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A B S T R A C T

Background: Controlled feeding trials are an important method to determine cause-effect relationships between dietary intake and metabolic parameters,
risk factors, or health outcomes. Participants of a controlled feeding trial receive full-day menus during a prespecified period of time. The menus have to
comply with the nutritional and operational standards of the trial. Levels of nutrients under investigation should differ sufficiently between intervention
groups, and be as similar as possible for all energy levels within intervention groups. Levels of other key nutrients should be as similar as possible for all
participants. All menus have to be varied and manageable. Designing these menus is both a nutritional and a computational challenge that relies largely on
the expertise of the research dietician. The process is very time consuming, and last-minute disruptions are very hard to manage.
Objective: This paper demonstrates a mixed integer linear programming model to support the design of menus for controlled feeding trials.
Methods: The model is demonstrated for a trial that involved consumption of individualized, isoenergetic menus with either a low or a high protein
content.
Results: All menus generated by the model comply with all standards of the trial. The model allows for including tight ranges on nutrient composition,
and complex design features. The model is very helpful in managing contrast and similarity of key nutrient intake levels between groups and energy
levels, and in coping with many energy levels and nutrients. The model helps to propose several alternative menus and to manage last-minute disruptions.
The model is flexible; it can easily be adapted to suit trials with other components or different nutritional requirements.
Conclusions: The model helps to design menus in a fast, objective, transparent, and reproducible way. It greatly facilitates the design procedure for menus
in controlled feeding trials and lowers development costs.
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Introduction

Controlled feeding trials are an important method to determine
cause-effect relationships between dietary intake and metabolic
parameters, risk factors, or health outcomes. They allow to inves-
tigate the effect of intake of specific nutrients, foods, or dietary
patterns while controlling for potential confounding effects [1, 2].
The potential impact of controlled feeding trials is illustrated for
example for the effect of trans fatty acids and cholesterol in the
study of Mensink and Katan [3], for the effect of dietary patterns on
blood pressure in the DASH-trial by Apple et al. [4], and for the
effect of ultra processed diets on energy intake and weight gain by
Hall et al. [5].
Abbreviations: LP, Linear Programming; MILP, Mixed-Integer Linear Programming.
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In controlled feeding trials, for a period of time participants are
provided with specifically composed menus that meet the trial criteria.
They have to consume everything that is provided and nothing more.
The menus have a specific nutrient composition, contain specific foods
and/or dietary pattern, and differ between control and intervention
groups. In addition, individual energy and nutrient requirements of the
participants are taken into account.

Designing the menus is both a nutritional and a computational
challenge. On the one hand, all participants within a group have to
receive the same foods. Moreover, the amounts of foods have to be in
accordance with the individual energy requirements (referred to as
energy level) of the participants. On the other hand, the menus have to
differ between control and intervention groups in terms of nutrient
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composition, foods, and/or dietary pattern, in order to meet the criteria
of the trial.

For designing the menus, research dieticians compose n-day menus
that can be repeated throughout the duration of the trial. Food items are
combined into so-called (meal) components, such as starch, vegetables,
biscuits. Participants receive a serving of every component every day,
but the actual food item per component per day will vary. For instance,
a participant receives a daily serving of 100 gram of the starch
component, which (in a 7-day menu) varies with frequencies 2 days
rice, 2 days pasta, 3 days potatoes. This leads to two main design de-
cisions: F ~ how to compose the components (in other words: what
Indices
e Index for energy level, e¼1, …,E, with E the number of energy levels
f Index for frequency of a food item in a component, f¼ 1, …,maxfi with maxfi the maximal frequency of food i
g Index for group, g¼ 1, 2
i Index for food item, i¼ 1,…,I, with I the number of food items
j Index for nutrient, j¼ 1,…,J, with J the number of nutrients
k Index for food component, k¼1, …,K, with K the number of components
ki Index of the component to which food i belongs
Variables
Fi,g Frequency of food item i for group g
NMj,e,g Amount of nutrient j for energy level e for group g (kJ/day, g/day)
Xk,e,g Daily amount of food component k for participants in energy level e of group g (g or pieces)
Data
ci,j Amount of nutrient j in food item i (kJ/100g or g/100g)
should be the frequency of food items within the components?), X ~
how much of each component to serve per day. As all participants in a
group get the same menu, decision F has to be taken for every group.
Decision X has to be taken for every energy level in every group.

In the current manual design procedure, a nutrient calculation
program and a spreadsheet application are used to keep track of the
nutrient compositions of all menus. Frequencies F of the food items in
the components and daily amounts X of components per energy level
are adjusted manually to improve nutrient composition and amounts of
foods until they meet the criteria of the trial. It is very hard to manually
select all frequencies and amounts such that the nutrient composition
and the composition of the menu comply with the objectives of the
study for all energy levels of all groups. As a result, the design process
is very time consuming, depends heavily on the experience and
expertise of the research dietician, and last-minute disruptions (such as
unavailability of a planned food) are very hard to manage.

For designing diets, Linear programming (LP) models have widely
been used as tools [6]. To the best of our knowledge, LP has not yet
been used to formulate menus for controlled feeding trials. LP models
that contain integer variables are referred to as Mixed Integer Linear
Programming (MILP) models [7]. This paper demonstrates a MILP
model to support development of menus for controlled feeding trials.
Methods

The case study ProBrain [8] is used to explain the MILP model and
to demonstrate its performance by comparing the MILP menus with the
manual menus that were actually used in the study. ProBrain consisted
of a 14-day fully controlled dietary intervention that involved con-
sumption of individualized, isoenergetic menus providing either a low
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protein menu (Group 1) or a high protein menu (Group 2). A menu for
one week was designed. The menu was repeated in the second week.

Key elements in the MILP model are decision variables that
represent the two main design decisions F and X , and the (mathe-
matical) relations between these decision variables and the nutrient
composition of the menu. These elements will be elaborated here,
followed by a numerical toy example. The remainder of this section
describes some functionality of the MILP model. The full mathematical
formulation is provided in Supplementary Methods. The section ends
with an outline of the solution approach and the implementation.

The following definitions are used.
Nutrient composition as function of the decision variables
The nutrient composition of the n-day menu for energy level e of

group g can be calculated from the frequency Fi,g of food i and the daily
amount Xki;e;g of component ki. The n-day amount of nutrient j obtained
from food i for energy level e of group g equals 0:01ci;jFi;gXki;e;g . The
daily amount NMj,e,g of nutrient j in energy level e for group g is then
obtained by summing this expression over all food items i and dividing
by the number of days n:

NMj;e;g ¼
XI

i¼1

0:01ci;jFi;gXki ;e;g=n for all j; e; g (1)

Equation [1] is non-linear due to the multiplication of the two
variables Fi,g and Xki ;e;g. As a consequence, a model that contains
equation [1] cannot be solved with linear programming software.
Supplementary Methods elaborates a two-step procedure that trans-
forms equation [1] into an equivalent set of linear constraints. The
linearized version of the model can be solved with standard linear
programming software.

Illustrative example
The following small numerical example illustrates the decision

variables and shows how the nutrient composition is calculated from
the decision variables. Suppose we are designing a four-day (n¼4)
menu for a trial with two groups and two energy levels (E¼2). Assume
there are five food items (I¼5) in two components (K¼2), see Table 1.
Within the four-day period, participants of group g¼2 get broccoli
(i¼3) twice (F3,2¼2), carrots (i¼4) once (F4,2¼1), and spinach (i¼5)
once (F5,2¼1). Of vegetables (k¼2), the participants in energy level
e¼1 of group g¼2 get X2,1,2¼65 g/day, and the participants in energy
level e¼2 of group g¼2 get X2,2,2¼140 g/day. The amount of dietary



Table 1
Input and output of numerical example for average daily intake of dietary fiber.

Input Output

i. Food k. Component ci,6 Fi,1 Fi,2 Xk,e,g Dietary fiber contribution for e¼1, g ¼2

1. Rice 1. Starch 0.7 2 1 X1,1,1¼50 X1,2,1¼100 X1,1,2¼60 X1,2,2¼110 0.4
2. Pasta 1. Starch 1.4 2 3 2.5

3. Broccoli 2. Vegetables 2.7 1 2 3.5
4. Carrots 2. Vegetables 2.9 1 1 X2,1,1¼75 X2,2,1¼150 X2,1,2¼65 X2,2,2¼140 1.9
5. Spinach 2. Vegetables 3.3 2 1 2.1

NM6,1,2¼2.6

ci;6 the amount of fiber in 100g of food i; Fi;g the frequency of food i in the four-day menu for group g; Xk;e;g the daily amount of component k for energy level e of
group g; NM6;1;2 the average daily intake of fiber.
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fiber (j¼6) in broccoli (i¼3) is c3,6¼2.7 g/100g. The amount of fiber
(j¼6) that participants in energy level e¼1 of group g¼2 get from
broccoli is 0.01c3,6F3,2X2,1,2¼0.01⋅2.7⋅2⋅65¼3.5 g. The average daily
fiber intake for energy level e¼1 of group g¼2 is calculated from the
fiber contributions of all five food items: NM6,1,2¼(0.4þ2.5þ…þ2.1)/
4¼2.6 g/day.

Components – properties
The study distinguishes 24 components, see Table 2. This section

describes the properties that are shown as columns in Table 2. Sup-
plementary Methods elaborates the properties of the individual com-
ponents and the relations between the components. A full list of all
foods (including their nutrient composition, serving size, and some
other properties) is provided in Supplementary Table 1.
Table 2
Properties of components used in the MILP model.

Component Unit Xk,e,g Lower bound Up

1. Starch gram continuous 50
2. Vegetables gram continuous 100
3. Meat_continuous gram continuous 50
4. Meat_integer piece integer 0
5. Dessert gram continuous 100
6. Sauce_basis gram continuous 15
7. Sauce_flavor gram continuous 15
8. Salad_vegetables gram integer 1
9. Salad_dressing gram continuous 15
10. Salad_fat gram continuous 0
11. Bread slice integer 1
12. Margarine cup integer 1
13. Top_sweet slice integer 1
14. Top_cheese slice integer 1
15. Top_meat slice integer 1
16. Milk glass integer 0; 1*
17. Fruit1 piece integer 1
18. Fruit2 piece integer 0
19. Fruit3 piece integer 0
20. Biscuits piece integer 1
21. Drinks glass integer 0
22. Snack_carbs piece integer 1
23. Snack_protein piece integer 0; 1*
24. Free choice items piece integer 18

Xk;e;g is the daily amount of component k for energy level e of group g. Lower and
integer Xk;e;g . Synchronizek ¼ 1 indicates that participants in groups 1 and 2 get the
component k should be non-decreasing with increasing energy level; all_days_sam
component k.
* 0 for group 1 and 1 for group 2.

410
Daily amount Xk;e;g – continuous or integer variables
Components such as starch and salad dressing can be served in any

number of grams. Therefore, their daily amounts Xk,e,g are modelled as
continuous variables. For instance, X2;4;1 ¼ 100 indicates that of
component vegetables (k¼2) participants of energy level e¼4 of
group g¼1 get 100 g/day.

Components such as bread and fruit are served in slices and pieces.
Their daily amounts Xk,e,g are modelled as integer variables. For
instance, X11,3,2¼5 indicates that participants of energy level 3 of group
2 get 5 slices of bread (k¼11) per day.

Lower bounds and upper bounds
Lower and upper bounds for the daily amount Xk,e,g of component k,

for energy level e of group g, either in grams or in slices/pieces.
per bound Synchronizek Non-decreasingk All_days_ samek

250 1 1
250 1 1
150 1
4 1

250 1
125 1
125
1 1
30
10
12 1 1
10 1
6
9 1
9
3 1
1
1
1
5
1 1
1
1
35 1

upper bounds are in grams for continuous Xk;e;g and in number of pieces for
same food for component k; non-decreasingk ¼ 1 indicates that the amounts of
ek ¼ 1 indicates that throughout the trial the same food needs to be selected for
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Synchronizek
For the sake of manageability (by kitchen and staff), components

starch, vegetables and salad_vegetables are synchronized. For the
practice of the trial, this means that every day only one type of starch/
vegetables/salad_vegetables is prepared, which is served to all partic-
ipants in both groups. For the model, this means that the frequencies of
the foods for group 1 are identical to those of group 2.

Non-decreasingk
The amounts of starch/vegetables/meat/bread are non-decreasing

with increasing energy level. In other words: no participant can have
a smaller amount of these components than a participant of a lower
energy level. This ensures that the nutrient sources are comparable
across the energy intake levels.

All_days_samek
For the sake of manageability, throughout the trial the same type of

sauce_basis, bread, margarine,…, free choice items is provided. For the
model, this means that only one item per food component is selected.
Solution approach
Solving the model for a case with 2 groups and more than 2 or 3

energy levels can take prohibitively much computation time. This is
caused by the large number of integer and binary variables in the model.
In such cases, solutions can be generated via a two-step approach:

Step 1. The model is solved for all groups, with only the lowest and
the highest energy level included.

Step 2. The frequencies Fi,g that were found in step 1 are used as input
in Step 2. The model is solved for all energy levels and groups.
Data, software, implementation
All input data for the MILP model was stored in one MS Excel file,

including three sheets:

1. Components including properties as shown in Table 2.
2. Food items including properties as shown in Supplementary Table 1.
3. Ranges for key nutrients and other menu-related restrictions.

Energy and nutrient composition were derived from the Dutch food
composition database [9] and values for composite foods were calcu-
lated using the nutrient calculation program Compl-eat [10]. The MILP
model was implemented in Fico Xpress-IVE [11], which used the Excel
file as input. The model’s output was stored in the Excel file and
available for further use during the trial. The Excel file and the Fico
Xpress-IVE source code are available as online SupplementaryMaterial.

Results

The MILP model was used to generate menus for ProBrain. These
menus will be referred to as ‘MILP menus’. The MILP menus will be
compared with the menus that were actually used in ProBrain [8],
which will be referred to as ‘manual menus’.

The target nutrient in ProBrain is protein. Protein should be
exchanged with carbohydrates, and fat content should differ as little as
possible between all energy levels and groups. Energy levels range
from 7MJ (e¼1) to 14MJ (e¼8) per day. In the original manual menus,
protein content in all energy levels of group 1 and 2 was designed to be
4.5 – 5.0 en% and 16.0 – 16.5 en%, respectively. In order to demon-
strate the power of the MILP model, the protein content of the MILP
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menus was defined more precisely at 4.7 – 4.8 en% and 16.2 – 16.3 en
% in all energy levels of group 1 and 2, respectively. The model was
run with an objective function that minimized the difference in fat
intake between all energy levels and groups, subject to the constraint
that protein intake was within the target range. Runtime of the MILP
model was less than 5 minutes.

Table 3 shows the daily amounts of all food components per group
and energy level for both the MILP and manual menus, and Table 4
shows the nutrient compositions of the menus. The frequencies of the
foods within the components are listed in Supplementary Table 2.

The results demonstrate that the MILP model generated menus that
comply with all constraints for all energy levels of all groups.
Discussion

This study describes a MILPmodel for generating full-day menus for
a controlled feeding trial with a specific aim and key nutrients. The output
of the MILP model is a list of the frequencies of the food items (per
group), and a list that specifies the daily amount per component for every
energy level of every group. The research dietician then decides which
combination of foods should be consumed on the same day, for instance,
the research dietician decides whether carrots should be combined with
potatoes or with rice. The modelling approach can easily be adapted for
trials with partial menus, another aim, different cultural eating habits, and
other key nutrients; foods and components can be removed, added, or
changed, and the modeller can adjust the dietary reference values.

In many ways, the MILP menus comply better with the study
criteria than the manual menus:

� The MILP model generates menus with tighter ranges on macro nutrient
intake than the manual procedure.

� The MILP model generates menus that comply with all constraints for every
energy level of every group. In the manual design procedure, for the 7MJ
and 8MJ group the nutrient requirements could only be met by reducing the
number of free choice items and sweet toppings.

� The MILP model generates menus with margarine and milk in cups and
glasses, respectively, which is preferred from the perspective of practical
manageability, but which was not attainable in the manual design procedure.

The accuracy of both the manual and the MILP-based design
method is limited by the accuracy of the food composition data.
Chemical analysis of duplicate composites of the diet should be un-
dertaken to report nutrient levels.

In 2021, theMILP-based design procedure has successfully been used
to design the menus of controlled feeding trial VD2O (https://www
.trialregister.nl/trial/9542), which studies the short-term effects of vegan
diets on daily muscle protein synthesis rates as compared to omnivorous
diets in older adults assessed by D2O. It was experienced that the model
developed for ProBrain could very easily be adapted to fit the setup and
criteria of VD2O. Key in VD2O is that the distribution of protein intake
over six daily eating moments should be as similar as possible for all
participants. In the MILP model, this challenging requirement was easily
modelled via an extra set of constraints. Adjusting the set of components
to the design of VD2Owas straight-forward, as was excluding non-vegan
food items from vegan menus. Running the model in slightly different
ways generated a set of alternative menus, thus providing the research
dietitian with several menu options. This was experienced as very valu-
able. Moreover, it was easy to answer what-if questions, such as ‘What if
we add meat replacers X and Y to the food list; will they actually be
selected and will they help to level the protein intake?’ and to investigate
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Table 3
Daily amounts of the components (MILP menus and manual menus).

Component (unit) Group 1 (low-protein) Group 2 (high-protein)

7
MJ

8
MJ

9
MJ

10
MJ

11
MJ

12
MJ

13
MJ

14
MJ

7
MJ

8
MJ

9
MJ

10
MJ

11
MJ

12
MJ

13
MJ

14
MJ

MILP
1. Starch (g) 52 65 100 105 110 121 126 150 81 150 159 178 195 250 250 250
2. Vegetables (g) 100 100 100 100 100 103 103 103 100 107 107 107 107 224 224 250
3. Meat_continuous (g) 50 50 50 50 51 51 51 51 71 100 125 135 135 140 150 150
4. Meat_integer (pieces) 0 0 0 0 0 0 0 0 2 2 3 3 4 4 4 4
5. Dessert (g) 101 101 104 104 104 104 104 114 100 100 100 100 100 175 175 194
6. Sauce_basis (g) 15 24 15 47 55 24 19 22 40 58 72 68 97 115 125 119
7. Sauce_flavor (g) 15 24 15 47 55 24 19 22 40 58 72 68 97 115 125 119
8. Salad_vegetables
(bowls)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9. Salad_dressing (g) 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
10. Salad_fat (g) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11. Bread (slices) 3 4 6 6 7 9 11 12 5 5 5 7 7 8 8 9
12. Margarine (cups) 2 2 4 4 4 6 7 9 4 4 4 5 5 5 5 7
13. Top_sweet (slice) 1 1 3 3 3 4 5 5 1 1 1 2 3 2 1 2
14. Top_cheese (slice) 1 1 1 1 1 2 2 2 1 1 1 2 1 2 2 2
15. Top_meat (slice) 1 2 2 2 3 3 4 5 3 3 3 3 3 4 5 5
16. Milk (glass) 0 0 0 0 0 0 0 0 1 1 1 1 2 1 1 2
17. Fruit1 (piece) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18. Fruit2 (piece) 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1
19. Fruit3 (piece) 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0
20. Biscuits (piece) 4 5 4 4 5 5 5 2 1 2 3 1 1 1 4 1
21. Drinks (glass) 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1
22. Snack_carbs (piece) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23. Snack_protein (piece) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
24. Free choice items
(piece)

18 20 23 25 28 30 33 35 18 20 23 25 28 30 33 35

Manual
1. Starch (g) 95 100 110 110 130 140 170 180 40 50 50 50 70 90 110 130
2. Vegetables (g) 125 150 150 150 150 150 200 200 90 90 100 120 140 150 175 190
3. Meat_continuous (g) 20 20 20 20 20 20 20 25 145 145 145 145 145 160 185 185
4. Meat_integer (pieces) 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
5. Dessert (g) 85 100 110 120 130 140 150 160 90 120 130 130 140 140 180 180
6. Sauce_basis (g) 30 32.5 40 44 45 49 50 52.5 10 10 15 15 20 20 25 25
7. Sauce_flavor (g) 30 32.5 40 44 45 49 50 52.5 10 10 15 15 20 20 25 25
8. Salad_vegetables
(bowls)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9. Salad_dressing (g) 12 15 17 25 26 27 29 30 5 5 10 10 15 15 18 18
10. Salad_fat (g) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11. Bread (slices) 4 5 5 6 7 8 8 9 4 4 5 6 7 8 8 9
12. Margarine (cups) 20 25 25 30 35 40 45 50 15 20 25 30 30 35 40 45
13. Top_sweet (slice) 2 3 3 4 4 5 5 6 0 1 1 1 1 1 1 1
14. Top_cheese (slice) 1 1 1 1 2 2 2 2 1 2 3 3 4 4 4 4
15. Top_meat (slice) 1 1 1 1 1 1 1 1 1 1 1 2 2 3 4 4
16. Milk (glass) 0 0 0 0 0 0 0 0 125 200 200 250 300 333 333 500
17. Fruit1 (piece) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18. Fruit2 (piece) 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
19. Fruit3 (piece) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20. Biscuits (piece) 1 1 2 2 2 2 3 3 0 0 0 0 0 0 0 0
21. Drinks (glass) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22. Snack_carbs (piece) 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1
23. Snack_protein (piece) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
24. Free choice items
(piece)

19 21 22 23 28 30 32 33 12 14 18 22 24 26 32 32
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trade-offs between various design features, such as ‘How does synchro-
nizing desserts affect the distribution of protein over eating moments?’.

The MILP-based design method requires a close cooperation be-
tween a research dietician and an expert in MILP modeling (referred to
as the modeler). In a typical MILP-supported design procedure, the
research dietician specifies the components list, the food list, and the
ranges for the key nutrients. The modeler implements the MILP model
412
defined in Supplementary Methods in the software of his/her choice
and tailors its functionality to the wishes of the research dietician. The
modeler uses the MILP model to generate an initial menu. The research
dietician indicates which changes are needed: add/remove foods to/
from food list, change input parameters (for instance maximal fre-
quencies of foods, synchronize components), change functionality of
the model (for instance link the amounts of two components). The



Table 4
Nutrient content of the menus (MILP menus and manual menus).

Group 1 (low-protein) Group 2 (high-protein)

MILP
1. Energy (MJ) 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
2. Protein (en%) 4.8 4.7 4.8 4.8 4.7 4.8 4.8 4.8 16.3 16.2 16.3 16.3 16.2 16.3 16.2 16.3
3. Fat (en%) 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1
4. Saturated fat (en%) 9.5 9.1 8.9 9.3 8.5 8.8 8.7 8.6 10.0 10.0 10.0 9.9 9.9 9.8 10.0 9.9
5. Carbohydrates (en%) 60.6 60.9 60.8 61.0 61.0 61.1 61.0 61.3 48.4 48.8 48.7 48.8 49.0 48.7 48.7 48.7
6. Dietary fiber (g/MJ) 4.3 4.5 4.7 4.4 4.7 4.5 4.7 4.6 3.4 3.3 3.2 3.3 3.1 3.5 3.4 3.4
7. Alcohol (en%) 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5
Manual
1. Energy (MJ) 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 7.1 8.0 9.0 10.0 11.0 12.0 13.0 14.0
2. Protein (en%) 5.1 5.0 4.7 4.6 4.7 4.7 4.7 4.7 16.9 16.8 16.4 16.2 16.3 16.3 16.3 16.3
3. Fat (en%) 34.5 34.2 34.3 34.3 34.6 34.4 34.4 34.4 33.3 33.6 34.2 34.3 33.7 33.9 34.1 34.1
4. Saturated fat (en%) 10.0 9.9 9.8 9.7 10.1 10.0 9.9 9.9 13.3 14.0 14.3 14.2 14.0 14.0 13.9 14.0
5. Carbohydrates (en%) 57.0 57.5 57.6 57.9 57.4 57.8 57.7 57.8 46.5 46.6 46.3 46.3 46.7 46.4 46.2 46.3
6. Dietary fiber (g/MJ) 4.0 4.1 4.1 4.1 4.1 4.1 4.2 4.2 2.7 2.5 2.6 2.7 2.8 2.8 2.7 2.8
7. Alcohol (en%) 1.4 1.4 1.3 1.2 1.3 1.3 1.3 1.2 0.9 0.9 1.0 1.2 1.1 1.1 1.3 1.2
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modeler adapts and re-runs the model. This loop is repeated until the
research dietician is satisfied.

Conclusion

This study presents a MILP model that supports development of
menus for controlled feeding trials. The results suggest that the MILP
model makes the development process faster and more transparent than
the manual design procedure. The model allows for including tight
nutrient ranges and complex design features. Themodel is very helpful in
managing contrast and similarity of key nutrient intake levels between
groups and energy levels, and in coping with many energy levels and
nutrients. Moreover, the model is flexible; it can easily be adapted to suit
trials with other components, foods, or different nutritional requirements.
The model helps to greatly facilitate the design procedure for menus in
controlled feeding trials, and to lower the development costs.

Acknowledgement

Both authors had responsibility for design, writing, and final con-
tent of the manuscript. JCG provided all mathematical expertise. KJB
provided all nutritional expertise. Both authors have read and approved
the manuscript. The authors thank Jeanne H.M. de Vries and Els Sie-
belink for sharing their valuable insights.

Funding

The study had no financial support.

Data availability

Data described in the manuscript, code book, and analytic code will
be made publicly and freely available without restriction as online
supplementary material.
413
Conflict of interest

The authors declare no conflict of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https
://doi.org/10.1016/j.ajcnut.2022.11.006.

References

[1] M.M. Most, A.G. Ershow, B.A. Clevidence, An overview of methodologies,
proficiencies, and training resources for controlled feeding studies, J Am Diet
Assoc 103 (6) (2003) 729–735.

[2] K.P. Davy, B.M. Davy, Advances in Nutrition Science and Integrative
Physiology: Insights From Controlled Feeding Studies, Front Physiol 10 (2019).

[3] R.P. Mensink, M.B. Katan, Effect of dietary trans fatty acids on high-density
and low-density lipoprotein cholesterol levels in healthy subjects, New Engl J
Med 323 (7) (1990) 439–445.

[4] L.J. Appel, T.J. Moore, E. Obarzanek, W.M. Vollmer, L.P. Svetkey,
F.M. Sacks, G.A. Bray, T.M. Vogt, J.A. Cutler, M.M. Windhauser, et al.,
A clinical trial of the effects of dietary patterns on blood pressure, New Engl J
Med 336 (16) (1997) 1117–1124.

[5] K.D. Hall, A. Ayuketah, R. Brychta, H. Cai, T. Cassimatis, K.Y. Chen,
S.T. Chung, E. Costa, A. Courville, V. Darcey, et al., Ultra-Processed Diets
Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized
Controlled Trial of Ad Libitum Food Intake, Cell Metabolism 30 (1) (2019)
67–77, e3.

[6] J.L. Buttriss, A. Briend, N. Darmon, E.L. Ferguson, M. Maillot, A. Lluch, Diet
modelling: How it can inform the development of dietary recommendations and
public health policy, Nutrition Bulletin 39 (1) (2014) 115–125.

[7] G.D.H. Claassen, T.H.B. Hendriks, E.M.T. Hendrix, Decision Science:
theory and applications, Wageningen Academic Publishers, Wageningen,
2007.

[8] S. Griffioen-Roose, M. Mars, E. Siebelink, G. Finlayson, D. Tom�e, C. De
Graaf, Protein status elicits compensatory changes in food intake and food
preferences, American Journal of Clinical Nutrition 95 (1) (2012) 32–38.

[9] NEVO-tabel, Nederlands Voedingsstoffenbestand 2011, Den Haag: RIVM/
Voedingscentrum, 2011.

[10] Compl-eat 1.0. Wageningen, The Netherlands: Wageningen University.
[11] Fico Xpress-IVE. Bozeman (MT) USA: Fair Isaac Corporation.

https://doi.org/10.1016/j.ajcnut.2022.11.006
https://doi.org/10.1016/j.ajcnut.2022.11.006
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref1
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref1
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref1
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref1
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref2
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref2
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref3
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref3
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref3
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref3
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref4
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref4
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref4
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref4
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref4
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref5
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref5
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref5
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref5
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref5
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref5
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref6
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref6
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref6
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref6
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref7
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref7
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref7
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref8
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref8
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref8
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref8
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref8
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref9
http://refhub.elsevier.com/S0002-9165(22)10525-3/sref9

	A linear programming based method for designing menus for controlled feeding trials
	Introduction
	Methods
	Nutrient composition as function of the decision variables
	Illustrative example
	Components – properties
	Daily amount Xk,e,g – continuous or integer variables
	Lower bounds and upper bounds
	Synchronizek
	Non-decreasingk
	All_days_samek

	Solution approach
	Data, software, implementation

	Results
	Discussion
	Conclusion
	Acknowledgement
	Funding
	Data availability
	Conflict of interest
	Appendix A. Supplementary data
	References


