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ABSTRACT
This paper shares an early-career perspective on potential themes for the upcoming International 
Association of Hydrological Sciences (IAHS) Scientific Decade (SD). This opinion paper synthesizes six 
discussion sessions in western Europe identifying three themes that all offer a different perspective on 
the hydrological threats the world faces and could serve to direct the broader hydrological community: 
“Tipping points and thresholds in hydrology,” “Intensification of the water cycle,” and “Water services under 
pressure.” Additionally, four trends were distinguished concerning the way in which hydrological research is 
conducted: big data, bridging science and practice, open science, and inter- and multidisciplinarity. These 
themes and trends will provide valuable input for future discussions on the theme for the next IAHS SD. We 
encourage other early-career scientists to voice their opinion by organizing their own discussion sessions 
and commenting on this paper to make this initiative grow from a regional initiative to a global movement.
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Introduction

The International Association of Hydrological Sciences 
(IAHS) Scientific Decades (SDs) aim to formulate science 
programmes and engage the scientific community to advance 
the hydrological sciences. The first International Hydrological 
Decade was formulated in 1965 by United Nations 
Educational, Scientific and Cultural Organization (UNESCO) 
(Nace 1965) to highlight the field of hydrology as an indepen
dent scientific discipline, but SDs have since grown to boost 

thematic advances in the field of hydrology. It is now a global 
movement initiated and coordinated by the IAHS. The past 
SDs have provided the foundation for scientific collaborations 
and have been vital in shaping hydrological research around 
specific themes. The last two SDs especially have shown that 
well-organized community efforts can shape the field of 
hydrology (Hrachowitz et al. 2013, McMillan et al. 2016, 
Kreibich et al. 2017). The two most recent decades focused 
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on prediction in ungauged basins (PUB, 2002–2012; Sivapalan 
et al. 2003) and on change in hydrology and society (Panta 
Rhei, 2012–2022; Montanari et al. 2013). The results from the 
PUB decade have been summarized by Hrachowitz et al. 
(2013), and several community papers on Panta Rhei research 
results have already been published (e.g. McMillan et al. 2016, 
Kreibich et al. 2017).

Because of increased cooperation between hydrologists, the 
next SD is likely to have an even bigger impact than the last one. 
Therefore, it is important to start the discussions on a theme for 
the next SD. The themes of the past two decades were developed 
through discussions during symposia, in online blogs, and in 
specific sessions at IAHS conferences (Sivapalan et al. 2003, 
Montanari et al. 2013). The discussions were open to all hydrol
ogists. Due to the international orientation of the IAHS, people 
from all over the world were involved. However, the author list of 
the opinion papers predominantly involved well-established 
researchers. While established researchers are key in shaping 
research, early career scientists (ECSs) are important drivers of 
many research projects. Although they were invited and encour
aged to participate in the discussion sessions, ECSs were rarely 
part of the author list of the resulting opinion papers (Fig. 1). Since 
the gender balance in hydrology differs between established 
researchers and ECSs (Popp et al. 2019), the diversity of the 
authors was also skewed (Fig. 1). We perceive the lower diversity 
as a major disadvantage of the adopted approach, because the 
outcomes of the discussions may not have reflected the perspec
tives of the full spectrum of hydrologists.

We believe that actively involving a more complete repre
sentation of hydrological researchers early on in the discussion 
could lead to an SD theme that is not necessarily different but 
at the very least supported by a larger part of the hydrological 
community. This broad backing of the theme will further 
increase the impact of the upcoming SD. To boost ECS invol
vement in SD discussions, we organized discussion sessions in 
western Europe targeting ECSs. This resulted in a gender- 

balanced group of co-authors consisting of mostly ECSs 
(Fig. 1). Due to the regional character of this initiative, a spatial 
bias is inherently present in the presented work. We therefore 
urge other groups of ECSs to actively share their own opinions, 
for example as comments on this paper or in future IAHS 
discussion sessions.

We present three potential themes for the upcoming SD 
that all offer a different perspective on the hydrological threats 
the world faces: “Tipping points and thresholds in hydrology,” 
“Intensification of the water cycle,” and “Water services under 
pressure.” We acknowledge that, even though the Panta Rhei 
decade has come to an end, change in hydrology and society is 
as important as it was 10 years ago (Blöschl et al. 2019). 
However, a new theme will boost hydrology and provide an 
opportunity to incorporate the knowledge gained in the last 
decade within a new focus. In addition, four key trends are 
presented: big data, bridging science and practice, open 
science, and inter- and multidisciplinarity. The trends are 
beyond the scope of a possible theme, as they concern the 
fashion in which hydrological research is or is expected to be 
conducted. These themes and trends can provide valuable 
input for future discussions on a theme for the next IAHS SD.

Methods

We aimed to involve a more diverse group of the hydrological 
scientific community, in particular ECSs, in the discussion on 
the new SD theme, for which we adopted a different approach 
than was applied for previous SDs. For this initiative, ECSs 
were not strictly defined by years since their last graduation; 
rather, we welcomed anyone identifying as an ECS to create an 
inclusive atmosphere. We organized ECS discussion sessions 
to identify potential themes for the upcoming SD in a joint 
effort led by early-career hydrologists from Wageningen 
University and Research (WUR). In the spring of 2022, six 
discussion sessions took place over the course of five weeks at 

Figure 1. Gender (top) and career-stage (bottom) diversity in co-authors of initial publications of predictions in ungauged basins (15 co-authors, Sivapalan et al. 2003), 
Panta Rhei (34 co-authors, Montanari et al. 2013), and this initiative (49 co-authors). For the publications of Sivapalan et al. (2003) and Montanari et al. (2013), the 
numbers are based on publicly available, online information. Early career scientists in these charts are defined as having received their latest degree (BSc, MSc, PhD) less 
than five years before publication of the paper. This definition was chosen to enable an unambiguous classification.
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WUR and five other institutes in four countries: the Karlsruhe 
Institute of Technology (KIT), the Luxembourg Institute of 
Science and Technology (LIST), the Delft University of 
Technology (TUD), the University of Freiburg (UoF), and 
the University of Zürich (UZH). Additionally, researchers 
from the Swiss Federal Institute of Technology in Zürich 
(ETH), and the Dutch branch of the Young Hydrologic 
Society (YHS-NL), were invited to join. Each session was 
attended by 10–30 participants. PhD candidates made up the 
majority of the participants, complemented by postdoctoral 
researchers and assistant professors. No master’s students 
joined the discussions. The participants were all either scien
tists or engineers focusing on sub-topics of hydrology and 
environmental hydraulics. In total, around 75 people attended 
at least one of the sessions, and 49 of those (65%) decided to 
stay involved in the project by co-authoring this paper.

While these sessions have greatly improved the influence of 
ECSs in such discussions (Fig. 1), the session’s geographic 
locations have inevitably led to a spatial bias towards high- 
income countries. Although the participants’ countries of ori
gin were more diverse than the affiliated institutes (Fig. 2), 
future efforts should aim to further broaden the diversity by 
including a larger geographical region.

All discussion sessions lasted an hour and followed a similar 
format, but the content evolved during the series of discus
sions. Each session started with a short presentation of the 
history of the SDs and the aim of our initiative. Subsequently, 
the participants were split into groups of 4–6 people to 
broaden the discussion and involve all opinions. The division 
was targeted to create diverse groups mixing institutes and 
sub-disciplines of hydrology. These group conversations were 
guided by a set of questions that were prepared in advance. The 
questions developed over the sessions starting from a brain
storming level (i.e. “What do you expect to be key words for 
hydrology in the near future?”) towards more detailed ques
tions in the later sessions (i.e. “What would be the research 
questions tackled in the proposed themes?”). All questions can 
be found in the Supplementary material. Finally, each group 
summarized their answers to the questions at the plenary 
discussion that followed. ECSs were encouraged to voice 
their opinion on the theme of the next SD in small groups of 

peers without their voices being unintentionally overshadowed 
by the presence of senior scientists.

Potential themes for the next IAHS Scientific Decade

Hydrological threats arise from pressures of the environment 
(e.g. climate change, ecosystem degradation, and biodiversity 
loss) and society (e.g. population, industrial, and economic 
growth). We see these threats as the central problem for 
hydrology in the coming decade. Hydrological threats thus 
should be studied, but this can be done starting from different 
perspectives. Three themes emerged from the discussion ses
sions that all postulate a perspective on how hydrology could 
tackle the hydrological threats faced by the environment and 
society. For the next IAHS Scientific Decade, we suggest that 
hydrological research could focus on one of the themes below:

● Tipping points and thresholds in hydrology;
● Intensification of the hydrological cycle;
● Water services under pressure.

Tipping points and thresholds in hydrology

Tipping points are critical thresholds in complex systems such 
as the hydrological system. Once critical thresholds are 
exceeded, the system’s state heavily changes; this is referred 
to as a regime shift. These regime shifts can be either reversible 
or irreversible. A reversible tipping point indicates that the 
system can be restored under the same environmental circum
stances, whereas an irreversible tipping point indicates that the 
system can only be restored after circumstances have been 
reversed beyond the original point, known as hysteresis 
(Scheffer et al. 2009). Both reversible and irreversible tipping 
points occur in hydrology. Examples of reversible tipping 
points are the Horton and Dunne principles of overland flow 
generation (Horton 1945, Dunne and Black 1970a, 1970b), and 
an example of an irreversible tipping point is a landslide due to 
heavy rainfall (Keefer et al. 1987).

As mentioned before, the hydrological cycle is affected by 
climate change and human interventions. Therefore, hydrol
ogy needs to advance the understanding and prediction of 
systems under change (Ehret et al. 2014), with particular 
attention to tipping points and their critical thresholds 
(Blöschl et al. 2019). The concept of tipping points gained 
momentum over the past several decades, because hydrologi
cal threats have resulted in water systems being pushed beyond 
their sustainable level. For instance, deforestation has led to 
soil erosion and karstification (Gams and Gabrovec 1999). 
Recently, warnings have repeatedly been issued that deforesta
tion in the Amazon is likely to hit a tipping point, greatly 
reducing precipitation (e.g. Lovejoy and Nobre 2018, Amigo 
2020). Another example is groundwater abstraction that jeo
pardizes groundwater-dependent vegetation (Barron et al. 
2013).

These examples show that tipping points link the hydro
logical system with landscapes as well as ecosystems. In related 
scientific fields, tipping points are already a well-established 
concept. They are fundamental to the Intergovernmental Panel 

Figure 2. Regions of origin of the co-authors of this paper, according to the 
regions defined by the World Bank (Serajuddin et al. 2017).
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on Climate Change (IPCC) reports and the Planetary 
Boundaries framework (Rockström et al. 2009, Steffen et al. 
2015, IPCC 2021). Based on the IPCC report, the Planetary 
Boundaries framework and tipping point research, warnings 
are frequently issued stating that passing these tipping points 
poses risks and will have severe impacts (Steffen et al. 2018, 
Lenton et al. 2019, Otto et al. 2020). Given the complexity and 
connectivity of the entire Earth system, tipping points in other 
scientific areas will affect hydrology and vice versa.

Next to external tipping points affecting the hydrological 
cycle, tipping points have also been observed in different parts 
of the hydrological cycle itself. Hydrological disciplines in 
which tipping points have been identified include surface run
off (Horton 1945, Dunne and Black 1970a, Dijkstra et al. 
2019), groundwater (Bailey 2011, Figura et al. 2011), hydro
meteorology (Buitink et al. 2020, Denissen et al. 2020, 
Krishnamurthy et al. 2020), ecohydrology (Hirota et al. 2011, 
Mayor et al. 2019), and water quality (Dakos et al. 2019, 
Dijkstra et al. 2019). Moreover, these tipping points manifest 
themselves in all places: from arctic (Devoie et al. 2019, Rosier 
et al. 2021) to temperate climates (Kupec et al. 2021, van der 
Velde et al. 2021), from wet (Loverde-Oliveira et al. 2009, 
Verbesselt et al. 2016) to arid regions (Bailey 2011, 
Bernardino et al. 2020), and from hydrological source (Marty 
2008) to sink (Kirwan and Megonigal 2013).

While tipping points have been found, they remain difficult 
to identify and are often not well represented in models. 
Predicting and identifying hydrological tipping points is par
ticularly challenging since the positive feedbacks that induce 
regime shifts originate from complex interactions and occur in 
heterogeneous landscapes with high connectivity (Scheffer et 
al. 2012, Nijp et al. 2019). In addition, modelled tipping points 
can only be verified after they occur (Denissen et al. 2020, 
Krishnamurthy et al. 2020). The impossibility of verifying 
unobserved tipping points is problematic since their occur
rence comes with the drastic consequences of irreversible tip
ping behaviour for hydrological systems (e.g. Drijfhout et al. 
2015, Dakos et al. 2019). Unravelling how known tipping 
points cause hydrological regime shifts requires the integration 
of different research approaches. Experiments in a controlled 
setting can help to identify the underlying feedback mechan
isms (Webster et al. 2016, van de Vijsel et al. 2021). With 
conceptual models capturing the key processes, it is possible 
to test whether this feedback mechanism indeed causes the 
observed regime shift (Bailey 2011, Dijkstra et al. 2019).

At the same time, high-complexity models capturing the 
processes as completely as possible can be used to reproduce 
the conceptual simulations in settings closer to physical reality 
(Drijfhout et al. 2015). These high-complexity simulations 
assist with interpreting field observations and extrapolating 
results to future climate scenarios. In practice, integrating 
these scientific approaches is not straightforward. Identifying 
tipping points in increasingly large amounts of data is tedious, 
and “scanning” for tipping points with models is computa
tionally expensive. Efficiently integrating these approaches 
might greatly advance our scientific understanding of hydro
logical regime shifts and could help us to not only identify but 
also successfully predict tipping points.

Given the potentially catastrophic consequences of hydro
logical tipping points, improving our process understanding 
and predictive capacity should be a focal point of future hydro
logical research. This is summarized in the following research 
questions that the theme “Tipping points and thresholds in 
hydrology” would address:

● How can hydrological tipping points and thresholds be 
identified?

● At what scales are the identified tipping points and 
thresholds relevant, and how do these scales interact?

● Which non-hydrological tipping points affect hydrologi
cal systems?

● What needs to be included in hydrological models to 
simulate and predict tipping points and thresholds? 
How reliable are modelled tipping points and thresholds?

● How can we use our knowledge of tipping points and 
complex systems to mitigate the impacts of environmen
tal and climate change?

Intensification of the water cycle

As global warming directly influences water fluxes, the hydro
logical cycle is strongly affected by climate change (e.g. 
Kundzewicz 2008, Peleg et al. 2018, Madakumbura et al. 
2019). Climate change intensifies the hydrological cycle, 
increasing (for instance) the frequency and intensity of 
droughts and floods (Gloor et al. 2013, Bertola et al. 2020, 
Wasko et al. 2021). More hydrological extremes make securing 
freshwater by, for example, reservoir management increasingly 
difficult (Carvalho-Santos et al. 2017). Combined with 
decreasing freshwater storage due to shrinking glaciers 
(Beniston and Stoffel 2014) and the depletion of high-quality 
groundwater aquifers (Rotzoll and Fletcher 2013), the intensi
fication of the water cycle threatens water security.

Until now, studies have mainly focused on identifying dri
vers of the intensification (Ziegler et al. 2003, Huntington 
2006). However, less is known about mitigation of the risks 
that the hydrological intensification poses for agricultural pro
ductivity, water availability, and water quality (Paprotny et al. 
2018, Abram et al. 2021). We urgently need to explore this 
impact and potential mitigation strategies. In particular, we 
need to identify spatial and temporal trends of dry and wet 
extremes in the context of a rapidly changing climate to enable 
adaptations that store water for drier periods and redistribute 
it to drier areas (e.g. Dai et al. 2018). We need interdisciplinary 
collaborations that lead to adaptations such as hydraulic struc
tures that can prevent flash floods and a guaranteed minimum 
flow discharge to protect river ecosystems.

In the past, the intensification of the hydrological cycle was 
often described according to the “dry gets dryer, wet gets 
wetter” paradigm (Held and Soden 2006, Kitoh et al. 2013). 
However, recent studies showed that this paradigm is too 
simple and not universally true (Allan 2014, Greve et al. 
2014, Kumar et al. 2015, Christidis and Stott 2021). Hence, 
we need to understand local mechanisms and drivers to help 
mitigate the consequences of extreme events, thereby ensuring 
freshwater availability. This is especially important in the 
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Global South, where water insecurity is a substantial issue 
(Vörösmarty et al. 2010).

Increased drought occurrence and severity is a key compo
nent of the intensification of the hydrological cycle. Droughts 
are driven by a series of complex feedback mechanisms 
between (amongst other things) precipitation, soil moisture, 
and evaporation. Drought events manifest themselves in the 
environment (i.e. low discharge), but their impacts include 
immense social, environmental, and economic ramifications 
(e.g. Nilson 2014). Monitoring drought events is complicated 
as they present themselves in different parts of the water cycle 
(i.e. soil moisture, groundwater, surface water) in different 
phases of the event (van Loon 2015, Buitink et al. 2021). 
Remote sensing data with increasing accuracy and spatiotem
poral resolution provide opportunities to monitor different 
parts of the hydrological cycle simultaneously (West et al. 
2019). Regardless, challenges remain in accurately predicting 
droughts (Sutanto et al. 2020), as well as predicting the impact 
of climate change on drought occurrence and intensity 
(Vicente-Serrano et al. 2020). We must resolve these chal
lenges and find solutions to prevent large-scale drought 
impacts.

In addition to increasing the occurrence of dry extremes, 
the intensified water cycle increases the occurrence of wet 
extremes (Addo and Adeyemi 2013, Pendergrass et al. 2017, 
Ansah et al. 2020, De Luca et al. 2020). In the last 10 years, 
numerous extreme precipitation events have occurred with 
extensive impacts around the globe (e.g. Duan et al. 2014, 
Otto et al. 2018, Abram et al. 2021, Wasko et al. 2021). A 
recent example is the 2021 summer flood event that impacted a 
large part of northwestern Europe. Here, the connection with 
other disciplines was clearly visible as the impacts extended 
beyond hydrology: increased erosion led to large scour holes in 
the Meuse (Task Force Fact-finding hoogwater 2021, 
Barneveld et al. 2022). This extreme summer flood resulted 
from weather circumstances with a reoccurrence time of 
400 years, illustrating the extreme nature of the event 
(Kreienkamp et al. 2021). Yet this was not an isolated event: 
the number of extreme rainfall events is increasing due to 
shifting global weather patterns and rising temperatures that 
enhance the atmospheric moisture-holding capacity (Held and 
Soden 2006, Lenderink and van Meijgaard 2008, Kennedy et al. 
2016, Lenderink et al. 2017). More extreme rainfall events can 
result in floods with high socio-economic impacts, and can 
increase the risk of flash floods (Alfieri et al. 2015, Piper et al. 
2016, Meyer et al. 2021). The risk of flash floods in urban areas 
is even higher due to their increasingly impervious surface 
(Cutter et al. 2018).

All in all, extreme events, both dry and wet, are expected to 
occur more frequently in the future (Wahl et al. 2015, Ward et 
al. 2018, Zscheischler et al. 2018). The same goes for com
pound events, where two extremes co-occur, such as a com
pound drought in which a precipitation deficit coincides with a 
heatwave (Seneviratne et al. 2010, Buras et al. 2020), or a 
compound flood in which precipitation excess coincides with 
a storm surge (Wahl et al. 2015). This requires improved early 
warning systems to limit the negative impacts of extreme 
events, and long-term strategies to mitigate and cope with 
any remaining detrimental effects (Pappenberger et al. 2015, 

Ward et al. 2018, Couasnon et al. 2020, Abram et al. 2021, 
Wasko et al. 2021). However, assumptions of climate statio
narity on which many of the statistical approaches are based 
are no longer valid (Milly et al. 2008). Predicting the risks of 
these types of events has therefore become more difficult. 
Improving hydrological forecasts thus requires improving the 
entire forecasting chain. The chain starts with weather fore
casts that are the input for hydrological simulations (Emerton 
et al. 2016). These hydrological simulations provide the basis 
for impact forecasts (e.g. Sutanto et al. 2019). Finally, the risks 
are disseminated (Sorensen 2000) together with suggested 
mitigation strategies.

To summarize, we propose that the focus of hydrological 
research should shift from identifying intensification to pro
viding knowledge on how to mitigate its effects, from local to 
global scales. Research questions that need answering are the 
following:

● What is the impact of an intensified hydrological cycle on 
the environment, ecosystem services, and society?

● What areas are most at risk from the intensification of the 
hydrological cycle?

● How reliable are extreme event predictions that are based 
on extrapolating relatively short data series, and how can 
this reliability be improved?

● How can early-warning systems be improved so that 
extreme events can be accurately predicted?

● What mitigation strategies are suitable in the context of 
ongoing intensification of the hydrological cycle?

Water services under pressure

To raise awareness of the crucial role of water for nature and 
society, we advocate for a broader use of the “ecosystem services” 
framework in hydrology. More specifically, the water cycle could 
be seen as the ecosystem under study: “water services” (e.g. Prasad 
2006, Lele 2009, Ojea et al. 2012). Following Daily’s (1997) defini
tion of ecosystem services, water services, or hydrological services, 
describe the conditions and processes through which the water 
cycle sustains and fulfils human life (e.g. Underwood et al. 2018). 
We propose to extend this definition to include the vital role of 
water in the environment. By widely acknowledging and adopting 
water services as a concept in hydrology, scientific advances can 
help secure currently vulnerable water services in a dynamic 
natural and social environment.

Whereas “water services” indicate the services that water 
provides for the environment and society, society also greatly 
influences the water system (Linton and Budds 2014, Liu et al. 
2014). This influence was studied extensively during the Panta 
Rhei decade, leading to a push in the field of socio-hydrology 
(e.g. Scott et al. 2014, McMillan et al. 2016, Di Baldassarre et al. 
2018, Pijl et al. 2018). Essential eco- and social systems heavily 
depend on limited water resources for services such as drink
ing water, irrigation water, and hydropower. This dependence 
explains why the substantial population and economic growth 
over the last century caused a sharp increase in global domes
tic, industrial, and agricultural water demand (Vörösmarty 
and Sahagian 2000, Oberle et al. 2019). The growing water 
demand threatens the sustainability of water systems and 
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increases their vulnerability (Krol et al. 2003, McCluney et al. 
2012). This vulnerability is exacerbated by unpredictable 
changes in the water cycle (e.g. hydrological intensification, 
salt intrusion) due to climate change (Oki and Kanae 2006).

While society depends on water resources, anthropogenic 
activities have compromised the quality of these resources and 
related environmental systems. For instance, sea-level rise is 
threatening groundwater reservoirs (Rotzoll and Fletcher 
2013), and all parts of the water cycle are contaminated by 
pollutants such as plastic (Liu et al. 2020, van Emmerik and 
Schwarz 2020), bilge water (Tiselius and Magnusson 2017), 
nutrients (Lintern et al. 2020), pesticides (Payraudeau 2012), 
road salt (Szklarek et al. 2022), and oil (Lucas and MacGregor 
2006). Next to affecting water quality, anthropogenic activities 
such as canalization also interrupt natural hydrological pro
cesses, affecting water quantity (e.g. Owens et al. 2005). For 
example, ecosystem services such as flood protection and bio
diversity are more likely to be lost from river deltas as a result 
of human activities upstream that interrupt natural sediment 
transport (Hoitink et al. 2020). Similarly, large-scaled drainage 
associated with land reclamation projects reduces the buffer 
function of wetlands and swamps (Nobis et al. 2020). 
Therefore, there has been a call in recent research to account 
for the dynamic impacts of anthropogenic activities in river 
transformation (Russell et al. 2021).

In the Sustainable Development Goals, the United Nations 
(2015) recognize that sustainable water resource management 
is essential to ensure a sustainable future. Still, estimates sug
gest that water insecurity is threatening about 80% of the 
world’s population (Vörösmarty et al. 2010). Many of these 
people live in ecologically fragile, conflict-ridden, and vio
lence-affected countries that suffer the most from poorly man
aged water resources (Anderson et al. 2021, World Bank 
Group 2021). The water–peace–security nexus is further 
impacted by the COVID-19 pandemic (Mukhtarov et al. 
2022) and recent intensifications of geopolitical rivalry (De 
Falco and Fiorentino 2022). We believe scientific advances in 
hydrology could facilitate sustainable water resource manage
ment, especially for less resilient societies that are most threa
tened by water insecurity.

Hydrology has supported water resource management by 
generating and conveying understanding of water resources 
and hydrological extremes (Savenije and Van der Zaag 2008). 
This traditional hydrological support should be broadened to 
incorporate human–water interactions, to include the spatio
temporal scales of water, and to tackle managerial challenges 
for transboundary water systems (Blöschl et al. 2019). This 
involves a holistic management approach, where the entire 
water cycle is seen as one system (Cao and Warford 2006, 
Bakker 2012, Giupponi and Gain 2017). Implementation of 
this holistic approach can be supported by widely adopting the 
use of “water services” as a concept in hydrology. We suggest 
four key research questions for the theme “Water services 
under pressure” to advance the field of hydrology:

● How can we assess quantitative and qualitative water 
availability for sustainable water services?

● What hydrological knowledge is missing to provide solu
tions to support water services?

● How can the development of pressures on water services 
be identified, monitored, and predicted?

● What are the scales and spatiotemporal distributions of 
pressures on water services?

Current trends in hydrology

Next to the themes, we identified four important trends in 
hydrology. These trends are not included as a theme, since they 
concern the way of conducting research. We note that these 
trends have gained traction over the past years, and think that 
continuing and intensifying their application in the hydrolo
gical sciences can help make research more efficient, more 
reproducible, and easier to apply in practice. That is why we 
think these trends should be incorporated in the design of the 
upcoming SD. The following four trends are discussed here:

● Big data;
● Inter-and multidisciplinarity;
● Bridging science and practice;
● Open science.

Big data

In the early days of hydrology, hydrological data were limited 
to those collected in the field. Automated sensors greatly 
improved the availability of in situ data, but they are still 
characterized by high costs and limited spatial coverage. New 
technologies such as remote sensing have provided us with 
better spatiotemporal data coverage, as well as measurements 
covering a larger part of the hydrological cycle, including for 
instance precipitation, evapotranspiration, snow, soil moist
ure, and water storage (Arsenault et al. 2016, Addor et al. 2017, 
Cui et al. 2018, Almagro et al. 2021, Klingler et al. 2021). Due 
to the size of these datasets, big data is a big topic in the 
environmental sciences including hydrology (Chen and 
Wang 2018, Gaffoor et al. 2020). We recognize the value of 
big data in improving data-driven science on water resources. 
With higher data availability, questions arise on how to use 
these data efficiently and how to extract knowledge from 
different data sources simultaneously.

Big data in hydrology presents not only new opportunities 
but also challenges. First of all, data quality and uncertainty are 
pressing issues, as poor or inconsistent data quality can lead to 
inaccurate interpretations and unreliable conclusions 
(McMillan et al. 2018, Lawton 2021). To make big data robust, 
they need to be validated against in situ data. Thus, in situ data 
collection needs to be incentivized to sustain in situ validation 
efforts (Allen and Berghuijs 2020), while research should also 
focus on minimizing the spatial mismatch between the scales 
of in situ and big data (Loew et al. 2017). Another challenge is 
that big data analyses, such as machine learning, are often 
complex. This complexity makes results difficult to interpret, 
validate, and reproduce.

Secondly, despite the development of big data, data-sparse 
regions still exist (Wilby 2019), and hydrology is often still 
considered a data-limited science. Data availability is not 
evenly distributed over the globe or over the layers of the 
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hydrological systems. In particular, data are missing on sub
surface variables. We should therefore continue to develop 
affordable data collection, which can help the growth of citi
zen-science products that have the potential to increase obser
vations in data-sparse regions (Buytaert et al. 2014). We 
should also continue performing reanalyses to fill temporal 
gaps in historical data.

Lastly, storing large datasets is challenging due to limited 
and/or expensive storage. Historical data is already being 
rapidly lost (Talke and Jay 2013, Benito et al. 2015), so besides 
ensuring that data we collect now will remain available for 
future generations, we should also focus on conserving the 
work of previous generations that have not (yet) been 
digitized.

While big data has the potential to advance our under
standing of hydrology, there is a strong need to develop uni
versal data collection protocols to improve the foundations of 
reproducible data analysis and predictions. We should aim to 
use the full potential of all available data together, without 
subjectively selecting and rejecting data sources. We suggest 
increasing the cooperation between hydrologists and data 
scientists to jointly tackle the challenges defined here.

Inter- and multidisciplinarity

Seventeen Sustainable Development Goals were posed by the 
United Nations that all ascend beyond boundaries of separate 
scientific disciplines (United Nations 2015). Thus, to attain 
these goals, scientists need to adopt a more inter- and multi
disciplinary approach. They can focus on their own discipline 
and share knowledge (multidisciplinarity) or combine the dis
ciplines into a coherent whole (interdisciplinarity; Annan- 
Diab and Molinari 2017). Hydrology can be more intertwined 
with closely related fields of research, such as meteorology 
(Sene 2010), sedimentology (Waldschläger et al. 2022), and 
plant sciences (Konkol et al. 2022).

The complex themes of past and future SDs require efforts 
to bridge the divide between the environmental and social 
sciences (transdisciplinarity). In line with hydrology’s colla
borative history, the non-solitary research style was also recog
nized as a key pillar to the success of the Panta Rhei decade 
(Montanari et al. 2013) and is gaining traction in other scien
tific disciplines as well (Van Noorden 2015). Thus, we should 
critically evaluate what and how scientific expertise outside of 
hydrology could be integrated into hydrology (Seidl and 
Barthel 2017). However, practical difficulties arise when con
ducting multi-, inter-, or transdisciplinary research (e.g. Lélé 
and Norgaard 2005, Strober 2006, Lang et al. 2012, Brown et al. 
2015). Such collaborations are often characterized by consid
erable differences in scientific culture, potentially impeding 
their success. For example, environmental researchers may 
experience social sciences as subjective, while it may frustrate 
social scientists if environmental researchers do not recognize 
social implications (Brown et al. 2015). Familiarizing oneself 
with such cultural differences facilitates effective multi-, inter-, 
and transdisciplinary research.

We argue that education on these collaborative approaches 
as well as on related disciplines will pave the way for more 

successful collaborations. Funding agencies, educators, institu
tions, publishers, and researchers should continue to promote 
collaborations between disciplines to incentivize, streamline, 
and disseminate multi-, inter-, and transdisciplinary research 
to drive global sustainable development.

Bridging science and practice

One of the research questions posed in Panta Rhei was: “How 
can we support societies to adapt to changing conditions by 
considering the uncertainties and feedbacks between natural 
and human-induced hydrological changes?” (Montanari et al. 
2013). This question is part of the attention that has been given 
to closing the gap between science and practice. We distin
guish the gap between hydrology and water management and 
between science and the general public, and will start by dis
cussing the first. Stakeholders are increasingly incorporated in 
research through collaborations between scientists, companies, 
and governments, often stimulated by funding agencies. For 
example, Cortes Arevalo et al. (2020) use visual storytelling to 
strengthen the science–practice interface. Additionally, work
ing groups that stimulate the bridge between science and 
practice have also been set up, such as the IAHS CANDHY 
working group. They aim to “stimulate discussion, sharing of 
knowledge, information, data, ideas fostering scientific and 
professional exchange of academic, institutional and citizen 
communities interested in the ‘Citizen AND HYdrology’ 
topic” (Montanari 2021, p. 1) We endorse these efforts and 
see them as the first part of the bridge, but we argue both gaps 
should be reduced even further.

In order to decrease the gap, we should overcome the 
difficulties that are encountered when aiming to bridge science 
and practice. For one, clear communication is impeded by 
different interpretation of water-related words such as river 
and dike (Venhuizen et al. 2019). On top of this, stakeholders 
may hesitate to implement scientific knowledge due to a lack of 
trust, contradictory findings, or high costs (Raška et al. 2022). 
Overcoming these challenges would enable the use of state-of- 
the-art knowledge in decision-making (McMillan et al. 2016) 
and requires clear and open communication between scien
tists, stakeholders, and policymakers, as well as a reflection on 
governance strategies based on scientific output. We acknowl
edge the debate on the role of science in society (Higgins et al. 
2006), but we believe science should benefit society. Therefore, 
stakeholders and policymakers need to address what knowl
edge is needed in practice, and scientists need to clearly 
address the limitations of their research.

Science and the general public are brought closer by science 
communication. Scientists communicate their findings, 
because they want to be transparent to the general public 
(Kirchner 2017), to reduce scepticism (Hamilton et al. 2015), 
and to inform and educate (Dudo and Besley 2016). However, 
science communication is not easy. Scientists sharing their 
results have to translate their research into intriguing stories 
with a clear narrative about potentially controversial topics. In 
doing so, they may run into miscommunication, misinterpre
tation, and exaggeration (Lutz et al. 2018). We propose to 

HYDROLOGICAL SCIENCES JOURNAL 535



empower the future generation of scientists by incorporating 
science communication in their curricula.

Open science

Publishing scientific work in open access (OA) format has 
become increasingly common, with many funding agencies 
requiring research to be published OA. However, open science 
(OS) does not end at publishing OA. OS includes opening all 
parts of the research process: ideation, data collection and 
analysis, and dissemination of the results to peers as well as 
the public. Science can be made more open and reproducible 
by sharing data on public repositories, using open software, 
sharing preprints and negative results, and having an open 
peer-review process. OS increases accessibility to fellow scien
tists and the public, improves reproducibility, transparency, 
and collaboration, and credits original ideas and work properly 
(Gil et al. 2016, van Emmerik et al. 2018, Hall et al. 2022). 
Moreover, OS can bridge the Global North–South research 
divide, leading to increased inclusivity in science practices 
(Adcock and Fottrell 2008, Tennant et al. 2016).

Publishers and scientists already widely acknowledge the 
importance of OS. Some journals require both data and code to 
be findable, accessible, interoperable, and reusable (FAIR stan
dards; Wilkinson et al. 2016, Stall et al. 2017). In turn, hydro
logical researchers are raising awareness by sharing guidelines 
like the “Open Hydrology Practical Guide” (Hall et al. 2022).

While science as a whole is becoming increasingly open, 
some challenges still need to be tackled. First, OS is more 
expensive for the researchers, both financially and timewise. 
Financially, OA involves fees, and storing research data is 
expensive. Timewise, publishing reproducible code and data 
is more labour-intensive than storing code and data for perso
nal use (Hall et al. 2022). Moreover, not all observations are 
quantifiable and transferable (Blume et al. 2018). Publishing 
code and data requires experience with (for example) version 

control, which is often lacking (Hall et al. 2022). A second 
challenge is that publishing data is sometimes prevented due to 
privacy, commercial, political, and economic concerns (Zipper 
et al. 2020). Third, preprints are often criticized for their poor 
scientific quality due to lacking prior peer review.

A fully open and transparent way of doing science can lead 
to faster advances in hydrology and is therefore, in our opi
nion, the only way forward. We believe that the three chal
lenges discussed here can and should be tackled to promote OS 
in hydrological research. On top of that, OS should be included 
in education and additional efforts to practice OS should be 
better rewarded in the academic system. Since these efforts 
cannot stand on their own, it is important that funding agen
cies also see the value of OS. Additional funding is required to 
fully incorporate OS in education and to support any addi
tional efforts scientists make to publish their research OS.

Synthesis and outlook

During the past two IAHS SDs, strong advances in the field of 
hydrology were made. In the first, PUB (Sivapalan et al. 2003), 
work was done on reducing predictive uncertainty in hydrol
ogy. During the second, Panta Rhei (Montanari et al. 2013), 
the interaction between hydrology and society was studied. 
Thanks to these decades, hydrological models and predictions 
have improved, as has our understanding of vital hydrological 
processes. The gained knowledge and improved hydrological 
tools allow us to tackle different problems in hydrology that we 
previously could not. For the upcoming SD, we therefore 
propose to use this enhanced toolbox to tackle hydrological 
threats caused by climate change and population growth. This 
can be approached from different perspectives. We identified 
three perspectives that could be selected as the theme for the 
upcoming IAHS SD: “Tipping points and thresholds in hydrol
ogy,” “Intensification of the water cycle,” and “Water services 
under pressure” (Fig. 3). We also identified four trends that 

Figure 3. Overview of the themes and trends presented in this paper.
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concern the way in which hydrological research is conducted: 
big data, bridging science and practice, open science, and 
inter- and multidisciplinarity. If future research is executed 
according to these guidelines, it could more efficiently benefit 
the entire hydrological community and more effectively alle
viate the hydrological threats.

The three themes and four trends are presented separately 
in this paper, but it should be noted that they are highly 
connected. The themes outline possible pathways of future 
hydrological research, and the trends have the potential to 
improve the speed, applicability, and reproducibility of hydro
logical research. The connectivity between themes is seen in, 
for instance, the co-occurrence of tipping points with the 
intensification of the hydrological cycle. Impact identification, 
mitigation strategies, and reliable implementation in hydrolo
gical models are overlapping focal points in the themes. 
Connectivity between trends is visible in, for instance, the 
fact that using big data in combination with open science 
could lead to quicker advances in the field, as well as a more 
inclusive research community. If this is further combined with 
effective science communication, the knowledge can be 
directly applied by policymakers and the public to alleviate 
some of the threats we are currently facing as a society.

We offered an ECS perspective in the discussion on the 
theme of the new IAHS SD. We synthesized the outcome of 
six discussion sessions in western Europe in the spring of 2022. 
Along with the themes, we highlighted a number of research 
questions that, in our view, should be addressed in the next SD. 
We acknowledge that the logistical limitations of our initiative 
have led to a spatial bias. This may have caused certain topics 
that are vital to the future in hydrology, especially in regions not 
represented by the authors, to be overlooked. To overcome the 
limitations posed by this bias, we encourage ECSs around the 
world to share their opinion, get involved in the IAHS SD 
discussions, and organize their own ECS discussion sessions. 
These sessions could be organized according to the guidelines 
provided in the Supplementary material, which are also avail
able online with the possibility to post comments (https:// 
github.com/tvhat/ECSdiscussion-IAHSSD). By targeting cur
rently underrepresented groups with this type of sessions, inclu
sivity is actively pursued, which we deem necessary as a passive 
open invitation will not automatically lead to diversity. We hope 
to see a lively discussion as a result of this opinion paper and are 
confident that the presented themes, research questions, and 
trends will feed into the larger debate on the next IAHS SD.
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