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Abstract

Tilapia culture is an important source of income and nutrition to many rural families.

Since 2000, the production of tilapia increased and reached domestic and global mar-

kets. Major farmed species is Nile tilapia (Oreochromis niloticus), in earthen ponds and

cage cultures. Intensification contributed to global tilapia disease outbreaks, with bac-

terial infections causing mortalities and morbidities, threatening sustainable produc-

tion. At tilapia farms, high nutrient concentrations, water temperature and fish
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densities enhance bacterial growth including virulent bacterial clones and potential

zoonotic bacteria. Global warming favours this. This review respectively provides a

comprehensive overview of the most common and emerging bacterial pathogens, dis-

eases, clinical presentations and diagnostics of tilapia, including bacteria and diseases

with zoonotic potential. First, common bacterial disease outbreaks, including strepto-

coccosis, motile Aeromonas septicaemia, francisellosis, columnaris disease and vibrio-

sis are described. Then, information on emerging bacterial infections of concern for

tilapia, like edwardsiellosis through Edwardsiella ictaluri and E. tarda, as well as Aero-

monas schubertii is provided. Reports of infectious bacterial tilapia disease outbreaks

from other bacteria, including Lactococcus garvieae, Aerococcus viridans, Pseudomonas

spp., Mycobacterium marinum and Chlamydia spp., and others are reviewed. Further-

more, bacteria with zoonotic potential, like Streptococcus agalactiae ST283, S. iniae,

Aeromonas sp., E. tarda, Vibrio vulnificus pathovar (pv) piscis and M. marinum are

included in the review, to provide the most current overview of the disease risks

affecting production and post-harvest stages. Additionally, the status and risks of

antimicrobial resistance in bacteria from tilapia and other cultured fish through impru-

dent use of antibiotics, and its future at a global level are provided.

K E YWORD S

AMR, bacterial disease, diagnosis, tilapia, zoonosis

1 | INTRODUCTION

Diseases of aquatic organisms seriously constrain the expansion and devel-

opment of sustainable aquaculture. Globally, in aquaculture, the trend is

that a previously unreported pathogen that causes a new and unknown

disease will emerge, spread rapidly, including across national borders, and

causemajor production losses approximately every 3–5 years.1

The capability to manage health of aquatic organisms has signifi-

cantly increased during the last three decades. However, such capac-

ity did not match the rapid growth of the aquaculture sector.2 Many

of the most serious infectious disease agents affecting cultured spe-

cies in aquaculture are bacteria. Because they rarely act as primary

pathogens and they occur most commonly as opportunistic pathogens

in already damaged or severely immunocompromised hosts, there is

low attention given to this pathogen group. In fact, in the OIE (now

known as WOAH) list of notifiable aquatic animal diseases, there are

very few bacterial pathogens.3

However, bacteria may cause severe losses in tilapia farming.

Bondad-Reantaso et al.4 compiled a list of bacterial species or species

groups affecting cultured finfish, crustaceans and molluscs. Their

importance is growing, thus the need to pay more attention is there,

not only in the context of its impact on production, but also of its zoo-

notic potential and contribution to development of antimicrobial resis-

tance (AMR) through misuse of antibiotic treatments.

Farming of tilapia is primarily done in Asia; additional production

comes from Africa and the Americas. The most predominant species

is Nile tilapia (Oreochromis niloticus) with a 2019 production of 4.6

million tonnes.1 From subsistence farming, tilapias are now commer-

cially produced and tilapia products are traded globally. At a global

level, the top three producers in 2019 are (i) China (1.6 million

tonnes), (ii) Indonesia (1.3 million tonnes) and (iii) Egypt (1.1 million

tonnes).

This article is part of a compendium of papers of a Special Issue in

Reviews in Aquaculture which resulted from a virtual webinar event:

‘Tilapia health: quo vadis’, organized by the Food and Agriculture Orga-

nization of the United Nations (FAO), held from 1–3 December 2021.

The objective is to review the most important bacterial pathogens and

bacterial diseases affecting tilapia, including those that have zoonotic

potential and understand ways to reduce bacterial disease risk for both

fish and humans, with general recommendations of therapeutic and

prevention strategies against the related pathogens, and pointing to the

risk of development of antimicrobial resistance through imprudent use

of antibiotics.

For this literature review, the authors used a systematic approach

to the review, which included the use of relevant keywords

(e.g. streptococcosis and tilapia) in the following databases of literature:

Web of Science, Scopus, PubMed. The scientific literature included peer

review journals, book chapters, health organism's reports, and so forth,

with an initial search covering the last 10 years. Where little data was

available, the temporal search was expanded as appropriate. An inclu-

sive approach was adopted, where each of the authors took responsibil-

ity for a section and worked with those that had most expertise/

experience in each of the sections or bacterial species. This was then

shared with the authors and cross-revised accordingly. Preference was

given to literature that included tilapia, and other fish species were

included where data in tilapia was more limited.

The review work was divided among the authors, per expertise.

Each expert read their database-acquired collection of papers and made
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a draft text, which was altogether reviewed by the co-authors. Although

most of the information was found on bacterial diseases of other fish

than tilapia, we focused as much as possible on tilapia bacterial diseases.

2 | REVIEW

In total, 370 references have been cited for this review paper, from

the years 1970–2022.

2.1 | Current bacterial diseases of significant
importance

Tilapia may be infected with various bacteria, including species of the

genera Vibrio, Aeromonas, Pseudomonas and Streptococcus,5 whereas

some genera may be present also on healthy fish, like species of the

genera Pseudomonas Aeromonas, and Plesiomonas.6 In general, most

fish diseases are induced by a stress factor, like a suboptimal environ-

ment, for instance, bad water quality, and this allows opportunistic

bacteria including Aeromonas hydrophila to infect tilapia and cause

disease.7–9 Moreover, many bacterial diseases are multifactorial.10

We should keep this in mind, when trying to understand the cause of

and finding a way to cure a bacterial fish disease.

The current bacterial tilapia diseases of significance (related to

fish-welfare, economy and society) are streptococcosis, aeromonasis,

francisellosis, columnaris disease and vibriosis.

To compare economic losses in USD due to bacterial disease in

tilapia farming with those in other fish culture species is difficult, as

costs are dependent on the value of the fish species, the production

system, the country, the currency and so forth. A comparison in terms

of % of fish production lost might be meaningful but there is not suffi-

cient data that is collected in a consistent manner to allow for such

comparisons across studies, countries, fish species and production

systems.

2.1.1 | Streptococcosis

Outbreaks of streptococcosis have been widely reported in farmed

tilapia species globally,11–13 described as a septicaemic infection due to

the bacterial species of S. iniae or S. agalactiae.14 These facultatively

anaerobic, Gram-positive bacteria are described as non-motile and non-

spore forming, presenting with varied degrees of haemolysis dictated

by species and strain variation.15 In cultured tilapia, high prevalence of

S. iniae and S. agalactiae infection was usually observed during hot and

dry seasons when the water temperature is ≥27�C.16,17

Streptococcus agalactiae may cause acute15 or chronic disease18

in tilapia. Clinical presentations of the acute form include, but are not

restricted to erratic swimming, c-shaped body of the fish, uni- or bi-

lateral exophthalmia (with or without corneal opacity), distended

abdomen and haemorrhages15 (Figure 1). Meningoencephalitis has

been reported in infected tilapia, as the bacteria cross the blood brain

barrier19,20 and similar clinical signs of disease were reported21 in

F IGURE 1 (a–c) Streptococcosis by S. iniae/S. agalactiae in diseased tilapia in the USA. The tilapia shows exophthalmos and cataract. They
may have a C-shaped body, which causes them to swim spirally (b). Pictures (a–c): Courtesy Dr Joyce Evans, USDA-ARS, Aquatic Animal Health
Research Unit, Auburn, Alabama, USA. Picture (d) Diseased tilapia from an outbreak of S. agalactiae in tilapia in Vietnam. The fish shows
exophthalmos and a congested belly from full sepsis. Courtesy Dr Truong Dinh Hoai (co-author)
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tilapia both naturally and experimentally infected with either S. iniae

or S. agalactiae. In the chronic form, yellow or dark red nodules were

seen in the musculature near the vertebra of Nile tilapia.18 An out-

break or cumulative mortality during chronic, persistent streptococco-

sis in tilapia can reach 80%,22 while monthly prevalence of isolation

ranged from 0% to 32% throughout the year.23 Since S. agalactiae and

S. iniae may be zoonotic,24,25 in case of a chronic infection, the fish

farmers may have a longer exposure to the bacterium, without very

clear clinical signs.18 This imposes a risk for the fish farmers, the fish

processors, and the consumers.

Concurrent Streptococcus infection with other bacteria and tilapia

lake virus (TiLV) has been reported in cultured tilapia.26,27 The esti-

mated economic impact of S. iniae and S. agalactiae infections in tilapia

was around USD 150 million annually in 2000 and further increased

to USD 250 million annually in 2008, representing approximately

5.7% and 6.7% of the total global value of tilapia, respectively.14 How-

ever, no updated value on the economic impacts of streptococcosis in

cultured tilapia is available.

Streptococcus isolated from fish are identified using a combina-

tion of phenotype (biochemical tests), serotype (agglutination test)

and genotype (PCR, multi-locus sequence typing and whole

genome sequencing). Barnes et al.28 serologically and morphologi-

cally typed S. iniae isolates from tilapia (Oreochromis sp.) and hybrid

striped bass (Morone saxitilis � M. chrysops) from the USA. Serolog-

ically distinct isolates of S. iniae identified as serotype I (ADH + ve)

and II (ADH-ve) were isolated from natural disease infections in

Thai tilapia farms.29 Imperi et al.30 reported 10 serotypes of S. aga-

lactiae based on the composition of the capsular polysaccharide,

where serotypes Ia, Ib and III are the most commonly reported

strains in global tilapia outbreaks.31,32 Genotyping studies using

multi-locus sequence typing and whole genome sequencing have

improved the understanding of pathogenesis of both S. iniae and S.

agalactiae.33

In piscine streptococcosis, three major factors influence the path-

ogenesis; the virulence of the agent, the environmental stressors and

the susceptibility of the host. Genetic virulence associated with genes

that encode several protein molecules have been identified.34

Buchanan et al.35 identified the enzyme phosphor-glucomutase as the

virulence factor for S. iniae. This enzyme inter-converts glucose-

6-phosphate and glucose-1-phosphate, which play important roles in

the production of polysaccharide capsule of S. iniae that enhances the

bacterial virulence. In S. agalactiae, virulence gene profiles revealed

that S. agalactiae serotype Ia ST7 lacked lmb, scpB, pavA, fbsB, cyl, bca,

cspA and bac genes, which were present in serotype III ST283.36 Var-

ied routes of transmission have been reported in tilapia infections

including cohabitation of infected and non-infected fish.16 Transmis-

sion of S. agalactiae from a hatchery to a grow-out farm also has been

documented.23 Pradeep et al.37 reported the first evidence demon-

strating parents-to-offspring, vertical transmission of streptococcosis

in tilapia.

Regarding vaccination, Shelby et al.38 tested passive immuniza-

tion of tilapia (O. niloticus) with intraperitoneal (i.p.) injection of anti-S.

iniae whole sera, and this proved to be highly effective. Evans et al.39

produced a S. agalactiae (Group B) vaccine for tilapia, which worked

best after i.p. injection. Vaccination through i.p. injection with a

re-attenuated strain of S. agalactiae (TFJ-ery), from the natural

low-virulence S. agalactiae strain TFJ0901 as basis, gave almost 100%

protection of tilapia.40

Regarding genetic resistance it is difficult to disentangle the role

of tilapia species or strain, environmental conditions, pathogen preva-

lence and fish husbandry in susceptibility to different pathogens

because most descriptions of disease are observational and not based

on systematic comparison under controlled condition. Hence, any

apparent association with species or breed may be due to underlying,

uncontrolled, risk factors. There is, however, opportunity to breed for

resistance to certain pathogens, as demonstrated recently for S. aga-

lactiae, where a reduction in mortality of >50% could be achieved.41,42

The impact of breeding for disease resistance on other desirable

traits, for example, growth rate or flesh quality, is yet to be assessed.

2.1.2 | Aeromoniasis

Aeromonas spp. are ubiquitously found in freshwater environments

and are described as infectious and opportunistic organisms, which

may cause fish disease when stress factors are present in a diverse

range of aquatic farming systems.8 It has been shown, that A. hydro-

phila is one of the main pathogenic bacteria in tilapia culture, which

not only causes high mortality and disease to cultured fish, but also

causes similar problems to wild fish, resulting in huge economic losses,

to both tilapia and wild fish.43–45 It has been reported that aquatic ani-

mals infected with Aeromonas may suffer acute and chronic diseases,

including haemorrhagic septicaemia, skin ulcers, and enteritis, with an

average mortality rate of 30%.46,47

The taxonomy of the genus Aeromonas is subject to constant

change, currently comprising 36 recognized species. The aeromonad

fish pathogens are all motile with the exception of A. salmonicida

subspp.44 Generally, they are all described as Gram-negative, oxidase

positive, facultative anaerobes.48–50 They are non-spore forming, rod-

shaped bacteria of approximately 1–3 μm51,52 in length, capable of

fermenting glucose and characterized by tolerating increasing concen-

trations of NaCl varying from 0.3% to 5%.51

A diverse range of motile aeromonads are reported as opportunis-

tically pathogenic, especially under stressful environmental circum-

stances, resulting in clinical disease outbreaks leading to high levels of

morbidity and mortality in a wide range of tilapia farming systems.43,45

The most common species associated with natural disease outbreaks

in farmed tilapia include A. hydrophila,27,53–55 A. sobria,56 A.

dhakensis,57–59 A. veronii26,60,61 and A. jandaei.60 The A. hydrophila and

A. veronii had the highest prevalence of bacteria isolated from the

liver, spleen, and other organs of infected tilapia.60,62,63 Tilapia

infected by these two species of bacteria showed lethargy, and apa-

thy, ulcerations, pale spots, and haemorrhages along their

body.43,45,60,63 In addition, co-infections of Aeromonas with other bac-

teria is one of the important reasons for mass mortalities of tilapia,

such as co-infection with A jandaei and A. veronii60 (Figure 2),
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Aeromonas sp. and Streptococcus sp.,64,65 and of A. veronii and F.

columnare.26 Furthermore, co-infections with TiLV,66 and with S. aga-

lactiae and TiLV27 (Figure 3) have been described.

The non-motile A. salmonicida salm. may cause furunculosis in sal-

monids and the atypical A. salmonicida is known to cause ulcer disease

or erythrodermatitis in cyprinids67 and in marine flatfish.44 Experimen-

tally induced infection of tilapia of 40 g through i.m. and i.p. injection

of tilapia with atypical A. salmonicida at 28�C caused darkening, ulcers

on the dorsal musculature and trunk region, gill congestion, exophthal-

mus and haemorrhages in the eyes, and reached 100% mortality at an

i.m. dose of �1 � 108 CFU/fish. Internally, a congested liver and kid-

ney were recorded.68 Atypical Aeromonas salmonicida has been iso-

lated from tilapia in Oman, but experimentally induced infection by

intraperitoneal (i.p.) and intramuscular (i.m.) injection of 0.1 � 108 col-

ony forming units (cfu) per 30 g tilapia at 26�C did not cause any dis-

ease or mortality.69 In Bangladesh, a study was done on the presence of

typical A. salmonicida in swamp water where tilapia is cultured, and its

pathogenicity to tilapia of 10g after i.p. injection.70 Results indicated,

that the swamp water contained on average 3.3 � 106 CFU/ml. The

injected tilapia showed 20% mortality at an i.p. dose of 3.3 � 106 CFU/

g, and up to 80% mortality at an i.p. dose of 3.3 � 108 CFU/g at 20–

25�C. They concluded, that natural average bacterial load of

3.3 � 106 CFU/ml or below in tilapia culture water did not produce sig-

nificant mortality in Oreochromis mossambicus.70 Overall, A. salmonicida

may be harmful, but, like with motile aeromonads especially to injured

tilapia under stressful conditions.

Identification of Aeromonas strains to species level is still a chal-

lenge because of the genetic heterogeneity of this genus.71 Pheno-

typic identification of Aeromonas strains is done by physiological,

morphological and biochemical characteristics.48,72,73 Classic pheno-

typic characteristics that identify the genus Aeromonas are Gram-

negative staining, the presence of cytochrome oxidase, and growth in

nutritive broth at 0% NaCl in the presence of the vibriostatic factor

O/129.48,73 Commercial, fast identification systems, such as API 20E,

Vitek, BBL Crystal, MicroScan W/A and others, have commonly been

used to identify Aeromonas spp.74 However, conventional methods

based on the phenotypic properties and automated systems are of

limited utility in identifying some Aeromonas spp.,73 and their accuracy

is affected by constant reclassification among components of this

genus.75

Molecular biological techniques are the best option for the pre-

cise identification and taxonomic classification of the genus

Aeromonas, through amplifying constitutive housekeeping genes (gyrB

and rpoD) genes through polymerase chain reaction and sequencing

the amplified products.75 The 16S rRNA typing method, generally

used in bacteriology76,77 is also accurate for identification of Aeromo-

nas spp.78–80 Dong et al.60 identified A. jandaei and A. veronii based on

phenotypic features and homology of 16S rRNA. However, for certain

species of Aeromonas, 16S rRNA alone will not adequately distinguish

them, as additional sequencing of housekeeping genes such as gyrB is

needed.81

Nile tilapia juveniles, after being exposed to transport-induced

stress, appeared to have 19 responsible isolates of A. hydrophila in

their body, as identified by 16S rRNA testing.9 The A. dhakensis was

firstly identified by phenotypic and 16S rRNA sequencing from dis-

eased Nile tilapia.57 Additionally, other molecular methods, such as

the enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR),

and the amplified fragment length polymorphism (AFLP) are also used

for identification and genotyping of Aeromonas.82–86 The ERIC-PCR is

one of the most popular methods for genotyping Aeromonas because

it is easy to carry out, does not require any expensive equipment, and

is highly reproducible.87

Aeromonas virulence is complex since several factors contribute

significantly to the development of the infection process.88,89 These

virulence factors such as structural components, extracellular prod-

ucts, secretion systems and proteins associated with metals acting

jointly or individually enable the microorganisms to adhere to and

invade host cells, evade host immune defences and compete for nutri-

ents, resulting in an infection that generates the disease.46,48,71,90–94

Four secretory systems have been reported in the genus Aeromonas,

being types II, III, IV and VI. They are responsible for releasing viru-

lence factors produced by bacteria into the extracellular environment

or even directly into the host cell, which is extremely relevant to the

host cell damage and infection processes.46,50

At present, there are no specific data on the transmission mecha-

nism of Aeromonas in fish, but there are data on its transmission in

humans. Holmberg et al.95 studied the clinical and epidemiological

characteristics of human enteritis caused by Aeromonas and believed

that drinking untreated water was the most likely mode of infection

for patients, supported by Moyer96 in a study of Aeromonas isolated

from diarrhoea patients. Ghenghesh et al.97 proposed water and food

transmission in their research on Aeromonas infections in humans in

developing countries, which has certain limitations, compared to in

fish. However, overall, it is recognized, that the transmission routes of

Aeromonas are horizontal, via water, food and faeces.

Certain Aeromonas strains are serious pathogens of tilapia, devas-

tating this industry worldwide. Therefore, proper preventive and con-

trol measures are necessary. Generally, antibiotics are the most

effective and often the main option for tilapia farmers. An example of

antibiotic susceptibility was published for tilapia in Ethiopia.5 How-

ever, antibiotic therapy should always be based on an antibiogram, to

be sure, the therapy is effective. Moreover, frequent use of antibiotics

results in development of antibiotic resistant strains, bio-accumula-

tion, changes in the physiochemical properties of water and imbalance

of bacterial microbiota in the fish bodies or the habitat.63,98,99

F IGURE 2 Nile tilapia (Oreochromis niloticus), co-infected with
Aeromonas veronii and A. jandaei. Courtesy Dr H. T. Dong (co-author)
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Good Aquaculture Practice for tilapia,100 and more specifically,

vaccination may be the choice for prevention and treatment of Aero-

monas infections. Formalin whole cell inactivated live vaccine was suc-

cessfully used for the first time in tilapia in 1986, and the relative

protection level of the vaccine was 100%, within 2 weeks after inocu-

lation.101 Since then, many researchers have been engaged in the

research of fish vaccine against Aeromonas and obtained many achieve-

ments. Pridgeon and Klesius102 prepared live vaccines against different

virulent strains of A. hydrophila, with 100% protection at 14, 28 and

56 days post-vaccination (dpv). Pridgeon et al.103 attempted live vac-

cines against A. hydrophila, E. tarda, S. iniae and S. agalactiae in tilapia

and catfish. After bacterial challenge, the relative percentage of survival

(RPS) of tilapia inoculated at 14 and 28 dpv were 100% and 92%,

respectively. Aly et al.104 developed an inactivated A. hydrophila vaccine

for tilapia. An effective bivalent inactivated vaccine for tilapia brood

stock against S. agalactiae and A. hydrophila resulted in 73.81% RPS

after challenge by A. hydrophila.105 Monir et al.106 proposed an alterna-

tive method to reduce the main infectious diseases of tilapia, namely

feed-based vaccination, and conducted experiments with four different

forms and control groups of bivalent inactivated vaccines against S. iniae

and A. hydrophila of hybrid red tilapia. The results showed that bivalent

vaccines caused significant non-specific and specific immune responses

to hybrid red tilapia, and had a high protective effect. This newly devel-

oped feed-based bivalent vaccine is an effective and large-scale fish

immunization technique in aquaculture.106 Some researchers developed

recombinant fish vaccines to solve the serotype specificity issue.107 The

surface proteins Omp38 and OmpF of A. hydrophila were presented as

vaccine candidates against A. hydrophila.108 An S-layer protein-based

vaccine for tilapia demonstrated a high protection against A.

hydrophila.109 Although some recombinant vaccines have been devel-

oped, these vaccines induce lower protection than whole-cell killed vac-

cines under the same conditions.107

Therefore, further works on recombinant vaccines should focus

not only on optimizing and improving the protective efficacies, but on

cost-effectiveness for commercial-scale to enable it as a viable solution

to motile aeromonad septicaemia. At present, some studies have found

that adding specific plant extracts to feed can prevent and treat some

bacterial diseases in fish. Hardi110 found that when combined extracts

of Boesenbergia pandurata (BP), Solanum ferox (SF) and Zingiber zerumbet

(ZZ) were added to fish diets, in particular, SF50/ZZ50 (50 mg SF

extract/kg feed with 50 mg ZZ/kg feed) had positive effects on the

immune system of tilapia in the treatment and prevention of bacterial

infection. Adding ZLP (Ziziphus mauritiana leaf powder) into the tilapia

diet enhanced the immune and antioxidant capacity to effectively con-

trol A. hydrophila infection of Nile tilapia.111 Plant extracts carvacrol

and cymene at concentrations of 100 or 200 ppm were used as effec-

tive oral treatment of experimentally infected Oreochromis niloticus

with atypical A. salmonicida.68 Kuebutornye used Bacillus isolated from

tilapia, and Phumkhachorn used bacteriophages to control A. hydrophila

infections in tilapia (O. niloticus).54,112

2.1.3 | Francisellosis

Francisella orientalis, formerly known as F. noatunensis subsp.

orientalis,113,114 has been recognized as one of the most serious path-

ogens of tilapia (Oreochromis spp.) and other fish species such as

three-line grunt (Parapristipoma trilineatum) and hybrid striped bass

F IGURE 3 Clinical signs and gross lesions of red hybrid tilapia naturally co-infected with Aeromonas hydrophila, Streptococcus agalactiae and
tilapia lake virus (TiLV). (a) Red skin with haemorrhages in the operculum, body and base of anal fin. (b) Enlarged gall bladder and brownish liver.
(c) Haemorrhages of kidney. Photos: Courtesy: Mohammad Noor Amal Azmai (co-author)
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(Morone chrysops � M. saxatilis), both farmed and wild, from various

geographical regions worldwide.115–120 Occurrence of francisellosis in

farmed tilapia has been documented in Brazil,121 China,122 Costa

Rica,123,124 Indonesia,125 Taiwan Province of China,126 Thailand,127

United States128 and United Kingdom.129 Initially considered a

Rickettsia-like117,126,130 or Piscirickettsia-like organism,130 the

pathogen was later confirmed as a ɤ-Proteobacteria in the family

Francisellaceae, order Thiotrichales.131

The typical gross pathological signs of francisellosis in tilapia and

other species such as three-lined grunt and hybrid striped bass have

been commonly manifested as granulomatosis (Figure 4) causing reno-

megaly and splenomegaly typically ascribed to multiple whitish nod-

ules with comparable lesions in the gills, muscle or liver.126,127

Furthermore, pale body coloration, the presence of numerous white

granulomas on gills and internal organs including the spleen, liver, kid-

ney and intestine have been noted in tilapia infected with F. orienta-

lis.127 Francisellosis could induce 50%–60% mortality in cultured

tilapia which usually occurs in cool season, that is, when water tem-

perature ranges from 23�C to 26�C.127 Notably, coinfection of F.

orientalis and the ciliate parasite Ichthyophthirius multifilis could lead to

more severe mortality compared to the single infection with either F.

orientalis or I. multifilis.132

Francisella spp. are strictly aerobic, facultatively intracellular, non-

motile, Gram-negative coccobacilli to pleomorphic spherical measur-

ing 0.1–1.5 μm in size.131 Members of the genus Francisella are fastidi-

ous in their requirements for growth on laboratory media and require

specific media for in vitro culture. Isolation of F. orientalis from the

blood, spleen, kidney or granulomatous lesions of infected fish has

been successfully attained using enriched blood agar plates supple-

mented with 0.1% cysteine and 1% glucose, cysteine heart agar with

5% sheep blood (CHAB) or cysteine heart agar with 1% haemoglobin

(CHAH) or Thayer–Martin Media,118,124,131 with optimal growth of F.

orientalis on these enriched blood agar plates observed at

28–30�C.124 The addition of polymyxin B (100 μg/mL) with or

without ampicillin (50 μg/ml) to selective agars was successfully used

for the isolation of F. orientalis.124 Additionally, nucleic acid-based

detection methods including conventional polymerase chain reaction

(PCR),113,115,124,127,133 quantitative real-time PCR (qPCR),133–137

duplex PCR, in situ hybridisation,138 recombinase polymerase amplifi-

cation (RPA),139 and loop-mediated isothermal amplification (LAMP)37

have been applied for the detection of F. orientalis in tilapia.

Nile tilapia experimentally infected with F. orientalis via immersion

challenge exhibited the highest number of bacteria, that is, quanti-

fied as F. orientalis genome equivalents by qPCR, in their surface

mucus at 3 h post-infection. Moreover, at 96 h post-infection, sep-

tic fish had marked increases of F. orientalis genome equivalents in

their gills, anterior and posterior kidney, spleen, liver, heart, gastro-

intestinal tract and gonads which corresponded with the appear-

ance, size and number of granulomas typical of francisellosis.140

Homologues of virulence genes associated with the serious, zoo-

notic pathogen F. tularensis, detected in various cold and warm-

blooded animals and humans,141 have also been identified in F.

orientalis including the intracellular growth locus (IGL; iglA, iglB, iglC

and iglD) genes associated with the type 6 secretion system pre-

sent on the F. tularensis pathogenicity island.142 Soto et al.142

reported that a functional iglC gene of Fno was crucial for intra-

macrophage survival, although iglC gene played no role in protec-

tion from serum killing. The iglC gene is by far one of the most

extensively studied genes within the Francisella pathogenicity

island owing to its marked expression during intracellular growth,

demonstrating its significance for pathogenicity and virulence.143

Also, serum complement and host cell mannose receptors have

been recognized as vital for internalization of F. orientalis in macro-

phage.130 Horizontal transmission of F. orientalis via the water-

borne route has been demonstrated by Soto et al.140 in Nile tilapia

fingerlings under experimental condition.

Additionally, Pradeep et al.37 documented that apparently healthy

red tilapia (Oreochromis spp.) broodstock who were asymptomatic

F IGURE 4 Francisellosis in tilapia. (a) Granuloma in head kidney of F. orientalis infected tilapia. (b) Same fish: Granuloma in spleen. (c, d)
Haematoxylin–Eosin stained histological sections of the spleen of a tilapia from indoor recirculation aquaculture in the Netherlands showing
granuloma from a systemic and chronic Francisella-infection. (c): 40� magnification. (d): 400� magnification. Pictures (a, b): courtesy Dr H. T.
Dong (co-author); (c, d): courtesy Dr O. Haenen (leading author)
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carriers of F. orientalis could vertically transmit the pathogen to the

fertilized eggs. Evidence of vertical transmission was subsequently

confirmed in a controlled laboratory challenge.144 Therefore, utiliza-

tion of F. orientalis negative tilapia broodstock is an important strategy

to prevent vertical transmission of F. orientalis to their offspring.

Although commercial vaccines are currently unavailable, there are

promising results from research. In 2019, developed F. noatunensis

subsp. orientalis (Fno) whole-cell vaccines were developed for tila-

pia.145,146 A whole-cell formalin-inactivated autogenous vaccine was

developed using the highly virulent isolate STIR-GUS-F2f7 and the

oil-based adjuvant Montanide™ ISA 763A VG showing 100% RPS (rel-

ative percentage of survival) rates in red tilapia after i.p. injection with

4.0 � 103 CFU/fish.145 Shahin et al.146 compared a 100% RPS giving

Fno vaccine with inactivated whole-cell injection vaccines of Fno,

using bacterial strains from various geographical regions in heterolo-

gous and homologous infection trials by i.p. injecting nile tilapia. They

found RPS values of 65.9%–82.3%, with the highest in homologous

trials.146

Pulpipat et al.147 demonstrated recently the efficacy of a

formalin-killed F. orientalis vaccine in cultured tilapia via intraperito-

neal injection. Vaccinated fish experimentally challenged with F. orien-

talis via intraperitoneal injection and immersion at 6 weeks post-

vaccination led to production of potent antibodies and relative per-

cent survival (RPS) of 71% and 76%, respectively. Transcripts of proin-

flammatory cytokines and immune-related genes, including

interleukin-1β (IL-1β), tumour necrosis factor-alpha (TNFα), C-X-C

motif chemokine ligand 8 (CXCL8) and interleukin-17C (IL-17C), were

significantly upregulated after vaccination. Additionally, vaccinated

fish had lower bacterial loads in the blood and lower granuloma inten-

sities in the kidney, spleen, liver and gill compared with the unvacci-

nated fish. Antibiotic administration of in-feed oxytetracycline and

florfenicol to naturally and experimentally infected tilapia resulted in

lower mortalities148 suggesting efficacious antibiotic treatment. Fur-

thermore, antibiotic treatment was particularly noted to be effective

during the acute stage of infection.148 Accordingly, in the event of an

outbreak, it is prudent to depopulate fish and disinfect the facility

with disinfectants that are effective against planktonic and biofilm

forms of F. orientalis.149

2.1.4 | Flavobacteriosis

Flavobacteriosis, and in this case, columnaris disease caused by F.

columnare (also known as myxobacterial disease, peduncle disease,

saddleback, fin rot, cotton wool disease or black patch necrosis) is one

of the oldest known diseases of freshwater fish species world-

wide.150,151 The F. columnare associated with (or isolated from) tilapia

was recently renamed to F. oreochromis.152

The disease affects various fish species culturing in both cold and

warm water, including tilapia (Oreochromis spp.).153–155 The earliest report

of columnaris disease in farmed Nile tilapia was documented in Egypt156

but remained relatively unrecognized until recent reports in Brazil154 and

Thailand.155,157 The disease affects fish in both hatcheries and grow-out

systems, and resulted in 10%–70% cumulative mortality in natural out-

breaks.155 Experimental challenge resulted in variable levels of mortality

ranging from 0% to 100% in hybrid red tilapia (Oreochromis sp.) fry and

juveniles.157,158 Major gross signs of disease fish were discoloration, fin

and skin erosion and gill necrosis155–157 (Figure 5).

Flavobacterium columnare is a Gram-negative, slender filamentous

bacterium. This bacterium produces flexirubin pigment and forms yel-

low rhizoid colonies on culture media due to the characteristic of glid-

ing motility on solid surface.150,153 Dong et al.155 reported that the

isolates from tilapia exhibited homologous phenotypic characteristics,

but high genetic diversity. Based on the restriction fragment length

polymorphism of the 16S rRNA gene (16S-RFLP), a scheme for

genetic typing F. columnare,159 the isolates from tilapia were classified

into three genomovars (I, II and I/II) with predominance of genomovar

II.155,160 Phylogenetic analysis based on the 16S rRNA suggested that

majority of tilapia isolates belong to a unique genetic group.155,161

Comprehensive genomic comparison of F. columnare isolates derived

from different host species revealed extensive sequence diversity

where the unique strains from tilapia were thought to represent the

forthcoming novel taxa or subtaxa in the genus Flavobacterium.162 In

2022, this was confirmed, as many F. columnare strains were geneti-

cally reclassified by phylogenetic analyses of 16S rRNA and gyrB

genes, and this resulted in four genetic groups, with proposed names

of 4 species: Genogroup 1 = F. columnare, Genogroup 2 = F. covae

sp. nov. (AL-02-36Type strain), Genogroup 3 = F. davisii sp. nov.

(90-106T), and genogroup 4 = F. oreochromis sp. nov (Costa Rica

04-02-TNT), with at least the last species being a tilapia pathogen.152

Apart from gross pathological signs, examination of long rod-

shaped filamentous bacteria through wet-mount and/or rapid Gram-

staining for smeared lesions are useful for presumptive diagnosis of

columnaris disease in tilapia. Bacterial isolation was successful using

selected media such as Anacker and Ordal's agar (AOA), modified

Shield agar (MSA) or tryptone yeast extract salts (TYES) agar supple-

ment with antibiotics either tobramycin or neomycin and

polymyxin B.150,155 Specific PCR,163,164 LAMP,165 and F. columnare-

monoclonal antibodies166 have been used for rapid diagnosis of F.

columnare from clinical samples and bacterial culture. Sequencing of

16S rRNA and/or whole genome represents common approach for

identification and characterization of this bacteria.155,161,162

The tilapia isolates form two different colony morphotypes (rhi-

zoid vs. non-rhizoid). The rhizoid morphotype is highly pathogenic

while the non-rhizoid morphotype has non- or low pathogenic-

ity.157,158 Comparative studies of F. columnare revealed that the adhe-

sion ability to the gill surface, biofilm formation and the production of

capsular polysaccharide are significantly associated with the highly

pathogenic strain of F. columnare.157 Like other F. columnare infec-

tions, the disease in tilapia affects the skin, gills and muscle and is

rarely found in the internal organs.26,155,167 Coinfections of F. colum-

nare and other pathogens have been recorded which may contribute

to increasing disease severity.26,158,168,169 Horizontal transmission

through waterborne routes have been demonstrated by experimental

immersion studies for both Nile tilapia and hybrid red tilapia.138,156,157

It is unclear whether F. columnare transmits vertically. However,
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detection of F. columnare in reproductive organs of apparently healthy

tilapia broodstock, fertilized eggs and newly hatched fry suggested

possible maternal transmission.165

Effective antibiotic therapy against flavobacteriosis in tilapia is

difficult, as mostly other factors, like stress play a role in the disease.

Moreover, findings on antibiotic susceptibility differ. Various fish

strains of the salmonid pathogen F. psychrophilum were found suscep-

tible to ampicillin, erythromycin, streptomycin, tetracycline,

trimethoprim-sulphate, with resistance against neomycin and poly-

myxin.170 The oxytetracycline-treated group showed significant

reduction in these lesions and the treated fish appeared normal. Use

of a probiotic, Bacillus subtilis was tested in water and in fish feed as

prophylaxis and was effective in amelioration of lesions caused by F.

columnare in Egyptian freshwater fish.171 They also stated that oxytet-

racycline was effective to treat columnaris disease.171 In an Egyptian

Master thesis172 strains of F. columnare were found susceptible to tet-

racycline, nalidixic acid, trimethoprim, erythromycin, streptomycin and

doxycycline with high resistance to neomycin. Studied 20 strains of F.

columnare of Nile tilapia were tested for in vitro susceptibility to amox-

icillin, amoxicillin, clavulanic acid, amikacin, cefixime, ciprofloxacin,

novobiocin, neomycin, norfloxacin, nitrofurantion, poly mixin B and

tetracycline: They found multi-resistance in >18/20 strains.173 A

paper on the development of genetic-resistant strains of Nile tilapia

against F. columnare presented promising results as a longer-term

alternative to antibiotic treatment.174

2.1.5 | Vibriosis

Fish vibriosis is referred to as a systemic infection caused by a number

of Vibrio spp., including V. harveyi, V. parahaemolyticus, V. alginolyticus,

V. anguillarum and V. vulnificus.175,176 The genus includes Gram-nega-

tive, oxidase-positive rod-form bacteria with polar flagella, ubiquitous

in marine and estuarine ecosystems. Although vibriosis has multiple

clinical manifestations, depending on the host and bacterial species, in

all cases the acute form is a septicaemia that can lead to death, mainly

in immunocompromised hosts.177–179

Vibriosis is commonly associated with brackish and marine aqua-

culture, and therefore, tilapia cultured in these environments are

susceptible. Although sporadic cases of some and related Vibrio spp.

have been isolated from diseased tilapia (V. parahaemolyticus or Photo-

bacterium damselae subsp. damselae, Phdd [formerly V.

damsela]),180,181 V. vulnificus is the major pathogenic Vibrio spp.175,179

It is important to highlight that, within this species, only pathovar pis-

cis (pv. piscis; formerly Biotype 2) is considered as fish pathogenic,182

and the disease is known as warm-water vibriosis (WWV).179,183

Pv. piscis strains possess a conjugative fish virulence plasmid

(pFv) absent in other strains of the species, and group in several

clades/serovars, Ser E and the recently described Ser T proving

zoonotic potential.184,185 Different authors have reported V. vulni-

ficus as the causative agent of infectious episodes/outbreaks in

Japan,186 Taiwan Province of China,187 Bangladesh,188 India,189 or

eastern Mediterranean farms.185,190 In all cases, the bacterium was

mostly isolated from the diseased fish blood, kidney, liver, spleen,

and brain. Diseased fish showed dark coloration, external haemor-

rhagic areas, exophthalmia and skin ulcers. Internally, a pale liver

F IGURE 5 Tilapia (Oreochromis sp.) infected with Flavobacterium columnare (new, proposed name F. oreochromis152), showing (a) Gill necrosis
(arrow), and (b) Superficial skin necrotic lesions all over the body, with deslimed areas (arrows). Pictures courtesy Dr H. T. Dong (co-author)

F IGURE 6 Vibriosis caused by Vibrio vulnificus pathovar piscis in
Nile tilapia (Oreochromis niloticus). Images correspond to moribund
tilapia after being challenged by immersion. Clinical signs mirror those
of the natural disease, a septicaemia characterized by haemorrhages
in (a) the mouth, head and fins and in (b) the intestine, abdominal
cavity and muscle. Pictures courtesy of Dr B. Fouz (co-author)
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with haemorrhagic lesions, oedematous brain or splenomegaly

were observed. Moreover, some authors have experimentally

induced infections and disease in Nile tilapia after challenges with

pv. piscis strains (specifically serovars/clades E, A and the new one

described T)185,191–193 (Figure 6).

Simple and rapid methods to identify Vibrio spp. causing disease

in cultured fish are essential in order to take fast preventive and cura-

tive decisions. Individuals with clinical signs of septicaemia compatible

with vibriosis should be analysed microbiologically by bacterial isola-

tion, using a general medium such as TSA-1 (1% NaCl concentration),

together with thiosulfate-citrate-bile salts-sucrose (TCBS) and/or V.

vulnificus medium (VVM) agar.179 However, since V. vulnificus is recov-

ered as a pure culture from diseased tilapia, also media, like sheep

blood agar plates may be used to isolate V. vulnificus. Pure cultures

could be tentatively identified to species level using the commercial

phenotypic API 20E system (bioMérieux). Afterwards, PCR- or

protein-based (like MALDI-TOF) methods should be used to confirm

species194 or subspecies identification.195

In the case of V. vulnificus, PCR targeting vvhA, fpcrp and seq61

genes allows to identify strains to species, pv. piscis, and zoonotic

Ser E, respectively.196 V. vulnificus strains could be subtyped for public

health hazard by a PCR that amplifies a variable region located within

the gene pilF.197 Although V. vulnificus is generally sensitive to most

antimicrobials permitted on fish farms in the EU and the USA, an anti-

biogram must be performed to select the most effective antibiotic to

start the treatment as soon as possible.

Fish pathogenic Vibrio spp. exhibit different virulence factors such

as capsular polysaccharides, adhesive factors, cytotoxins, lipopolysac-

charides and flagella.198 In bacterial pathogenesis, the adherence to

the host surface is considered a critical step and can be favoured by

flagella, capsules or loose slime. Resistance to phagocytosis and

complement-mediated killing together with efficient iron acquisition

systems allow bacteria to colonize the host and multiply. Moreover,

toxins and exoenzymes are responsible for host lesions. V. vulnificus

pv. piscis initially colonizes the gill/skin mucus, being protease VvpE and

the capsule involved in this process and invasion is favoured by local

damage and destruction of phagocytes by excreted toxins (mainly toxin

RtxA1).179 When bacteria enter the bloodstream of the fish, they are

able to survive, proliferate, and therefore, induce the fatal septicaemia.

Under iron restriction, the bacterium over-expresses the haemolysin

VvhA and RtxA1 toxins as well as the outer membrane proteins Fpcrp

(fish phagocytosis and complement resistance protein) and Ftbp (fish

transferrin-binding protein), which constitute a ‘survival in fish blood

kit’,199 encoded by plasmidic genes. pFv and closely related plasmids

have probably been acquired in fish farms by different clones which

have been amplified after successive outbreaks.182,185

Vibriosis is a water-borne infection, meaning that the etiological

agent uses the water column as its natural transmission medium. In

fact, experiments with eels and tilapia artificially infected with

pv. piscis by different routes revealed that immersion in water fol-

lowed by ingestion is the primary route for the transmission of

WWV.183,185,191–193 The virulence of the strain is strongly dependent

on the water salinity (maximum at 0.5%–1.5%, depending on the

serovar) and temperature (maximum at 28�C).183,193 Similar observa-

tions were reported in transmission of vibriosis caused by Phdd,200

another potential pathogen for Nile tilapia. Therefore, since Vibrio

spp. can be transmitted horizontally, either from open lesions or as

secretion in the faeces of infected fish and carriers, pathogenic strains

can be easily transferred among fish in the nearby area using water as

transport medium.

Finally, efficient preventive measures in tilapia farms against V.

vulnificus pv. piscis are considered necessary, including both manipula-

tion of physicochemical parameters (use of freshwater and tempera-

ture below 26�C) and specific vaccination. In fact, a patented vaccine

called Vulnivaccine has proven to be highly effective against WWV at

eel farms.179

2.2 | Emerging bacterial diseases of concern

2.2.1 | Edwardsiellosis

Edwardsiella is well known as a genus hosting severe pathogenic bac-

teria affecting global aquaculture with various fish species, including

tilapia.201–203 The genus comprises Gram-negative, rod-shaped bacte-

ria belonging to the family Enterobacteriaceae and the order Entero-

bacteriales.204 The bacterium is a facultative intracellular pathogen

that can survive inside fish phagocytes such as macrophages and neu-

trophils.205,206 Since recently, the genus comprises five species, and

three of them have been reported to infect and cause mortality in

Tilapia including E. ictaluri, E. tarda and E. anguillarum.201,202,203,207,208

2.2.2 | Edwardsiella ictaluri

Edwardsiella ictaluri, is the causative pathogen of enteric septicemia in

channel catfish209 and freshwater catfish species Pangasianodon

hypophthalmus.210 It now has a less restricted host range causing dis-

ease in various catfish species167,211–215 and non-catfish species such

as zebrafish, and wild ayu in Japan.216–218 Natural disease outbreaks

reported in several fish species showed that this pathogen produced

40%–90% mortality,207,219 while experimental infection resulted in up

to 100% mortality,207,216,220,221 indicating that E. ictaluri is a patho-

genic bacteria of multiple freshwater fish species. The first detection

of E. ictaluri in tilapia was in the Western hemisphere.203 Natural dis-

ease cases of E. ictaluri in red tilapia raised in open floating cages were

first detected in Southeast Asia in 2016,207 and truly have become an

emerging disease, widespread to a large region in Vietnam, with high

risk of further national and international spread.208 E. ictaluri-affected

tilapia did not exhibit recognizable external signs, causing misleading

presumptive disease diagnostics and untimely treatment efforts under

active surveillance. Early diagnostic screening and biosecurity mea-

sures are highly recommended to prevent for transboundary spread

and negative impact of this pathogen.

Gross signs with white spots appearing on the spleen and head

kidney are critical features for the first detection (Figure 7). In
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addition, pale gills due to anaemia and the liver due to the reduced fat

reserve in the liver are also helpful for screening affected

fish.203,207,208 Wet-mount with gram staining with the presence of

Gram-negative, rod shape, the intracellular bacterium could be the

first step to confirm the presence of E. ictaluri from fresh fish tissue

such as kidney, spleen. A distinguishing test should be performed

between francisellosis through F. noatunensis and F. orientalis, and

edwardsiellosis through E. ictaluri because the clinical signs of visceral

white spots had always been linked to these diseases. PCRs should be

developed, but currently, the wet-mount technique could help to dis-

tinguish them, since F. noatunensis and F. orientalis have a different

shape as coccobacillus bacteria.133 E. ictaluri grows as typical whitish

pinpoint colonies on culture media. Biochemical characteristics of E.

ictaluri from tilapia were identical to a strain isolated from catfish,

except for the Voges–Proskauer test which was variable among iso-

lates.207,208,210 Thus, the combination of sequencing of 16S-rRNA,

house-keeping genes such as gyrB for phylogenetic analysis222,223 and

specific PCR-based assay224 were accurate for identifying E. ictaluri.

To discriminate E. ictaluri from tilapia from other different hosts and

geographic origins, parallel and combined techniques such as rep-

PCR, 16S, gyrB and sequencing plasmid or whole-genome has been

recommended.225,226

Regarding pathogenesis, varieties of virulence factors for E. icta-

luri have been identified, such as extracellular capsular polysaccharide,

fimbriae-like structures, chondroitinase, lipopolysaccharides O side

chain and outer membrane protein. Other known pathogenicity

islands such as the type III secretion system (T3SS) gene esrC, the

putative T3SS effector eseI and its chaperone escD, the type IV secre-

tion system (T4SS) gene virD4, the type VI secretion system (T6SS)

gene evpC and ureA-C of the urease operon have been determined

also as the virulence factors of this pathogen. However, the distribu-

tion of virulent factors varied between species.214 The screening of

six virulence genes from E. ictaluri isolated from tilapia outbreaks

revealed that the presence of esrC, evpC and ureA-C genes were in all

strains, but they did not have virD, eseI and escD genes which were

present in strains of channel catfish.208,225 The completed pathogenic-

ity test conducted by the latest study from outbreaks in southeast

Asia showed that the lethal dose LD50 of the Asian strain is very low,

<102 CFU/fish, to kill 50% of the tilapia population. The results sug-

gested that new, hyper virulent E. ictaluri strains are circulating and

spreading in this region.208 Thus, the mechanism and virulent gen dis-

tribution of E. ictaluri strains infecting tilapia need to be clarified in

further studies.

The pathogen could be transferred horizontally between fish and

spreads by the water flow. The disease outbreak has existed in both

freshwater ponds203,208 and in floating cage farms on the rivers and

reservoirs.207,208 However, the data from the survey showed that the

open tilapia culture system has a higher risk for the disease than cul-

ture ponds do.208 Disease outbreaks have occurred from fingerling

fish to marketable size,203,207 but fish less than 350 g were more sen-

sitive to this pathogen. The mortality rate from the outbreaks ranged

from 30% to 65%.207,208 E. ictaluri can attach and penetrate host

mucosal membranes rapidly and establish a systemic infection. It is

also a facultative intracellular pathogen, which may survive inside

phagocytic cells, which could be a mechanism of dissemination. This

characteristic plays a vital role in the rapid spread of the disease. The

disease appeared in the temperature range of 23–29�C. The detection

of E. ictaluri associated with disease outbreaks from two different

continents (America and Asia) highlights the risk of transboundary

spread and potential impact on the tilapia industry.

Although the serious fish disease caused by E. ictaluri was first

detected in farmed tilapia in Asia only 5 years ago, the isolated E. icta-

luri show already high levels of antibiotic resistance.208 Nevertheless,

alternatives to antibiotics should be further explored to tackle this

emerging, highly pathogenic bacterium. Current studies investigate

the presence of homologous strains from outbreaks. Thus, an autoge-

nous vaccine might be the best option to combat this emerging dis-

ease in the present time before a better vaccine candidate for a wider

region is discovered.207,208

2.2.3 | Edwardsiella tarda

Edwardsiella tarda is a Gram-negative, motile, short, rod-shaped bacte-

rium (1 μm � 2–3 μm) of the family Enterobacteriaceae. It is a severe

pathogen for a variety of fish.168,227 Principally, E. tarda have been

isolated from different aquatic water environments and affected fish

are common intestinal carriers of this pathogen, thereby resulting in

possible contamination of fish carcasses during fish processing. They

have been found in the intestines of infected humans, after consump-

tion of contaminated fish. This pathogen is often responsible for septi-

caemic fish disease, causing mass mortalities (up to 70%) and high

economic losses in fish farms of freshwater and marine fish in many

countries.228,229 Tilapia is one of the susceptible fish to E. tarda and

disease cases have been reported in several countries201,230 in Nile

tilapia (O. niloticus) and red tilapia.231,232

The clinical, gross and microscopic changes caused by E. tarda

have been relatively well characterized for a range of different fish

species, especially catfish. For tilapia, gross disease signs include cor-

neal opacity and loss of the eyes, reddening of the anal papilla and

marked pallor of the gills (Figure 8). Internally, the kidney and liver

may be pale and seeded with white nodules. The swim bladder and

kidney existed of flocculent material, with congestion and

F IGURE 7 Diseased tilapia by Edwardsiella ictaluri from an
experimentally induced infection. Courtesy Dr Truong Dinh Hoai (co-
author)
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haemorrhage on the intestine.233 Microscopic lesions in the brain and

lymphoid organs of tilapia were also demonstrated.233,234

Edwardsiella tarda is usually identified based on its unique bio-

chemical characteristics after isolation on brain-heart infusion agar or

tryptone soya agar from infected fish. PCR-based detection with gyrB

gene was developed for E. tarda from fish species and successfully

modified to nested PCR and applied to detect affected tilapia using

tissues samples.233,235 Since 2013, E. tarda has been subdivided into

three genetically distinct species regarding infecting fish, E. tarda, E.

piscicida from various fish,236 and E. anguillarum (from eel),237 based

on several identification techniques including sequencing analysis of

gyrB and sodB genes, nested PCR, rep-PCR and matrix-assisted laser

desorption ionization–time of flight (MALDI-TOF), proven effective

for E. tarda identification.238,239 However, the above techniques have

almost not yet been used for tilapia isolates of E. tarda, and further

assessment needs to be done. Also, we should realize, that published

casus with identifications of E. tarda from tilapia from before 2013

may have represented causes of E. anguillarum, or perhaps of E.

piscicida.

Virulent factors of E. tarda were well characterized in fish species

including type III secretion systems (TTSS apparatus protein EsaB-V,

TTSS chaperone protein EcsA-C, TTSS effector protein EseB-G and

TTSS regulator protein EsrA-C), type IV secretion systems (EvpA-P)

and other proteins including autotransporter protein (AidA),

α-hemolysin-modulator like protein (HhaEt), hemolysin A, B (EthA,

EthB), DNA-binding transcriptional regulator and sensor protein QseC

(QseB, QseC), component regulator and sensor proteins (PhoP and

PhoQ).229 In tilapia, the role of regulator FucP regulation of the T3SS

in E. tarda has been demonstrated to contribute to pathogenesis.240

E. tarda isolated from diseased Southern flounder (Paralichthys

lethostigma) has been demonstrated to be virulent to Nile tilapia.241

Edwardsiella tarda could be transferred horizontally between fish

via the faecal–oral route. The wide range of hosts such as inverte-

brates, amphibians, reptiles, birds, a variety of fish, mammals and

humans indicated that it has a wide geographical distribution and is an

important pathogen in terms of public health as an epizootic and zoo-

notic bacterium. In aquaculture, this pathogen commonly exists in the

environment, pond water and sediment. High temperature, poor

water quality and high organic load increase the risks of infection.242

In addition, cross-contamination may occur during manipulation of

fish skin, handling and preparing fish seed, or in integrated farming

where tilapia are reared in conjunction with other animals, or the

cross-infection between other fish species and tilapia in the poly-

culture system.242,243

A variety of chemicals have been tested and demonstrated to be

effective disinfectants against this pathogen, including ethyl alcohol

(30%, 50% or 70%), benzyl-4-chlorophenol/phenylphenol (1%), sodium

hypochlorite (50, 100, 200 or 50,000 mg/L), n-alkyl dimethyl benzyl

F IGURE 8 Edwardsiellosis by Edwardsiella tarda in tilapia or cichlids. (a) Corneal opacity, inflammation and loss of the eyes. (b) Pale organs

with white nodules. (c) Cichlid from a zoo with a systemic E. tarda infection: anorexia and bacterial nodules (arrow) can be seen. Pictures courtesy
(a, b): Dr H. T. Dong (co-author); (c) Dr O. Haenen (leading author)
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ammonium chloride (1:256), povidone–iodine (50 or 100 mg/L), glutar-

aldehyde (2%) and potassium peroxy–monosulphate/sodium chloride

(1%). However, using chemicals may raise concerns about toxicity to

the environment, costs and human health risks, and is impractical in a

large volume of water or cage culture in rivers or lakes.242

Antibiotics have been used popularly for the treatment of the dis-

ease. However, overuse of antibiotics has accounted for a major anti-

biotic resistance of E. tarda in tilapia.232,244,245 Alternatives to

chemical and antibiotic use have been investigated against E. tarda in

tilapia, including use of natural compounds (carvacrol and cymene),246

glucose, polysaccharides, yeast oligosaccharide,247–249 essential

oils,250 ascorbic acid, α-tocopheryl acetate and selenium,251 kugija

Lycium chinense252 and probiotics.253–255 Another affordable alterna-

tive to antibiotics is the use of vaccines. Several developed vaccine

candidates were investigated, including the vaccines E. tarda ghost,256

live cells of E. tarda257 and a glyceraldehyde-3-phosphate dehydroge-

nase (GAPDH) vaccine from E. ictaluri against E. tarda.258

2.2.4 | Edwardsiella anguillarum

Edwardsiella anguillarum shares similar characteristics to other Edward-

siella isolates, such as the growth capability under anaerobic condi-

tions; however, its non-motile nature differentiated it from other

groups.259 E. anguillarum was the last group to be distinguished from

the E. tarda group and demonstrated virulence to a variety of fish spe-

cies, including tilapia in Costa Rica and Korea.202,260

2.2.5 | Aeromonas schubertii

Aeromonas schubertii is a Gram-negative, short rod-shaped bacterium

with a single polar flagellum required for its motility.261 A. schubertii

infection-causing multi-organs necrosis is considered an emerging tila-

pia disease.261,262 Diseased fish usually showed haemorrhages in the

caudal, pectoral and dorsal fins. Internally, affected fish exhibited vis-

ceral white spots in internal organs (i.e. liver, kidney and kidney),261

similar to clinical signs caused by F. orientalis or E. ictaluri infection.

Natural disease outbreaks in both farmed and wild Nile tilapia

were reported in China,261,262 after its emergence in snakehead fish in

2012.263–265 Although there is no evidence of disease outbreak in tila-

pia in other countries, active transferring live tilapia for aquaculture

highlights a potential risk of its transboundary spread and broader dis-

tribution. Increased awareness and active surveillance are required to

gain a better understanding of disease prevalence and impact on tila-

pia farming countries that have relied on imported tilapia stocks.

Presumptive diagnosis is based on observing visceral white necrotic

foci and the presence of short rod-shaped bacteria in smeared tissue

stained with Diff-Quick.261 Previous studies employed trypticase soy

agar supplemented with 5% sheep blood261 or Luria–Bertani

(LB) agar262 for bacterial isolation. An approached combination of phe-

notypic tests, sequencing of 16S rRNA and several housekeeping genes

(e.g. gyrB, rpoB, ela and dnaJ) has been used for bacterial

identification.261,262 Recently, Liu et al.40 reported a highly sensitive

TaqMan MGB probe fluorescence real-time quantitative PCR for

detecting and quantifying A. schubertii from snakehead fish. This

method might be helpful for early screening of an infection in tilapia.

Experimental infection revealed that A. schubertii was capable to

induce disease and acute fish mortalities by both intraperitoneal and

intramuscular injection. In contrast, immersion and oral challenges

have resulted in no or low mortalities.262 Zebrafish is a susceptible

model fish to study the disease pathogenesis of this bacterium.261

Histopathological changes described in diseased fish include vacuoli-

zation in the liver, haemorrhage in the spleen, and swelling capillaries

in the brain. Necrotic lesions filled with a large number of short rod-

shaped bacteria were also found in the liver, spleen and kidney.261,262

Little is known about the transmission of A. schubertii in tilapia.

Ren et al.262 suggested that the damages on the body surface and/or

digestive tract might be natural routes of A. schubertii infection.

2.3 | Other bacterial diseases

2.3.1 | Lactococcosis (Lactococcus garvieae)

Lactococcus garvieae is a facultatively anaerobic, non-motile, non-

spore-forming, Gram-positive, ovoid cocci bacteria belonging to the

family Streptococcaceae. L. garvieae is a significant pathogen of both

freshwater and marine aquaculture species, such as rainbow trout

(Oncorhynchus mykiss), yellowtail (Seriola quinqueradiata)266–268 and

tilapia (Oreochromis spp.).269

In tilapia, L. garvieae infections were reported as an emerging dis-

ease during the last decade in several countries such as Egypt,

Zambia, Brazil, and Singapore.269–272 The experimental challenge of

tilapia showed that the infected fish exhibited ocular opacity,

exophthalmia, haemorrhages and cataract, skin erosion and scale

detachment.270,271,273 Lamellar congestion with necrosis of respira-

tory epithelium of primary and secondary gill lamellae, mild fatty

degeneration of hepatocytes with multiple cell necrosis, sinusoidal

congestion and necrosis in the spleen has been reported.270

To date, the studies on L. garvieae infection in tilapia focused on

isolation, identification and confirmation of suspicion of the dis-

ease.269,271,273 Further studies should investigate the prevalence of

this pathogen in tilapia, the risk factors and geographical distribution

of this pathogen, as well as its pathogenesis. On the other hand, com-

parative analysis of L. garvieae strains from different fish hosts may

shed light on the evolution of this bacterium in tilapia.

2.3.2 | Aerococcosis (Aerococcus viridans)

Aerococcus viridans is a Gram-positive coccoid, order Lactobacillales,

phylum Firmicutes. It is facultatively anaerobic and forms tetrads and

pairs. The bacterium does not grow well on agar. A. viridans causes

greening (alpha haemolysis) on rabbit or horse blood agar. The Gram-

positive tetrads (four bacteria together) are visible by microscopy.
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Also, the co-agglutination technique of Saxegaard and Håstein274 or

the API-Zym may be used for diagnosis. For better understanding of

this disease, further investigation on its prevalence and disease patho-

genesis in tilapia are recommended.

In aquaculture, A. viridans var. homari is known to cause gaffkemia

in farmed European lobster (Homarus gammarus) and American lobster

(H. americanus).275,276 Ke et al.277 described for the first time a tilapia

disease outbreak in 2010 caused by A. viridans in China, with a loss of

30%–40%. The diseased fish showed congested gills and abdomen, a

swollen gall bladder and a severe diffusion in the liver. A. viridans

infections have been subsequently reported in Indonesian,278 and in

Egyptian tilapia farms,279,280 always in combination with other bacte-

ria. In Indonesia, the bacterium was isolated in a screening of water

from a tilapia pond and in faeces of tilapia, and was identified by bio-

chemistry.278 In Egypt, the bacterium was isolated as one of 17 in a

multibacterial infection of wild caught tilapia from the Nile River,279

and it was isolated from diseased tilapia from two tilapia farms, in

combination with Enterococcus faecalis,280 and the A. viridans were

identified by molecular methods, like 16SrRNA typing.

2.3.3 | Pseudomonasis

Pseudomonas spp. are aerobic motile Gram-negative rods and are rep-

resentatives of the order Pseudomonadales.281 Most Pseudomonas

spp. are non-pathogenic, but some cause diseases in fish. Ps. anguilli-

septica is the most pathogenic species, especially to Japanese and

European eel, in which it may cause red spot disease or ‘Sekiten
byo’.282–284 It has also been isolated from diseased tilapia with Ps.

fluorescens,7 and together with Ps. fluorescens, Ps. putida and Ps. aeru-

ginosa.285 The diseased tilapia showed clinical signs of pseudomonas

septicaemia, including reddening of the whole body, abdominal swell-

ing, cloudiness of eyes, loosening scales and congested gills.285 In

another study, Ps. anguilliseptica caused disease in Nile tilapia, show-

ing anorexia, darkening, petechial haemorrhage on the body and at

the base of fins, loose scales, eroded and erected fins, with some fish

showing slight abdominal distension, exophthalmia and pale gills. At

post-mortem enlarged kidneys and spleen were seen.286

Pseudomonas fluorescens is more often described as an opportu-

nistic pathogen of tilapia (Oreochromis spp.) especially under stressful

environmental circumstances.7,230,287–290 Miyazaki et al.291 described

an outbreak of Ps. fluorescens in Nile tilapia in Japan. The systemically

infected fish showed exophthalmia, darkening, spotty or nodular

lesions in the liver, spleen, kidney and gills, and an inflamed swim-

bladder. By histopathology, abscess formation in eyes, spleen and

swim-bladder and focal necrosis in the liver, gills and kidney were

seen in some of the diseased fish. Some other fish showed granuloma

formation in all infected lesions.

Several disease cases in cultured tilapia (O. niloticus) associated

with other Pseudomonas spp. were also reported, including on Ps. aer-

uginosa. The tilapia showed darkening of the body, loss of scales, tail

rot and congestion of all internal organs.292 Pseudomonas aeruginosa is

however not considered to be a primary pathogen for tilapia.

Pseudomonas spp. are found in the aquatic and terrestrial environ-

ment at a global level. Although Pseudomonas infections occur globally,

the Ps. fluorescens cases were described in Japan,230 Philippines,287

Kingdom of Saudi Arabia,288 Egypt289 and Guatemala.290 Pseudomonas

mosselii was described as a fish pathogen of Mozambique tilapia

(O. mossambicus) in Mexico.57 The disease is transmitted horizontally,

via water, gear and by direct fish-to-fish contact.

Pseudomonas fluorescens produces fluorescein. After inoculation

of blood or TSA agar, or Pseudomonas F agar at 22–28�C, the

cream/white fluorescent colonies will appear. Apart from biochemical

identification, API 20E or API 20NE may be used,281 or molecular- or

protein-based diagnostic methods. More research is needed, like

screenings and artificially induced infections studies, to estimate the

real impact of Pseudomonas infections in tilapia culture.

Regarding therapy of pseudomonasis, in general, an antibiogram

is best to test the susceptibility of the isolate. Ps. anguilliseptica

from Nile tilapia was found susceptible to ciprofloxacin, erythromy-

cin, gentamycin, oxytetracycline, streptomycin and trimethoprim and

sulphamethoxazole.286 Additionally, they found the bacterium sensi-

tive to methanolic extracts of Anabaena wisconsinense and Oscilla-

toria curviceps (blue-green algae or cyanobacteria), and ciprofloxacin

and a methanolic extract of Anabaena wisconsinense were highly

effective in the experimental treatment of pseudomonas septicemia

at a dose of 10 mg per kg body weight, after i.p. injection.286 In

another study, lime oil nano-emulsion was tested in vitro and in vivo

against Ps. aeruginosa infection in O. mossambicus, with good

results.293

2.3.4 | Mycobacteriosis (Mycobacterium marinum)

Mycobacterium marinum is one of the fish mycobacteria, Gram-posi-

tive, acid–alcohol-fast, non-motile, non-spore forming rods which may

cause stress-induced chronic and lethal ‘fish tuberculosis’ in warm-

water fish, including in tilapia all over the world, in warmwater fish

from freshwater, brackish and marine waters.294,295 Sonda-Santos &

Lara-Flores296 and Lara-Flores et al.297 reported disease and significant

mortality of tilapia (O. niloticus) in Mexico through M. marinum. Skin dis-

coloration, non-appetite, lethargy, abnormal swimming, cutaneous

ulcerations or erosions, ascites, reduced growth, exophthalmia, grey or

white nodules (granuloma) in internal organs, and hypertrophy of

spleen, kidney and liver are signs of the disease byM. marinum in warm-

water fish.295 Also in indoor warm recirculation systems of fish culture

M. marinum may occur, and clinical signs may only be noted after

weeks, whereas internal disease already caused granuloma in organs.298

As a consequence, fish may show mortality, morbidity and, also in case

of subclinical infection, decreased feed uptake and growth rates, and is

subsequently less marketable.299 Granulomatous melano-macrophage

centres have been described in Nile tilapia in its spleen.300

Diagnosis of mycobacteriosis starts with making a fresh smear of

the inside of fish organs like liver, preferably taken at the site of nod-

ules or granuloma, fixing the smear 3� through a flame, and staining

the smears Ziehl–Neelsen, after which the smear is read by light
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microscopy with a 100� (oil immersion) objective lens for presence of

pink, rod-form bacteria, a sign of the acid-fast mycobacteria.

Identification of mycobacteria in fish was traditionally done based

on time-consuming isolation (weeks, to max 2 months of incubation to

declare a mycobacterial isolation negative) and on biochemical methods.

Dong301 however isolated the M. marinum within days from betta fish,

Betta splendens. Currently, fast and accurate molecular methods are

used for identification of the disease and phylogenetic studies.297,302

Therapy of infected fish requires months of costly antibiotic treatments,

and therefore this is not applied for edible fish, also, because high con-

centrations of residues of antibiotic will accumulate in the fish, which is

then not marketable for consumption.295 There is no vaccine available

for M. marinum. The transmission of M. marinum from fish to fish is not

yet clear, and is at least horizontal, via oral uptake of infected dead fish,

contact with infected fish skin or through gills.303

Mycobacterium marinum is known as a potential contact-zoonotic

bacterium, causing ‘swimming pool granuloma’, ‘fish tank granuloma’,
‘fish handlers/fanciers disease’ or ‘fish TB’ after entry in the skin of

humans through injuries for instance.304 It is not a food zoonosis, as

the bacterium often does not grow at 37�C or above, although there

are exceptions.305 As hospitals incubate at 37�C or above, the diagno-

sis may be missed.298

2.3.5 | Epitheliocystis (Chlamydia spp.)

Epitheliocystis is a fish disease caused by obligate intracellular bacte-

ria (most of them Chlamydia).306 The disease is characterized by

enlarged infected epithelial cells of mostly the gills and skin, which

can be seen as tiny white cysts in the gill or skin epithelium. The dis-

ease has been reported in over 90 fish species, freshwater, marine

and in cold to tropical areas. Characteristic is the presence of a baso-

philic inclusion in the cytoplasm of an enlarged cell. Severe infection

of the gills results in inflammation and respiratory distress.

Although the disease epitheliocystis is widespread, the causative

agents in most species of fish so far found are unique, and therefore

isolates appear to be very host species specific. Chlamydia-like organ-

isms (CLOs) have been the main agents related to this disease.306

Epitheliocystis has been diagnosed in most regions worldwide in salt-

water and freshwater fish. The specific agents causing epitheliocystis,

however, appear more regionally restricted.307 In Brazil, histologically

epitheliocystis was found in rare cases in cultured Nile tilapia.308,309

Individual cysts from skin and gills up to 400 μm can be seen in wet

mounts of gill clippings. Histologically cysts are seen as basophilic inclu-

sions in infected epithelial cells, with a thickened membrane. Sometimes

a host response is seen, as a cell proliferation, which even worsens the

respiratory inefficiency of the affected gills. The pleomorphic develop-

ment cycle of epitheliocystis in organisms obtained from Tilapia mossam-

bica and T. aurea � T. nilotica, and the connection between

epitheliocystis organisms and known chlamydial organisms of (in)verte-

brates are discussed.310 Epitheliocystis may be confirmed by molecular

methods, like amplification of the 16S rRNA gene and sequencing.311

More research is needed, like screenings, to judge the real impact

of Chlamydia infections in tilapia culture. Because there is no established

way to culture Chlamydia in most fish disease labs, there are hardly data

on host range or ways of transmission. At least there is horizontal trans-

mission, from fish to fish, or via water, fish gear and so forth.312 For this

pathogen however also vertical transmission via eggs may be the case,

since genomic presence of the pathogen in pre-hatched eggs, and in

subsequent generations of barramundi suggested this.313 Treatment of

epitheliocystis with antibiotics is not possible, since it is caused by an

intercellular bacterium. Prevention is through good farming manage-

ment, at least by keeping the environmental factors optimal.100

2.3.6 | Nocardiosis (Nocardia spp.)

Nocardia is a genus of Gram-positive rod-shaped bacteria of the Order

Mycobacteriales, Family Nocardiaceae, which show a weak Gram-

staining, and are catalase-positive.

Labrie et al.314 described cases of nocardiosis in freshwater tilapia

(Oreochromis spp.). In general, fish with nocardiosis may show leth-

argy, multiple skin ulcers, and red spots. Brownish or haemorrhagic

gills, abscess inside the operculum, a greyish or haemorrhagic liver

with white nodules, fibromatosis in the abdominal cavity, spleen

necrosis associated with the presence of macroscopic white nodules,

ascites, haemorrhagic brain and swollen kidney often associated with

the presence of white nodules may be seen. On-farm mortality is

mostly chronic and may in cases reach 30%.314

Nocardiosis in fish is caused by N. asteroides and N. seriolae, and

results in septicaemia in many marine species with serious mortality in

some.315 Nocardia in tilapia has been reported in large (>100–600 g)

freshwater tilapia in Indonesia,314 were it could be isolated from the

skin and gills, brain, spleen and liver.

Isolation of the pathogen can be accomplished by taking samples

from fresh lesions and culture them on nutrient-rich media, like Eugon

agar, for N. seriolae. Colonies may appear matt to velvety and dry, with

a granular surface, irregularly shaped edges, and are light brown.

Impression prints represent a fast and reliable method to demonstrate

the presence of Nocardia sp.314 Histopathology may also be used,

showing typical granuloma.314 PCR can be used to confirm the iden-

tity up to species,314,316,317 while LAMP (loop-mediated isothermal

amplification) can be used as well for detection of N. seriolae.318

Nocardia asteroides can be found in soil, but can also be found in

lake and marine sediments, like scum-activated sludge.319 It can be

transmitted via fresh fish feeds to a fish population, and has a horizon-

tal transmission.

As nocardiosis is a chronic disease, which is often discovered in a

late stage only, months of antibiotic treatment would be needed. This

is costly and non-effective, and implies risk of AMR-development.

Therefore, prevention through good husbandry and good manage-

ment practices is the best approach for nocardial infections.100,320

One of the aspects is to avoid the use of uncooked fish feeds (live,

raw or frozen) when rearing fish, as these may transmit the pathogen.
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Diagnosis of nocardiosis is not easy, as special media are neces-

sary, and more research should focus on artificially induced infections,

to estimate the real impact of Nocardia on tilapia culture. Thereby, the

possibility, that nocardiosis may be zoonotic should be considered,

and therefore prevented for, through good hygiene.

2.4 | Zoonotic potential of tilapia bacterial
pathogens

Tilapia is cultured in relatively warm water.100 Some of the pathogenic

bacteria of tilapia grow well at these temperatures of 20–30�C, and may

be contact-zoonotic, that is, also harmful to humans, after direct skin

contact with the infected fish or fish-water, especially when humans

have an injured skin, and are immunocompromised.298 Although this risk

is present in open tilapia (pond) culture, in infected warm water recircu-

lation aquaculture systems, including aquaponics systems this may be

even a bigger risk, as infected water is recirculated and bacteria may

accumulate, being a risk to the fish culture professionals.

Some of the tilapia pathogenic bacteria described in paragraphs

above may cause bacterial contact–zoonotic infections in humans, as

a few of these bacteria have been isolated from wounds, superficial

soft tissue, or even from invasive systemic infections in humans.

Often those diseases were connected to a spine, puncture or expo-

sure event, or after humans ingested the bacterium, the latter being a

food zoonosis. A choice of potential contact- or food-zoonotic bacte-

ria are S. agalactiae ST283, S. dysgalactiae subsp. equisimilis, S. iniae, A.

hydrophila, E. tarda, M. marinum and V. vulnificus.298,304,321–323

2.4.1 | Streptococcus agalactiae ST283

Early evidence for association between fish consumption and S. aga-

lactiae colonisation came from a prospective longitudinal cohort study

among college students living in a dormitory in United States.25 This

study showed that fish consumption increased the risk of S. agalactiae

colonisation with capsular types 1a and 1b combined 7.3-fold.25

Group B Streptococcus (GBS) has been associated with superficial and

invasive infections in immunocompromised non-pregnant adults, and

is the main cause of neonatal sepsis. Invasive infections in non-

pregnant adults without comorbidities came to light after the 2015

fish-associated outbreak in Singapore involving at least 146 people

manifesting as bacteraemia, septic arthritis and meningitis. Through

various researches and official investigations, it was revealed that this

2015 GBS foodborne outbreak in Singapore was caused by Sequence

Type 283 (ST283) belonging to serogroup III-4, as explained below,

and case-control studies found the outbreak to be associated with the

consumption of raw freshwater fish.324,325

While there are different methods that classify GBS types in differ-

ent ways, Capsular typing (serotyping) and multi-locus sequence typing

(MLST) are the major typing systems.22 Serotyping, which is based on

the capsular type of the organism and can be conducted using anti-

bodies or primers targeting the capsular operon, recognizes 10 types (Ia,

Ib, II–IX). In fish, three major serotypes of S. agalactiae are recognized,

that is, type Ia, Ib and III.32 MLST, which is a standardized method based

on the DNA sequence of seven conserved housekeeping genes,326 rec-

ognizes some 2000 Sequence Types (STs) and hence provides more dis-

criminatory identification of S. agalactiae strains across host species and

countries. The major serotypes of S. agalactiae found in fish largely cor-

respond with three STs: isolates of serotype Ia belong to ST7 or closely

related ST, isolates of serotype Ib belong to ST260 or closely related ST,

and isolates of serotype III belong to ST283 or closely related ST.32 The

fish-specific serotype Ib/ST260 clade has never been detected in

humans, whereas the serotype Ia/ST7 clade has been detected in fish,

dolphins and humans.32,327 There is no evidence, however, of direct

fish-to-human transmission. Such evidence only exists or serotype III

(subtype 4)/ST283: Molecular epidemiological studies revealed that

GBS ST283 isolated from freshwater fish (food) samples and

infected patients were identical, supporting the hypothesis of

foodborne transmission of GBS ST283.328–330

Barkham et al.331 showed that GBS ST283 had been present in

human blood cultures in Singapore since 1998. Data and collections of

GBS associated with invasive infections were retrieved from other

South-East Asian countries. Taken together, 29% of human GBS from

Hong Kong, Thailand, Lao PDR, Vietnam and Singapore turned out to

be ST283: the earliest known isolate was from Hong Kong in 1995.

97% of patients with ST283 were adults and 36%–80% did not have

comorbidities. The prevalence of ST283 in invasive GBS infections var-

ied from 11% in Hong Kong to 73% in Thailand and 76% in Lao PDR.329

However, none of 18 isolates from Malaysia and only 5/4198 (0.1%) of

GBS isolates from mainland China, Africa, Europe, North and South

America belonged to ST283.22 FAO convened an expert group which

found insufficient data for a full risk analysis, but published a risk profile

detailing gaps in knowledge that would benefit from more research.22

Identification of GBS ST283 in freshwater fish has been reported

from a number of species such as grass carp (Ctenopharyngodon idella),

silver carp (Hypophthalmichthys molitrix), bighead carp (H. nobilis), Nile

tilapia (Oreochromis niloticus), red and black tilapia (Oreochromis sp.),

Mekong giant catfish (Pangasianodon gigas), freshwater frogs (Hoploba-

trachus rugulosus and H. chinensis) and marine species, Asian seabass

(Lates calcarifer).37,332–334 The outbreak in Singapore was controlled

after advising the public against consumption of raw freshwater fish. It

is well known that consumption of raw fish is associated with risk of

infection with bacterial, viral and parasitic infections. Data indicates that

S. agalactiae can be inactivated by pasteurization and therefore ade-

quately cooked tilapia and other fish would be safe for consumption.22

Remarkable to add, in exceptional cases, fish may get infected from

humans as well, so, in an anthroponosis: Experimental induced infection

of Nile tilapia (O. niloticus) with a human isolate of GBS (serotype Ia,

ST7) was able to cause disease and mortality in the tilapia.335

2.4.2 | Streptococcus dysgalactiae

Only incidental reports have been published on seafood as source of

S. dysgalactiae subspp. zoonosis in humans, especially percutaneous
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injuries, like upper limb cellulitis in humans after skin spine or punc-

ture while cleaning seafood.336,337 Based on genomic sequencing, S.

dysgalactiae, subsp. dysgalactiae (SDSD) is associated with ruminants,

whereas S. dysgalactiae subsp. equisimilis has been found in humans,

companion animals (e.g. dogs and horses) and fish. Subspecies identifi-

cation based on data from individual genes may not be accurate,

resulting in some inaccurate reporting of species identity.323

Streptococcus dysgalactiae has been isolated from diseased farmed

Nile tilapia in Brazil showing septicaemia and subcutaneous abscesses

in the caudal peduncle region338,339 and from tilapia in Egypt.279 In

Brazil, induced infection experiments with the isolated strain of S. dys-

galactiae were performed, causing reproduction of disease in adult

Nile tilapia, showing anorexia, lethargy, tachypnoea and darkened

skin, rapidly leading to mortality rates up to 100% and 83% after intra-

muscular and intraperitoneal injection, respectively, with re-isolation

of bacteria from diseased tilapia.338

2.4.3 | Streptococcus iniae

Streptococcus iniae has not been assigned to any Lancefield group, but

16S rRNA sequencing indicates that these are closely related to GBS.

Human infections have been reported in elderly people and individuals

with underlying conditions like diabetes mellitus, rheumatic heart dis-

ease or cirrhosis handling fresh fish. Infections following fish consump-

tion have not been reported so far. The disease may manifest as

cellulitis following soft tissue injuries while handling fresh tilapia (Sar-

otherodon galilaeus), also known as St. Peter's fish or Hawaiian sunfish.24

But complications such as arthritis, meningitis, endocarditis and osteo-

myelitis may also develop.340 Most infections have been associated

with people of Asian origin, possibly due to the habit of handling whole

tilapia. Studies in Canada using pulse field gel electrophoresis (PFGE)

showed that strains causing fish infections and human infections belong

to same clone.341 S. iniae infections in humans may be under-reported

since identification of this pathogen in clinical laboratories is hampered

by the limitations of the commercial identification systems.342

2.4.4 | Aeromonas spp.

Aeromonas spp. are Gram-negative rods. The motile Aeromonas spp.,

like A. hydrophila and A. sobria, are opportunistic bacteria and can be

found everywhere, in- and outdoor, in soil and in fresh to brackish

water, as aquatic commensals and secondary pathogens.343,344 In

humans, Aeromonas spp. originating from various fish species may

cause acute haemorrhagic diarrhoea. It may also cause invasive skin

and soft tissue infections, after aquatic injuries through spines, punc-

tures and bites of animals. Within 24 h after infection, infected

wounds may show erythema, oedema and purulent discharge, which

may develop into fever in untreated or improperly treated cases,

which may progress into invasive infections, especially in the immuno-

compromised patients, with necrotizing fasciitis, necrotizing myositis

and osteomyelitis.304,322,343

Aeromonas isolates isolated from human infections were found to

be susceptible to various antibiotics, of which sulphonamids were less

effective.48 In serious cases, besides wound drainage and debride-

ment, Aeromonas wound infections should be treated initially with

either a fluoroquinolone or a third-generation cephalosporin, possibly

plus an aminoglycoside until culture and antibiotic sensitivity results

are known, and rule out Pseudomonas coinfections.48,345

2.4.5 | Edwardsiella tarda

Edwardsiella tarda is a Gram-negative rod of the family Enterobacter-

iaceae. It is known as pathogen of various fish, like eel, tilapia and it

causes emphysematous putrefactive disease of catfish.322,346 It may

cause ‘fish gangrene’, ‘emphysematous putrefactive disease of cat-

fish’ or ‘red disease of eels’, referred to as Edwardsiella septicaemia

(ES), a systemic disease of fish.298

Edwardsiella tarda from cold-blooded animals like marine, brackish

and freshwater fish, reptiles and amphibians may also cause disease in

humans.347 Slaven et al.348 described various zoonosis cases in the

1990s in humans in Louisiana by E. tarda: 11 extraintestinal infections,

with five wound infections (three with exposures to marine fish or fish

bones), five abscesses requiring surgical drainage and one case of bac-

teraemia. In severe and scarce cases, extensive myonecrosis and fatal

septic shock in immunocompromised patients, especially in patients

with chronic liver disease was seen. Therapy recommended consisted

of antibiotics, like ampicillin, cepahalosporins, such as cefazolin and

ceftazidime, aminoglycosides and fluoroquinolones.348

2.4.6 | Vibrio vulnificus

Vibrio vulnificus is a multi-host fish pathogen that inhabits coastal eco-

systems in temperate, subtropical and tropical areas (>18�C) and

likes low to moderate salinities.179,349 It is a zoonotic agent as vibri-

osis can be transmitted directly from diseased fish to humans by

contact.184,322,350 In humans, V. vulnificus may cause a range of dis-

eases with variable clinical manifestations, like acute gastroenteritis

from eating undercooked shellfish, progressing into acute sepsis, or,

in rare cases, primary sepsis and severe wound infections from

marine injuries and water exposures, which may develop into life-

threatening necrotizing fasciitis.179,184,298,322,350–353 Historically,

the species was divided into three biotypes (Bt), all of which con-

tained human pathogenic strains. Pathovar piscis (pv. piscis; formerly

Bt 2), is considered as primary fish pathogen and is subdivided into

several clades/serovars, from which Ser E and Ser T have proven

zoonotic potential and thus represent a risk to also aquaculture

professionals.184,185

Regarding zoonosis through V. vulnificus infected tilapia, several

clinical cases have been reported. Chan et al.354 described a case of a

septicaemia that progressed into necrotizing fasciitis after the patient

experienced a puncture by the dorsal fin of an infected tilapia. Nudel-

man et al.355 and Bisharat et al.356 described wound infections after
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injuries in extremities by the sharp spines of infected tilapia in Israel.

Vinh et al.357 also reported a fatal case of V. vulnificus sepsis devel-

oped in a patient with chronic hepatitis B and chronic renal failure

after handling and ingesting tilapia.

Other authors experimentally challenged Nile tilapia with the zoo-

notic pv. piscis Ser E and fish developed a haemorrhagic septicaemia

similar to eel vibriosis, warning that this bacterium could constitute a

serious health hazard for tilapia and, indirectly for humans.191,193

Interestingly, there have been reports of the isolation of V. vulnificus

from diseased tilapia cultured in Indian and eastern Mediterranean

farms, all of them potentially dangerous for humans.185,189,190 More-

over, it has been demonstrated that human clinical isolates which had

not been linked to fish vibriosis or to zoonosis cases, also belong to

pv. piscis, demonstrating their zoonotic nature.185 Thus, apart from

the risk for tilapia, these facts might also imply a risk to humans and,

thus, the species should be higher estimated as a zoonotic pathogen.

Therefore, tilapia farm environments, with high nutrient concen-

trations and host densities, may clearly contribute to an increase in V.

vulnificus populations and provide advantageous conditions for the

emergence of genetically more diverse and more virulent strains

and/or the expansion of particular lineages/clades, including the zoo-

notic ones.185,188 Moreover, under the climate change scenario, the

increased water temperatures may favour these events.179,188,358

Regarding therapy of diseased humans, prompt intervention with

antibiotics should be performed, as sepsis and fasciitis necroticans may

be fatal within 48–72 h. The U.S. Centers for Disease Control and Pre-

vention359 recommended a third-generation cephalosporin, especially

ceftazidime, plus doxycycline, as initial empiric antibiotic combinations

for suspected V. vulnificus infections; see their website. Other cephalo-

sporins can be used as well, as well as fluoroquinolones like ciprofloxa-

cin, see CDC.359 The treatment may include early surgery for wound

debridement and monitoring for compartment syndromes, as these

increase the survival rate when a systemic human infection is the case.

Development of effective control and preventive measures in fish

farms against V. vulnificus, the most infectious of all zoonotic Vibrio

spp., is considered highly necessary, including development of effec-

tive vaccines.

2.4.7 | Mycobacterium marinum

Mycobacterium marinum is one of the fish mycobacteria, Gram-posi-

tive, acid–alcohol-fast, non-motile, non-spore forming rods that may

cause chronic and lethal fish tuberculosis in warmwater fish, including

tilapia.294,303

In humans, M. marinum may cause ‘swimmer granuloma’, ‘fish
tank granuloma’ or ‘fish handler's disease’,294,298,303,304,360–362 which

may be chronic infections of hands and feet, but not easily lethal

(Figure 9). M. marinum has an optimum temperature of 30�C (Haenen,

own findings), and is inhibited at 37�C. This means, in humans, almost

exclusively, skin infections occur in extremities, which are cooler. The

incubation time for mycobacteriosis in the skin is 7–21 days after skin

injury.322

In a later phase, granulomatous nodules will develop on the skin,

which may become secondary infected. Also deeper, invasive infec-

tions may develop, like septic arthritis, bursitis, tenosynovitis and

osteoarthritis.363 Yacisin et al.364 monitored M. marinum skin or soft

tissue infections cases at Chinese markets in New York City, and con-

cluded, the highest risk of acquiring the zoonosis was through skin

injury of the finger or hand during fish handling.

Fast preliminary diagnostics is done by acid-fast staining smears

of nodules and lesions, and through culture from nodules. PCR identi-

fication M. marinum is confusing322 and requires more than one PCR.

Only chronic treatments are considered effective.365 According to

Aubry et al.366 clarithromycin, cyclines and rifampin were the most

commonly prescribed antibiotics, with an effective cure of 87% of the

63 patients. M. marinum is susceptible to macrolides like clarithromy-

cin, sulfonamides/trimethoprim-sulfamethoxazole, ethambutol and

rifampin/rifabutin.367 A typical treatment consists of a combination of

two of these drugs (i.e. clarithromycin plus ethambutol, or clarithro-

mycin plus rifampin) for approximately 3–4 months, to be ended only

4–8 weeks after symptoms have vanished.

2.5 | Status of antimicrobial resistance in fish
culture through imprudent antibiotic use, and its
future

In semi-intensive and intensive aquaculture, access to safe and effec-

tive veterinary medicines or drugs is essential to a successful opera-

tion. However, if used imprudently, antibiotics used to treat bacterial

diseases may be ineffective and may lead to unacceptable residue

levels in aquaculture products that can result in bans on importation,

import rejections and detentions.2 Misuse of veterinary medicines

may lead to the development of antibacterial-resistant genes in bacte-

ria, and this may therefore cause antimicrobial resistance (AMR). This

F IGURE 9 Swimmer granuloma on the right hand, after infection
by Mycobacterium marinum through skin contact with warmwater fish
and fish water. Picture courtesy Dr Cassetty and Dr Sanchez, 2004;

details in Dermatology Online Journal361
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consequence happens across all food-producing sectors, including

aquaculture. There are many examples, like a joint 97% antibiotic

resistance to ampicillin, erythromycin, and oxytetracycline in 173 bac-

terial isolates from apparently healthy tilapia in Trinidad.6 Therefore, if

antibiotics are to be used, the choice of antibiotic must always be

based on the results of an antibiogram, to be sure, the therapy is

effective.

There is increased global attention through various assemblies,

meetings and conferences where AMR has been specifically men-

tioned as a vital and growing problem. The Global Action Plan (GAP)

on AMR (with contributions from FAO and OIE) was adopted during

the 68th World Health Assembly in 2015.368 In the same year, the

World Assembly of the OIE delegates adopted the strategy, and the

39th FAO Conference adopted Resolution 4/2015. A political declara-

tion was made during a high-level meeting on AMR at the 71st United

Nations General Assembly (UNGA, September 2016). The UNGA

called upon the Tripartite (i.e. FAO as global leader for food and agri-

culture, the OIE as global leader for animal health and welfare and the

World Health Organization [WHO] as global leader for human health)

and other intergovernmental organizations to support the develop-

ment and implementation of National Action Plans (NAPs) and AMR

activities at the national, regional and global levels under the One

Health platform. The FAO, OIE and WHO agreed to step up a joint

action to combat health threats associated with interactions between

humans, animals and the environment.

A memorandum of understanding was signed in May 2018 to

strengthen their long-standing partnership, with a strong focus on

tackling AMR. In addition, the United Nations Secretary-General con-

vened the Interagency Coordination Group (IACG) on AMR in May

2017 in consultation with Tripartite members to provide guidance on

approaches for ensuring sustained global action on AMR, and

reported back to the Secretary-General during the 73rd General

Assembly in 2019. This mandate included making recommendations

on enhancing coordinated action across sectors and countries, build-

ing political momentum, future governance and mobilizing

stakeholders.2

Countries are now encouraged to develop National Action Plans

(NAP) on AMR. In the development of the aquaculture component of

a country's NAP on AMR, understanding and increasing knowledge of

bacterial diseases affecting the sector, how they are being managed,

complexities associated with AMR in the aquatic environment and

how to achieve One Health goals are essential.369

These developments should now serve as a signal of the urgent

need for aquaculture countries, especially those with substantial aqua-

culture production and food security objectives through aquaculture,

to pay high attention to the emergence of antimicrobial-resistant

organisms that can result from antimicrobial (specifically antibiotics)

imprudent and irresponsible use in the aquaculture sector.

Hanson370 provided practical management measures to minimize

AMR from bacterial diseases of finfish by reducing the use of antibi-

otics and ensuring its prudent use when it is needed. Good husbandry

(good seed, adequate nutrition, good water quality and environment,

minimizing stress, etc.) and biosecurity practices (e.g. health

monitoring, rapid action on first signs of abnormal observations or

clinical signs of disease, vaccination, breaking disease transmission

pathways) through all phases of production should be part of normal

practice. Disease prevention can be achieved by managing the envi-

ronment and host, by pathogen avoidance and by having a biosecurity

plan, as parts of Good Aquaculture Practice.2,100

FAO2 listed several biosecurity measures that may reduce or

eliminate AMR. These include avoidance, using clean facilities, use of

immunostimulants to enhance innate immunity, inclusion of probiotics

in feeds, vaccination, phage therapy via feeds and the use of plant

extracts. Of these, vaccines have been widely used against fish infec-

tions. Avoidance of AMR can also be achieved by farming high-value

SPF (Specific Pathogen Free) fish species in a controlled way.

3 | CONCLUSIONS

There are many microbial agents in the aquatic environment, some of

which are potential pathogens to tilapia, depending on a variety of

factors specific to the host, pathogen and environment.

Since decades, some bacterial species, belonging to at least four

genera, are considered important pathogens for tilapia: S. agalactiae, S.

dysgalactiae and S. iniae, motile Aeromonas species, F. orientalis, F.

columnare (new name: F. oreochromis) and V. vulnificus pv. piscis and

some other Vibrio species. Additionally, at least two bacterial tilapia

diseases are emerging, edwardsiellosis through E. ictaluri and E. tarda

as well as disease by A. schubertii. Furthermore, bacteria with zoonotic

potential, like S. agalactiae ST283, S. dysgalactiae subsp. equisimilis, S.

iniae, Aeromonas sp., E. tarda, V. vulnificus pv. piscis and M. marinum

are included in the review, to provide altogether the current overview

of the disease risks affecting production and post-harvest stages.

Various other bacteria may be opportunistic and pathogenic to

tilapia as well, especially under favourable conditions of the environ-

ment (water at a high temperature, with high loads of organic material,

low oxygen and other stress factors), and vulnerable fish (low in

immune status, in too high stocking densities, too variable in size,

etc.), like L. garvieae, A. viridans, Pseudomonas spp. and Chlamydia spp.

The important role played by aquaculture in providing high-

quality nutrition, improving livelihoods, stimulating and creating

decent work and economic growth and alleviating poverty, particularly

in low-income food-deficit countries will be only possible, if disease

challenges (including bacterial diseases) affecting production can be

addressed in a decent way. It is of utmost importance to train the tila-

pia farmers in good aquaculture practices (GAP), including hygiene at

the fish farm, to avoid spread of fish bacterial disease and fish mortal-

ity. For this, it is very important to educate fish health professionals

for field work, to be able to control bacterial diseases in tilapia farming

and avoid spread.

Regarding bacterial zoonosis, cases from tilapia culture are mostly

not recorded on a global scale. For sure they occur, from mild (myco-

bacteriosis, swimmer granuloma, i.e. chronic skin infections by M. mar-

inum) to serious (necrotic fasciitis through systemic infection by V.

vulnificus), depending on the patient's immune status, and they can be
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prevented for through good hygiene. Awareness of One Health and

Good Hygiene Practice should be in place in aquaculture, including in

the whole tilapia production chain up to the consumer. This means

avoiding direct contact of potential zoonotic pathogens with the human

skin, and avoid inhalation and ingestion of those pathogens. At tilapia

farms, slaughter facilities and packing sites this means special clothing,

wearing gloves and face masks and regularly wash hands and skin with

soap after any contact with fish and fish water. It also means, that when

professionals would develop signs of a contact or food safety zoonosis

they should mention to the medics, that they work with warmwater

fish, and may have acquired a zoonotic infection from the fish.

Regarding antimicrobial resistance (AMR), responsible use of anti-

microbial agents is an important part of farm biosecurity to ensure

that pathogen challenges are minimized, that the natural defence

mechanisms of the cultured stocks are maximized, and that disease

and mortality, including costs of containing, treating and/or eradicat-

ing diseases, are reduced.2 Therefore, the use of antimicrobial agents

should be minimized, and be consistent with established principles of

prudent use, to safeguard public and animal health.2 Furthermore,

apart from Good Aquaculture Practice (GAP), development and use of

effective and economically favourable vaccines is recommended.
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