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Abstract

Feed-food competition is the allocation of resources that can be used to feed humans to
animal feed instead, a current but unsustainable practise not well documented for aquacul-
ture. Here, we analysed feed-food competition in aquaculture using two measures; natural
trophic levels (TLs) and species-specific human-edible protein conversion ratios (HePCRs).
The HePCR equals the ratio of human edible protein in feed (input) to the human edible
protein in animal produce (output). To provide prospects on aquaculture's potential to con-
vert human inedible by-products into edible biomass, data on aquaculture production were
collected and categorized based on natural TLs. HePCRs were computed for four aquacul-
ture species produced in intensive aquaculture systems: Atlantic salmon, common carp, Nile
tilapia and whiteleg shrimp. Under current feed use, we estimated that the carp, tilapia and
shrimp considered were net contributors of protein by requiring ~0.6 kg of human edible
protein to produce 1 kg of protein in the fillet/meat. Considering soya bean meal and fish-
meal as food-competing ingredients increased the HePCR to ~2 and turned all of the case-
study species into net consumers of protein. To prevent this increase, the use of high-
quality food-competing ingredients such as fishmeal, or soya bean products should be mini-
mized in aquaculture feed. In the future, the role of aquaculture in circular food systems will
most likely consist of a balanced mix of species at different TLs and from different aquacul-

ture systems, depending on the by-products available.
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biomass from arable land and water bodies is prioritized for human

food and other basic needs rather than for animal feed, thus reducing

Humanity is facing the challenge of feeding the world's growing
population while staying within planetary environmental boundaries.
As the current food system exceeds many planetary boundaries, a
promising way forward is to build circular food systems. In which

Geert F. Wiegertjes and Imke J. M. de Boer shared equally to the last authorship.

feed-food competition.!™® In this paradigm, farm animals, including
aquaculture species, should not consume human edible biomass but
instead convert by-products from crops, livestock and fisheries
that are inedible for humans, into edible biomass. In addition to these
by-products, animals in circular food systems can also convert plant-

based food waste and grass resources into food.
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To date, discussions of feed-food competition in aquaculture
have largely addressed the use of fishmeal, and for a good reason: 9%
of fisheries landings are transformed into fishmeal and fish oil,* of
which 90% can be considered food-grade.” These studies often
focused on the fish-in: fish-out ratio (FIFO) as an indicator for feed
efficiency of aquaculture species. The FIFO differs greatly among spe-
cies. For example, in 2009, salmon had a FIFO of around 5 and shrimp
around 1.5.% Over the years, the FIFO has decreased to around 0.3
for global aquaculture.” An important reason for this decrease is that
there is a growing trend to replace fishmeal with plant-based protein
sources, such as soy protein concentrate.®? These replacement ingre-
dients, however, also often cause feed-food competition because they
can be used directly as food.®? In addition, plant-based ingredients,
such as soya-bean-based ingredients, could influence feed-food com-
petition indirectly by increasing land use for the production of animal
feed instead of human food.

Nevertheless, fish and shellfish are rich in macronutrients
(e.g., protein, fat) and micronutrients (e.g., calcium, iron, zinc, selenium;
vitamins A, B and D; iron)!°"?2 and can be a valuable addition to a
healthy diet even when consumed in small amounts.’® In fact, fish is
the main source of essential omega-3 long-chain polyunsaturated
fatty acids in human diets.’® Furthermore, farmed fish convert feed
into food relatively efficiently.'* For example, Atlantic salmon has a
feed conversion efficiency similar to that of chicken, and both are bet-
ter than those of most other farmed animals.!®> To determine the
unique role of aquaculture in the transition towards healthy and circu-
lar food systems, more insight is needed into feed-food competition
in global aquaculture.

One way to do so is to explore an animal's natural ability to
upgrade specific by-products into food. This ability is determined by
animal species, breed, and production-system intensity, and varies
greatly among the more than 400 fish and shellfish species farmed in
aquaculture. Here, we used the natural trophic level (TL) as an indica-
tor of an animals' natural ability to upgrade specific by-products from
human food.”*> Aquatic species at low TLs, such as primary producers
(algae) and filter feeders (e.g., mussels, oysters) do not consume
human edible biomass and therefore do not contribute to feed-food
competition. Similarly, herbivorous species at low TLs have enzymes
that can digest dietary fibres and other carbohydrates that humans
cannot. Aquaculture species at higher TLs—omnivores and carnivores
species—have diets that are more similar to those of humans and are
well adapted to convert fish or other animal-based by-products into
food. We therefore hypothesize that feed-food competition increases
as the natural TL in aquaculture increases. To date, however, insight
into the ability of individual aquaculture species from different natural
TLs to convert by-products into food is lacking.

Another way to gain insight into feed-food competition is to use
the HePCR to quantify the net contribution of farmed fish to the sup-
ply of human edible protein. The HePCR equals the ratio of human
edible protein in feed (input) to the human edible protein in the animal
product (output). Much quantification of HePCR has focused on live-
stock. In general, monogastric animals consume more protein than
they produce (i.e., HePCR > 1) while grass-fed ruminants can produce

more protein than they consume (i.e., HePCR < 1). HePCRs are

reported for a variety of animals in several countries,®

including
England (beef, lamb, pig, poultry”), Austria (beef, veal, swine, chicken,
turkey, sheep, goat'®) and Ireland (beef, pig!®), but have not been esti-
mated for aquaculture species. In aquaculture, only the human edibility
of the feed has been estimated. Insights into the conversion efficiency
of human edible feed protein into aquatic protein (i.e., quantifications
of HePCR), however, are lacking.

Here, we analysed feed-food competition in aquaculture using
both criteria: natural TLs and species-specific HePCR. We addressed
the current status and trends in aquaculture production based on TLs
and calculated HePCRs of current intensive aquaculture systems. The
HePCRs were calculated for case studies of four key aquaculture spe-
cies: Atlantic salmon, common carp (Cyprinus carpio), whiteleg shrimp

(Litopenaeus vannamei) and Nile tilapia (Oreochromis niloticus).

2 | METHODS

21 | Global aquaculture production

To contextualize our findings about feed-food competition, we first
reviewed generic data on aquaculture production by retrieving pro-
duction (wet weight) and economic data (USD) at global and continen-
tal levels from Fishstat)J.?° To develop an overview of current
aquaculture production (reference year 2019), we selected the 50 spe-

cies produced most (in wet weight).2°

2.2 | Natural trophic levels

We first quantified the relative contribution of each TL to current
global aquaculture production (in kg wet weight and edible protein),
aggregated by species groups. To this end, we categorized production
data of the 50 aquaculture species produced most by TL range. Each
species' natural TL (1-5) was based on information from FishBase?!
(Figure 1), shown to be a good data source for the trophic ecology of
finfish.2? Because FishBase does not include data on molluscs or crus-
taceans, their natural TLs were extracted from the literature (refer to
Tables A1 and A2 for details). If the TL of a species was unknown, that
of a closely related species was assumed to apply. As primary pro-
ducers, all seaweeds were assigned to TL 1.

Species were subsequently grouped by TL range based on the
nine divisions of the International Standard Statistical Classification of
Aquatic Animals and Plants?®: aquatic plants; freshwater fish; mol-
luscs; crustaceans; diadromous fish; marine fish; miscellaneous aquatic
animals; miscellaneous aquatic animal products; and whales; seals and
other aquatic mammals.

We expressed the relative contribution of each TL range to cur-
rent global aquaculture in terms of edible protein by multiplying each
species' production volume (wet weight) by its edible yield and protein
content. Edible yield was defined as fillet yield for finfish species and

as meat yield for molluscs and crustaceans, as shells and exoskeletons
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were considered inedible. Because seaweeds have other uses besides
food, we multiplied total seaweed production per species by the pro-
portion used as human food, which was derived from Naylor et al.?*
Seaweed produced for food was assumed to be completely human
edible. If the edible yield of a species was unknown, that of a closely
related species was assumed (refer to Tables A1 and A2 for details).

The protein content of individual fish species was collected from
the U.S. Department of Agriculture (USDA) database.?> When data
were not available from the USDA database,?® they were obtained
from FishBase,?! standard tables of food composition in Japan26 or
the literature (see Tables A1 and A2 for details). Protein contribution
was based on raw fish, and cooking losses were not included.

We then quantified the trend in the mean TL of aquaculture pro-
duction globally and by continent from 1980-2019. We collected

FIGURE 1 Overview of natural trophic levels of key aquaculture
species. 4-5: Atlantic salmon, 3-4: common carp, 2-3: mussels, Nile
tilapia, whiteleg shrimp, 1: Seaweeds.

data on annual production and the natural TL of the 25 species pro-
duced most (wet weight) globally and categorized them by continent.
The method for collecting data on production, natural TL, and the
grouping of species was the same as that used for analysing the global

natural TL.

2.3 | Human edible protein conversion ratios

To embed HePCR results in the existing aquaculture literature, we
also calculated the protein conversion ratio (PCR), as an indicator of
feed efficiency.

2.3.1 | Case studies

To obtain an initial impression of feed-food competition in aquacul-
ture at the species level, calculations were performed for four case-
study species—three finfish (one from each natural TL) and one
crustacean—chosen based on two criteria: having the highest eco-
nomic value and being produced in intensive systems. Consequently,
we selected: Atlantic salmon (TL 4-5), common carp (TL 3-4), Nile
tilapia (TL 2-3) and whiteleg shrimp (TL 2-3).

2.3.2 | Datasources

PCR, HePCR. and HePCRy were calculated for each species (Box 1).
For the ingredients in the diets, we focused on the grow-out phase.
Diets for common carp, Nile tilapia and whiteleg shrimp were based on
confidential surveys with five people active in the aquaculture feed
industry. They were asked to estimate the feed composition for each
species for intensive cultivation in 2020. The mean of the suggested
diets was used as diet composition in this study (Table 1). The diet com-

position of Atlantic salmon was based on the feed used for Atlantic

BOX 1 Protein conversion ratio (PCR), human edible protein conversion ratio (HePCR.) and human digestible
protein conversion ratio (HePCR,) adapted from Laisse et al.?” and Mottet et al.'®

n
>~ Feed;xP;

=FCRx o,

Protein in feed
Human edible protein in fillet/meat

1. PCR=

n
> Feed; xCP; xHE;

_____Humanedible proteininfeed  __ =1
2. HePCRe ~ Human edible protein in fillet/meat — FCRx

TP, <HIE;

n
> Feed; xCP; xHE; xDIAAS;

3. HePCR, = Human digestible protein in feed —FCR x j=1

d = Human digestible protein in fillet/meat CP; xHE; xDIAAS;

where i the aquaculture species considered, j the ingredients of the diets consumed by the animal. FCR is the feed conversion ratio of

the animal, Feed the proportion of the feed that is ingredient (j), CP is the crude protein content (%), HE the human edibility and DIAAS

the digestible indispensable amino acid score (%).
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TABLE 1 Mean ingredient composition of the diets of the four selected aquaculture species.
Diet composition (%)

Ingredient Atlantic salmon® Common carp® Whiteleg shrimp® Nile tilapia®

Animal-based ingredients
Blood meal - - - 14
Feather meal - - 11 3.0
Fish meal 121 1.7 12.0 1.0
Krill meal - - 20 -
Meat and bone meal - 9.0 - 6.4
Poultry meal - 8.3 9.3 8.0

Plant-based ingredients
Cassava meal = 3.3 = 8.0
Corn bran = = = 0.2
Corn gluten meal 0.7 = 1.5 1.2
Corn meal = 5.0 = 4.4
Distillers grains - 6.0 - 0.9
Faba beans 3.6 = = =
Guar protein 4.3 - - -
Pea flower 25 = = =
Pea protein concentrate 1.4 - - -
Rapeseed meal - 3.3 - -
Rice bran = 15.7 3.8 8.2
Soy lecithin - - 1.1 -
Soy protein concentrate 20.9 - 2.3 -
Soya bean meal - 28.3 31.3 27.8
Sunflower meal 34 = = =
Wheat gluten meal 9.8 - 2.0 -
Wheat meal = 3.3 5.0 17.8
Wheat bran = 7.3 2.8 5.0
Wheat flour 6.5 = 18.8 1.4
Other (e.g., oils, vitamins, minerals, other additives) 34.6 8.7 7.3 5.3

Note: Only ingredients included as protein sources were considered. The diets selected were assumed to reflect commercial diets.

Aas et al. 28

PMean ingredient inclusion based on confidential surveys. Number of diets included for common carp: 3, whiteleg shrimp: 4 and Nile tilapia: 5.

salmon aquaculture in Norway in 2020.2% The assumed range in feed
conversion ratio (FCR) of each species was based on FCRs found for
these species for intensive production systems in the literature
(Table 3). The crude protein content of diet ingredients was calculated
based on the International Aquaculture Feed Formulation database®®
(Table 2). The human edibility of each feed ingredient was defined as
either food-competing (1 in Equation 2,3) or non-food-competing
(0 in Equation 2,3) based on Sandstrém et al.” and Mottet et al.¢
(Table 2). Both studies reported the same human edibility for most ingre-
dients, except for soya bean meal and fishmeal. Sandstrém et al.” consid-
ered fishmeal made from whole fish food-competing but fishmeal made

116 consid-

from fish by-products non-food-competing, while Mottet et a
ered all fishmeal non-food-competing. Furthermore, while soy protein

concentrate is food-competing, soya bean meal is considered non-food-

competing because it is a by-product of soya bean oil production, and the
meal is used almost entirely as a feed ingredient. However, soya bean dif-
fers from all other ingredients in that its by-product (soya bean meal) is
the primary driver of soya bean production. As a result, soya bean meal
can be considered an indirect competitor to human food,'® which Mottet
et al.'® did, but Sandstrom et al.’ did not. To capture these differences,
we created two scenarios, in which soya bean meal and fishmeal were
considered (1) non-food-competing or (2) food-competing. For fishmeal,
we used a human edibility of 0.66 instead of 1 to represent that 27% of
fishmeal is made up of by-products (non-food)* and that 90% of the
whole fish used to create fishmeal can be considered food grade.® For the
human edibility of the output of the species, we focused on the current
habits of eating primarily fillets. To represent protein quality, we included

the digestible indispensable amino acid score (DIAAS) for the selected fish
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species and the feed ingredients (Table 2). The Food and Agriculture Orga-
nization of the United Nations (FAO) recommends the DIAAS*! as a mea-
sure of protein quality. The DIAAS reflects the content of the first limiting
indispensable amino acid in a feed/food ingredient relative to the require-
ment for the same amino acid by humans*! We used the amino acid
requirement pattern for a 6-month to 3-year-old child as the reference
protein's amino acid profile, similar to studies by Laisse et al.*? and Ertl
et al,*” and as recommended by the FAO.*! The DIAASs of feed ingredi-

1.3 or, if not included by them, estimated

ents were extracted from Ertl et al
using their method.>” Due to a lack of data on the human ileal amino acid
digestibility of fish fillets, the DIAASs of the case-study species were calcu-
lated based on amino acid scores from the USDA,? assuming an amino

acid digestibility of 94% for fillets/meat.*

3 | RESULTS

3.1 | Global aquaculture production

Volumes of global aquaculture productions are increasing, driven
by the growth of the sector in Asia. In 2019, global aquaculture
(including seaweed and algae) reached a total production of 97 M
ton (wet weight), an ~50% increase compared to that of 10 years
previously (62 M in 2009). The contribution to global production,
however, differed considerably among continents: Asia dominated
(90%, with 60% of the total from China alone) followed by the
Americas (4%), Europe (3%), Africa (2%) and Oceania (0.2%). Africa
showed the highest growth over the previous 10 years (130%); its
growth >2.5 times the growth of China. Interestingly, the conti-
nent (Asia) and country (China) that produced the largest volume,
had the lowest economic values, while the continents with the
lowest volumes (Oceania, Europe and the Americas) have the high-

est economic values.

3.2 | Trophic levels
The contribution of each aquaculture species groups to global aqua-
culture production in 2019 varied (Figure 2).

In 2019, TL 2-3 produced the most wet weight (59%) and edible pro-
tein (60%). Although dominated by freshwater fish and molluscs, it was
the TL range with the greatest diversity of species groups produced. In
general, aquaculture species at lower TL (TL 1-3) contributed less to global
protein production than to global aquaculture wet-weight volumes. For
aquatic plants, this is due to their high water and low protein content
whereas fish from low TLs have lower edible yields than at higher TLs.

Globally, over the past 40 years, the mean natural TL of
aquaculture species increased slightly (Figure 3a), but it differed
greatly among regions, especially China and Europe. In Europe, it
increased due to the large increase in production of diadromous fish
(especially Atlantic salmon) over the past 35 years. Since 2002,
Europe was also the continent with the highest mean TL (Figure 3a,b).

In contrast, the mean TL of aquaculture species in Asia/China

remained relatively low and stable over the past 30 years (1985-
2015) due to higher growth of production of freshwater fish, molluscs

and aquatic plants than that of other species groups (Figure 3c).

3.3 | Human edibility of fish diets

In scenario 1 (soya bean meal and fishmeal non-competing), Atlantic
salmon had the highest percentage of food-competing ingredients in
the diet (45%) (Figure 4a) because soy protein concentrate was the
primary protein source. Common carp, whiteleg shrimp and Nile

TABLE 2 Plant and animal ingredients crude protein content and
digestible indispensable amino acid scores (DIAAS).

Product Protein content (%)? DIAAS
Food-competing ingredients + soya bean meal + fishmeal

Animal-based ingredients

Fish meal 65 67°
Plant-based ingredients
Cassava meal 3 17°¢
Corn meal 8 42¢
Faba beans 26 61°
Pea flower 16 63°
Pea protein concentrate 54 67f
Soy protein concentrate 65 115°
Soya bean meal 47 97¢
Sunflower meal 30 47¢
Wheat meal 17 40°
Wheat flour 13 40°

Non-food-competing feedstuff

Animal-based ingredients

Blood meal 86 =
Feather meal 81 =
Krill meal 58 =
Meat and bone meal 37 =
Poultry by-product meal 60 -
Plant-based ingredients

Corn bran 9 -
Corn gluten meal 68 -
Distillers grains 45 -
Guar protein 65 -
Rapeseed meal 35 -
Rice bran 13 =
Wheat gluten meal 78 =
Wheat bran 15 =

2USDA»

PINRA.*”

“De Vries-Ten Have et al.*®

“Ertl et al.>

eAmino acid profile from IAFFD3¢ and protein digestibility from INRA.3”
fAdapted from Mathai et al.*®
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FIGURE 2 Global aquaculture production in 2019 per trophic level (TL) expressed as (a) wet weight or (b) edible protein.

tilapia had a lower percentage of food-competing ingredients in their
diets (3%, 12% and 12%, respectively), with wheat products providing
most edible protein (Figure 4a).

In scenario 2 (soya bean meal and fishmeal food-competing), the
percentage of human edible protein increased for all diets, ranging
from 49% to 65% (Figure 4b), because soya bean meal was the main
protein source in the diets of common carp, whiteleg shrimp and Nile
tilapia and fishmeal was included in the diets of Atlantic salmon and
whiteleg shrimp. Atlantic salmon and whiteleg shrimp had the highest
percentages of food-competing ingredients in their diets (59%
and 65%, respectively). Ingredients included in the aquaculture diets
in relatively large percentages that were not food-competing included

livestock by-products, gluten meals and cereal bran.

3.4 | Conversion ratios

The PCR ranged from 3.4 to 8.7 for the case-study species (Table 3).
Atlantic salmon converted protein the most efficiently, followed by
whiteleg shrimp and then common carp and Nile tilapia, both of which
had similar PCRs. Differences in PCR among species were caused by
differences in the FCR, edible yield and protein content of the feed.
Compared to the other species, Atlantic Salmon had the lowest FCR
and highest fillet/meat yield.

In scenario 1, Atlantic salmon was the only species with an
HePCR. greater than 1 (range: 1.5-2.0; Figure 5a) and thus consumed
more human edible protein than it produced. The HePCR. of the
other species lay below 1 (range: 0.2-1.0), implying that they pro-
duced more human-edible protein than they consumed. Values of
HePCRy, which considers protein digestibility, were lower than those
of HePCR. due to the relatively higher quality of fillet protein than
feed protein (Figure 5).

In scenario 2, all four species were net consumers of protein:
HePCR. increased to 2.0-4.6 (Figure 5a), while the HePCRy increased
to 1.7-3.5 (Figure 5b). The range of HePCR./4 of Atlantic salmon
including or excluding soya bean meal and fishmeal overlapped,

indicating smaller changes in the human edibility of protein in salmon
diets compared to those of other species.

4 | DISCUSSION

Given the diversity of aquaculture species, the present study was
intended as a starting point for exploring and analysing feed-food

competition for additional species, systems and locations.

41 | Synthesis
We worked from the assumption that aquaculture offers great poten-
tial to produce food while avoiding feed-food competition. We used
natural TLs as a starting point to analyse feed-food competition, as
the natural ability of an animal to upgrade specific by-products
into food can determine its role in a circular food system. In both
Europe and the Americas, Atlantic salmon was the species at a high
TL (TL 4-5), whose production was largest and grew the most rapidly,
which drove the increase in average produced natural TL. Feeding
compound feeds has generally resulted in aquaculture diets with an
effective TL lower than that of natural diets (natural TL).*® This
decrease may appear positive if assuming that diets at lower TLs
generally cause less feed-food competition because they include more
plant-based ingredients and less fishmeal. However, when fishmeal is
replaced by soy protein concentrate, as for salmon, the positive
impact on feed-food competition is not apparent because soy protein
concentrate is human edible and has higher protein quality (i.e., a
higher DIAAS) than fishmeal. As a result, species at a naturally high
TL, such as salmon, continue to receive relatively higher quality (plant-
based) ingredients, resulting in highly human edible diets.

When investigating feed-food competition in the present
study, classifying soya bean meal and fishmeal as either food-
competing or non-food-competing ingredients had large influence

on the net contribution to protein supply of the four aquaculture
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species. When we considered them as human-edible, not only did
species at a high trophic (i.e., salmon) appear as net consumers of

protein, but so did species at a lower TL, (i.e., common carp,

meal itself is considered inedible,

whiteleg shrimp and Nile tilapia). Soya bean meal is the ingredient

used most in aquaculture compound feeds.® Although soya bean

216 jts production is the main
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FIGURE 4 Human-edible protein ingredients as percentage of the total protein of the diets for the selected species. (a) Scenario 1 (fish meal
and soya bean meal are non-food-competing ingredients) and (b) Scenario 2 (fish meal and soya bean meal are food-competing ingredients).

TABLE 3
species from literature and the present study.
Literature
Species FCR Fillet/meat yield
Atlantic salmon 1.1-1.4° 56°¢
Common carp 1.5-1.8° 45¢
Whiteleg shrimp 1.2-2°¢ 52
Nile tilapia 1.3-2.0¢ 378

?Balseiro et al.?? and Aas et al.?®
bSuprayudi et al.>°

Cao et al.3?

dWatanabe et al.®?

®Malcorps et al.>®

fKim et al.3*

ERutten et al.%®

hUSDAZ®

driver of land use.'® Soya bean meal causes indirect feed-food
competition, as the land used to produce soya bean meal could
have been used to grow food crops for direct human consump-
tion.** Although fishmeal does not require land its production can
lead to overfishing and of greenhouse gas emissions.*> Replacing
soya bean meal in aquaculture feeds would reduce feed-food com-

petition in aquaculture drastically.

Feed conversion ratios (FCR), fillet/meat yield, protein contents and crude protein conversion ratio (PCR) for the four case-study

Present study
Protein content (%)

Fillet/meat Feed PCR

21.4 36.7 3.4-4.4
17.8" 30.9 6.0-7.1
20.4" 38.1 40-67
20.1" 321 5.6-8.7

When soya bean meal and fishmeal were considered food-
competing, Nile tilapia, which has a low TL, had the highest
HePCR, while Atlantic salmon, which has a high TL, had the lowest
HePCR. This may seem surprising, because Atlantic salmon and
whiteleg shrimp had the highest percentage of human-edible pro-
tein in their feed. However, the low HePCR of Atlantic salmon can

be explained by its relatively high growth rate and feed efficiency,
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FIGURE 5

HePCRy

Soya bean meal and fishmeal food-competing

Human-edible protein conversion ratio (HePCRe) and human digestible protein conversion ratio (HePCRd) for selected

aquaculture species in intensive production systems. (a) Human-edible protein feed and fillet/meat protein and (b) human digestible protein feed
and fillet/meat digestible protein. Vertical lines indicate means, and bars indicate a range related to variability in the feed conversion ratio. Values
less than 1 indicate net production of protein, while values greater than 1 indicate net consumption of protein.

due, among other things, to years of selective breeding.*® In addi-
tion, when kept in intensive systems, species at a naturally low TL
such as Nile tilapia are often fed high-quality protein (e.g., soya
bean meal) to increase growth rates and decrease FCR. Thus, inten-
sive aquaculture systems do not optimally align with the natural
ability of species at a low TLs to upgrade lower quality by-products
or natural biomass. For these species, extensive systems as well as
ecological intensification, for example, nutritious ponds, are better

suited.

4.2 | Feed-food competition in aquaculture
compared to livestock

Compared to livestock, absolute feed-food competition in aqua-
culture is relatively small, because aquaculture represents for only
a small percentage (~1.2%) of global feed consumption, compared
to that of cattle (73%), pigs (20%) and poultry (7%).° Looking only
at global human-edible feed consumption, however, aquaculture
represents a larger percentage (3.8%),° likely related to the
relatively high protein requirements of fed aquaculture species.
Overall, most gain to reduce feed-food competition is to be made
with livestock.

Directly comparing the HePCR of livestock and aquaculture
is hampered by differences in metabolism and housing. The most logical
comparison with monogastric species, such as poultry and pigs. When
their HePCR ratios are compared, broilers (HePCR, ~ 5.2) and industri-
ally produced pigs (HePCR. ~ 4.5) have higher HePCRs than the aqua-

culture species examined (HePCR: 0.2-2).1¢

4.3 | Limitations of this study

We attempted to approach feed-food competition scenarios in aquacul-
ture using all available information and objective criteria, but improve-
ments are always possible. First, information on complete feed
formulation in this study was obtained for three of the four selected
species by confidential surveys of people in the aquaculture feed indus-
try. Feed formulation, however, changes constantly and differs by
region. We mitigated the influence of this uncertainty by developing a
mean diet formulation per species based on multiple diets representa-
tive of the same period. However, still some bias for a specific region
could be present and the diets used may not completely reflect global
practise. Assessing diets by region and over time lay beyond the scope
of this study, but doing so would provide valuable knowledge in the
transition towards circular food systems. Second, the feed quantity and
growth rate were not always available for each life stage of the aquacul-
ture species selected, thus FCR could not be estimated for each life
stage. Consequently, we estimated HePCR for the grow-out phase only.
As this phase has most influence on HePCR (i.e., most compound feed is
consumed during it), including other phases seems unlikely to influence
our conclusions. Third, we considered only protein efficiency in this
study; however, because fish have a high-fat content, investigating the
efficiency with which aquaculture species upgrade lipids could be a valu-
able next step. Overall, as an initial estimate of feed-food competition,
we included multiple feeds and FCR per species, which provide a range
for the HePCR. Future studies could focus on the entire life cycle of one
specific system and species, as HePCR depends on the animal, its feed
and efficiency and, to the definition of human edible products.}”-?”42

These types of studies could provide more detailed estimates of
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feed-food competition in aquaculture; nevertheless, more data
should be available for these studies.

Another limitation of this study was related to its scope, as we
focused only on intensive systems to the enable comparison of HePCRs
between species at low versus high TLs and between aquaculture and
livestock. Most aquaculture species, however, are produced in extensive
or semi-intensive systems, especially finfish species at a low TL, in which
they can obtain (some of) their nutritional requirements from the natural
environment. As the efficiency of converting by-products is affected by
species as well as production systems,*” we need to analyse comparative
case studies of specific species and production systems. In other words,
we need to compare HePCRs of the same species produced in different
systems and at different intensities.

44 |
systems

Implications of this study for future-food

Animals can play an important role in circular food systems by upgrad-
ing by-products; therefore, the transition towards circular systems
should emphasize minimizing feed-food competition,*®*? for both
livestock and aquaculture. To ensure a net contribution of aquaculture
to food security, focus should be placed not only on feed efficiency
metrics, such as FCR, but also HePCR. For example, the present study,
showed that Atlantic salmon, despite having a relatively low FCR, con-
sume more protein than they produce (HePCR > 1), indicating the
importance of HePCR.

In recent years, an increasing number of animal and plant-based
by-products have been used as aquaculture feeds.>>! For example,
according to recent estimates livestock by-products and fishmeal from
fish by-products could replace 99% of the fishmeal made from whole
fish.” Besides using by-products, the literature also suggests using
novel protein sources to replace fishmeal, such as insects, algae and
yeasts; however, the global potential to replace fishmeal with these
sources, remains unclear.’?> Moreover, novel protein sources that
cause feed-food competition should not be incorporated into aquacul-
ture feeds. For example, if insects are used as fish feed they should
not be fed with by-products that can be fed to the fish directly, such
as slaughter waste, but rather alternative biomass streams, such as
manure. A combination of novel protein sources and by-products
could replace current food-competing ingredients.

To further encourage the feed industry to develop and apply
innovations to increase by-product use, ! the government could
develop targets for the inclusion of by-products in aquatic feeds for
feeding companies or tax the use of food-grade feed materials.” Alter-
natively, certification schemes such as the Aquaculture Stewardship
Council, Best Aquaculture Practices and SafeFeed/Safe Food (SF/SF)
Certification Program,*® could include targets for the inclusion of by-
products in aquatic feed. To monitor the efficacy of these policies or
certification schemes, we are in need of indicators of feed-food
competition,53 such as HePCR.

A final strategy to optimize the role of aquaculture in the food

system is to increase the edible yield of harvested species. If humans

would consume not only fillets but also all edible parts (Table S2), the
HePCR.,q would decrease by 27% for Atlantic salmon, 37% for com-
mon carp, 21% for whiteleg shrimp, and 35% for Nile tilapia. Consum-
ing a larger fraction of the fish therefore has an environmental
benefit, as it allows for a better use of all raw materials and primary
resources (lands, freshwater, energy) used through the life cycle of
the fish.

The role of aquaculture in circular food systems will most likely
consist of a balanced mix of species at different TLs and from dif-
ferent aquaculture systems, depending on the by-products avail-
able. Species at high TLs are specifically adapted to use high-
quality by-products from animal-based food, such as fisheries and
livestock by-products, while those at lower TLs could be fed plant-
based by-products or be produced in non-fed aquaculture systems.
If aquaculture species are fed mainly by-products, however, the
availability and quality of these by-products would determine
new boundaries for production and consumption. Hence, the
consumption of aquatic species will no longer be determined by
the demand, but by the amount of aquatic food that can be pro-
duced from by-products. Therefore, shifting towards circular food
systems, requires changing not only production systems but also
consumption patterns, especially in high-income countries. Diets
should gradually contain more plant-based products and fewer
animal-based products.? Combinations of socio-economic and
institutional measures,? education and promotion of circular think-
ing, but also reduction of taxes for circular products>* could all help

achieve the change towards more circular food production.

5 | CONCLUSIONS

The mean natural TL in global aquaculture production has
increased over time. If this trend continues, feed-food competition
may also increase assuming that aquaculture feed at a higher TL
contains more human edible ingredients. When considering only
ingredients directly edible by the diet of the species at the highest
TL, Atlantic salmon, had by far the highest human edibility. Never-
theless, in this scenario, less than 50% of each of the diets was
human edible, and common carp, whiteleg shrimp and Nile tilapia
were net producers of protein. When soya bean meal and fishmeal
were also considered food competing ingredients, the percentage
of human edibility increased substantially for all diets except that
of Atlantic salmon, and all species were net consumers of protein.
Because soya bean meal is the feed ingredient most used in aqua-
culture, replacing it with non-food-competing protein sources is an
important step towards reducing feed-food competition in aqua-
culture and towards circularity. The role of aquaculture in circular
food systems will most likely consist of a balanced mix of species
at different TLs and from different aquaculture systems, depending
on the by-products available. As the natural TL is not the only fac-
tor that influences feed-food competition, future research should
focus on including more species (e.g., diets, FCRs) and systems

(e.g., intensities).
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APPENDIX

TABLE A1 Protein content (%), edible yield(%) and trophic level of the 50 aquaculture species most produced globally in 2019.

Species

Japanese kelp

Grass carp(=White amur)

Whiteleg shrimp

Cupped oysters nei

Silver carp

Nile tilapia

Common carp

Japanese carpet shell

Catla

Bighead carp

[Carassius spp]

Striped catfish

Atlantic salmon

Wakame

Freshwater fish nei

Description
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield

Protein
Edible yield
Trophic level
Protein
Edible yield

Trophic level

Value
1.5-2.9
100

1

15.2-20
36-54

2
18.8-21.4
52

2.5

5-10
6-18

2
16.1-17.2
34-39

2
18.1-26.1
31-45

2

17.5-18
36-54

3.1
6.1-14.9
35-40

2

14.9
32.2-33.7
2.8

24.3
30.2-32.9
2.8

19.9

42.8

3.1
12.6-18
50.4

3.1
19.9-25.4
62.5-65
4.5
1.9-2.7
100

1

17.5

39.5

3.1
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TABLE A1 (Continued)

Species Description Value References
Red swamp crawfish Protein 7.4-8 76
Edible yield 20.4-20.9 76
Trophic level 2.5 77
Nori nei Protein 1.2-4.5 26
Edible yield 100 a
Trophic level 1 b
Roho labeo Protein 19.7 78
Edible yield 35.6-36.2 66
Trophic level 2.2 21
Scallops nei Protein 13.5 26
Edible yield 50 26
Trophic level 2 ¢
Milkfish Protein 20.5-21.1 25,61
Edible yield 61 61
Trophic level 2.4 21
Torpedo-shaped catfish nei Protein 18.2 79
Edible yield 38.9-46.7 79
Trophic level 3.5 21
Marine molluscs nei/Sea mussels nei Protein 11.2 61
Edible yield 24 61
Trophic level 2 ¢
Tilapias nei Protein 17.6 61
Edible yield 37 61
Trophic level 2 21
Rainbow trout Protein 19.9 25
Edible yield 56-65 80
Trophic level 4.1 21
Constricted tagelus Protein 8.1 26
Edible yield 65 26
Trophic level 2.5 21
Laver (Nori) Protein 4.8-5.1 81
Edible yield 100 ?
Trophic level 1 5
Chinese mitten crab Protein 18.9 82
Edible yield 242 82
Trophic level 2.5 83
Giant tiger prawn Protein 15.9-25.8 25
Edible yield 52 €
Trophic level 2.5 €
Wuchang bream Protein 17.9-18.3 84
Edible yield 36 61
Trophic level 3.4 21
Marine fish nei Protein 17.5 f
Edible yield 39.5 f
Trophic level 3.5 21
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TABLE A1 (Continued)

Species

Black carp

Cyprinids nei

Pacific cupped oyster

Yellow catfish

Pangas catfish nei

Mrigal carp

Largemouth black bass

Blood cockle

Snakehead

Channel catfish

Silver barb

Blue-Nile tilapia hybrid

Chilean mussel

Amur catfish

Pond loach

Description
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield
Trophic level
Protein
Edible yield

Trophic level

Value
16.5
30.6
3.2
17.5
54
2.8
8.5
10

12

42-57

3.5

14.7

50.4

31

19.9
37.6-39.3
24

15.7
34-35

3.8
12.5-13.9
40

2

17.7
30-37

4.4

15.2
42-57

4.2

18.4

50.1

24
18.1-26.1
31-45

2
8.3-14.1
40

15.8
36-50
4.4
16.1-17
100

3.2
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References
85
68
21
61
61
21
61
61

c

86
g
21
25,63,71,72
73
21
78
66
21
87
88
21
26
26
c
89
89
21
25
90
21
58
91

21
h

h

21
25
26
c

92
90
21
93
26
21

(Continues)
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TABLE A1l

Species

Asian swamp eel

Fusiform sargassum

Giant river prawn

Japanese eel

van RIEL eT AL.

(Continued)

Description
Protein

Edible yield
Trophic level
Protein

Edible yield
Trophic level
Protein

Edible yield
Trophic level
Protein (g/100 g)
Edible yield (%)

Trophic level

Note: References include letters that indicate the assumptions made.

?Edible yield of seaweeds was assumed to be 100%.
bTrophic level of seaweeds is 1 as primary producers.

“Trophic levels of mussels was assumed to be 2 as herbivorous filter feeders.
dAverage freshwater fish.
€Assumed same as whiteleg shrimp.
fAssumed average marine fish.
8Assumed same as channel catfish.
PAssumed same as Nile tilapia.
iAssumed same as European eel.

TABLE A2

Atlantic Salmon®

Common carp?

Whiteleg shrimp®

Nile tilapia®®

aMalcorps.>®
PKim.3*
“Lui.”®
4Suliemani.”®

C

(%) of whole body
Edible yield (%)
Protein (%)

(%) of whole body
Edible yield (%)
Protein (%)

(%) of whole body
Edible yield (%)
Protein (%)

(%) of whole body
Edible yield (%)
Protein (%)

Fillet

56
100
21
43
100
18
56
100
20
37
100
20

Heads

10
37
17
17
44
13
34

100

25
a4
13

Frames
10 8
57 81
19 18
9 8
90 46
17 15
13 12
90 46
17 15

Trimmings

Skin
5
100
23

100
19

100
19

Value
17.8
60
29
14-2
100

1

17.4-18.5
26.1-42.1

2.55
19.6
60
3.6

Viscera

11
0
12
14
0
11

o O o

Protein content and edible yields of fillet and by-product fractions for the four selected species.

Shell

°Edible yield (%) and the protein (%) of heads, frames, trimmings, and skin was assumed the same as Common carp.

Tail

References
21

i

21

94

a

b

95
95,96
97

21

21

Total edible yield (%)

77

72

71
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