2014; Wuepper et al., 2021). Extension services are orga-
nized at the cantonal level, and could lead to different
adoption tendencies across cantons (administrative sub-
divisions directly below the federal level). We therefore
include canton-level network fixed effects. In doing so, we
apply a within-group transformation by subtracting the
canton averages from the individual-level observed vari-
ables, so as to remove the canton-level unobservables.5 For

5 The within-transformation does not address the case that the common
unobservables are also correlatedwith link formation, that is, sorting into
peer networks. In this case, we can consider that all individuals play a
two-stage game, first to form peer networks, and then decide on individ-
ual behaviors (Blume et al., 2015). In our context, as peer networks are
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YANBING et al. 263

farmer 𝑖 in canton 𝑘,

Pr( 𝜔𝑘𝑖 = 1|𝑥) = 𝛽0𝑘 + 𝛽1𝑥𝑘𝑖 + 𝛽2
∑
𝑗

𝑐𝑖𝑗𝑥
𝑐
𝑘𝑗

+𝛽3
∑
𝑗

𝑎𝑖𝑗𝜔𝑘𝑗 + 𝑢𝑘𝑖 (5)

Let 𝐾 =
1

𝑛
𝜄𝜄′, then I − 𝐾 measures deviation from can-

ton averages. We then multiply both sides of Equation (5)
with I − 𝐾 to apply the within-transformation, writing the
transformed equation in matrix form:

(I − 𝐾) Pr ( 𝜔𝑘 = 1|𝑥) = (I − 𝐾 ) 𝛽0𝑘 + (I − 𝐾 ) 𝑥𝑘𝛽1

+ (I − 𝐾 )𝐶𝑥𝑐
𝑘
𝛽2 + (I − 𝐾 )𝐴𝜔𝑘𝛽3 + (I − 𝐾 ) 𝑢𝑘 (6)

with the corresponding reduced form

(I − 𝐾) Pr ( 𝜔𝑘 = 1|𝑥) = (I − 𝐾 ) (I − 𝐴𝛽3)
−1
𝛽0𝑘

+ (I − 𝐾 ) (I − 𝐴𝛽3)
−1
𝑥𝑘𝛽1 + (I − 𝐾 ) (I − 𝐴𝛽3)

−1
𝐶𝑥𝑐

𝑘
𝛽2

+ (I − 𝐾 ) (I − 𝐴𝛽3)
−1
𝑢𝑘 (7)

Accounting for network fixed effects requires more
variation in the network with at least two individuals
separated by at least three links (Blume et al., 2015;
Bramoullé et al., 2009), and therefore linear indepen-
dence in 𝐶, 𝐶2, and 𝐶3. By the definition of individual-
specific peer networks in our context, this require-
ment is again satisfied in our data. We, therefore,
use (I − 𝐾)𝑥𝑐

𝑘
, (I − 𝐾 )𝐶𝑥𝑐

𝑘
, (I − 𝐾 )𝐶2 𝑥𝑐

𝑘
, (I − 𝐾 )𝐶3 𝑥𝑐

𝑘
)

as instruments for (I − 𝐾 )𝐴𝜔𝑘.6
It is nonetheless important to note that the strategies we

discuss above mitigate but are not guaranteed to eliminate
the estimation challenges. Despite of the importance of the
spatial dimension for peer effects in agricultural practices,
we acknowledge that social interactions can occur beyond
the spatially defined peer group. Furthermore, it is possible
that confounding factors still exist beyond the dimension
we control for unobserved common factors and network
fixed effects (i.e., at the municipality, postcode, and can-
tonal level). In light of these potential issues, we conduct
further robustness checks.

primarily defined based on spatial proximity, it is unlikely that the unob-
servables enter the first stage game (i.e., locating in a neighborhood), and
thus sorting is unlikely to be a major concern in this case.
6 Note that the reduced-form parameters also link to spatial effects of a
spatial Durbin model in the spatial econometrics model (see, e.g., Funes
et al. 2022; Lapple et al. 2017; Vacaflores & LeSage 2020). As we discuss
in footnote 1, in this study we adhere to estimation strategy and termi-
nologies from the peer effects literature because we are interested in the
structural parameters that characterize peer effects and contextual effects.
Nonetheless, we estimate a spatial Durbin model as a robustness check.

4.1 Robustness checks

To test the robustness of the estimates from our main
specification, we estimate a number of alternative spec-
ifications in terms of variable definition, social matrix
definition, sample, model specification, and estimation
methods. First, in our main specification, the dependent
variable contains both realized adoption (“adoption
pioneers”) and intended adoption (“intended adopters”).
To examine whether spillover effects differ between the
two types of adopters, we conduct separate analyses with
the dependent variable only coded 1 ( = adoption) for
adoption pioneers or for intended adopters, respectively.
Second, to make sure the estimates do not rely on the
chosen number of peers, we estimate the same models
but with the networks defined as the six and 15 nearest
neighbors respectively, instead of 10 in the main analysis.
We also use an alternative definition of spatial neighbors
with all farmers within a 10 km radius are considered as
peers (under this definition, 13 farms did not have any
neighbors within the radius, and thus they were removed
from the analysis). Third, we estimate the models (with
peer networks of 10 nearest neighbors) with a subsample
in which we exclude farmers who indicated that they
were not aware of the pesticide-free wheat program,
as well as subsamples separated by farmers’ primary
language (French or German, the two major language
regions in the study area). Fourth, since some behavioral
characteristics may be correlated with farmers’ tendency
to consult peers or other behavioral variables available
in the survey, we estimate the models alternative sets of
behavioral characteristics (detailed descriptions in the
Results and Discussion Section). We further test whether
spillover effects are mediated by the behavioral charac-
teristic openness to innovation. We do so by carrying
out a sequential g-estimation following Acharya et al.
(2016). Fifth, for comparison to the two-stage least squares
estimation, we also estimate linear probability models
with ordinary least squares estimation and probit models.
Finally, while we focus on estimation strategy from
the peer effects literature, we expect that the estimated
relationship between peer adoption/characteristics and
individual adoption decision should agree with estimates
from spatial econometric models, which are also often
used to estimate spillover effects in technology adoption
(e.g., Funes et al., 2022; Lapple et al., 2017). We, therefore,
estimate an unconstrained spatial Durbin probit model as
a robustness check of the overall estimation strategy.

5 DATA

Our primary data source is an online survey conducted
with all IP-SUISSE wheat producers. The survey was
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264 YANBING et al.

conducted between December 2019 and January 2020,
with 1105 complete responses out of a total number of 4749
IP-SUISSE wheat producers. The sample of respondents
are representative of the population of IP-SUISSE wheat
producers in terms of spatial distribution and structural
farm and farmer characteristics, with average deliv-
ered wheat slightly higher than the population average
(Möhring & Finger, 2022).7 The survey contains infor-
mation on farmers’ adoption decisions for the 2019/2020
season and perceptions regarding the pesticide-free wheat
program, farm and farmer characteristics that are poten-
tially relevant to the adoption decision, as well as farmer
behavioral characteristics.
We supplement the survey with the following data

sources: information on weed pressure in the study area
(Info Flora), the spread of herbicide resistance (Agro-
scope), climate conditions (MeteoSuisse), and soil condi-
tions and the density of organic farming (Swiss Federal
Office for Agriculture [FOAG]). Except for herbicide resis-
tance and organic farming density, which is measured at
the municipality level, all other variables are measured
at the farm level. In addition, we match average Extenso
wheat yield over the past 10 years at the postcode level to
proxy the local production potential. The dataset is pub-
licly available and described inmore detail inMöhring and
Finger (2022a).
Since extension services and various layers of farmer

exchange are organized at the cantonal level, we assume
social interactions primarily take place in farmer net-
works within the same canton (see detailed discussion
in the Empirical Strategy section). To ensure a sufficient
number of peers in a farmer’s network, we restrict the
sample to cantons with at least 20 respondents, which
results in a sample of 1036 farms.We further exclude seven
farms whose reported canton name does not match the
coordinates. This leaves us with a final sample of 1029
farms.

5.1 Descriptive statistics

Table 1 provides description and summary statistics of the
variables in the analysis. Figure 1 shows the distribution of
farmers’ adoption decisions and their tendency to consult
peers when it comes to decisions in agricultural practices.
Almost 60 percent of farmers in our sample indicated real-
ized or intended adoption, out of which 13.4% adopted the
program in the 2019/20 season (138 farms—“adoption pio-
neers”), and 43.7% intended to adopt at the time of the

7Möhring and Finger (2022) discuss that the slight deviation does not
affect the conclusion regarding pesticide-free wheat production based on
the sample. See also Finger and Möhring (2022) for another application
of this dataset.

survey (450 farms—“intended adopters”). We also observe
substantial heterogeneity in farmers’ tendency to con-
sult peers on agricultural decisions, though a clear spatial
pattern does not appear.

6 RESULTS AND DISCUSSION

Table 2 reports the main estimation results (from the
second stage of the two-stage least squares model regres-
sion; results from the first stage regressions are reported
in Table A1 in the Appendix). In models (1) and (3),
weights in the social matrix are based on spatial prox-
imity, and in models (2) and (4), the weights are fur-
ther scaled by farmers’ tendency to consult peers when
it comes to agricultural decisions. In models (1) and
(2), we include general farm and farmer characteris-
tics, and biophysical conditions related to pesticide-free
wheat production (see the Empirical Strategy section).
In models (3) and (4), we further add farmer behav-
ioral characteristics specific to the pesticide-free wheat
program.
With only general farm and farmer characteristics and

biophysical conditions included (models (1) and (2)), we
find no peer effects when social interaction is measured
merely by spatial proximity. By contrast, when we incor-
porate farmers’ tendency to consult peers in the measure
of social interactions, we find statistically significant
peer effects in adopting pesticide-free wheat production.
For a farmer with an average tendency to consult peers
regarding agricultural decisions (i.e., with a value of 1 in
the scaled variable), an additional peer willing to adopt the
program is associated with 2.3 percentage points higher
probability of adoption. Equivalently, a farmer with all
(10) peers willing to adopt the program has a 23 percentage
points higher probability to adopt compared to a farmer
with no peers willing to adopt. The peer effects for farmers
with other levels of tendency to consult peers can be calcu-
lated by scaling the coefficient estimate. For example, for a
farmer with the highest possible level of tendency to con-
sult peers (i.e., 1.67 times of the mean value), an additional
peer adopting the program would increase their proba-
bility to adopt by 3.8 percentage points. As we include
farmer behavioral characteristics in models (3) and (4),
we find positive peer effects with both measures of social
interactions. From our preferred specification in model
(4), an additional peer willing to adopt the program is
associated with 1.8 percentage points higher probability of
adoption.
We also find evidence of contextual effects in some

farm and farmer characteristics. In model (3), a one-unit
increase (on a scale of 0 to 10) in the average willingness
to take risks in the plant protection domain of a farmer’s
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YANBING et al. 265

TABLE 1 Variable description and summary statistics.

Variables Type/Unit Description Mean Std.Dev. Median
Adoption decision Binary =1: Will or intend to adopt the

pesticide-free wheat
program

.6 .5 1.0

Tendency to consult
peers

Scale 1-5 Consult peers for agricultural
decision-making

2.6 1.1 3.0

=1: does not apply; =5: applies
perfectly

General farm and farmer characteristics
Age Year Age of farmers 47.0 9.3 48.0
Education Binary =1: Has higher education .1 .3 .0
Agricultural land ha Agricultural land in hectares 33.9 20.6 28.5
Wheat share Ratio Share of wheat on agricultural

land
.2 .1 .2

Workforce Working units Working units employed on
the farm (equals 280
working days)

1.6 1.0 1.5

Language Categorical =1: German; =2: French 1.2 .4 1.0
Leased land Ratio Share of leased land .3 .3 .3
Farm succession Binary =1: Farm succession not yet

established
.3 .5 .0

Off-farm income Ratio Share of off-farm income .2 .2 .1
Soil conservation Binary =1: Enrolled in at least one

soil conservation program
.6 .5 1.0

Machine Binary =1: Have access to Machinery
for pesticide-free
production (mechanical
weed control)

.2 .4 .0

Experience Binary =1: Prior experience with
herbicide-free production

.8 .4 1.0

Biophysical conditions
Mean yield dt/ha Mean Extenso yield in the

municipality 2008-2018
51.3 4.7 51.5

Organic share Ratio Share of organic farms in the
municipality

.0 .1 .0

Problematic weed Ratio Share of herbicide resistant
weed varieties present in
the municipality

.5 .3 .5

Suitability for grain Scale 0-2 Suitability of soil for grain
production

.8 .7 1.0

Suitability of slope Scale 0-2 Suitability of land for
agricultural production
regarding its topography

1.3 .9 2.0

Temperature Centigrade Average yearly mean
temperatures on the farm
over the last 10 years

9.0 .6 9.0

Precipitation l/m2 Average yearly sums of
precipitation in the
wheat-growing season on
the farm over the last 10
years

1,071 109 1,060

(Continues)
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266 YANBING et al.

TABLE 1 (Continued)

Variables Type/Unit Description Mean Std.Dev. Median
Behavioral characteristics
Exp yield decrease Scale 1-5 Expected yield decrease in

pesticide-free wheat
production

3.1 1.4 3.0

=1: none; =2: 0% − 5%; =3:
5% − 10%; =4: 10% − 15%;
=5: > 15%

Exp yield risk Scale 1-4 Expected increase in years of
crop failure or heavy yield
losses

3.0 1.3 4.0

=1: every 20 years; =4: every 5
years

Risk preference Scale 0-10 Willingness to take risks in
plant protection =0: none;
=10: very high

4.8 2.6 5.0

Pos
environmental effect

Scale 1-5 Farmers’ expectation that
program participation has
positive environmental
effects

3.1 1.3 3.0

Openness innovation Scale 1-5 Stated openness to
agricultural innovations

3.3 1.1 3.0

F IGURE 1 Farmers’ adoption decision and tendency to consult peers in agricultural decisions

peer group is associated with .2 percentage point lower
probability to adopt the program.While we expect farmers
with peers willing to take risk in plant protection may be
encouraged rather than discouraged to adopt the program,
the negative effect of neighbors’ risk preference may arise
from prior negative experience in taking risks in plant
protection. Nonetheless, the economic significance of the
coefficient estimate of this variable is low. In model (4),

a farmer with an additional peer having experience (or
direct access to someone with experience, see footnote 3)
in herbicide-free production is 1.2 percentage points more
likely to adopt the program than those without experi-
enced peers. This suggests that having access to peers’
experience in relevant agricultural practices may facilitate
a farmer’s decision to adopt the innovative practice, in line
with expectations.
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TABLE 2 Estimated spillover and individual effects in pesticide-free wheat program adoption.

Spatial proximity Spatial & information Spatial proximity Spatial & information
(1) (2) (3) (4)

Peer effects (𝐼 − 𝐾)𝐴𝜔𝑘

Peer adoption .113 .225*** .330* .176***
(0.123) (0.070) (0.188) (0.065)

Contextual effects (𝐼 − 𝐾)𝐶𝑥𝑐
𝑘

Age .002 .001 −0.00001 −0.001
(0.003) (0.003) (0.003) (0.003)

Education −0.044 −0.064 −0.079 −0.061
(0.119) (0.117) (0.111) (0.108)

Agricultural land .001 .001 .001 .001
(0.002) (0.002) (0.001) (0.001)

Wheat share .305 .291 .302 .260
(0.326) (0.323) (0.300) (0.298)

Workforce .028 .026 .018 .015
(0.039) (0.039) (0.036) (0.036)

Soil conservation .031 .035 .059 .052
(0.066) (0.065) (0.061) (0.060)

Machine .010 .014 −0.045 −0.005
(0.081) (0.076) (0.078) (0.073)

Experience .090 .093 .109 .122*
(0.072) (0.071) (0.067) (0.066)

Exp yield decrease −0.018 −0.021
(0.023) (0.023)

Exp yield risk .009 −0.002
(0.026) (0.025)

Risk preference −0.020* −0.016
(plant protection) (0.012) (0.012)
Pos environmental effect −0.019 .014

(0.033) (0.023)
Openness innovation −0.026 −0.030

(0.028) (0.028)
Own characteristics (𝐼 − 𝐾)𝑥𝑐

𝑘

Age −0.002 −0.002 −0.002 −0.002
(0.002) (0.002) (0.002) (0.002)

Education .088 .090 .053 .055
(0.060) (0.059) (0.055) (0.055)

Agricultural land −0.002* −0.002** −0.001 −0.001
(0.001) (0.001) (0.001) (0.001)

Wheat share −0.342** −0.313* −0.195 −0.163
(0.162) (0.161) (0.149) (0.149)

Workforce .003 .005 .002 .004
(0.017) (0.017) (0.016) (0.016)

Soil conservation −0.033 −0.040 −0.045 −0.047
(0.034) (0.034) (0.032) (0.031)

Machine .166*** .174*** .075* .084**
(0.041) (0.041) (0.039) (0.039)

(Continues)
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268 YANBING et al.

TABLE 2 (Continued)

Spatial proximity Spatial & information Spatial proximity Spatial & information
(1) (2) (3) (4)

Experience .027 .020 −0.016 −0.015
(0.037) (0.037) (0.035) (0.034)

Exp yield decrease .004 .003
(0.012) (0.012)

Exp yield risk −0.061*** −0.061***
(0.013) (0.013)

Risk preference .018*** .018***
(plant protection) (0.006) (0.006)
Pos environmental effect .110*** .109***

(0.012) (0.012)
Openness innovation .022 .021

(0.014) (0.014)
Observations 1,029 1,029 1,029 1,029
Adjusted R2 .022 .032 .182 .185
F Statistic 1.780*** 2.115*** 6.707*** 6.840***
Weak Instrument 1.523* 40.39*** 2.638*** 48.613***
Sargan Test 19.611 34.10 30.598 20.893
Residual Moran’s I .016 -0.0004 -0.002 .019

*, **, ***denote statistical significance at the 10%, 5%, and the 1% levels, respectively. Standard errors are in parentheses. Machine = 1 if farmer has access to
machinery for pesticide-free production; Experience = 1 if farmer has prior experience with herbicide-free production; Pos environmental effect refers to farmer’s
expectation about the program’s positive environmental effects; Openness innovation refers to farmer’s openness to agricultural innovation. Coefficient estimates
on land ownership, farm succession, share of off-farm income, language, municipality-level mean of delivered Extenso wheat quantities, share of organic farming,
weed abundance, soil and slope suitability for wheat production, temperature, and precipitation are not reported in the table.

Comparing models with the two sets of covariates, with
behavioral characteristics specific to the pesticide-free
wheat program included, the magnitude of estimated
peer effects in model (4) is lower than that in model (2).
The magnitude and statistical significance of estimated
coefficients on general farm and farmer characteristics
(in the panel “Own characteristics”) also reduce from
models (1) and (2) to models (3) and (4). This indi-
cates additional explanatory power from a richer set of
relevant farmer characteristics in farmers’ decision in
adopting pesticide-free wheat production. In particular,
the difference reaffirms the importance to account for
farmer behavioral characteristics in assessing potential
peer influence. While tendency to consult peers in agri-
cultural decision-making is particularly related to the
tendency of information exchange and therefore social
interactions within a peer network, other characteris-
tics may indirectly influence social interaction. In the
robustness checks below, we further test the sensitivity
of our results to the behavioral characteristics in the
model.
In terms of farmers’ own characteristics, estimates are

qualitatively consistent across different specifications.
As we discuss above, with farmer behavioral variables

included in models (3) and (4), general farmer and farm
characteristics bear less statistical significance or lower
explanatory power compared to models (1) and (2). Since
models (3) and (4) contain a similar set of covariates
to the main model in Möhring and Finger (2022), we
also compare estimates of farmers’ own characteristics
in these two models to those in Table 3 of Möhring and
Finger (2022) for the common covariates. Different from
Möhring and Finger (2022), we do not find a significant
association between soil conservation and adoption of the
pesticide-free production system. The difference could
possibly be due to spatial patterns in soil conservation
practices which are associated with the network fixed
effects. As we discuss above, extension services (organized
at the cantonal level) could influence farmers’ choice
of agricultural practices. Since we apply canton-level
network fixed effects to address this issue, the variation
in soil conservation across cantons could be absorbed by
the fixed effects. Consistent with Möhring and Finger
(2022), we find that higher expected yield risk is associated
with lower probability of adoption, whereas access to
machinery, willingness to take risk, and perception that
the program has positive environmental impacts are
associated with higher probability of adoption.
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YANBING et al. 269

Table 2 also presents results of diagnostic tests for the
model specifications. First, we test whether the instrumen-
tal variables are weakly correlated with the endogenous
peer adoption variable, which would bias the estimates of
peer effects. Results show that for models (1) and (3) with
social matrices defined only by spatial proximity, while
the test statistics are statistically significant, the values are
rather small, suggesting a potential weak instrument issue.
For models (2) and (4), the test statistics are an order of
magnitude larger, indicating a strong correlation between
the instruments and peer adoption. Second, since we use
more instrumental variables than the number of endoge-
nous variable, we also apply the Sargan test, with the null
hypothesis that the over-identifying restrictions are valid
for the model. The insignificant test statistics indicate that
the over-identifying restrictions are satisfied. Therefore,
including more instruments than the number of endoge-
nous variable in themodel does not causemisspecification.
Third, we calculated theMoran’s I test statistic of the resid-
uals of each model to test for spatial autocorrelation in the
residuals. The insignificant test statistics indicate that by
specifying peer effects and contextual effects, our model
has sufficiently captured the spatial structure in the data.
To check the robustness of the main estimation results,

we estimate models with alternative specifications in vari-
able definition, social matrix definition, sample, model
specification, and estimation methods, as discussed in the
Empirical Strategy section. Estimates from the alternative
specifications are largely consistent with the baseline esti-
mation, though models with weights in the social matrix
accounting for farmers’ tendency to consult peers aremore
robust across specifications. We discuss detailed results of
the robustness checks in the Appendix.

6.1 Information link and peer effects on
adoption

To further illustrate the implications of the estimated peer
effects, we simulate the adoption of pesticide-free wheat
production under two scenarios. These scenarios differ
in whether policymakers take into account farmers’ ten-
dency to consult peers when targeting certain farmers to
adopt the system. Our illustration is based on the canton
of Bern, which represents the most important Swiss can-
ton in terms of agricultural production in terms of number
of farms. In our sample, there are 257 (of in total 1029)
farms from the canton. At the baseline, that is, according to
adoption information in the survey, therewere 155 adopters
and 102 non-adopters. Suppose that out of the 102 non-
adopters, 20 are targeted by the policymaker to adopt the
pesticide-free production system.We are interested in how
the peer effects generated by the 20 additional adopters

may change when the other non-adopters’ tendency to
consult peers are accounted for.
In our econometric analysis, we measure peer effects

as the change in a farmer’s probability to adopt due to a
change in the number of adopting peers. The total peer
effects due to the 20 new adopters is thus measured as
the total increase in probability to adopt among the non-
adopters who have the 20 new adopters in their peer
network. We use the estimate of peer effects from model
(4) in Table 2 to calculate the adoption outcome, that is, an
additional adopter in a farmer’s peer group would increase
the farmer’s probability to adopt by 1.8 percentage points.
Sincewe are interested in how accounting for farmers’ ten-
dency to consult peers may affect peer effects in farmer
networks, we hold all other covariates at their mean value.
In other words, we hold constant the contextual effects of
the additional adopters in the simulation.
In the first scenario, we assume that the 20 additional

farmers are randomly selected by the policymaker. As
we randomly draw 20 new adopters out of the 102 non-
adopters, they turn out to be peers of 54 non-adopters. We
then calculate how the new adopters influence the adop-
tion probability of their non-adopter peers in the canton,
which amounts to an increase in the summed adoption
probability of the 54 non-adopters by 132 percentage points.
Depending on the number of new-adopter peers for each
non-adopter (1 to 3), the individual probability increase
ranges from 1.8 to 5.4 percentage points.
In the alternative scenario, we assume that the policy-

maker does not target farmers randomly, but can focus
on specific farmers. We assume they can first evaluate the
social ties among farmers, then assign the new adopters
in neighborhoods of non-adopters with the highest ten-
dency to consult peers. For simplicity, we assume that the
20 new adopters again belong to peer networks of 54 non-
adopters. Instead of a random draw, we assign them to
the non-adopters with tendency to consult peers of value
5 (which comprises 6 non-adopters), 4 (17 non-adopters),
or 3 (31 non-adopters). We further assume that the 6 non-
adopterswith the highest tendency to consult peers receive
the highest number of new adopters in their peer network
(three new-adopter peers), the 17 non-adopters with the
next highest value receive new new-adopter peers, and
the other 31 non-adopters each receive one new-adopter
peer. Assigning new adopters to networks of high ten-
dency to consult peers leads to an increase in the summed
adoption probability of the 54 non-adopters by 175 percent-
age points, which is approximately 33% higher compared
to the first scenario (random allocation). The individual
level of probability increase ranges from 1.8 to 9 per-
centage points. Therefore, if policymakers target farmer
networks of higher overall tendency to consult peers when
they encourage new adopters, themultiplier effects among
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peer farmers can be considerably amplified, which would
accelerate the diffusion process of the novel production
system.

6.2 Discussion

Overall, we find evidence of positive spillover effects in
farmers’ adoption decisions (i.e., peer effects), as well as
spillover effects in farmers’ willingness to take risk (neg-
ative) and prior experience in herbicide-free production
(positive) in the adoption of pesticide-free wheat produc-
tion (i.e., contextual effects). These spillover effects apply
to both realized and intended adoption of the novel pro-
duction system. These results provide empirical evidence
of peer influence in adopting innovations for sustainable
agriculture in a context with well-functioned extension
services, institutional support, and a high-level of envi-
ronmental awareness among farmers, such as in Europe.
Across the two measures of social interactions within spa-
tially defined farmer peer networks, estimates of peer
effects from models accounting for farmers’ tendency to
consult peers are robust across model specifications and
samples. These results reinforce contentions fromprevious
studies in other contexts on the value of effective informa-
tion links in assessing peer effects in farmer behavior (e.g.,
Conley&Udry, 2010; Genius et al., 2014; Läpple et al., 2017)
and extend this literature by providing empirical evidence
in the context of an input-reducing production system.
Our findings provide insights into pathways towards

large-scale adoption of low-input agricultural innovations
towards more sustainable farming practices. Even in
countries such as Switzerland with broad availability
of information for farmers, peer influence can play an
important role in spreading innovations. In particular,
consultation with the most communicative farmers and
those with relevant experience in communities could
support large-scale implementation of innovative prac-
tices. This is especially important in light of the major
challenges faced by transforming agricultural systems on
a large scale towards reducing environmental impacts and
meeting growing demand for food. Our results show that
spillover effects via effective information exchange among
farmers can facilitate the diffusion of sustainable agricul-
tural practices with innovations that lead to reduction in
inputs harmful to the environment and human health.
Our simulation further illustrates that when promoting
innovative agricultural practices via targeting certain
farmers to adopt, policymakers could leverage farmers’
willingness to consult other farmers in order to maximize
peer effects and accelerate the diffusion process.
Our analyses have several limitations. First, as we

mention above, the innovative agricultural system we
study is implemented in a developed country with strong

institutional and technological infrastructure, and high
educational level of farmers. Information availability may
therefore be relatively high compared to countries with-
out such endowments, and farmers may rely on their peer
networks to a lesser extent when it comes to making agri-
cultural decisions. As such, the estimated magnitude of
peer effects should not be generalized to other contexts
and rather constitutes a lower bound. Second, informa-
tion exchange among farmers may go beyond spatial peer
networks, especially in light of the advancements in digi-
tal communication methods. That is, farmers may belong
to peer networks in multiple forms and dimensions of
social ties. Nonetheless, despite these limitations, a key
message our study communicates is that given a specific
institutional context and type of peer network, it is crucial
to account for variation in the level of effective informa-
tion exchange across individual farmers when exploiting
peer networks to promote innovation diffusion. Third, our
analyses are based on information collected from a single
surveywave. Peer effectsmay evolve over a longer period of
peer learning or learning by doing from farmers’ own expe-
rience, yet our data are not designed to study the learning
process. Nonetheless, since the survey is conducted with
wheat farmers within a long-established producer organi-
zation, the survey data still allow us to examine peer effects
based on the existing information links.

7 CONCLUSION

In this study we investigate spillover effects in the adop-
tion of a novel large-scale pesticide-free wheat produc-
tion system. Such production systems could be a major
contributor to reaching policy goals on pesticide risk
reduction and currently receive attention in large research
and industry programs as well as from policymakers.
Information on how to effectively and efficiently achieve
large-scale adoption of such novel production programs
will be key for their successful implementation in Europe
and other regions.
We highlight the important role of farmer networks in

farmers’ adoption decisions of pesticide-free production
and show how farmer networks and effective information
exchange within such networks could facilitate the imple-
mentation and diffusion via spillover effects from both
peer actions and peer characteristics. We refine social ties
in spatially defined farmer networks with farmers’ ten-
dency to consult peers in agricultural decision-making.
We therefore capture not only spatially mediated spillover
effects, but also heterogeneous peer effects due to differ-
ences in the extent to which peer opinions are accounted
for by farmers. The variability and asymmetry in the
tendency to consult peers further provide important addi-
tional insights in how policymakers could exploit social
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YANBING et al. 271

links to promote innovation diffusion, which we further
illustrate in a simulation.
Our findings have clear policy implications. We show

that multiplier effects for the diffusion of agricultural
innovations, such as the pesticide-free production system,
hinge on effective information exchange among farmers.
Creating peers with experiences on pesticide-free farming
practices increases the probability of adoption also of
others. This mechanism can be further improved in terms
of efficacy and efficiency. From a practical perspective, we
contend that policymakers or food value chain actors can
increase effectiveness and efficiency of interventions sup-
porting adoption by targeting farmers as new adopters in
networks of stronger social ties, so as to leveragemultiplier
effects, rather than arbitrary targeting of farmers as new
adopters. Knowledge of the strength of social ties in a given
farmer network, for example, from extension specialists
or producer organizations, could be particularly relevant.
Such multiplier effects apply to both realized adoption
and intended adoption, with the latter also relevant in the
context of a newly developed novel production system.
Our analysis provides implications for further research.

In light of the importance of effective information
exchange in understanding peer effects in agricultural
innovations, future research shall explore in more detail
the potential role of specific communication channels
among farmers that could trigger the adoption of more
sustainable farming practices. Additional to traditional
channels, especially social media and digital communica-
tionmay play a vital role, which can go beyond the spatially
defined peer networks, and therefore create channels to
distinguish the effect of information unaffected by spa-
tially correlated natural conditions. In a similar vein, it
could be helpful to create novel channels for exchange
of information among farmers to facilitate such diffusion,
which is particularly relevant in regions where the spa-
tial density of farmers is relatively low. In the context of
pesticide-free production, the diffusion of the innovative
production system can also teach us how to achieve pesti-
cide reduction through coordination on a broader scale, for
example, by managing pests at a landscape level via coor-
dinating preventive efforts and crop rotations. Finally, the
effects on innovation diffusion due to peer influence could
be even more prominent in contexts where strong institu-
tion or policy support is lacking, for example, developing
countries and subsistence agriculture. Therefore, research
in other countries and contexts would provide additional
insights in the role of effective information exchange and
spillover effects among farmers.
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