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Abstract
The main hurdle in instrumentalizing agricultural soils to sequester atmospheric carbon is the development of methods to 
measure soil carbon stocks which are robust, scalable, and widely applicable. Our objective is to develop an approach that 
can help overcome these hurdles. In this paper, we present the Wageningen Soil Carbon STOck pRotocol (SoilCASTOR). 
SoilCASTOR uses a novel approach fusing satellite data, direct proximal sensing-based soil measurements, and machine 
learning to yield soil carbon stock estimates. The method has been tested and applied in the USA on fields with agricultural 
land use. Results show that the estimates are precise and repeatable and that the approach could be rapidly scalable. The 
precision of farm C stocks is below 5% enabling detection of soil organic carbon changes desired for the 4 per 1000 initia-
tive. The assessment can be done robustly with as few as 0.5 sample per hectare for farms varying from 20 to 150 hectares. 
These findings could enable the structural implementation of carbon farming.

Keywords  SOC · Soil carbon · Soil organic carbon · Carbon sequestration · Carbon farming · Climate change mitigation · 
Spatial statistics · Machine learning · 4 per 1000

1  Introduction

Increasing soil organic matter can mitigate climate change by 
sequestering atmospheric carbon (Batjes 2019; Bossio et al. 
2020; Amelung et al. 2020; IPCC 2021). Agricultural soils are 
of particular interest as they have undergone significant anthro-
pogenically induced changes (Quine et al. 1997; Van Oost et al. 
2007; Sanderman et al. 2017). However, effective management 
could restore and increase the carbon reserves (Spencer et al. 
2011; Batjes 2019; Bossio et al. 2020). Enhanced amounts 
of soil organic carbon (SOC) can have co-benefits such as 
enhanced water retention, higher biodiversity, and higher resil-
ience to climate-change induced droughts (Guillaume et al. 
2022). From an environmental and economic policy dimension, 

there is increasing interest in instrumentalizing agricultural soils 
for enhanced natural carbon sequestration (Sikora 2020). There 
are numerous studies and initiatives that attempt to instrumen-
talize soil carbon stocks to actively offset carbon emissions, 
also referred to as carbon farming (Spencer et al. 2011; Black 
et al. 2020). In order to ensure the long-term removal of carbon 
from the atmosphere, the carbon must stay in the soil for an 
extended period of time (concept of permanence, Lutzow et al. 
2006, Oldfield et al. 2022a). Land users can actively contribute 
to the increase of their carbon stocks by changing their soil 
management, e.g., by ceasing tillage or changing fertilizer use 
(the concept of Additionality, Black et al. 2020). Protocols are 
emerging to facilitate Monitoring, Reporting, and Verification 
(MRV) in the framework of carbon farming, but challenges 
remain regarding robust scientifically backed methods and 
the documentation on permanence, additionality, and leakage 
(Oldfield et al. 2022a). In light of current policy developments 
such as the European Green Deal and the EU climate action 
on sustainable carbon cycles, the importance of robust carbon 
monitoring is likely to increase in the coming years (Elkerbout 
2020; Amelung et al. 2020; The European Commission 2022).

The main challenge in instrumentalizing soils to sequester 
atmospheric carbon is the implementation of a method which 
is robust, affordable, and scalable and which is coupled to 
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feasible land-use management advice (Spencer et al. 2011). 
There are methods which assess soil carbon stocks using 
satellite data only (Köchy et al. 2015; Poggio et al. 2021), 
but they are limited with regard to their resolution and their 
ability to monitor changes over time on field and farm levels. 
For example, for SoilGrids, this is 250 by 250 m, which con-
stitutes a resolution which is too coarse for numerous fields 
to accurately assess carbon stocks for carbon credit certifica-
tion (Black et al. 2020). An additional drawback of satellite-
based global models is that these models are geared toward 
optimal predictions on a global or national scale, limiting 
the reliability on farm-level (Poggio et al. 2021). Remote 
sensing can be supplemented by field-based measurements 
using wet chemistry (Van Der Voort et al. 2019). Alterna-
tively, it can be supplemented by proximal sensing methods 
such as soil spectroscopy (Bellon-Maurel and McBratney 
2011; Soriano-Disla et al. 2014; Gobrecht et al. 2014; Shen 
et al. 2022). The high cost of wet chemistry measurements 
constitutes a major hurdle for the implementation of car-
bon farming (Kragt et al. 2012; Alexander et al. 2015; Tang 
et al. 2016). An additional limitation of wet chemistry is 
that lab facilities are not readily accessible and available 
everywhere, in particular in developing countries. Soil spec-
troscopy methods are gaining ground rapidly in agricultural 
sciences as key tools to map soil properties rapidly and for 
large areas without the need of wet chemistry measurements 
(Nocita et al. 2015; Smith et al. 2020; Trontelj 2021). How-
ever, these types of measurements are associated with lower 
accuracy as compared to classical wet chemistry measure-
ments (Soriano-Disla et al. 2014). Fusing of both remote 
and proximal sensing data can combine the strength of these 
approaches and deliver cost-effective soil mapping (Asgari 
et al. 2020). Sampling strategies are also key to accurately 
map soil carbon stocks as they must capture the spatial het-
erogeneity of an area (Goovaerts 1998; van der Voort et al. 
2016). Robustly mapped soil carbon stocks are needed in 
order to to capture the temporal change and assert perma-
nence of carbon and the impact of additionality (Van Der 
Voort et al. 2019; Smith et al. 2020; Oldfield et al. 2022a, 
b). Grid-based sampling (e.g., measuring every 10 m) yields 
robust estimates of spatial heterogeneity and can assess tem-
poral changes but is highly labor intensive (Bivand et al. 
2013; Nussbaum et al. 2014; van der Voort et al. 2016; Van 
Der Voort et al. 2019). Alternatives to grid-based sampling 
methods can be leveraged to capture similar levels of hetero-
geneity with a lower average sampling density such as with 
conditioned Latin hypercube sampling (cLHS) (Brus 2019; 
Minasny and McBratney 2006; Yang et al. 2016). Machine 
learning can be used to predict patterns of carbon stocks 
and reduce the need for additional sampling (Bivand et al. 
2013; Nussbaum et al. 2014; Smeaton et al. 2021). However, 
overfitting in machine learning can limit the scalability of 
approaches (e.g. with random forests, Bivand et al. 2013). 

When an overfitted model is used, it may be applicable to 
the region it was trained on but not to other regions and is 
therefore not scalable. Furthermore, it is key that the best-
performing machine-learning model is selected in order to 
get the optimal results and lowest possible residual errors 
(Padarian et al. 2020; Khaledian and Miller 2020). Changes 
in carbon stocks are optimally demonstrated at the decision-
making level, i.e., at the farm level, but presently, this is 
challenging due to the significant cost associated to MRV 
processes (de Gruijter et al. 2016). This research gap can 
be addressed by developing methods which can determine 
soil carbon using a robust, affordable, and widely applicable 
approach which is useable at the farm-level.

Our objective in this study is to develop and test a method 
which can facilitate carbon stock monitoring in a wide range 
of settings. This approach leverages available satellite, on-
field soil spectroscopy measurements, and machine learning 
techniques to create efficient sampling protocols and gen-
erate carbon stock estimates. This approach works on the 
farm-scale level and is tested on a range of arable fields in 
the USA on a range of soil types. In order to test the devel-
oped method, the optimal sampling density is determined 
and the error of carbon stock estimates are calculated for the 
farm and field level.

2 � Material and methods

2.1 � Carbon stock assessment protocol and field 
area

This section describes the key steps of the Wageningen Soil 
Carbon STOck pRotocol (SoilCASTOR): (1) the selection of 
spatial covariates from (satellite) data sources, (2) the selec-
tion of sampling locations, (3) the soil spectroscopy meas-
urement of SOC in the field, (4) the training of a model on 
the available data, and (5) the calculation of the carbon stock 
with uncertainty estimates (Fig. 1). Code developed to facili-
tate this approach was developed in the statistical language R 
in RStudio (RStudio 2021, version 2021.09.0). The proposed 
protocol was tested in two farms in the states of Arkansas 
and Iowa in the USA. The fields locate between 35° and 
41.3° latitude and −92.0° to 91.6° longitude (Fig. 2). The 
Arkansas farm consists out of five fields with a sum of ~140 
ha, and the Iowa farm consists of three fields and a total of 
~95 ha. The smallest field is ~10 ha and the largest ~64 ha. 
The land use of all fields is agricultural, and all soils are 
Alfisols. In Iowa, the fields are characterized as a silty loam 
to a silty clay loam. The parent material is Pleistocene loess. 
In Arkansas, the soils are also classified as silt loam. The 
parent material is also loess with occasional glacial deposits 
(Boiko et al. 2021).
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2.1.1 � Selection of spatial covariates

The method utilizes all available (satellite) data sources and 
indices to find effective covariates to predict soil carbon 
stock (Fig. 1). These covariates were selected based on fac-
tors that are known to correlate with soil carbon stocks, such 

as vegetation and soil moisture (Jobbagy and Jackson 2000; 
McBratney et al. 2003; Seneviratne et al. 2010; Wang et al. 
2021). Data sources encompass the Sentinel-1 and Senti-
nel-2, digital elevation map, and ISRIC SoilGrids (Escada-
fal 1989; Nellis and Briggs 1992; Marsett et al. 2006; Van 
Doninck et al. 2012; Zakharov et al. 2020; Wang et al. 2021; 

Fig. 1   Key steps of the Wage-
ningen Soil Carbon STOck pRo-
tocol (SoilCASTOR) method 
are (1) collection of covariates 
from (satellite) data sources, 
(2) the selection of sampling 
locations with conditioned 
Latin hypercube sampling 
(cLHS), (3) measurement of 
soil organic carbon (SOC) with 
the near-infrared (NIR) scanner 
in the field, (4) modeling of 
SOC using machine learning 
(ML), and (5) soil carbon stock 
estimates with uncertainties.

Fig. 2   Overview of sampling locations in this study in the US states Iowa and Arkansas. Map made with OpenStreetMap.
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Poggio et al. 2021). Relevant covariates were extracted for 
points on a 0.001 by 0.001 degree grid which corresponds 
to a ~10 m by ~10 m grid in the designated sampling areas 
(McBratney et al. 2003). To approximate vegetation, both 
the transformed vegetation index (TVI) (Nellis and Briggs 
1992) and satellite adjusted total vegetation index (SATVI) 
from Sentinel-2 were utilized (Marsett et al. 2006). In order 
to assess soil moisture with Sentinel-1, the volumetric soil 
moisture (VSM) following Zakharov et al. (2020) was used. 
Covariates for SOC encompassed of Sentinel-2 spectral 
images and shortwave infrared (SWIR) bands (B11 and 
BI2) and second brightness index band BI2 (Escadafal 1989; 
Wang et al. 2021). From ISRIC SoilGrids, relevant covari-
ates such as clay content, cation exchange content, and bulk 
density were extracted (Poggio et al. 2021). This approach to 
extract covariates relevant to predict SOC content is globally 
applicable and modular, i.e., it can take up more (local) data 
sources and covariates when available. In order to design a 
sampling scheme for each site, the fields are divided in a 
grid of ~10 m resolution. Each point becomes a potential 
sampling location (SI Fig. 1). Subsequently, for each grid 
point, all covariates were retrieved. Additional details on 
the covariates can be found in Supplemental Information 
(SI) Table 1.

Data sources were cleaned in order to avoid data of insuf-
ficient data coverage. Covariates were excluded when the 
variable is available for less than 99% of the potential sam-
pling points. This yielded a total of 45 variables. For the 
variables for which there was sufficient data, missing values 
were imputed with the median values of the covariate. These 
missing values occur only in a few cases, and imputation is 
needed to avoid the removal of valuable covariates due to 
single missing data points.

2.1.2 � Sample location selection using cLHS

Conditioned Latin hypercube sampling (cLHS) was used 
to select optimal locations of field measurements (Minasny 
and McBratney 2006; Brus 2019; Saurette et  al. 2022; 
Fig. 1). With the cLHS, a subset of the potential sampling 
locations is selected using a stratified random procedure 
based on the multivariate distribution of the covariates (SI 

Fig. 1). The asset of this method is that, for example, two 
points that are similar in the multidimensional covariate 
space are not both selected for sampling. This allows for a 
lower sampling density than classical grid-based sampling. 
The selected sampling points by cLHS effectively capture 
the range of covariates of the plot. The optimal sampling 
density of the cLHS was evaluated by testing the effects of 
different sampling density on uncertainty in SOC prediction 
(see Section 2.1.5).

2.1.3 � Field measurements

Field samples were taken at a depth between 0 and 30 cm 
with an open spiral soil auger, and the SOC was measured 
using the AgroCares near-infrared (NIR) scanner (Agro-
Cares 2022) in Iowa and Arkansas. Per location a single 
sample was taken. The NIR scanner was trained on a data-
set of ~18,000 lab-based measured samples using a one-
dimensional convolutional neural network (Tsakiridis et al. 
2020; Tsimpouris et al. 2021; Yang et al. 2020a, b). The 
exact sampling locations were given as XY-coordinates, 
provided by the cLHS method. If no suitable spot is found 
at the location, the field sampler could deviate up to 2 m 
around the point. If sampling was still not possible, the 
sample location was skipped. Sampling is done if possible 
on bare land, and any plant debris is removed if necessary. 
Stones exceeding >2 mm, and roots are removed (Van Der 
Voort et al. 2019; Walthert et al. 2002). The sample is not 
dried before the measurement. After thoroughly mixing, 
the soil sample was scanned with the NIR scanner, and 
data was immediately transferred digitally. Bulk density 
was not determined in the field, but estimated from soil 
organic matter and clay content using a pedotransfer func-
tion calibrated on arable soils in the Netherlands (Com-
missie Bemesting Akkerbouw en Vollegrondsgroententeelt 
2022). Additional details on the sampling procedure can 
be found in the SI.

2.1.4 � Modeling carbon stocks

Model selection for SOC stock estimates  In order to pre-
dict the soil carbon content for each point in the ~10 × ~10 
m grid, machine learning (ML) models were built using 
the field measurements of SOC (%) measured with the 
NIR scanner and the covariates. In order to ascertain that 
the optimal model was used, we evaluated the use of two 
model target variables and a range of ML models and data 
transformations.

The two target variables that were evaluated are firstly the 
SOC (%) of the NIR scanner and secondly the difference between 
the measured SOC (%) and ISRIC SoilGrids SOC (%) (hereafter 
referred as SOCdif). The SoilGrids SOC is the SOC estimated 
as predicted by a global model (Poggio et al. 2021). The 

Table 1   Overview of best performing machine learning models, evaluated 
by residual mean square error (RMSE) and r2.

Algorithm Transformation Method RMSE median r2 median

Random forest box-cox SOCdif 0.240 0.76
Random forest none SOCdif 0.242 0.75
Random forest none SOC 0.247 0.78
Random forest log SOCdif 0.248 0.77
Linear regression log SOC 0.253 0.73
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SoilGrid SOC content for 0–30 cm was calculated from the 
SOC content of 0–5 cm, 5–15 cm, and 15–30 cm, weighted by 
the depth of the three soil layers. The rationale of using SOC 
as a target variable is that the model optimizes for the locally 
measured SOC values. The rationale of using the SOCdif as 
target variable is that the NIR scanner can capture local het-
erogeneity of SOC and thereby it can fine-tune the global esti-
mates of SOC. Models were built on the farm level. The tested 
algorithms are linear regression, partial least square regres-
sion, ridge regression, lasso regression, elastic net regression, 
decision trees, and random forest regression (Bivand et al. 
2013). The applied data transformations on the target variable 
are log-transformation, box-cox transformation, standardized 
(value minus mean divided by the standard deviation), and 
no transformation. Subsequently, tenfold cross-validation on 
all NIR-measurements (n=205) was used to evaluate the per-
formance of each model in the form of residual mean square 
error (RSME) of SOC in the validation datasets. The optimal 
approach was selected after comparing model performance 
(RMSE) of the various model options with differing in the 
target variable, algorithms, and data transformations. With 
the best model (with the lowest RMSE), SOC (%) for all grid 
points were predicted.

2.1.5 � Estimating carbon stock with uncertainties

Conversion from SOC content to C stock  In order to attain 
carbon stock estimates for the individual fields, the soil car-
bon content of top 30 cm (g C kg−1) was converted to a car-
bon stock (g C 100 m−2) by multiplying the soil C content (g 
C kg−1) with the bulk density (kg m−3), the depth of the soil 
(m), and the area of the grid cell (100 m2). This amount was 
then converted to the unit of 10,000 m2 or one hectare, to 
align with carbon credit certification protocols (Black et al. 
2020). Finally, field and farm C stock (in the unit of ton C) 
was calculated as sum of soil C of all grids located within 
the field or farm, respectively.

Estimate of uncertainty associated with scanner error  Esti-
mates of carbon stock are unavoidably associated with errors. 
To assess a change in soil carbon content, e.g., in the context 
of carbon farming for carbon credits, it is crucial to quantify 
the errors (Minasny et al. 2017; Black et al. 2020). Here, 
we assessed the error attributed to the field measurements 
of SOC with the NIR scanner and quantified how the error 
propagates when estimating the carbon stock. Based on pre-
vious validation studies with >18,000 independent sample 
locations all over the world, we conservatively assume that 
the measured SOC value of NIR scanner is associated with 
a 30% error rate (i.e., the error follows a normal distribution 
with SD 30%; thus, the majority (68.3%) of samples is asso-
ciated with an error ranging between −30% and +30%) over 

the range of 5 to 100 g C kg−1 for a single SOC measurement. 
This is a conservative assessment; in reality, the error can 
be lower (see SI for details). The effect of the NIR scanner 
error on C stock estimate was quantified with Monte Carlo 
simulations, which is in line with current carbon credit cer-
tification protocols (Black et al. 2020). A Monte Carlo simu-
lation was applied on the NIR field measurements (n=205) 
with a random error on the SOC (mean 0%, SD 30%) for a 
hundred times. For each iteration, the whole procedure of C 
stock estimate (i.e., model selection, grid-level SOC predic-
tion with the best model, and calculation of C stock on field 
and farm level) was repeated. Subsequently, the uncertainty 
range of the field-level and farm-level C stock was quantified. 
Additional details can be found in the SI.

Evaluation of sampling density  To explore optimum sam-
pling density of the on-field soil spectroscopy measurements, 
field-level carbon stock was estimated with varying numbers 
of sampling points. By reducing the sampling density to 
the minimum, the costs associated with carbon farming can 
equally be minimized (Kragt et al. 2012; Tang et al. 2016). 
For each field, a fraction of cLHS-derived sampling points 
was randomly selected from the full set of the sampling points 
of the field. The tested fractions were 10, 20, 30, 40, 50, 60, 
70, 80 and 90%. This approach was repeated 100 times, and 
the relative error (coefficient of variation, CV, in percentage) 
in carbon stock was evaluated. This approach ensures that the 
minimum requirement of sampling density for a field can be 
determined in a region where prior knowledge of the SOC 
in the neighbor fields is reasonably available. In other words, 
to evaluate the optimum sampling density of field A, data of 
other fields of the same farm (i.e., fields B–E) were leveraged 
to build the machine learning model. A random error of 30% 
on the measured SOC was added for all simulations. For each 
simulation, a certain fraction of the sampling points were 
randomly chosen for 100 times. Subsequently, 100 different 
field-level carbon stock estimates were computed. To evaluate 
the appropriateness of that sampling density, the CV of those 
100 carbon stocks were calculated. A low CV value indicates 
that the field carbon stock estimate is similar among different 
subsets of sampling points, indicating that the carbon stock can 
be estimated robustly with the sampling density. A flowchart 
exemplifying these steps can be found in the SI.

3 � Results and discussion

3.1 � Carbon stock assessment protocol

3.1.1 � Covariates

The covariates encompass indicators of soil carbon content 
(e.g., vegetation indexes and soil moisture, Van Doninck 
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et al. 2012; Escadafal 1989; Marsett et al. 2006; Nellis and 
Briggs 1992; Wang et al. 2021; Zakharov et al. 2020). How-
ever, additional parameters, related to, e.g., the land man-
agement, ground water level, and even fertilizer level, are 
not included, even though they could be potentially impor-
tant covariates for soil carbon stock (Minasny et al. 2017). 
The method here is modular, i.e., it could absorb and utilize 
other covariates when available. Potentially, SoilCASTOR 
can improve when additional covariates are included. More 
research is needed to ascertain this.

3.1.2 � cLHS Sampling design and sampling density

The cLHS method and required sampling density was evalu-
ated by comparing model performance (exemplified by the 
coefficient of variation, CV in percent) across a range of 
sampling densities (0.1–1.0 samples per hectare) (Fig. 3) 
(Bivand et al. 2013; Brus 2019; Minasny and McBratney 
2006). By evaluating which sampling density is required 
to get optimal results, efficient and effective sampling cam-
paigns for carbon farming can be set up. A major cost com-
ponent is the labor investment of fieldwork (Gobrecht et al. 
2014; de Gruijter et al. 2016). If model performance pla-
teaus at a certain sampling density, additional sampling is 
not necessary. In total, 205 field samples were taken, 141 in 
Arkansas, and 64 in Iowa (Fig. 2). Details on the number of 
samples per field can be found in the SI. Results show that 
the cLHS sampling-based model results optimize (lowest 
CV %) at a sampling density of around 0.5 samples per ha 
for the majority of the fields (Fig. 3). In other words, for 

every 2 ha, about one sample is required to achieve a robust 
estimate of the farm C stock with a deviation less than 5%. 
Additional measurements do not add much to the improve-
ment of the model. This implies that with relatively low 
labor time investment (15-30 min per hectare); large areas 
can be covered, overcoming a key obstacle in the imple-
mentation of carbon farming (Evans et al. 2015; Tang et al. 
2016). Although cLHS is established in soil mapping (Yang 
et al. 2016, 2020b), direct comparisons of cLHS and grid- 
based studies are rare and require more extensive research 
(Saurette et al. 2022).

3.1.3 � Fieldwork and the NIR‑based scanner

NIR-based scanners lend themselves to carbon stock analy-
sis because they allow for high throughput (Bellon-Maurel 
and McBratney 2011). However, they are impeded by high 
associated errors (Bellon-Maurel and McBratney 2011; 
Gorbrecht et al. 2014). For this project, the AgroCares 
HandHeld NIR scanner was used, which leverages a meas-
urement data exceeding 18,000 samples (AgroCares 2022). 
A conservative estimate of the error (mean 0%, SD 30%) 
for the range of 5 to 100 g C kg−1 is assumed. This error is 
propagated and resulted in a range of expected stocks. For 
example, for field A, average stock is 20.1 tC ha−1 within a 
range of 18.0–22.4 tC ha−1 (details in Section 2.1.9). Errors 
on GPS locations are minimal (max 2 m) as the sample is 
measured in the field and data is entered directly and is 
automatically associated to the correct location. Additional 
information on the HandHeld Scanner can be found in the 
SI 4. The SoilCASTOR protocol is also modular when it 
comes to the implementation of the scanner; thus, if more 
optimally performing NIR scanners become available, they 
can be implemented.

3.1.4 � Machine learning model

The performance of the range of ML models (linear regression, 
partial least square regression, ridge regression, lasso regression, 
elastic net regression, decision trees, and random forest regres-
sion) and transformations (log-transformation, box-cox trans-
formation, standardization and no transformation, Bivand et al. 
2013) and target variables (SOC and SOCdif, Poggio et al. 2021) 
were compared (Fig. 4 and Table 1). The optimally perform-
ing algorithm was the random forest regression model with a 
box-cox transformation on the target variable SOCdiff (residual 
mean square error, RMSE = 0.240, r2 = 0.76). The random forest 
scored highest for both the target variables SOC% as well as the 
residual (difference between measured SOC% and ISRIC Soil-
Grids) (Fig. 4 and Table 1). The top-five performing models have 
an RMSE ranging from 0.240 to 0.253 and an r2 from 0.76 to 
0.73, respectively (Table 1). This approach of running and evalu-
ating multiple machine learning models, transformations, and 

Fig. 3   The coefficient of variation (CV%) in predicted field-level C 
stock versus the number of samples per hectare taken. Fields A–G are 
indicated by different colors and annotated in the figure. The CV is 
a measure of model precision, the lower the better. The CV levels of 
around 0.5 sample per ha.
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target variables is comprehensive (Fig. 4). This multi-pronged 
approach leaves no stone unturned and allows for the selection of 
the model which is optimal in that instance (Padarian et al. 2020; 
Khaledian and Miller 2020). When this model is applied to other 
regions or datasets, other models may be more optimal, in which 
case the best performing model will be automatically selected.

3.1.5 � Carbon stocks and variability

The Arkansas and Iowa farms carbon stocks in the top 30 
cm range from 32.8–38.7 and 25.4–29.6 tonC per hectare, 
respectively (Table 2). Carbon stocks in the fields for the 
same depth interval range between 14 and 84 ton C ha−1, 

Fig. 4   Overview of tested machine learning (ML) models, transfor-
mations, and both target variables, evaluated by r2 and residual mean 
square error (RMSE). Carbon prediction means SOC as target vari-
able; residual prediction refers to SOCdif. Abbreviation dt is for deci-
sion trees, elastic for elastic net regression, lm for linear regression, 

pls for partial least square regression, rf for random forest, and ridge 
for ridge regression. Transformations are box-cox (red); logtransform 
(blue); none (green); and standardized (yellow). Standardized is cal-
culated as (value-mean)/standard deviation.
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with a mean of 34 and a median of 30 tonC per hectare 
(Table 2). This puts the stocks in the range as found in 
other studies (Jobbagy and Jackson 2000; Köchy et al. 
2015; Nussbaum et al. 2014). There are significant inter 
and intra-field differences (Fig. 5). The carbon stocks 
were determined both per farm, per field and per hec-
tare (Table 2). The carbon stocks per farm differ strongly, 
with Arkansas having a higher stock per ha (35 tC ha−1 
) and holding nearly double total carbon stock (5059 tC) 
as compared to Iowa with a lower stock per ha (28 tC 
ha−1) and lower total stock (2630 tC). When looking at 

individual fields, the ranges are even greater. Field C in 
Arkansas has the lowest stock per ha with an average of 
~19 tC ha−1 contrasted by field B in Arkansas with the 
highest stock per ha at ~55 tC ha−1. The coefficient of 
variation (CV; standard deviation divided by the mean), 
a metric to evaluate the variability, is 4.3% for the Iowa 
and 5.0% for Arkansas farms. The CV of individual field-
level C stock is slightly higher than for the composed 
farms and ranges between 5.4 and 9.4%. This shows that 
in order to gain a robust understanding of carbon stock 
dynamics, and in particular the element of carbon leak-
age, fields need to be individually assessed (Black et al. 
2020, FAO 2020). These values are still below the thresh-
olds established by most accreditation protocols (Black 
et al. 2020). The method captures small-scale (tens of 
meters) variability which can be matched with field-based 
assessments. The variability is strongly dependent on the 
field (Fig. 6). The bulk density was derived using the 
pedotransfer function (Commissie Bemesting Akkerbouw 
en Vollegrondsgroententeelt 2022). Potential errors on 
bulk density estimates were not available and not propa-
gated. NIR measurement could potentially also be used to 
determine bulk density, but is not yet known how robust 
these results would be. More work is needed to ascertain 
this (Bellon-Maurel and McBratney 2011). To our knowl-
edge, the SoilCASTOR approach is novel in the way it 
combines multiple data sources, comprehensive machine 
learning and offers robust soil carbon stock estimates.

Table 2   Overview of carbon stocks per farm and field. tC stands for 
a ton (1000 kg) of carbon. The tC range indicates field-level C stock 
uncertainty range (5th and 95th percentiles) associated with near-
infrared (NIR) scanner error.

Field Farm Area (ha) C stock (tC) Range of C stock
(tC ha−1)

A–E Arkansas Com-
plete

143.0 5059 32.8–38.7

F–H Iowa Complete 95.2 2630 25.4–29.6
A Arkansas 23.4 469 18.0–22.4
B Arkansas 64.4 3509 50.7–60.5
C Arkansas 10.9 206 16.6–21.6
D Arkansas 14.0 280 17.7–22.4
E Arkansas 30.4 530 15.8–19.4
F Iowa 31.7 688 19.7–24.4
G Iowa 53.4 1635 28.0–33.1
H Iowa 10.1 294 24.5–33.6

Fig. 5   Overview of carbon stocks (tC ha−1) for all fields. Subplots indicate for (a) field A, (b) field B, (c) fields D, C, and E (clockwise), (d) field 
F, and (e) fields H (left) and G (right). Note the total area in fields ranges from 10 to 64 ha. In addition, legends differ per field for visual clarity.
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3.2 � Upscaling and integration into carbon farming

In order to be used effectively for soil carbon stock-derived 
carbon credits, quantification methods need to be widely 
applicable, compatible with carbon credit requirements and 
find the balance between cost and benefit for the land user.

3.2.1 � Applicability on the globe and across a range 
of scales

The covariates used as inputs for SoilCASTOR steps one 
(selection covariates) and two (sampling location selection) 
are globally available. However, it is possible that there are 
additional regional datasets available, e.g., for the EU sphere 
(Tóth et al. 2013). Depending on other geographic areas, the 
available covariates may subsequently differ from the situa-
tion here. The set-up of the model is modular, meaning that 
if more rich datasets are available, they can be incorporated. 
This may, however, have implications for appropriate sam-
pling densities, relevant covariates, and target variables and 
therefore needs to be assessed separately. Additional studies 
on farms in other regions and countries are needed in order 
to evaluate the optimal sampling density and associated 
accuracy. Furthermore, comparisons between cLHS-pow-
ered and traditional grid-based soil carbon strategies should 
be done in order to evaluate and compare the most robust 
and scalable solutions (Saurette et al. 2022). Scalability 

could be further limited because a key requirement for Soil-
CASTOR is that it is necessary that a field analyst go to the 
field and samples.

3.2.2 � Carbon credit requirements

In order to transform the carbon monitoring data so it can 
be reported and verified by an independent organization, it 
is necessary to propagate error. Furthermore, it is key that 
there is a distinguishable difference between the initial and 
altered carbon storage of the soil (Black et al. 2020; Verra 
VCS 2020). Within this study, we followed the approach of 
Verra VCS VMD0053 on the model calibration (Verra VCS 
2020). The error propagation gave a range for each field or 
farm (e.g., Arkansas farm, average stock ~35 tC ha, rang-
ing from ~33–39 tC ha−1). Impacts of adjusted land man-
aged changes (Lessmann et al. 2022) need to be significant 
enough (e.g., bigger than 0.5 tC ha−1 per year) for a 5-year 
period in order to cause a measurable and discernible differ-
ence over time. Within carbon certification processes, there 
are penalties for high uncertainties (Black et al. 2020; Verra 
VCS 2020). The present research project only envelops a 
single time-point, and a time series is necessary with sam-
ples taken in the same fashion in order to assess changes 
in soil carbon over a period (Van Der Voort et al. 2019). 
Increased carbon stocks also need to remain stored for more 
than a transient time period. In other words, permanence 
must be asserted (Oldfield et al. 2022a). In this context, 
it is crucial to consider the turnover times of soil organic 
matter (of added carbon) in both in the top and deep soil 
(Van der Voort et al. 2016, 2019). Turnover in particular of 
labile compounds can be rapid leading to positive bias of 
mitigation measures designed to store carbon in soil (van 
der Voort et al. 2017; Berthelin et al. 2022). In order to 
effectively develop impactful land use management changes, 
soil science and biogeochemically driven modules should be 
incorporated into SoilCASTOR that can forecast impacts of 
these changes on soil carbon stocks. Furthermore, robust 
time-series sampling would need to be undertaken 5 to 10 
years from now to evaluate the intermediate changes (Van 
Der Voort et al. 2019). Examples could, e.g., build on RothC 
(Jenkinson and Coleman 2008) and utilize radiocarbon both 
for decadal as well as millennial carbon turnover (Graven 
2015; Galvez et al. 2020).

3.2.3 � The carrot and stick of carbon credits

Actively brought-on changes in land-use practices (addition-
ality) have been shown to positively impact carbon stocks 
(Lessmann et al. 2022). However, in order to incentive land 
users to implement carbon farming, the investment must be 
offset by the carbon credit value (Kragt et al. 2012; Tang 

Fig. 6   Overview of variability of the carbon stock in each field. The 
box represents the 75th up to  25th percentile range; the line repre-
sents the median. The error bars indicate the 1.5 interquartile range 
above and  below the 75th and 25th percentile ranges. Points indi-
cate outliers.
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et al. 2016). The SoilCASTOR calculations can be done rap-
idly and at low computational cost, but a time investment 
of ~15 min ha−1 remains a source of cost for carbon farm-
ing. However, proximal sensing data from the field remains 
a requirement for numerous carbon verification projects 
(Black et al. 2020). Nonetheless, by eliminating wet chemis-
try measurements, carbon farming may become more reach-
able for a range of farmers (Tang et al. 2016). More research 
is needed in this direction in order to ascertain that carbon 
farming is feasible with the socio-economic toolboxes that 
are present.

4 � Conclusion and outlook

This paper presents the SoilCASTOR method which can be 
applied to determine the carbon stock robustly to a range 
of (agricultural) soil types with a relatively low measure-
ment cost and time investment. The method presents a 
novel approach and leverages satellite data, field-based 
NIR-scanner measurements of SOC and machine learning 
to get optimal estimates of soil carbon stock. Therefore it 
can be widely instrumentalized to assess potential changes 
in carbon stocks in the framework of carbon farming. The 
carbon stock in the top 30 cm for the fields analyzed ranges 
between 19 and 55 t C/ha and the stock could be determined 
up to 10 m precision.

As an outlook, it will be key to include this method in 
certified soil carbon sequestration offsetting protocols, so it 
can be fully integrated in MRV (Black et al. 2020). It would 
especially be key to connect it to a module which can give 
advice on how to increase stocks (e.g., leveraging RothC, 
Coleman and Jenkinson 2014). Additionally, it would be 
insightful if it were applied to a wider range of fields (e.g., 
grasslands) and over a number of years (e.g., resampling 
after 3–5 years) Also, it would to be helpful to directly com-
pare cLHS sampling to grid-based sampling strategy in the 
context of carbon stocks (Saurette et al. 2022). Uncertainty 
estimates could be improved when the uncertainty range for 
bulk density estimates becomes available. Furthermore, it 
could be investigated if this approach would also be appro-
priate for regional approaches (including multiple farms) 
instead of the current single farm-level focus. Another key 
element which can be further investigated is the maximum 
level up to which soil carbon stocks can be increased (Stew-
art et al. 2007; Castellano et al. 2015).
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