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Lipid oxidation in food emulsions: a review dedicated  
to the role of the interfacial area
Asif Aslam and Karin Schroën 

In this review, we focus on the role of the interface in lipid 
oxidation in food emulsions. Mostly, results from this field are a 
reflection of the effects caused by reaction kinetics and mass 
transfer, which complicates interpretation. In general, the 
oil–water interface is the location of initiation of oxidation 
reactions, while components present there, and in the 
continuous phase, directly or indirectly affect the reaction. 
Smaller droplets are expected to oxidize faster, but this can be 
counteracted by components purposely positioned at the 
interface or added to the bulk phase. Recent simulation 
progress is expected to be instrumental in distinguishing these 
effects, and guides stable emulsion design.
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Introduction
Lipid oxidation
Lipid oxidation in foods is a major problem, as it causes 
degradation of product quality that alters the textural 
properties, and also affects the color and nutritional 
value of food product. In foods, unsaturated fatty acids 
that are part of mostly triacylglycerols [1] and phospho
lipids ultimately decompose into volatile compounds 
that produce rancidity with off-odors. The susceptibility 
of fatty acids to lipid oxidation increases with the degree 
of unsaturation due to progressively lower bond dis
sociation energies of methylene-interrupted carbons [2]. 
This makes following the latest Dietary Guidelines [3,4]

that promote the use of polyunsaturated fatty acids as a 
healthier source of fats for consumers [5] progressively 
difficult. It is notable that oxidation reactions are 
strongly affected by temperature, and that effects found 
at high temperature are not necessarily relevant for shelf 
life at room temperature (different oxygen solubility, 
partial pressure, and/or side product formation, for ex
ample, through caramelization and Maillard reactions), 
although it is understandable that for time considera
tions, accelerated shelf-life tests are performed [6].

Lipid and also protein oxidation that are expected to be 
intertwined in protein-stabilized emulsions, are both 
radical reactions that include reactive oxygen species [7]. 
These reactions can be catalyzed by, for example, metal 
ions that cause the development of a broad range of 
oxidation products, such as hydroperoxides (primary 
oxidation product) and secondary oxidation products 
such as aldehydes, ketones, and alcohols. Formation of 
peptides, aggregation, and modification of side chains 
can occur as a result of protein oxidation [8,9], which in 
turn may cause changes in protein surface hydro
phobicity [10,11].

Food emulsions
During emulsion formation, the surface area created can 
be as high as thousands of m2 per gram of dispersed oil 
[12]. It has been suggested, and to some extent proven, 
that oxidation reactions are initiated at the interface, 
which makes emulsion highly sensitive systems, espe
cially when highly unsaturated fats are used [13]. For 
mayonnaise, for example, the appearance of aldehydes is 
considered a measure of oxidative stability [14]. To 
combat this, antioxidants can be used, and depending on 
the oil matrix, the effects can be very different, and this 
would also hold for the emulsification method used that 
will influence among others the interfacial composition 
[15,16]. In the work done in the group of Pierre Ville
neuve, the cutoff effect [17] was reported, with the chain 
length of antioxidant determining its location and 
therewith its effect on oxidation. It is good to point out 
that if antioxidants are very hydrophobic, they would 
partition into the oil droplet, and away from the inter
face, thus making them rather ineffective in preventing 
lipid oxidation, as was recently confirmed for dried 
emulsions [18].

The emulsification method used [19,20], as well as the 
ingredients, influences droplet interface stabilization and 
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droplet coalescence through dynamic effects [21] that 
can occur in the submillisecond time range [22–24]. 
When cavitation occurs, for example, during high-pres
sure homogenization, this can induce radical formation, 
thus initiating lipid oxidation. Physical emulsion desta
bilization (flocculation, coalescence) [25] may be ampli
fied when oxidation reactions influence the composition 
of the interface.

Lipid oxidation at various levels
Emulsion composition
Figure 1 shows the various size scales of an emulsion, 
going from droplets to the interfacial region, and com
ponents in the continuous phase, that may be present as 
micelles. The interfacial layer may be thin (a few nm), 
but for relatively small droplets (size ∼0.1 µm), it holds 
considerable volume [26]. In emulsions, molecules par
tition between the three regions based on their polarity. 
Nonpolar molecules are mostly present in the oil, while 
polar molecules primarily locate in the aqueous region; 
molecules of intermediate polarity would be more pro
minently present in the interfacial region [27]. In 
the literature, this has been linked to the effectiveness 
of antioxidants, that when positioned in the interface, 
are much more effective [28], and for which the cutoff 
concept was proposed [29,30].

A logP value (the partitioning coefficient in an octane/ 
water two-phase system) can be instrumental in de
termining where a component would reside pre
ferentially, although it is good to keep in mind that this 

is an indication for what would happen in an emulsion 
and not a prediction since, for example, vegetable oil and 
water would have more extreme partitioning due to the 
higher hydrophobicity of the oil compared with octane, 
and the effects would depend on the hydrophobicity of 
the component considered. Because of equilibrium 
considerations, (very) small amounts would be present in 
all phases, and when highly reactive, they may still be 
influential. Furthermore, the partial pressure is relevant 
for volatile components, which may make them partition 
to the gas phase (head space), and thus no longer par
ticipate in the oxidation reaction cascade. Both the par
tial pressure and logP values allow comparison of 
component behavior in an unbiased way, although given 
the complexity of emulsions, this may not cover all re
levant effects, as is described in the next section for the 
interfacial layer and the bulk phase.

Interface effects
Various routes have been described in the literature for 
initiation of lipid oxidation [31], such as spontaneous 
abstraction of a hydrogen from an unsaturated fatty acid, 
or reinitiation through decomposition of hydroperoxides 
by, for example, trace metal ions [32], these reactions are 
both expected to be a function of the amount of inter
face available as well as its composition. It is good to 
mention that for the latter effect, this implies that the 
amount of hydroperoxides that are initially present will 
influence the course of reaction as illustrated in the re
cent modeling study by Schroën and Berton-Carabin 
[33]. For both types of initiation, there is a central role 
for metal ions that catalyze the reaction, and since these 
ions partition between interface and bulk water phase, it 
is clear that affinity for these components by other 
components present in the bulk phase would influence 
the amount of a catalyst present at the interface, and 
thus oxidation [28], as described in greater detail in the 
next section.

Effects occurring in the bulk water phase
In various studies on oxidation in emulsions, the reaction 
is carried out in the presence of a combination of a metal 
catalyst, and chelating components such as 
Ethylenediaminetetraacetic acid (EDTA). Metal chela
tion inhibits decomposition of hydroperoxides by pre
venting cationic pro-oxidants [34], such as metals, to 
reach the hydroperoxides near the droplet surface and 
thus reduce oxidation. Besides, it is known that proteins 
may have metal-binding capacity above their isoelectric 
point [9,35], and for β-casein and its hydrolysates, this 
was related to the presence of phosphoryl groups that 
remain negatively charged even at low pH. It has been 
reported that casein that remains in the bulk phase can 
protect the lipid phase against oxidation in this way [34], 
as was reported for other proteins. Furthermore, proteins 
can scavenge free radicals originating from lipid oxida
tion [35–37], thus slowing oxidation [38] in casein-, 

Figure 1  
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Schematic representation of the main physical properties, 
compartments, and possible components of oil-in-water emulsions. 
(Picture is taken from presentation and used with permission of the 
presenter).  
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NaCas- [39,40], and potato protein-stabilized emul
sions [41,42].

In earlier work, we found that soy protein isolates (SPI) 
at neutral pH [43] had better antioxidant power than 
casein, which in turn was more effective than whey 
protein isolate (WPI). The antioxidant ability of SPI and 
WPI was assigned to the sulfhydryl group of the proteins 
[35], and more in general, the tendency of amino acid 
residues to scavenge free radicals depending on the 
tertiary structure of the proteins; when insufficiently 
exposed, they will not be able to participate in free ra
dical scavenging [44]. Effects both in the oil phase 
and in the water phase can be expected to play a role, 
also given the interconnectedness of protein and lipid 
oxidation [45]. Tween 20 has been reported to change 
protein conformation and increase accessibility of certain 
amino acid residues for radical scavenging [43,46].

It is important to point out that components used in 
emulsion formulations may undergo reactions, for ex
ample, Maillard reactions when given a heat treatment. 
This will affect the capacity of these proteins to influence 
lipid oxidations in different ways. Very recently, we 
showed [47] that glycosylation of SPI can lead to a direct 
effect on oxidation at the interface, but also indirectly 
when added to the bulk phase of a whey protein-stabilized 
emulsion of which the oxidative stability was remarkably 
improved [48]. In submitted work, (see Figure 2), we have 
used coffee melanoidin fractions, and found remarkably 
improved oxidative stability in emulsions when added 
post emulsification to the bulk phase.

Lately, papers and reviews have been published that are 
dedicated to the effect that micellar structures may have 
on lipid oxidation, for example, [32,49]. It is suggested 
that (enhanced) transfer of the oxidation products takes 

place through micelles present in the bulk phase, which 
would allow oxidized droplets to ‘contaminate’ clean 
ones. Mostly, these considerations are still theoretical in 
nature, but interesting. Transfer between droplets has 
been visualized for mayonnaise using Confocal Laser 
Scanning Microscopy (CLSM) [50], although the direct 
contact between the droplet may have led to direct 
transfer, without the need of any micellar transfer. In a 
submitted paper, we investigated transfer of primary and 
secondary oxidation products, and found that no no
ticeable transfer of primary products takes place within 
the timespan of the experiments (two weeks) when 
connected to the triglyceride, and only limitedly for 
short-chain secondary oxidation products.

Modeling oxidation in food emulsions
To capture the complexity of the oxidation reaction, for 
example, an exponential approach after a lag phase [51]
was used, that can be quantified by using a Gompertz 
model [14], and a pseudo-phase kinetic model was pro
posed to describe the effect of antioxidants [37,52]. Very 
recently, we have published a first-order reaction ap
proach, and have obtained good agreement both for 
protein- and surfactant-stabilized emulsions; [33] see 
Figure 3. In that way, we were able to distinguish in
itiation of oxidation between two types of emulsions: for 
surfactant-stabilized emulsions that are most probably 
through reinitiation by decomposition of hydroper
oxides, while for protein-stabilized emulsions, this is 
expected to be mostly though spontaneous radical for
mation, that is the result of the interplay between pro
tein and lipid oxidation.

When using the model to predict different scenarios, 
quite interestingly, oxidation in emulsions of different 
size stabilized by Tween 20 and Tween 80 could be 
unified by taking the interfacial area into account in the 

Figure 2  
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Hydroperoxide concentration (a) and para-anisidine values (b) in WPI-stabilized emulsions supplemented with 0–2 w/v% high-molecular-weight 
coffee melanoidin fraction incubated at 40°C for four days (submitted work).  
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radical initiation reaction rate constant when starting 
from hydroperoxides. This is an indication that in these 
very well-controlled and mixed emulsions, the surface 
area may determine the oxidation rate, but this is not 
confirmed yet, and part of ongoing work in various labs 
focusing on the effect of mass transfer, subphase com
position, effects of bulk components, and so on, on lipid 
oxidation. Furthermore, the effect of the initial amount 
of hydroperoxides could be calculated using the model, 
and that showed that this greatly affected the oxidation 
rate in surfactant-stabilized emulsions (see Graphical 
Abstract). Hydroperoxide formation is of course related 
to radical formation, and thus propagation of the reac
tion, which explains the model result, but it is quite 
remarkable that initial hydroperoxide concentration is 
not standardly taken into account when explaining dif
ferences in oxidation in emulsions. Since oxidation is an 
intertwined effect with protein oxidation, also this 
should be considered as an explanation for the differ
ences found, but in practice, this is not done.

In general, oxidation is strongly affected by temperature, 
and in principle, these effects can be covered by the 
previously mentioned model [33] when making the re
action rate constants temperature-dependent. As men
tioned previously, the effects found at high 
temperatures are not necessarily relevant for shelf life at 
room temperature, and here, we give as an additional 
argument that the temperature dependency of the re
actions is simply different, leading to a shift in the ratio 
primary versus secondary oxidation products, which 
makes comparison between temperatures inherently 
more difficult.

Innovative approaches for food emulsion 
design
Since lipid oxidation is initiated at the oil/water inter
face, it is relevant to design the emulsion and position 
components in such a way that they can optimally 

contribute to product stability [26]. In the previous 
section, this was already illustrated by discussing the 
action of proteins and Maillard reaction products at the 
interface and in the bulk of the emulsions.

An interesting approach is to put antioxidants in the 
interface by the use of so-called Pickering particles [53]. 
Although there is a lot of discussion about what is a 
Pickering emulsion when claimed in the food field (in 
our opinion, mostly mixed interfaces are created), the 
use of particles is relevant since they can nest at the 
interface practically irreversibly and thus promote the 
physical stability of emulsions for a long period [54–58]
even up to several years [59]. The amount of particles 
needed follows from equations as presented, for ex
ample, [55] for the ideal case that all particles are in the 
interface.

D
C d V

m

4 p p d

p
=

Where D is the droplet size, C is the degree of coverage, 
ρp is the particle density (kg/m3), dp is the particle dia
meter (m), Vd is the volume of dispersed phase (m3), and 
mp is the mass of particles (kg). It has been shown that 
when antioxidant-containing solid-fat particles are used 
to stabilize an emulsion, this leads to both enhanced 
physical and oxidative stability. It is expected that cap
ture of the antioxidant needs to be improved compared 
with Schroder et. al., [60], since the antioxidant slowly 
leaches from the solid lipid particles to the oil phase [61]. 
Still, it is an interesting concept that may also be realized 
through the use of natural particles containing anti
oxidants [62,63].

Conclusions
Various factors related to the interface, and to the bulk 
phase, contribute to oxidative stability of emulsions re
levant for food and many other fields. Quantification of 

Figure 3  
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Experimentally determined amounts of consumed oxygen (green diamonds), and produced conjugated dienes (blue squares), and the predicted 
values for oxygen concentration (green), conjugated dienes (blue dashed line), total hydroperoxides, and total secondary products (purple) in Tween 
80- (left), bovin serum albumin- (middle), and β-lactoglobulin-stabilized emulsions (right) [33].  
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these effects is far from trivial, and it is expected that 
some new developments, especially those that allow 
evaluation of the cascade of oxidation reactions through 
modeling, will be instrumental in pinpointing the re
levance of the constituent reactions, and the role of the 
droplet size. In itself, it is logical that with more interface 
present, the reaction would proceed much faster, but 
this would also greatly depend, for example, on the 
presence of components that may influence the reaction 
by, for example, radical scavenging or metal chelation 
(by proteins or other agents). A relatively new develop
ment is the use of glycated proteins in the bulk phase, 
and also that of particles with antioxidant capacity at the 
interface. Both options lead to emulsions with con
siderably higher oxidative stability, and are interesting 
leads for making emulsions inherently more stable, and 
thus contribute to reducing food waste.
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