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A B S T R A C T   

Context: Digital Twin-based predictive maintenance systems are frequently integrated into complex systems. The 
success of the integration depends on the design of the system. A Reference Architecture can be used as a 
blueprint to design Application Architectures rapidly and consistently for various application domains, resulting 
in a reduced time-to-market. 
Objective: The main objective of this study is to develop and evaluate a Reference Architecture designed using 
renowned software architecture methods. 
Method: A domain analysis was performed to gather and synthesize the literature on Digital Twin-based pre-
dictive maintenance systems, which we used to model the key features. We applied UML diagrams to design the 
reference architecture based on the feature model. We evaluated the reference architecture using three case 
studies. 
Results: We derived three views for Digital Twin-based predictive maintenance systems. For the user’s view, we 
developed a context diagram. We developed a package diagram for the structural view, and we designed a 
layered view to show the system’s decomposition in layers. We designed an Application Architecture for each 
case study based on the study’s features using each Reference Architecture view. Additionally, we designed a 
deployment view to describe the hardware and software and its environment. 
Conclusion: We demonstrated that the methods of creating a Reference Architecture could be used in the Digital 
Twin-based predictive maintenance domain and showed how an Application Architecture could be designed in 
this context.   

1. Introduction 

Since the industrial revolution, machines have been used increas-
ingly in all domains, improving product performance, efficiency, and the 
consistency of quality. However, machine condition greatly affects 
business models dependent on machines. Until recently, machines were 
usually repaired after failure or maintained periodically. However, these 
two methods have a few downsides. First, the risk of breakdown is not 
minimized; as such, there is still a risk of downtime and catastrophic 
failures. Second, these two methods do not make optimal use of system 
maintenance engineers, a scarce resource. Third, these methods waste 
natural resources, as reactive maintenance can damage more than the 
broken component, and preventive maintenance does not use the full 
lifetime of a component (Errandonea, Beltrán, & Arrizabalaga, 2020). 

One method to use the full lifetime of a component is predictive 
maintenance (PdM), a subgroup of Prognostics and Health Management 
(PHM). With PdM, we use large datasets of run-to-failure data from 
sensor-equipped machines. The data can determine several health as-
pects, such as Remaining Useful Life (RUL), a specific health indicator, 
or anomaly detection (van Dinter, Tekinerdogan, & Catal, 2022). 
However, current machines have become well-designed, meaning there 
is a low amount of historical failure data (Luo, Hu, Ye, Zhang, & Wei, 
2020). 

Current trends toward improving PdM models are leveraging a 
Digital Twin (DT) to generate synthetic data. A DT is a high-fidelity 
digital model of the physical asset based on physics, data, rules, 
behavior, or geometry (Semeraro, Lezoche, Panetto, & Dassisti, 2021), 
which acquires sensor data during the operation of equipment and stores 
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the historical running data for further analysis (Luo et al., 2020). 
Meanwhile, a DT can generate reliable synthetic data for a more robust 
predictive maintenance model. A DT-based PdM system comprises two 
modeling layers: an asset representation layer and an application layer. 

DT-based PdM systems are complex and contain many software 
modules (Luo et al., 2020). The software architecture is crucial for the 
success of a DT-based PdM system design. Software architecture should 
describe communication, design decisions, architectural concerns, and 
architectural decisions addressing these concerns along with the ratio-
nale (Tummers, Kassahun, & Tekinerdogan, 2021; Tummers, Tobi, 
Catal, & Tekinerdogan, 2021). We use the Reference Architecture (RA) 
design principles with structured and standardized design methods. An 
RA is a generic, domain-independent design that derives an Application 
Architecture (AA) based on system requirements. An RA can be 
considered as a template solution for a particular application domain 
and it also provides a vocabulary for implementation purposes. Appli-
cation architecture selects some of the reference architecture elements 
and should be considered a specialization of the reference architecture. 
Application-specific changes are introduced in the application archi-
tecture. Using an RA enables software architects to develop a consistent 
design within a smaller timeframe, eventually reducing the time to 
market for the product. We propose an RA for DT-based PdM systems 
using well-known software design principles. We use key PdM and DT 
features from our systematic literature review (van Dinter et al., 2022). 
To validate our RA, we created three AAs from peer-reviewed literature 
studies. In addition, the design efforts are reduced, fewer errors occur in 
the designed system, and the overall quality increases (Ingeno, 2018). 
Communication within the organization is improved because of having a 
common architectural mindset. Development costs are reduced because 
the common assets are reused. The learning curve of developers is 
improved because of the use of the same vocabulary in the organization. 
The interoperability of the systems is enhanced by using a standardized 
solution. 

Several studies are related to our work, which will be discussed in 
this paragraph. Lee, Bagheri, and Kao (2015) proposed the renowned 5C 
architecture, a layered architecture concept for cyber-physical systems 
(CPS). As a DT one kind of CPS, we leveraged this study and included the 
5C architecture in our RA design. Mihai et al. (2021) designed a DT 
framework for predictive maintenance in Industry 4.0. Their framework 
is focused on a data science application using Python and the dash-
boarding tool Dash. They provide two analysis models that work in 
parallel: anomaly detection and a remaining useful life estimation 
module. Nordal and El-Thalji (2021) designed a predictive maintenance 
system architecture for Industry 4.0 applications called Maintenance 
4.0. Their architecture is detailed and can be applied to manufacturing 
cases. However, they do not include a Digital Twin module in their 
design. Centomo, Dall’ora, and Fummi (2020) proposes a general 
framework based on the EDA approach that allows to set up a mainte-
nance strategy by analyzing data retrieved from sensors. The framework 
is captured in diagrams describing the proposed system’s generic 
behavior and is applied to gearbox degradation monitoring. Cohen and 
Singer (2021) developed a smart process controller framework for 
identifying anomalies. They designed an architecture using block dia-
grams of a typical manufacturing process control system and how to 
refactor it into a smart process control system. As this study clearly 
defines the modules used for validation, we use their implementation as 
a case study. Z. Liu et al. (2018); Z. Liu, Zhang, Xu, Jin, and Lee (2018) 
designed a CPS architecture for PHM of high-speed railway (HSR) 
transportation systems. They used the 5C architecture for their frame-
work, specifically creating a layered design for HSR systems. Addition-
ally, they developed a Cyber-Physical Interface Platform for HRS 
applications. Luo et al. (2020) developed a hybrid predictive mainte-
nance framework based on a DT for CNC machine applications. How-
ever, they also provide a multi-domain model implementation. They 
present a well-structured layered architecture and multiple flowcharts 
to explain their design choices. Xiong, Wang, Fu, and Xu (2021) 

designed a framework and workflow for DT-driven predictive mainte-
nance of aero-engines. Xiong et al. (2021) additionally provides a 
pipeline from aero-engine sensor data toward remaining useful life 
predictions. 

There are also RAs that concern exclusively predictive maintenance 
systems or Digital Twins. Even though they are out of scope for this 
review, we will highlight the main contributions. Uhlmann, Polte, and 
Koutrakis (2021) developed a holistic concept toward a RA for predic-
tive maintenance systems based on the three-layer Industrial Internet of 
Things (IIoT), which they validated in one case study applying Machine 
Learning (ML). Groba, Cech, Rosenthal, and Gossling (2007) proposed 
an Architecture of a predictive maintenance framework. In their study, 
in collaboration with SAP research, their architecture is housed as a 
component between the manufacturing domain and the Enterprise 
Resource Planning (ERP) systems. Balogh, Gatial, Barbosa, Leitão, and 
Matejka (2018) propose a RA for predictive maintenance systems using 
a cloud-based collaborative maintenance services platform for smart 
manufacturing. Zhidchenko, Startcev, and Handroos (2022) present an 
RA for interconnected systems running Digital Twins of heavy equip-
ment. They provide a class and sequence diagram to elaborate their data 
model for Digital Twins. Redelinghuys, Kruger, and Basson (2019) 
present an RA for manufacturing systems with many Digital Twins that 
need interaction. They propose the Six-Layer Architecture for Digital 
Twins with Aggregation (SLADTA). Josifovska, Yigitbas, and Engels 
(2019) make use of the 5C architecture for CPS. They present a reference 
framework for the main building blocks of a Digital Twin framework 
that are missing from the 5C architecture. Lehner, Wolny, Mazak- 
Huemer, and Wimmer (2020) aim to connect Model-Driven Engineer-
ing models created in design time and use the knowledge during run-
time. As such, they present a RA that enables data querying from model 
repositories to add design-time knowledge to the running system and 
reasoning system states at runtime in design-time models. Aheleroff, Xu, 
Zhong, and Lu (2021) identified Industry 4.0 technologies and designed 
a Digital Twin Reference Architecture. They also utilized the Digital 
Twin as a Service paradigm as a case study for digital transformation in 
appliances for wetlands schedule maintenance. 

The practical contributions of this study are five-fold: 

• We developed a feature model using 42 selected articles on predic-
tive maintenance using Digital Twins  

• We categorized the features using the 5C architecture for Cyber- 
Physical Systems  

• We proposed and validated a Reference Architecture for Digital 
Twins-based predictive maintenance systems using triangulation  

• We demonstrated the effectiveness of the proposed architecture 
using three case studies  

• We showed that the application architectures can be easily created 
using the proposed reference architecture. 

Our main theoretical contribution is that we added another compo-
nent to the development of a Reference Architecture (i.e., a graphical 
model of Predictive Maintenance Systems theory), which is analyzing 
state-of-the-art literature through a Systematic Literature Review (SLR) 
methodology. Additionally, we performed a domain analysis on existing 
Reference Architectures for Predictive Maintenance, Digital Twins, and 
Digital Twin-based Predictive Maintenance systems. The addition of the 
systematic literature review and resulting therefrom the feature model 
provides a structured overview of the mandatory and optional compo-
nents in the state-of-the-art Digital Twin-based Predictive Maintenance 
Systems. 

The next sections are organized as follows: Section 2 presents the 
methods. Section 3 explains the results. Section 4 shows the case studies. 
Section 5 presents the discussion and Section 6 concludes the paper. 

R. van Dinter et al.                                                                                                                                                                                                                             



Computers & Industrial Engineering 177 (2023) 109099

3

2. Methods 

2.1. Research questions 

To generate a robust RA for DT-based PdM systems, we identified the 
following research questions:  

• RQ1: What are the existing reference architectures for Digital Twin- 
based predictive maintenance systems?  

• RQ2: What is a feasible Reference Architecture for a Digital Twin- 
based predictive maintenance system?  

• RQ3: Does the Reference Architecture allow for the derivation of a 
specific Application Architecture? 

As such, we adopted the RA design approach from Tummers, Kas-
sahun, & Tekinerdogan, 2021, Tummers, Tobi, et al. (2021), shown in 
Fig. 1. First, we perform a domain analysis, which synthesizes the 
domain knowledge to support the design of the RA. The domain analysis 
consists of two activities: domain scoping and modeling. Domain 
scoping specifies the domain’s scope and the knowledge sources 
required to determine the foundational pillars. The goal of domain 
modeling is to describe domain knowledge in a consumable manner (van 
Geest, Tekinerdogan, & Catal, 2021). In our case, the domain scoping 
activity consists of a systematic literature review concerning PdM using 
DTs (van Dinter et al., 2022), while the domain modeling activity con-
sists of creating a feature model. 

Second, we use the information from the feature model for the design 
of our RA. Therefore, we create several views, which we will elaborate in 
Section 3.4. To show the suitability of the design, we derive multiple 
AAs from different application domains. We use a retrospective case 
study design from three applications, elaborated in the next section. We 
used the method for deriving the AA from the RR as proposed by 
Tummers, Kassahun, & Tekinerdogan, 2021, Tummers, Tobi, et al. 
(2021). 

2.2. Case studies 

This section describes the selection of case studies. Triangulation is a 
key principle in the design of a case study. Triangulation means taking 
multiple viewpoints toward the subject of study to capture the essence of 
the bigger picture (Runeson & Höst, 2009). We ensured data triangu-
lation (i.e., various use cases) and observer triangulation (i.e., multiple 
application domains/observers). 

The study was validated using cases involving different PdM re-
quirements in different application domains. As mentioned in the pre-
vious section, we used studies implementing PdM algorithms. Then, we 

conceptually applied a DT-based PdM system to the case. The following 
three cases were selected for understanding and validating the RA 
design:  

Case 1. New Holland tractor transmission system. Maintenance of 
agricultural machinery, including tractors, is routine in the life 
of any farmer, especially preventive and corrective mainte-
nance. da Silva, Rodrigues de Sá, and Menegatti (2019) created 
a PdM algorithm that identifies failures in the New Holland T8 
tractor transmission system. It is a tractor for large-scale pro-
duction, and pressure data of the clutch system is used for fault 
diagnosis.  

Case 2. Wafer semiconductor manufacturing. Silicon wafers are 
extensively employed in the semiconductor industry to fabricate 
integrated circuits. Typically, wafer thickness is monitored 
using scan data from a laser probe. Several polishing procedure 
factors can impact the quality and consistency of the acceptable 
thickness across the entire wafer. Cohen and Singer (2021) 
proposed an intelligent supervisory framework for a single 
process controller suitable for Industry 4.0 shop floors. It is 
compatible with the paradigm of a Cyber-Physical System (CPS) 
since its implementation creates a rich cyber-physical entity of 
the regulated process. This CPS entity might be considered the 
process’s digital twin or a strong foundation for producing it.  

Case 3. Electro-optical imaging system. Infrared imaging devices are 
widely equipped for target recognition and tracking on aircraft 
and spaceships. Electro-optical detection excels at maintaining 
stealth and avoiding interference compared to radar and laser 
detection. However, when the electro-optical system’s health 
deteriorates significantly, the imaging quality suffers, reducing 
the detection probability to target and, as a result, leading to the 
failure of combat operations. As a result, Yu, Song, Tang, and 
Dai (2021) designed a DT model and monitored the electro- 
optical system’s health. 

3. Results 

This section starts with a summary of related reference architecture 
studies. It then presents the design phase’s four steps: domain analysis, 
domain scoping, domain modeling, and RA design. 

3.1. Domain analysis 

To scope and model the domain, we performed a systematic litera-
ture review (SLR) (van Dinter et al., 2022) to gather and synthesize 
evidence on PdM using DT. We provided an answer to the research 

Fig. 1. The methodological design for creating a Reference architecture adopted from Tummers, Kassahun, & Tekinerdogan, 2021, Tummers, Tobi, et al. (2021).  

R. van Dinter et al.                                                                                                                                                                                                                             



Computers & Industrial Engineering 177 (2023) 109099

4

questions as listed in Table 1. We synthesized evidence from 42 selected 
high-quality articles (Aivaliotis, Arkouli, Georgoulias, & Makris, 2021; 
Aivaliotis, Georgoulias, Arkouli, & Makris, 2019; Aivaliotis, Georgou-
lias, & Chryssolouris, 2019; Aivaliotis, Xanthakis, & Sardelis, 2020; 
Altun & Tavli, 2019; Anis, Taghipour, & Lee, 2020; Barkalov, Dorofeev, 
Fedorova, & Polovinkina, 2021; Booyse, Wilke, & Heyns, 2020; Catta-
neo & MacChi, 2019; Centomo et al., 2020; Cohen & Singer, 2021; 
Deebak & Al-Turjman, 2021; Desai, Granja, Higgs, & III., 2021; Dhada, 
Hernández, Palau, & Parlikad, 2021; Heim et al., 2020; Johansen & 
Nejad, 2019; Kaul, Bender, & Sextro, 2020; Liu, Mauricio, Qi, Peng, & 
Gryllias, 2020; Z. Liu, Jin, et al., 2018; Z. Liu, Zhang, et al., 2018; Luo 
et al., 2020; Meraghni et al., 2021; Moghadam & Nejad, 2022; Mogha-
dam, Rebouças, & Nejad, 2021; Moi, Cibicik, & Rølvåg, 2020; Oluwa-
segun & Jung, 2020; Priyanka, Thangavel, Gao, & Sivakumar, 2021; 
Qiao, Wang, Ye, & Gao, 2019; Rajesh, Manikandan, Ramshankar, 
Vishwanathan, & Sathishkumar, 2019; Rossini et al., 2020; Short & 
Twiddle, 2019; Tao, Zhang, Liu, & Nee, 2018; Tygesen, Worden, Rogers, 
Manson, & Cross, 2019; Tzanis et al., 2020; Wang, Lee, & Angelica, 
2020; Wang, Liu, Liao & Mrad, 2020; Werner, Zimmermann, & Lentes, 
2019; Xiong et al., 2021; Xu, Sun, Liu, & Zheng, 2019; Yu et al., 2021; 
Zenisek, Wolfartsberger, Sievi, & Affenzeller, 2018; Zhang, Huo, Zheng, 
& Li, 2020) to answer our research questions. These articles form the set 
of evidence for our Reference Architecture design. Some of the articles 
also propose a framework or reference architecture and are, as such, 
discussed in Section 1 Introduction. 

3.2. Domain scoping 

DT-based PdM systems cover a wide range of subdomains. Much 
research is focused on the Manufacturing domain. Others focus mainly on 
the Energy, Aerospace, and Automotive domains. The most common DT 
abstraction level is the Component level and System level. Additionally, 
most DT-based PdM systems apply the Digital Monitor design pattern. 

3.3. Domain modeling 

Feature modeling is a method for representing domain knowledge 
and features of the system and its interdependencies (van Geest et al., 
2021). The feature model is constructed from the information synthe-
sized in the SLR study. A feature model also depicts whether a feature is 
optional or mandatory. Features mentioned by most publications or 
features that are required in every system are considered mandatory. 
Other elements are optional and can be leveraged based on a developer’s 
needs. 

We have generated a DT-based PdM system feature model, which has 
been divided into two figures to establish a robust overview of the 

features. Its features depend on literature from the SLR study and 
additional sources regarding data science techniques. Fig. 2 shows the 
DT-based PdM system with the collapsed PdM feature. Fig. 3 expands 
the features of the PdM side of the system. 

A DT depends on several features, which we address following the 
order of the 5C architecture as proposed by Lee et al. (2015) (Connec-
tion, Conversion, Cyber, Cognition, and Configuration): 

Connection. First, the main component of a DT is its physical 
counterpart. Without the Physical Twin (PT), the DT cannot exist. Data 
acquisition is the process of synchronizing input data between the DT and 
PT systems at a specific Twinning rate. The Twinning rate may be a 
continuous stream or batches (Giray & Catal, 2021; Tekinerdogan & 
Verdouw, 2020). Storage is a feature supporting other features and refers 
to data’s temporary and persistent storage (Giray & Catal, 2021). The 
storage feature involves relational and non-relational or NoSQL data-
base systems (Cattaneo & MacChi, 2019; Priyanka et al., 2021; Wang, 
Lee, & Angelica, 2020). The communication feature consists of three sub- 
features: publish-subscribe, client-server, and primary-secondary, which 
are the three most common communication architectures. 

Conversion. Security was not mentioned by most studies identified 
by the SLR study. However, security is a mandatory feature for industrial 
applications, as it is undesirable to have an insecure connection between 
the machine and DT. Data quality management refers to handling data 
quality problems that may arise due to noise and drifting in sensor data, 
errors, or unreported human interventions. There may be missing, 
incorrect, unusable, or redundant data (Dhada et al., 2021; Moi et al., 
2020; Xiong et al., 2021; Yu et al., 2021). 

Cyber. The cyber layer consists of the simulation model feature. This 
feature contains the four DT representation types described by Semeraro 
et al. (2021): data-driven, behavior, physics-based, and geometrical 
representation models. A DT can also be represented through hybrid 
models consisting of two or more models (Luo et al., 2020; Tao et al., 
2018; Yu et al., 2021). For example, a physics-based model can describe 
the known features of an asset, while a data-driven model can estimate 
the unknown parameters. 

Cognition. The cognition layer consists of the visualization feature. 
With this feature, the DT model may be visualized using its FEM model 
(Wang, Liu, Liao & Mrad, 2020), CAD model (Rajesh et al., 2019), or AR 
techniques (Deebak & Al-Turjman, 2021). At last, we have the analysis 
module with batch and stream processing and PdM. The PdM’s features 
are further elaborated using Fig. 3. 

Configuration. The configuration layer contains the machine opti-
mization feature. Z. Liu, Jin, et al. (2018) describe the machine optimi-
zation features with sub-features such as fleet management, zero 
downtime, optimized performance, and maximizing fleet readiness. 

Five new sub-features are shown as we expand the PdM feature in 
Fig. 3. Again, we base the elaboration structure of the feature model 
using the Machine Learning workflow, as described by MLOps (2023). 
This section regards the application modeling layer, which is usually 
developed using machine learning techniques. 

Data Engineering. As the PdM feature model is part of the DT-based 
PdM feature model, we use the data acquisition feature to obtain the 
necessary data. PdM algorithms may be executed in real-time or peri-
odically, such as once per day. Feature extraction is used to gather more 
information from the data. It consists of time-domain, frequency- 
domain, and time-frequency domain feature extraction. 

Machine Learning (ML) Model Engineering. As machine failures 
are not regularly occurring, datasets are often imbalanced. The data 
sampling sub-feature aims to balance the data to enable models to train 
on the essential features (Lemaître, Nogueira, & Aridas, 2017). When the 
data has been enriched and balanced, we can split the data needed for 
the validation feature. Engineers can choose between using a holdout set 
or N*k-fold cross-validation. When the data is correctly split, one must 
choose the right evaluation metrics to measure what it asserts. The KPI 
feature is essential for PdM as it determines the problem to tackle and 
the type of model to use. For example, Remaining Useful Life (RUL) is a 

Table 1 
The research questions of the literature review (van Dinter et al., 2022).  

No. Research Question (RQ) 

RQ1 What is the objective of predictive maintenance using Digital Twins? 
RQ2 On which application domains is predictive maintenance using Digital 

Twins applied? 
RQ3 Which Digital Twin platforms are used to develop Digital Twins for 

predictive maintenance? 
RQ4 Which model representation types are used to develop Digital Twins for 

predictive maintenance? 
RQ5 Which approaches are being applied for predictive maintenance using 

Digital Twins? 
RQ6 Which abstraction levels of Digital Twins are used for predictive 

maintenance? 
RQ7 Which Digital Twin design patterns are applied for predictive maintenance? 
RQ8 Which communication protocols are used for Digital Twins for predictive 

maintenance? 
RQ9 Which Twinning state parameters are used for predictive maintenance using 

Digital Twins? 
RQ10 What are the challenges and possible solution directions with respect to 

predictive maintenance using Digital Twins?  
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Fig. 2. Feature model of the DT-based PdM system.  
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Fig. 3. Expanded feature model of the PdM feature.  
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regression task, while fault condition is a classification task. Further-
more, the health indicator describes the deterioration of the asset, while 
RUL describes the time before failure. Model Development is the feature 
where the predictive model is engineered. We identified five types of 
predictive statistic models from the SLR study, seven types of ML 
models, and eight types of Deep Learning (DL) models for PdM tasks. 

Model deployment. The model deployment step focuses on bringing 
the model to production (MLOps, 2023). The model serving feature en-
ables deployment with three options, as described by Digital Twin 
Consortium (2023). Optionally, model performance monitoring can be 
added to keep track of model performance in production (MLOps, 2023). 

3.4. Reference architecture design 

In this section, we describe the selection of views and diagrams used to 
describe the RA design and elaborate on each view. 

3.4.1. Selection of views 
UML diagrams can be separated into five types of views to support 

the design of a system (Mall, 2018):  

• User view  
• Structural view  
• Layered view  
• Behavioral view  
• Implementation view 

These views map to the UML view models (Alhir, 1998). The rela-
tionship between these views is described by Kruchten (1995) as fol-
lows: “This use of multiple views allows to address separately the concerns of 
the various ‘stakeholders’ of the architecture: end-user, developers, systems 
engineers, project managers, etc., and to handle separately the functional and 
non-functional requirements“(Kruchten, 1995). We make use of this 
structure to design the RA. As the Behavior and Implementation views 
rely on exact system characteristics, we implement the User, Structural, 
and Layered views. For the User’s view of the system, we develop a level- 
0 Data Flow Diagram (DFD), also known as a context diagram (Afyenni, 
2014). For the Structural view, we provide a package diagram. For the 
Layered view, we create a layered view. For the case studies, we also 
develop a deployment diagram for the Implementation view. 

3.4.2. User’s view 
The DFD level 0, depicted in Fig. 4, is a diagram that describes a 

system and its interfaces with the external environment at a high level. 
The diagram shows data sources, such as sensors, and outputs, such as 
analytic insights, which relate to human supervisors and actuators. As 
DT systems are often served in the cloud, we introduced cloud 
computing resources as a bidirectional data source. The data is acquired, 
stored, processed, and analyzed by the DT-based PdM system to provide 
information on the DT’s health state. 

3.4.3. Structural view 
Fig. 5 depicts the package diagram of the DT-based PdM system RA. 

The Physical Twin module is responsible for acting as a Proxy pattern for 

communication between the DT and PT. Data acquisition modules are 
responsible for loading data into the DT system for processing. The 
Communication module provides different communication protocols to 
enable the desired behavior of the system. Data quality can be managed 
by applying cleaning and enrichment procedures to the gathered data to 
gain more accurate findings from the analysis. The Abstraction level 
module enables the development of the SimulationModel in different 
levels of granularity. The SimulationModel module provides several 
submodules that enable the development of a DT. To help decision- 
making, submodules can be employed to Analyze the data, such as the 
Machine optimization and Predictive maintenance modules. The Batch and 
Stream modules describe the execution rate of analysis, which may be 
continuous or periodic. The Storage module manages several data stor-
age mechanisms. To secure data from unwanted access, a Security 
module is required. 

The Predictive Maintenance module is a member of the Analysis 
module. It is responsible for predicting the health of a component or 
system. It uses the cleaned input data and the Feature extraction module 
to generate relevant features. The KPI module provides a selection of key 
performance indicators that can be predicted. Predictive models are 
generated in the Model development module. The Validation and Model 
tuning ensure the model works optimally, verified using a validation 
dataset. When the model is working well, it can be Served, with the 
expectation to Monitor model performance, to continuously consider 
production challenges, such as data distribution changes, training- 
serving skew, or data quality issues (Oladele, 2021). 

3.4.4. Layered view 
The layered view depicts the allocation of software modules into 

various layers based on a unidirectional “allowed-to-use” link between 
the layers (Richards, 2015). We decided to base our layered view on the 
standard of the 5C layered architecture, as described in 3.3. Fig. 6 de-
picts the layered 5C architecture for the DT-based PdM RA. Starting at 
the top, the layered view consists of a configuration layer with a ma-
chine optimization module. The Configuration layer relies on the 
Cognition logic layer that provides visualizations and performs risk 
analysis. The Cognition layer uses data from the Cyber layer. The Cyber 
layer contains sub-modules to create a simulation model at a certain 
abstraction level of the physical asset. The Cyber layer depends on the 
Conversion layer, which provides security, data quality, and the pre-
dictive maintenance module. The connection layer provides the Physical 
Twin proxy, acquisition, storage, and communication. 

4. Validation 

We used the case studies described in Section 2.2 to evaluate the RA 
by designing an AA. We used the AA design approach proposed by 
Tummers, Kassahun, & Tekinerdogan, 2021, Tummers, Tobi, et al. 
(2021). 

4.1. Case study 1: New Holland Tractor 

da Silva et al. (2019) used a dataset from single manual data 
extraction from a New Holland T8 in Brazil. They used eight pressure 

Fig. 4. Data Flow Diagram Level-0 for a DT-based PdM system RA.  
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features from four clutches to detect anomalies. The study depicts the 
design of the software and tools used. We developed an AA as if the case 
study used a DT-based PdM system. 

4.1.1. Feature diagram 
We carefully investigated the study to detect the features imple-

mented by (da Silva et al., 2019). As they used a PicoScope6 device to 

perform the data acquisition and predictive maintenance, we chose 
Batch acquisition and analysis. The transmission system is well-defined, 
and as CAD models are available, the Digital Twin may be represented 
using physics-based techniques. Clutch analysis was based on time- 
series data, and anomalies were detected from the time domain. As 
the defects are clearly defined, traditional Machine Learning techniques 
for anomaly detection are sufficient. The feature diagram is shown in 

Fig. 5. Package diagram of the DT-based PdM system RA.  
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Fig. 7. 

4.1.2. User’s view 
We created a context diagram based on the available information 

explicitly mentioned in da Silva et al. (2019). There were no entities to 
add. We used three out of four entities from the RA. The context diagram 
is shown in Fig. 8. 

4.1.3. Structured view 
The package diagram extracted from da Silva et al. (2019) is depicted 

in Fig. 9. The package diagram was based on the features gathered in the 
section above. 

4.1.4. Layered view 
For the layered view, we designed a 5C architecture. The 5C diagram 

contains the high-level components and shows which level of the 5C 
architecture the components are located. These components may only 
communicate with components on the same or adjacent level. The 5C 
diagram is presented in Fig. 10. 

4.1.5. Deployment view 
The deployment diagram shows the two devices of the DT-based PdM 

system. The ClutchSystem contains components for secure communica-
tion and data acquisition of the sensors, while the Con-
ditionMonitoringSystem contains the other components and replaces the 
PicoScope6 capabilities. The deployment diagram is presented in 

Fig. 11. 

4.2. Case study 2: semiconductor wafer manufacturing 

Cohen and Singer (2021) developed a statistical process control 
(SPC) for identifying abnormalities, which they applied in semi-
conductor wafer manufacturing. More precisely, they monitored a pol-
ishing machine to optimize the quality of the wafers (i.e., achieve the 
optimal thickness consistently). When the polishing quality is not 
optimal, the machine should be maintained, which is a predictive pro-
cess maintenance example. 

4.2.1. Feature diagram 
We carefully read the study to detect the features implemented by 

Cohen and Singer (2021), who proposed a smart controller framework. 
As such, the features were well-defined. As they used a Smart Gateway 
module for the Industrial Internet of Things, we assumed they used a 
publish-subscribe architecture for communication. Furthermore, Cohen 
and Singer (2021) described that the SPC is a real-time system. As such, 
we selected Stream for data acquisition and analysis. For root-cause 
analysis, the authors used Machine Learning algorithms. Specifically, 
they used an ordinal decision tree algorithm with a depth of 3. The 
feature diagram is shown in Fig. 12. 

4.2.2. User’s view 
We created a context diagram based on the proposed SPC framework 

Fig. 6. Digital Twin Layered 5C Architecture.  
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and its main elements. We replaced Cloud Computing recourses with 
Industrial Internet of Things and Internet/Web. We also added Actuators. 
However, actuators are not typically included in the Digital Monitor 
pattern (Tekinerdogan & Verdouw, 2020). The context diagram is 
shown in Fig. 13. 

4.2.3. Structured view 
The package diagram extracted from Cohen and Singer (2021) is 

depicted in Fig. 14. The package diagram was based on the features from 
the feature diagram. 

4.2.4. Layered view 
For the layered view, we designed a 5C architecture. Compared to 

the 5C diagram of the New Holland Tractor case, this diagram also in-
cludes a Machine Optimization module on the configuration level. The 5C 
diagram is presented in Fig. 15. 

4.2.5. Deployment view 
The deployment diagram shows the two devices of the DT-based PdM 

system. The WaferPolishingSystem contains components for secure 
communication and data acquisition of the sensors, while the Smart-
ControllerServer contains the other components and replaces the SPC 
capabilities. The deployment diagram is presented in Fig. 16. 

4.3. Case study 3: electro-optical imaging system 

We carefully investigated the study to detect the features imple-
mented by Yu et al. (2021), who proposed a DT-based health monitoring 
system for an electro-optical imaging system. Yu et al. (2021) used 
image data to determine the health state of the electro-optical device. 
The image quality deteriorates over time and is the best source to 
monitor. 

4.3.1. Feature diagram 
Yu et al. (2021) clearly defined the software architecture of the 

Digital Twin, which is on a system level. (Yu et al., 2021) described that 
they used a hybrid Digital Twin model based on physical models and 
Bayesian, data-driven modeling. Furthermore, Yu et al. (2021) did not 
specify which communication protocol was used: “The physical system 
requires standard data communication devices to achieve uniform conversion 
of different communication interfaces or protocols and uniform packaging of 
data.” They extracted features from the time-frequency domain using 
Dirichlet Process Mixture Models. At last, Yu et al. (2021) used a sta-
tistical Gaussian Particle Filter model to determine the health indicator 
of the electro-optical system, which was evaluated using the Mean 
Squared Error metric. The feature diagram is shown in Fig. 17. 

4.3.2. User’s view 
We created a context diagram based on the available information 

explicitly mentioned in Yu et al. (2021). There were no entities to add. 
We leveraged all entities from the RA. The context diagram is shown in 
Fig. 18. 

4.3.3. Structured view 
The package diagram extracted from Yu et al. (2021) is depicted in 

Fig. 19. The package diagram was based on the features from the feature 
diagram. 

4.3.4. Layered view 
For the layered view, we designed a 5C architecture. The 5C diagram 

for the New Holland Tractor case has the same structure as the 5C ar-
chitecture for the electro-optical system. The 5C diagram is presented in 
Fig. 20. 

4.3.5. Deployment view 
The deployment diagram shows the two devices of the DT-based PdM 

system. The ElectroOpticalDevice contains components for secure 
communication, data acquisition of the sensors, and data quality man-
agement. (Yu et al., 2021) describes: “data is standardized, cleaned and 
packaged by physical system, and then uploaded to the Digital Twin model in 
digital world.” The Cloud contains the other components and replaces the 
health monitoring system capabilities. The deployment diagram is pre-
sented in Fig. 21. 

5. Discussion 

5.1. General discussion 

To our knowledge, this is the first RA exclusively designed for DT- 
based PdM systems using standardized software architecture method-
ologies. In this discussion, we critically reflect on our results regarding 
the research questions. 

RQ1: What are the existing reference architectures for Digital 
Twin-based predictive maintenance systems? 

As described in the Introduction section and Section 3.1 Domain 
analysis, several existing Digital Twin-based predictive maintenance 
systems exist. (Centomo et al., 2020; Cohen & Singer, 2021; Lee et al., 
2015; Z. Liu, Jin, et al., 2018; Z. Liu, Zhang, et al., 2018; Luo et al., 2020; 
Mihai et al., 2021; Nordal & El-Thalji, 2021; Xiong et al., 2021) are the 
articles from the Domain Analysis that present RAs and frameworks. 

RQ2: What is a feasible Reference Architecture for a Digital 
Twin-based predictive maintenance system? 

We used the domain analysis information from our systematic 
literature review (van Dinter et al., 2022). A more comprehensive data 
collection with other search queries and grey literature might have 
introduced additional insights. However, peer-reviewed scientific arti-
cles provided a solid base for designing an RA. The results from our case 
studies confirm this. The feature diagram included the key components 
of a DT-based PdM system. 

Furthermore, relevant features could be added regarding the specific 
needs of an application. This allows the feature model to adapt to the 
rapidly evolving domain of DT-based PdM systems. We identified four 
key entities for the context diagram based on the domain analysis. These 
entities were used in most of the reviewed studies. The Semiconductor 
Manufacturing case also showed the flexibility of the design, as we 
added an Actuator entity and replaced the Cloud Computing resources 
entity for Industrial Internet of Things and Internet/Web. 

RQ3: Does the Reference Architecture allow for the derivation 
of a specific Application Architecture? 

The case studies for the derivation of AAs were based on three peer- 
reviewed articles (Cohen & Singer, 2021; da Silva et al., 2019; Yu et al., 
2021). Although they did not always explicitly name entities, features, 
or deployment environments, the studies contained sufficient detail to 
derive the diagrams and views. The use of five views to derive the AA 
was demonstrated. In theory, the same procedure can generate other 
potential perspectives (e.g., sequence diagrams, use-case diagrams). 
These diagrams may be designed using specific application 
requirements. 

The RA package diagram showed its flexibility, as defining an AA 
feature diagram enabled an easy adaptation of the AA package diagram. 
The 5C architecture showed to be robust and informative of internal 
communication flows. However, using high-level modules caused the 5C 
architecture to be rather generic—the deployment views for the three 
AAs separate concerns for the device and its Digital Twin. However, 
regarding privacy concerns of high-tech enterprises, it may be consid-
ered to embed most software and its intelligence into the machine to 
limit the data stream that could be intercepted. In that case, it could be 
considered only to place a visualization module elsewhere or keep 
everything on the machine. 
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5.2. Threats to validity 

Construct validity: The construct validity of the RA design determines 
if it accurately measures what it claims to. 

The first threat is that we assumed performing Domain Analysis and 
Modeling using a semi-automated systematic review (van Dinter et al., 
2022) would provide a complete view. As Digital Twins and predictive 
maintenance on their own are rapidly growing fields, each of these 
domains may be further researched to combine RAs. 

The second threat is the selection of views. We have chosen to pro-
vide five views for this RA using (Alhir, 1998). However, the selection of 
which UML model to provide for each view may contain flaws. 

Internal validity: Internal validity reveals biased relationships be-
tween results, leading to structural flaws. We carefully formulated each 
research question to determine the required approaches, methods, and 
techniques to design an RA for Digital Twin-based predictive mainte-
nance systems to overcome these biases. As there are many options to 
design an RA for Digital Twin-based predictive maintenance systems, 
and the field is relatively new, we might have missed essential research 
questions or made assumptions about the UML views, which may be 
incomplete. 

External validity: The external validity shows how well the RA study’s 
outcome can be applied to other settings. We applied triangulation to 
apply our RA to three case studies from varying domains with moving 
and static components. Likely, novel Digital Twin RAs have not yet been 
applied with predictive maintenance modules and vice versa. These 
studies have not been published in the scope of Digital Twin-based 
predictive maintenance systems, so they have not been included in 
this study regardless of their potential. 

Conclusion validity: The conclusion validity measures the reproduc-
ibility of the RA design. Our study followed the RA design methodology 
from Tummers, Kassahun, & Tekinerdogan, 2021, Tummers, Tobi, et al. 
(2021). Additionally, data for the Domain Analysis was gathered from 
van Dinter et al. (2022), and UML standards were applied for the RA 
design. We deduced all conclusions from the retrieved and synthesized 
data based on the models to prevent subjective interpretation of the 
results. 

6. Conclusion and future work 

We executed this study as there was a lack of a Reference 

Architecture (RA) for Digital Twin-based predictive maintenance (DT- 
based PdM) systems based on well-established software architecture 
principles. In this study, we aimed to solve the challenging task of 
developing software architectures for predictive maintenance tasks in 
various application domains using the knowledge gained from a litera-
ture review. 

This study demonstrated that software architecture methods could 
be applied to DT-based PdM systems. We proposed a high-level RA for 
DT-based PdM systems, which could be applied regardless of its appli-
cation domain. As a result, we applied the RA to design three case study 
Application Architectures (AA) for New Holland Tractor clutch system 
monitoring, Semiconductor manufacturing polishing system anomaly 
detection, and Electro-optical system health monitoring. As such, this is 
the first study developing a domain-independent RA for DT-based PdM 
systems based on famous software architecture principles. A robust AA 
can be produced using this RA within a smaller timeframe, reducing the 
time-to-market. 

Our future work will focus on applying our RA for DT-based PdM 
systems on use cases in several high-tech domains. We will mainly focus 
on the maintenance of the Dutch Mid-Voltage electricity network, and 
the maintenance of assets for semiconductor manufacturing. The in-
sights gathered from the implementation of the framework will lead to 
further improvements due to iterative design changes. Furthermore, the 
next step of our future work will focus on developing design patterns for 
digital twins-based predictive maintenance systems. These can regard 
available data, the challenge to solve, or the type of asset or mainte-
nance. These two studies should support industry professionals with 
faster time to market for developing robust predictive maintenance 
systems. 
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Appendix A. Appendix 

A.1. Application architecture New Holland Tractor case

Fig. 7. Feature diagram for the New Holland Tractor Digital Twin-based predictive maintenance system based on da Silva et al. (2019).   
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Fig. 8. Context diagram for the New Holland Tractor Digital Twin-based predictive maintenance system based on da Silva et al. (2019).  

Fig. 9. Package diagram for the New Holland Tractor Digital Twin-based predictive maintenance system based on da Silva et al. (2019).   
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Fig. 10. 5C architecture for the New Holland Tractor Digital Twin-based predictive maintenance system based on da Silva et al. (2019).   
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Fig. 11. Deployment diagram for the New Holland Tractor Digital Twin-based predictive maintenance system based on da Silva et al. (2019).  

A.2. Application architecture semiconductor wafer manufacturing case 
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Fig. 12. Feature diagram for the semiconductor wafer manufacturing Digital Twin-based predictive maintenance system based on Cohen and Singer (2021).   
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Fig. 13. Context diagram for the semiconductor wafer manufacturing Digital Twin-based predictive maintenance system based on Cohen and Singer (2021).  

Fig. 14. Package diagram for the semiconductor wafer manufacturing Digital Twin-based predictive maintenance system based on Cohen and Singer (2021).   
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Fig. 15. 5C architecture for the semiconductor wafer manufacturing Digital Twin-based predictive maintenance system based on Cohen and Singer (2021).   
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Fig. 16. Deployment diagram for the semiconductor wafer manufacturing Digital Twin-based predictive maintenance system based on Cohen and Singer (2021).  

A.3. Application architecture electro-optical imaging system 
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Fig. 17. Feature diagram for the electro-optical imaging Digital Twin-based predictive maintenance system based on Yu et al. (2021).   
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Fig. 18. Context diagram for the electro-optical imaging Digital Twin-based predictive maintenance system based on Yu et al. (2021).  

Fig. 19. Package diagram for the electro-optical imaging Digital Twin-based predictive maintenance system based on Yu et al. (2021).   
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Fig. 20. 5C architecture for the electro-optical imaging Digital Twin-based predictive maintenance system based on Yu et al. (2021).   

R. van Dinter et al.                                                                                                                                                                                                                             



Computers & Industrial Engineering 177 (2023) 109099

23

Fig. 21. Deployment diagram for the electro-optical imaging Digital Twin-based predictive maintenance system based on Yu et al. (2021).  
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