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Propositions 

1. Macroscopic observations can inform about microscopic mechanisms when 
combined with mechanistic modelling.  
(this thesis) 
 

2. Understanding mechanisms of environmental transmission requires data on transient 
states of the environmental load of infectious material.  
(this thesis) 
 

3. Every model should be published with a data statement describing what type of data 
can be used to calibrate and validate it.  
 

4. Contrary to popular belief, it is not Albert Einstein, but Marian Smoluchowski who 
explained the mechanism underlying Brownian motion. 
 

5. The most important question in science is not “How?” but “Why?”. 
 

6. Focusing on societal relevance in science hinders societal development. 
 

7. Scientists should have managers just like athletes or artists do.  
 

8. Encouraging people to follow their deepest desires is the mechanism underlying 
manipulation. 
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Abstract 
As most pathogens are transmitted through environment, a better understanding of the processes 
underlying environmental transmission is crucial to develop relevant intervention strategies 
targeted to these processes. In this thesis, I follow the development cycle of both modelling and 
experimental work designed to study mechanisms of environmental transmission from the 
infectious material perspective. In Chapter 1, the full modelling framework is described in detail, 
together with a brief description of the available data types and the model system we use in this 
thesis, being Campylobacter jejuni (C. jejuni) transmission in broilers. The parsimonious model we 
constructed describes mechanisms of pathogen transmission via the environment using only three 
parameters: the decay rate parameter (describing survival of infectious material in the 
environment), the transmission rate parameter (describing jointly shedding rate, absorption rate 
and probability of infection after absorption) and the diffusion coefficient (describing spatial 
dispersion of infectious material). In Chapter 2, we present the calibration and validation of the 
models, using a series of tailor-made experiments which studied C. jejuni transmission in broilers, in 
time and space. As our spatiotemporal model is fully identifiable with data we collected and it 
satisfactorily describes the experimental observations, we were able to obtain new insights into C. 
jejuni biology. Our results indicate that the environmental decay of infectious forms of C. jejuni is 
much slower than the decay observed for its culturable forms in a separate survival experiment and 
that spatial dispersion of infectious material with C. jejuni is most likely a result of multistep/multi-
route dispersion. In Chapter 3, we analyse, in detail, the model identifiability, to inform the design 
of future transmission experiments. We conduct a comprehensive identifiability analysis, using a 
combination of methods, including mathematical analysis of the one-dimensional model, and 
analysis using combinations of simulated and experimental data. In Chapter 4, we demonstrate how 
our validated spatial modelling framework can further be used to explore the density dependence 
of environmental transmission. We analyse the density dependence of homogenous mixing, 
clustering, and distancing of hosts and present a number of scenarios describing uniform mixing, 
Poisson process mixing and maximal distancing of hosts. We show how constraining of hosts 
movements reduces transmission, which can be used to quantify intervention strategies targeted 
on reducing hosts mobility. Moreover, we discuss how host clustering or distancing compares to the 
random host placement depending on decay and diffusion speed which, when supplemented with 
relevant data, may be a basis for future studies of the influence of host clustering and/or distancing 
behaviour on transmission. Overall, in this thesis I presented the development cycle of simultaneous 
modelling and data gathering (experimental design), during which both new methodology was 
developed as well as new insights in C. jejuni transmission in broilers were obtained. 
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Throughout history “contact” is a key concept in epidemiological modelling. The first mechanistic 
models of infectious diseases were based on mass action hypothesis, where infectious and 
susceptible hosts constituting a population were seen as particles that can change their status 
(chemical or epidemiological properties) when they meet each other; as for chemical particles in 
solution, the probability of meeting (‘collision’) between recipient and infectious host is 
proportional to the product of densities of both (Heesterbeek, 2005). 

Surprisingly, even though mathematical modelling of infectious diseases transmission is built on the 
concept of contact, ‘contact’ itself is often not well defined. According to the dictionary ‘contact’ 
can simply be defined as: “the fact of two people or things touching each other” (Cambridge 
Dictionary, n.d.).  In the epidemiology, the definition of contact that (potentially) results in infection 
does not always follow this dictionary definition (Hoang et al., 2019), often having wider 
interpretation (Diekmann et al., 2013).  
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The ambiguity of ‘contact’ definition is a direct consequence of the nature of the real-life 
transmission and processes underlying it. In reality, the vast majority of infections are not 
transmitted directly. Pathogens transmitted via air, water or fomites spend some time outside of 
the host, in the environment, before they are absorbed (e.g. inhaled, ingested or contacting skin) 
by a susceptible individual. For such environmentally transmitted diseases, a contact-based 
approach that links directly infectious and susceptible hosts is not a natural conceptualisation of 
transmission as it omits its environmental stage. The contact based direct transmission models such 
as the commonly used compartmental (SIR type) models are routinely used to describe 
environmental transmission (Rees et al., 2021). For these models, the rate of transmission is defined 
as a product of the host-to-host contact rate and the probability of transmission per contact (Real 
& Biek, 2007). It has been shown that direct transmission models are a good approximation of 
environmental transmission when pathogens survive in the environment relatively shortly (Breban, 
2013) or when the overall environmental pathogen dynamics of the system is fast (Benson et al., 
2021; Cortez & Weitz, 2013); as the same studies show, for many systems neglecting the dynamics 
of infectious material in the environment may produce erroneous results. This is the consequence 
of two properties of such models: 1) it is assumed that the recipient host can be infected only when 
the infectious host is present nearby (spatiotemporal correlation of recipient and infectious host); 
2) the influence of the environment on pathogens (e.g. their survival or spatial spread) is not 
included in the model. 

Within the contact-based approach, in an attempt to, account for the influence that the 
environmental stage has on the transmission, some authors introduced the concept of ‘indirect 
contact’. I would like to note that ‘indirect contact’ is another ambiguous term, used almost 
exclusively in epidemiology, and that semantically it is an oxymoron. Based on the indirect 
transmission approach compartmental models can be constructed by adding the environmental 
load of pathogens as a new compartment (Breban, 2013; Lanzas et al., 2020), as is shown in Fig. 1.1.  

 
Figure 1.1. Schematic representation of a compartmental model of environmental transmission including the 
following compartments: S- susceptible (recipient) hosts, W- environmental load of pathogens- pathogen 
population, I- infectious hosts, R- recovered host.  
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Such compartmental model can still be interpreted from the contact-based point of view, by 
defining two separate contact processes: an infectious host contacts the environment to deposit a 
load of pathogens and a susceptible host contacts the environment to absorb a load (dose) of 
pathogens. As it was noted in (Brouwer, Weir, et al., 2017), it is difficult to define what is the ‘dose’ 
for environmental transmission as it is often not known in what form infectious material comes in 
(potentially) infectious contact with the hosts and what is the amount transferred into recipient 
hosts during one contact. Moreover, using a concept of single contact to the environment would 
correspond to a discrete dose-response model, where infectious material deposited in the 
environment is in contact with hosts only for short ‘single contact’ periods of time, which is not a 
natural representation of environmental transmission as in reality hosts can contact environment 
(almost) constantly e.g. by breathing, walking and/or interact with it for a prolonged period e.g. 
while eating or drinking.  

Instead of looking at environmental transmission models from contact-based perspective, a more 
natural approach is to consider an ‘infectious material based’ perspective. Instead of 
conceptualising transmission as a point process of discrete events- contacts, the transmission can 
be seen as constant exposure to infectious material. 

 
Fir 1.2. Schematic representation of the main general processes underlying the 
environmental transmission between infectious host (I) and susceptible (recipient) host (S) 
through the environment (W).  
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If in nature the vast majority of infectious disease is transmitted via environment, why has the 
contact concept become the go-to interpretation used for the transmission of infectious diseases? 
The main reason for the contact concept approach to be so prevalent is that the host (and their 
interaction such i.e. contacts) are easily observable and diagnosable. By observing the presence of 
pathognomonic clinical symptoms or using diagnostic tests on samples collected from hosts the 
number of (potentially) infectious hosts in the population can be inferred. At the same time, 
observing and measuring the concentration of infectious material in the environment is in most 
cases not possible. Among factors complicating the infectious material detection and pathogen load 
estimations are heterogeneities of infectious material load that require extremely high sampling 
intensity, or low concentrations of pathogen that require extremely sensitive detection methods. 
Moreover, if transmission routes or infectious forms of pathogen are multiple or not well 
understood it might be difficult to develop an appropriate sampling and detection protocol. 

In this thesis, using an infectious material-based approach, I show that host status data indicating 
the spatiotemporal distribution of hosts can also be used to study processes underlying the 
environmental transmission of infectious diseases. Further, we explore if a spatial model based on 
an infectious material approach can be calibrated and validated using host status data only. In 
Chapter 2, we demonstrate that such data can be used to inform about decay and diffusion of 
infectious material if provided in certain spatiotemporal resolutions. In Chapter 3, to inform future 
studies, we explore what spatial resolution is needed to ensure the model identifiability. And in 
Chapter 4, we explore the inference that can be made with such a model to study density 
dependence of transmission and intervention strategies aimed at changing said density.  

Contact-based vs infectious material-based approach 
Because of environmental transmission a clear definition of contact cannot be established in a 
contact-based transmission modelling approach, a series of problems arise while constructing 
mathematical models from contact based perspective. 

First, the dichotomy of indirect (e.g. via environmental compartment) vs direct transmission is 
inherent to the contact based modelling. Consequently the modelling decision has to be made 
whether ‘direct’ or ‘indirect’ or a combination of the two would be a better representation of the 
system. Such a dichotomy, while often used in modelling, is rarely observed in nature, and choosing 
the correct model from transmission data alone is often not possible (Cortez & Weitz, 2013). In an 
infectious material based transmission modelling approach the assumption is made that all 
infections are transmitted via the environment and exposure to infectious material rather than to 
infectious host governs the transmission; the so called ‘direct transmission’ can simply be seen as a 
limit where the production as well as decay of infectious material goes to infinity (Chang & de Jong, 
2023) such that for transmission to occur the recipient host has to be at the same time and in the 
same place as the host that produces infectious material. In practice, this is already achieved when, 
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in the observation time (typically a day) both shedding and transmission occurs and transmission 
without shedding in the subsequent days is negligible. 

Second, the infectivity of one infectious individual and exposure to infectious material by recipient 
hosts (used to calculate basic reproduction ratio) are not straightforward for environmental 
transmission in contact-based approach. For the direct transmission models, the typical (average) 
infectious individual is often defined only by its infectious period- as the period during which an 
infectious host is shedding infectious forms of pathogens; in the simplest models the infectivity of 
the host during its infectious period is assumed to be constant in time (Heesterbeek, 2002). 
Therefore, it does not account for the accumulation of infectious material in the environment and 
typically assumes that the recipient host can only be infected when the infectious host is present in 
the environment. The indirect transmission model does allow for accumulation of infectious 
material (e.g. in the environmental compartment) but, looking from contact based perspective, it 
has to be assumed how infectious host contacts the environment to deposit infectious material. In 
the infectious material-based transmission modelling approach, the infectious individual is 
described by an infectivity function that accounts for the amount of material they (continuously) 
deposit in the environment during their infectious period and other dynamic processes that 
determine how the concentration of the infectious material in the environment changes in space 
and time. As a consequence, the infectivity function (being the ‘environmental load density 
function’ described below) has three stages (modes): 1) a build-up stage, when material 
accumulates in the environment; 2) a (pseudo) equilibrium stage when amount of produced 
material equals the amount of material decayed; 3) a decay stage, when no new material is 
produced, and previously accumulated material is decaying. The infectivity patterns for an infectious 
material-based model is compared with a contact-based direct transmission model in Fig. 1.3.  In 
Chapter 3, we show the importance of these three stages for the model parameter identifiability. 
The exposure to infectious material relevant for recipient host is described as continuous process 
determined by exposure pattern.  

 

Figure 1.3. Examples of infectivity patterns for a direct transmission model (plot A) and environmental transmission 
model (plot B). 
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Third, for the contact-based point of view on transmission the spatial aspect of transmission is not 
easy to implement in modelling. For direct transmission models, the general assumption is that 
contact happens when host are in the same place (or really close nearby) at the same time. In other 
words, infectivity is corelated with position of infectious hosts. For environmental transmission such 
correlation is not necessarily the case. For indirect transmission models, the spatiotemporal 
correlation of hosts is not needed for transmission, yet to formulate the models (e.g. individual 
based models) it needs to be decided where and when host contact the environment to deposit 
portion of infectious material and how to simulate or mathematically describe such process. To 
make that decision, the contact process must be well understood, which is not the case for most 
real-life transmission scenarios. Moreover, resulting model would be highly system specific. In the 
infectious material-based approach the environmental load is described by a continuous function 
just by defining the infectivity function of the infectious individual in a spatial context and adding 
the dispersion mechanism as I show below. This gives us the flexibility to study various spatial 
configurations of sources as well as exposure areas as shown in Chapters 3 and 4 of this thesis. 

Fourth, the scaling with population size and density is not clear for contact-based approaches. Two 
models were proposed to account for change in population density, namely frequency and density 
dependent transmission models. The frequency dependent transmission assumes that a contact 
rate is constant with changing population density (Begon et al., 2002). Consequently, there is 
increase in competition for contact with a particular host when density increases. This density 
dependence assumes that contact rate scales linearly with population density (Begon et al., 2002), 
so there is no increase in competition for contact with a particular host when density increases. As 
contact is not well defined for most systems, there are neither clear rules about the model choice, 
nor it is known how transmission would scale with changing density. As a consequence, there is no 
consensus in the literature, when and how to incorporate density dependence of transmission for 
both direct (Begon et al., 2002) and indirect (Lanzas et al., 2020) transmission models. This often 
precludes the comparison of results obtained for the systems where the density (and consequently 
population size and/or area occupied by hosts) vary. As spatial models can easily be created within 
our modelling framework based on infectious material-based transmission approach, enabling a 
more systematic exploration of the density dependence of transmission, in Chapter 4 we compare 
the scenarios where host numbers and spatial organisation were varied. 

Detailed mathematical description of infectious material-based approach 
Below I present a (relatively) simple modelling framework based on an infectious material approach 
providing a basis for modelling environmental transmission of infectious diseases. This is based on 
a similar model that was published in (van Bunnik et al., 2014). The framework has three main 
components of infectious material-based approach: 1) an infectivity source pattern describing the 
source(s) of infection (being the infectious hosts); 2) a process based environmental load dynamics 
that accounts for decay and dispersion of infectious material deposited in the environment; 3) 
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exposure response that accounts for absorption of material from the environment by the recipient 
(susceptible) host and for within host processes in said host. 

The spatiotemporal model incorporates all three parts in the probability of infection equation that 
describes for one susceptible host the probability of being infected during one unit of time. Part of 
the probability of infection equation is an environmental load density function 
𝑊𝑊��t, x, y, 𝑇𝑇��, 𝑇𝑇��, 𝐴𝐴���� |�� �� �� that describes the spatiotemporal distribution of infectious material 
produced by one particular infectious host described with an ‘infectivity pattern’ defined below. 
Following the principle of parsimony, the framework describes only the main, general processes 
that are underlying environmental transmission using simple, mechanistic models to describe them. 
The main equations are presented in Fig. 1.4 while the main parameters describing processes are in 
Table 1.1. A detailed description of the processes is presented below. Here I initially ignore model 
parameter identifiability issues for ease of presentation; these issues, (as well as the reduced set of 
model parameters resulting in practice), will be discussed subsequently. 
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Infectivity source  
When an infectious host is present in the environment and occupies a certain area, it produces 
new portions of infectious material throughout its infectious period. In the infectious material 
based model we call these hosts ‘source of infection’. The infectivity source pattern 
 �𝑇𝑇��, 𝑇𝑇��, 𝐴𝐴inf

�  |𝜌𝜌��� (as defined in more detail in Chapter 2) is a set of I infectious hosts each 

described with its infectious period (𝑇𝑇��, 𝑇𝑇��), an area they occupy 𝐴𝐴inf
�  and a parameter describing 

source strength (the intensity of the source) - shedding rate parameter 𝜌𝜌�. 

In our modelling framework, to follow the principle of parsimony, we define the infectious 
period as a period in which a host is shedding infectious material continuously. Therefore, we 
assume that the new infectious material is produced and shed all the time in a deterministic 
process. 

The exposure-response 
For environmental transmission, the exposure response depends on the absorption process, 
describing how recipient hosts encounters the infectious material in the environment and the 
within host processes that determine the probability that an infectious particle causes the 
infection when absorbed by the recipient host. Additionally, it accounts for processes happening 
in the environment; in the parsimonious modelling framework we define two of such processes: 
decay and diffusion of the infectious material.  

Similarly to source hosts, recipient hosts are described with exposure pattern �𝑡𝑡��, 𝑡𝑡��, 𝐴𝐴exp
�  |𝜉𝜉�� 

that describes exposure period (𝑡𝑡��, 𝑡𝑡��), exposure area 𝐴𝐴exp
�  and an exposure rate parameter 𝜉𝜉�. 

In our framework we use a single parameter 𝜉𝜉� which represents the rate (i.e. per day) at which 
the recipient individual becomes exposed to the infectious material in the environment, per 
infectivity unit irrespective of whether it is active or not and is a combination of absorption rate 
parameter ε and probability of being infected after the infectious particle is absorbed by host p: 

𝜉𝜉 𝜉 𝜉𝜉𝜉           (1) 

The ‘expected’ dose response 
To construct the exposure response, one can start with the dose response relationship. The dose 
response can be constructed following the independent action hypothesis; according to this 
hypothesis, each unit of infectious material (amount that cannot be further divided, for example 
1 egg of macroparasite or 1 bacterium- or rather measurable CFU- or 1 virus particle) can 
independently infect the host with probability p and the host can escape the infection 
(potentially caused by this 1 unit) with probability 1-p such that each (potential) transmission 
event is a Bernoulli trial. When a host absorbs more than 1 unit of infectious material, it must 
escape from all the units in order to escape from the infection. In this case we have n Bernoulli 
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trials and the probability of escaping the infection when n units are ingested is the conditional 
probability of escaping during all n Bernoulli trials:  

𝑝𝑝��� = (1 − 𝑝𝑝)�         (2)  

Therefore, the probability of being infected after all trials (after being exposed to all n units) is  

𝑝𝑝��� = 1 − (1 − 𝑝𝑝)�.        (3) 

Equation 3 represents the cumulative distribution function (CDF) of the geometric distribution 
that describes the probability of having less than or equal number of failures (escape from 
infection) before the first success (infection) occurs. 

As in reality, infectious units are always transmitted in a medium, in experimental work the exact 
number of infectious units (exact dose) cannot be estimated. Rather, the concentration of 
pathogen in the medium (such as inoculum or gram of faeces) is calculated. The same applies to 
situation when recipient host is absorbing some volume of infectious material (the dose). 
Infectious material is therefore defined as the medium that contains infectious units. Knowing 
only the volume of infectious material and the concentration of infectious units we cannot 
calculate the exact dose. As the exact number of infectious units in a finite volume of infectious 
material is Poisson distributed, we can calculate the expected dose. Incorporating the 
stochasticity of infectious material concentration leads to the well-known exponential dose-
response relationship for the expected dose 𝑅𝑅 as follows:  

𝑃𝑃inf = ∑ �P��Poisson(𝑁𝑁𝑁 𝑁𝑁 𝑁𝑁𝑁 ) × [1 − (1 − 𝑝𝑝)�]� = ∑ ������
�� [1 − (1 − 𝑝𝑝)�]� =��������  1 − 𝑒𝑒���  (4) 
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Following from the generality of the dose response, we can define the exposure response as a 
continuous process, without a need for dividing the amount of infectious material into discrete 
doses. 

Environmental load dynamics 
For the mechanistic model here I present the force of infection that is a part of the exposure 
response incorporating the exposure response parameter as well as the environmental load 
dynamics: the main general processes underlying the environmental part of transmission are 
assumed to be decay and diffusion of infectious material. 

The ‘expected active’ dose 
It is known that infectious particles such as bacteria and viruses may be inactivated while 
spending time outside the host. In other words, if these particles spend enough time in the 
environment, they are not able to infect hosts even if absorbed and therefore do not contribute 
to the probability of infection. 

To formulate a dose response that accounts for pathogen inactivation (e.g, decay) in the 
environment we assume that each infectious unit has the same probability of being inactivated 
(decay) while residing in the environment and this probability does not change in time. Similarly, 
to the ‘expected dose’, the ‘expected active dose’ can also be described with an exponential 
formula arising from a particular environmental sojourn time period of length (0, t) during which 
the source was continuously emitting infectious material with shedding rate 𝜌𝜌: 

𝑊𝑊𝑊𝑊𝑊|𝜌𝜌𝜌 𝜌𝜌𝜌𝜌 𝜌 𝜌𝜌� 𝑒𝑒𝑒𝑒𝑒𝑒[−𝛼𝛼𝛼𝛼𝛼𝛼  𝛼𝛼𝛼]𝑑𝑑𝑑𝑑�
� ,       (5) 

where α is the decay rate. Therefore, the Equation 5 describes what fraction of the infectious 
material produced until time t is still active at this time. 

The ‘expected active local’ dose 
Transmission experiments (done with animals separated from each other) show that 
transmission of the infection is possible even when animals do not occupy the same space 
(Herfst et al., 2012; Holt et al., 1998; van Bunnik, 2014; van Bunnik et al., 2014; Zhou et al., 2018). 
This indicates that infectious material spreads from the source infectious hosts through 
environment. Therefore, we assume that in our spatial framework the infectious material is 
dispersing spatially. To follow the parsimony principle, we use the simplest model that accounts 
for dispersion of material- the diffusion process that assumes that each particle is moving 
according to simple random walk (Chandrasekhar, 1943). The diffusion equation, for the one 
particle regime, describes the probability of finding a particle in certain space, e.g. rectangular 
described with coordinates, after time t passed since the start of diffusion, and for many 
particles regime, it describes the concentration of particles in said space. For the one-
dimensional case with point source that released the particle at time t=0 from x=0, the diffusion 
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equation is equal to the probability density function of normal distribution, with a mean in the 
source position (x=0) a time dependent standard deviation σ = √2𝐷𝐷𝐷𝐷: 

𝑊𝑊(𝑡𝑡, 𝑥𝑥|𝐷𝐷) = �
√���� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

��
����         (6) 

 where D is the diffusion coefficient. Combining equations 5 and 6, we obtain the spatial 
distribution of the environmental load of infectious particles produced until time t that are still 
active (not decayed): 

𝑊𝑊(𝑡𝑡, 𝑥𝑥|𝐷𝐷, 𝜌𝜌𝜌 𝜌𝜌𝜌) = 𝜌𝜌� �
����(���) 𝑒𝑒𝑒𝑒𝑒𝑒 �−

��
��(���)� 𝑒𝑒𝑒𝑒𝑒𝑒[−𝛼𝛼𝛼𝛼𝛼𝛼  𝛼𝛼𝛼]𝑑𝑑𝑑𝑑�

�     (7) 

The two-dimensional diffusion equation for the rectangular continuous source we use in the 
framework was derived by (van Bunnik et al., 2014).  

Connection to data  
Epidemiological modelling can be used to study processes underlying transmission only when it is 
applied with biological (experimental and/or field) data. In mechanistic modelling, the processes are 
characterised by the parameters describing them, and the biological information about these 
underlying processes can be obtained when their values are estimated provided there is a 
confidence in these estimated values and when model fit generated with these values is consistent 
with biological observations. 

Parameter estimation done by fitting the model to the data is called calibration (Rees et al., 2021). 
For a successful model calibration, the model parameters should be estimated with reasonable 
uncertainty i.e. have finite value and finite confidence bounds. Therefore, part of the calibration 
process is the identifiability analysis during which the model is analysed in the context of the data 
available to examine if all model parameters can be estimated and what data is crucial to obtain 
reasonable estimates. We present the full identifiability analysis of our spatiotemporal infectious 
material-based model in Chapter 3 of this thesis. 

Apart from model calibration, the quality of model fit must be assessed to gain confidence that 
parameter estimates are correctly describing biological processes. Any modelling framework 
describing biological phenomena is useful only if it satisfactorily describes the biological 
observations despite the simplifying assumptions incorporated in the models. During model 
development, this is ensured by model verification and validation. During verification the structure 
of the model and its implementation is checked to ensure that the framework implementation 
works as intended, while during the validation the biological assumptions are challenged by 
comparing the model outcome with outcome observed in real life. For both verification and 
validation of the model the final or intermediate output of the model is generated using the 
parameter set obtained in the model calibration and compared to either a priori known parameter 
values or to the data. As during the verification process it is checked if the model is technically well 
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implemented, either real life or simulated (artificial) data can be used. The simulation data is 
preferred, as such data can be created for a priori known parameter sets. As during validation 
process it is checked if model output is consistent with biological observations, data from such 
observations is crucial for the validation of the model. The model validation using data from 
transmission experiments in broilers is presented in the Chapter 2 of this thesis and the 
identifiability analysis of the model done with simulated data presented in Chapter 3 serves also as 
a verification procedure. 

Transmission experiments 
To calibrate and validate the model, relevant biological data needs to be available. As previously 
discussed, in epidemiology the host status data where it is recorded if the host is colonised (and 
infectious) or non-colonised (and potentially susceptible to infection) are often gathered for many 
systems either during population screening, field sampling conducted for naturally occurring 
infections or during transmission experiments. As for the first two cases, the transmission happens 
naturally, there often is little control of data quality i.e. its spatial and temporal resolution. Due to 
insufficient temporal resolution, many cases are found positive during the same sampling period, 
and it is difficult to infer the true transmission chains from the field data. Moreover, for 
environmentally transmitted diseases, there is little control over environmental conditions 
influencing the environmental stages of transmission, such like temperature, humidity, or 
ventilation, which makes the extrapolations, data comparisons or aggregation extremally difficult. 

Animal transmission experiments were proposed as a solution to study the transmission of 
infectious disease in controlled conditions, where the chain of transmission can be established more 
easily by testing status of all hosts before the start of experiment and choosing appropriate 
experimental design and sampling protocol to ensure sufficient data quality and quantity (Velthuis 
et al., 2007). As shown here, in small scale transmission experiments the resolution of status data 
can be controlled which solves (some of) the problems with model unidentifiability, and the 
environmental conditions can be standardised to ensure the data can be combined, compared and 
that measurements taken are suitable for the model in mind. 

As modellers often encounter identifiability problems (that are not always directly reported as 
such), in addition to host data they decide to estimate some parameter separately taking 
independent measurements from experiments other than host status data (see (Brouwer, Weir, et 
al., 2017; Colenutt et al., 2020; van Bunnik et al., 2014) for some examples). For the infectious 
material-based approach, we provided examples of such experiments in Table 1.2. 
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The model system: transmission of Campylobacter in broilers   
To calibrate and validate the spatiotemporal infectious material model we use Campylobacter jejuni 
(C. jejuni)transmission in broilers as a model system as it was previous done by (van Bunnik et al., 
2014). Campylobacter spp. are gram negative bacteria from Campylobacteriacae family that cause 
campylobacteriosis, common foodborne disease, in humans (Garrity et al., 2005). These zoonotic 
bacteria have many other hosts including farm animals and pets (Garrity et al., 2005). As chickens, 
particularly broilers, are considered the main source of campylobacteriosis, many measures have 
been taken to mitigate the Campylobacter transmission in poultry flocks (Hansson et al., 2018; 
Wagenaar et al., 2013). Despite these interventions, Campylobacter is still highly prevalent in broiler 
flocks (Mota-Gutierrez et al., 2022) and the  reasons for this are not clear. Consequently, a better 
understanding of Campylobacter transmission into and within the flock was identified as an 
knowledge gap important for design of effective interventions (Hansson et al., 2018). The 
transmission of Campylobacter, together with another identified knowledge gap: better 
understanding of Campylobacter survival in environment (Hansson et al., 2018) can be studied using 
the spatiotemporal infectious material based approach as presented in (van Bunnik et al., 2014). 

In addition to the specific health impact, C. jejuni transmission in broilers can also be an appropriate 
system to gain insights into general mechanisms underlying the transmission between spatially 
separated hosts in experimental conditions (van Bunnik et al., 2014). Several factors make C. jejuni 
transmission in broilers an excellent experimental system. First, as in the transmission experiments, 
we use a low pathogenicity Campylobacter Jejuni strain, the discomfort of animals used in 
experiments is minimized. Moreover, as the transmission dynamics in broiler flocks is fast: C. jejuni 
is highly infectious, small dose can cause infection in recipient broilers (Line et al., 2008), it is shed 
in large amounts in faeces of infectious broilers (Stern & Robach, 2003), and generally it does not 
survive well in environment (Park, 2002; Smith et al., 2016), especially when compared to other 
environmentally  transmitted bacteria such as Salmonella spp (Andino & Hanning, 2015) or 
Escherichia coli (van Bunnik et al., 2014; van Elsas et al., 2011). Due to the fast dynamic, the time of 
experiments can be reduced, minimizing the discomfort of overgrown broilers and the cost of 
experiments. As (van Bunnik et al., 2014) have established , the C. jejuni transmission in broilers is 
also a proper system to study the transmission between spatially separated broilers, while using 
relatively small spatial scale, such that it is practically feasible to house multiple separated areas 
occupied by broilers in laboratory animal facilities. Here, we use previously published (van Bunnik, 
2014; van Bunnik et al., 2014) and newly gathered data from series of C. jejuni transmission 
experiments between broilers separated by various distances to calibrate and validate our 
spatiotemporal infectious material based model. 
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Abstract 
Although most infections are transmitted through the environment, the processes underlying the 
environmental stage of transmission are still poorly understood for most systems. Improved 
understanding of environmental transmission dynamics is important for effective non-
pharmaceutical intervention strategies. To study the mechanisms underlying environmental 
transmission we formulated a parsimonious modelling framework including hypothesised 
mechanisms of pathogen dispersion and decay. To calibrate and validate the model, we conducted 
a series of experiments studying distance-dependent transmission of Campylobacter jejuni (C. 
jejuni) in broilers. 

We obtained informative simultaneous estimates for all three model parameters: the parameter of 
C. jejuni inactivation, the diffusion coefficient describing pathogen dispersion, and the transmission 
rate parameter. The time and distance dependence of transmission in the fitted model is consistent 
with marked spatiotemporal patterns in the experimental observations. These results, for C. jejuni 
in broilers, show that the application of our modelling framework to suitable transmission data can 
provide mechanistic insight in environmental pathogen transmission. 
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Introduction 
Traditionally, transmission of infectious diseases is modelled as a process that occurs when a 
susceptible host has direct contact with an infectious host (Heesterbeek, 2005). However, the 
majority of pathogens are, in fact, transmitted through the environment, i.e. indirectly: through the 
air, via surfaces and/or via fomites whilst residing in droplets, dust particles or otherwise. For 
pathogens that spread in this fashion, infectious material is shed into the environment by the 
infectious host (the source) and it is taken up (e.g. ingested, inhaled, or absorbed through mucosa) 
by a susceptible recipient host after the material has spent any amount of time in the environment. 
During this time, infectious material is losing infectivity due to inactivation (decay) of pathogens as 
these are exposed to environmental conditions that often are not optimal for their survival (Yildiz, 
2007). Additionally, part of emitted infectious particles may never produce any exposure to a 
recipient host, for example by being deposited in locations inaccessible to the hosts. Furthermore, 
data from indirect transmission experiments confirm that infectious material can also be dispersed 
through the environment, for example being moved via air flow, water movement, or movements 
of contaminated objects i.e. fomites (Asadi et al., 2020; Herfst et al., 2012; Holt et al., 1998; van 
Bunnik et al., 2012; van Bunnik et al., 2014; Zhou et al., 2018). This may cause the material to be 
moved from areas that are close to the source to parts of the environment more distant from the 
source, thereby reducing the probability of infection near the source and at the same time 
facilitating uptake by distant recipient hosts. Depending on the speed of dispersion, material arriving 
at larger distances from the source is expected to have undergone more inactivation due to a longer 
travelling time. Thus, the processes of shedding, decay and dispersal interact to shape the overall 
spatiotemporal rate of pathogen transmission through the environment. 

The environmental stage of transmission provides opportunities for non-pharmaceutical 
interventions aimed at reducing transmission. Some of these, such as separation of hosts (“social 
distancing”) and hygiene protocols, are applied to the infectious and/or recipient individuals; while 
other, such as disinfection or ventilation procedures , are applied to the environment occupied by 
hosts.  To develop the best (combination of) intervention strategies and quantify their efficacy, 
mechanistic mathematical models of transmission are needed that are both calibrated (i.e. having 
identifiable parameters) and validated. 
 
Here we present an experimentally validated modelling framework to mechanistically model 
environment dependent processes, namely pathogen decay and dispersion. We use a parsimonious 
modelling approach, motivated by the fact that detailed transmission mechanisms in host-
pathogen-environment systems are generally difficult to observe and measure. Parsimonious 
models can be used even when limited observations are available. In addition, such models can 
complement and validate more detailed modelling of very specific hypothesised transmission 
routes., e.g. based on aerosol physics (Drossinos & Stilianakis, 2020; Wagner et al., 2021)  
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Mechanistic models of environmental transmission that not only account for pathogen survival but 
also for movement of infectious material are still under development. As it is described in(Lanzas et 
al., 2020) two main types of mechanistic models are commonly used to describe environmental 
transmission: “mean field” compartmental models, versus individual based models; usually these 
models do not account for movement of infectious material through the environment. The simplest 
mechanistic description for environmental dispersion of material, that is in our case carrying a 
certain pathogen load, is as a diffusion process (Chandrasekhar, 1943). In previous  epidemiological 
models, diffusion, or reaction-diffusion, has been mainly used for describing diffusion of hosts, as 
for example in (Huang et al., 2010). For environmental transmission, diffusion models were also 
developed, few of which implemented diffusion of pathogens or infectious material for plant (El 
Jarroudi et al., 2020; Gilligan, 1995; Pielaat & Van Den Bosch, 1998) and animal or human diseases 
(David et al., 2020; Pang & Xiao, 2019; Wang et al., 2018; Xiao et al., 2020). While the vast majority 
of transmission models accounting for dispersion of infectious material remains theoretical, for 
some more complex, simulation models the validation was reported (for airborne (Sørensen et al., 
2001; van Leuken et al., 2015) and waterborne (Bidegain et al., 2017) transmission). 
More generally, the importance of model calibration and validation for zoonotic environmentally 
transmitted infections, such as Campylobacter spp., was recently raised in (Rees et al., 2021); 
authors noted that less than half of the 210 analysed models were validated with real-life data 
emphasizing the need for modelling that is driven by actual transmission data. 
To calibrate and validate an epidemiological model two types of transmission data can be used: field 
data and data from controlled transmission experiments. The most common information source is 
field data collected by detecting naturally occurring infections in the areas where the pathogen is 
prevalent or emerging. As field data represent naturally occurring transmission chains, often there 
is little control over their quantity and quality. Moreover, linking infection events to infectious 
source individuals is challenging as the contact structure and chain of infections cannot always be 
observed and/or verified.  
Alternatively, the data can be collected from tailor-made transmission experiments conducted using 
animal models (Velthuis et al., 2007). In transmission experiments the entire process, i.e. the 
shedding by infectious hosts, environmental stage, and exposure response of recipient hosts, can 
be studied in controlled (environmental) conditions. Both source and recipient hosts can easily be 
identified by starting the experiments in a clean (pathogen free) environment and recording the 
status of all hosts before and during transmission period. The experiments can be tailored to the 
spatiotemporal resolution necessary for the system of interest, so that a mathematical model at 
hand can be calibrated and validated. The last property is especially important for systems where 
identifiability problems cannot be solved by additional data on specific mechanisms. 

An environmental transmission model accounting for pathogen decay and diffusion has been 
presented previously in (van Bunnik et al., 2014); the four-parameter model was fitted with data 
obtained in experiments on Campylobacter jejuni (in the remainder of this paper abbreviated as C. 
jejuni) and Escherichia coli transmission between broilers spatially distanced by a single distance 
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band (of 0.75 or 1.06 m) combined with a separate survival experiment in which concentration of 
culturable bacteria in faeces was measured. This separate survival experiment was needed to solve 
identifiability problems in the model; here we prove that also our three-parameter model describing 
decay and diffusion of infectious material is not identifiable with the previously published data on 
C. jejuni transmission. To show that the model can be fully identifiable from transmission data only 
when sufficient spatiotemporal resolution is provided, we conducted new experiments for the same 
system, varying the distance and the timing of exposure. With the addition of the spatiotemporal 
data from these new experiments we were able to estimate all parameters, i.e. also the decay rate 
parameter, with remarkable results when compared to the estimate obtained from the separate 
survival experiment. Subsequently, we quantitatively validated both time and distance dependence 
of the model showing that the model fit is consistent with distance dependent delay times and 
proportions of hosts colonised observed in experiments.  

This approach enabled us to simultaneously study pathogen decay and dispersion in the 
environment using parsimonious modelling and spatiotemporal data from transmission 
experiments only and hence obtain new insights into mechanisms underlying environmental 
transmission of C. jejuni. One of the insights being that separate experiments counting culturable 
bacteria in the environment may not provide information representative for the decay rate 
associated with the infectious environmental stages of the bacteria. 

Results: 
Model 
To study environmental transmission, we developed a spatiotemporal three-parameter model, 
where each parameter has a precise biological interpretation. A decay rate parameter α describes 
how fast C. jejuni is inactivated in the environment. A diffusion coefficient D describes how the 
spatial distribution of infectious material in the environment changes over time, as a result of 
movement/dispersal of this material. A transmission rate parameter β describes probability of 
infection given one unit of exposure during one time unit. It reflects the joint effects of the 
remaining host-dependent processes, namely shedding of infectious material by source hosts, 
exposure to this material of recipient hosts and response (i.e. infection or colonisation) to the dose 
that the recipient is exposed to.  

For a standard compartmental model extended with an environmental reservoir with spatially 
homogeneous infection load, the probability of infection can be represented as: 

𝑃𝑃inf(𝑡𝑡�,𝑡𝑡�) = � � ��� ��� ��×(�����)
� �,        (1) 

where β is a transmission rate parameter, N the number of hosts, and 𝑊𝑊�  is the average 
environmental exposure during a time interval from t1 to t2:   

𝑊𝑊� = � �(�)����
��
(�����)

 .          (2)  
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In our spatial model, the probability of infection is given by a spatially non-homogeneous 
generalization of Equation 1. It represents the exposure response for a given recipient host 
occupying an exposure area Aexp during a time interval t1 to t2 and reads as follows: 

 Pinf�𝑡𝑡�,𝑡𝑡�, 𝐴𝐴exp� � � � ��� ��� � � 𝑊𝑊�exp
(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��

��
],     (3) 

where β (again) is a transmission rate parameter and W(t,x,y) is the spatiotemporal density function 
of the environmental load the recipient is exposed to. W describes how the distribution of the 
accumulated load changes in time and space, and in our model accounts for continuous shedding, 
exponential decay and diffusion of material. For further details on the modelling we refer to the 
Methods section. 

Experimental results 
To calibrate and validate the model we conducted a series of animal experiments studying 
transmission of C. jejuni between spatially separated broilers. Data on infection were gathered by 
recording colonization status of the recipient hosts at various locations and at various time points. 
In earlier transmission experiments on C. jejuni broilers were housed in pens separated from the 
source by a single distance band (of 0.75 or 1.06 m) (van Bunnik et al., 2014) and this narrow distance 
range proved to be insufficient for estimation of all of the model parameters nor validation of the 
distance dependence of transmission. In the current study, we designed experiments to compare 
transmission in pens that were separated by a much broader distance range (0.00 m- 2.00 m). In all 
those experiments, five broilers were inoculated with C. jejuni and placed in an experimental room 
at day 0. Two types of experiments with slightly different design were conducted: type 1 
experiments where exposure of recipients started the same day as the source animals were 
inoculated and type 2 experiment where the exposure started 20 days after inoculation of the 
source broilers. This allowed us to validate if the delay in (onset of) transmission across a distance, 
as reported in (van Bunnik et al., 2014), is shorter when transmission starts in a contaminated 
environment, as predicted by our spatiotemporal model. Table 2.1 sums up the most important 
differences between the two types of experiments. 
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Table 2.1. Summary of experimental design for C. jejuni transmission experiments between separated broilers 

  Experiment type 1 Experiment type 2 

Duration [day] 35 35 

Time of inoculation o source hosts [day] 0 0 

Start of exposure of recipient hosts [day] 0 20 

Border to border distance ranges 
between source and recipient host areas [m] 0.35- 2.00 0.43- 0.891 and 0.002 

Number of hosts per recipient pen  1 2 

Recipients removed after found positive  Yes No 

Experimental groups  N/A A, B, C 
1) Group A;  
2) Groups B & C; 

 

In the type 2 experiment, to gather data on transmission on extremely short distances (0.00 m), 
beside distanced recipients (group A) we included two additional pairwise groups. Group B consisted 
of recipients housed together with inoculated animals (source hosts) also from day 20 onwards. 
Group C consisted of recipients housed with another host that initially was a recipient host and 
turned into a source host by becoming infected. We note that in group C the recipients were not 
only exposed to the infectious material of their colonized pen mate but also to material originating 
from the distanced sources; however, our modelling indicates that the contribution of the latter 
sources to the total exposure of a group-C recipient is relatively small (see Supplementary Note 4 
for details). 

Fig. 2.1 shows the outcome of experiments as a function of time from the start of experiment (start 
of the exposure) and as a function of border-to-border distance between source area and recipient 
area. Source areas are defined as pens occupied by colonized hosts, while recipient areas are 
defined as pens occupied by recipient hosts (non-colonised when exposure started). When an area 
contained both colonized and non-colonized broilers it therefore was both a source and a recipient 
area.  
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Figure 2.1. Results from experiments on transmission of C. jejuni between spatially separated broilers; A) results from 
all type 1 experiments where exposure started the same day as source broilers (main source) were inoculated and group 
C from type 2 experiment that were housed with their pen-mate broiler (main source) the day that pen mate started 
shedding C. jejuni; B) results from recipients from type 2 experiment where exposure started 20 days after inoculation 
of source broilers (main source) for group A (housed in pens distanced from the main source) and B (housed in the same 
pens as main source broilers); to present the experimental outcome in a clear and intuitive way we simplified and 
aggregated the data; detailed experimental outcome is provided in supplementary materials; point size is scaled with 
the case number for that particular time and distance, and colour indicates one of 4 distance bins (black: 0m, dark red: 
0.35-0.60 m, red: 0.61-1.00 m, orange: 1.01-1.30 m); grey lines mark the distances of all individual pens used in 
experiments; pens that housed both source and recipient hosts are shown as distanced by 0 m; line colour is scaled with 
number of pens for that particular distance (darker for more pens).  

For non-zero distances between source and recipient, the experiments displayed a time delay 
between start of recipient exposure until onset of recipient infections, and this delay time increased 
with distance. As expected, the delay observed when recipient hosts were placed in an already 
contaminated environment (type 2 experiment, group A) was shorter than the delay observed for 
the same distance range when the environment was not contaminated prior to exposure (type 1 
experiments). For the pairwise experimental groups (group B and C), where we studied transmission 
between broilers that were housed together (separated by 0 m distance) no delay in onset of 
transmission was observed (as expected). For group B that was exposed to an environment 
previously contaminated by their pen-mates (being the main source) transmission was faster than 
for group C where there was no previous contamination by the infected pen mate (being the main 
source), as exposure to the main source started on the same day that this pen mate started 
shedding. 
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Parameter estimates 
First, we estimated all three parameters (by maximum-likelihood estimation) through a model fit to 
the data from three previously published type 1 experiments where only a single distance band was 
studied(van Bunnik et al., 2012; van Bunnik et al., 2014). The estimated decay rate parameter α was 
0.000 day-1 (CI: 0.000- 0.083), the transmission rate parameter β was 0.008 day-1 (CI: 0.005- 0.027), 
and the diffusion coefficient D was 0.089 m2day-1 (CI: 0.026- 0.826). The profile likelihood plots are 
provided in Supplementary Note 2. The decay rate parameter α estimated to be 0 day-1 means that 
the decay time is estimated to be indefinitely long, i.e. the parameter is unidentifiable. Therefore, 
we conclude that the three-parameter model is non-identifiable with the previously published data 
of only a single distance band. Also, the value α=0 day-1 is clearly nonbiological as even for pathogens 
with strong survival in the environment a finite survival time is expected.  

Next, we estimated all three parameters through a model fit to the joint data of the transmission 
experiments, thus additionally including the new experimental data (one type 1 and one type 2 
experiment) studying transmission for varying distance bands. The estimated decay rate parameter 
α was 0.153 day-1 (CI: 0.072- 0.295), the transmission rate parameter β was 0.372 day-1 (CI: 0.125- 
0.989) and the diffusion coefficient D was 0.013 m2day-1 (CI: 0.008- 0.023). Univariate profile 
likelihoods for all three parameters are shown in Fig. 2.2. Finite confidence intervals estimated for 
parameters show that all three parameters were separately identifiable. 

 

Figure 2.2. Profile likelihoods for model parameters: decay rate parameter α, transmission rate parameter β and 
diffusion coefficient D, horizontal lines mark the likelihood value for the confidence bounds. 

 

Fit to experimental data 
To validate the quality of our model fit to the data we assessed the fit across both the spatial and 
temporal dimension by using 20 and 5 spatiotemporal bins for type 1 and type 2 experiment, 
respectively. For each spatiotemporal bin we calculated the total number of positive cases observed 
during experiments and compared these to the probability mass function for number of cases as 
predicted by the model. The results for the type 1 experiments are presented in Fig. 2.3, the results 
for the type 2 experiments are presented on Fig. 2.4 (group A) and 2.5 (group B & C).  
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Figure 2.4. Probability mass functions generated from model predictions in type 2 experiment 
for group A representing total number of cases per week; on the x axis is the number of positive 
cases observed during a 1-week interval, and the y axis shows the probability. The vertical line 
marks the total number of cases observed for the particular bin in the experiments. 

 

 
Figure 2.5. Probability mass functions generated from model predictions in type 2 experiment for 
group B (upper row) & C (lower row), representing total number of cases per day; on each plot 
the x axis is the number of positive cases observed during a 1-day interval, and the y axis shows 
the probability. The vertical line marks the total number of cases observed for the particular bin 
in the experiments. 
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We calculated a p-value for each spatiotemporal bin as the total model probability for obtaining the 
observed number of cases or more extreme values. For almost all spatiotemporal bins p-values are 
higher than 0.025. In type 1 experiments, for distance range 1.01-1.30 m, for the last two 
spatiotemporal bins significantly more cases were observed in the experiments than the model predicts 
(p<0.025), because of that the Fisher's combined probability test performed for all 25 spatiotemporal 
bins indicates significant difference between model fit and experimental data (p=0.000665). However, 
once p-value for those two spatiotemporal bins were removed, the combined p-value indicates overall 
good fit (p=0.166345). For a distance bin 0 m (group B &C in type 2 experiment), the fit for individual 
bins is consistent with experimental data (p>0.025), but the observed outcome for all three bins is 
located in the right tail of distribution and the Fisher's combined probability test performed for them 
shows a significant difference between data and model for these 3 bins (p=0.017891). Detailed results 
from Fisher's combined probability test are provided in Supplementary Note 1. 

Discussion 
Here, we presented a mechanistic model, based on the biological hypotheses of pathogen dispersal and 
decay, that has three parameters which are identifiable with transmission data only. Previously, a four-
parameter version of the model was used (of which the decay rate was estimated independently from 
a survival experiment)(van Bunnik et al., 2014). The fourth parameter called “exposure capacity” was 
introduced based on the assumption that there is a limiting value of the amount of infectious material 
to which a host can be exposed. For modelling it means that when the exposure capacity is reached the 
probability of infection is constant even if accumulated amount of material increases. As there is no 
clear biological hypothesis underlying this assumption and we decided to start the analysis of distance 
dependence from the simplest mechanistic model possible, in the current work we used a model 
without this additional parameter. In the current model the exposure is still constrained, just as an 
emerging property of the balance between shedding of material on one hand and decay and diffusion 
on the other. 

Collectively, observations from these experiments enabled calibration of the model by obtaining point 
estimates and finite confidence intervals for all three parameters- decay rate parameter α, diffusion 
coefficient D and transmission rate parameter β using transmission data only. In the previous analysis 
(van Bunnik et al., 2014), the decay rate was estimated from a separate survival experiment. As we 
show here, identifying it together with the other two parameters from transmission data only was not 
possible because only one distance band was studied. This is an example of a practical unidentifiability 
(as opposed to structural identifiability), as it arises because the data used for parameter information 
is insufficient (Wieland et al., 2021). 

As a main solution to problems with identifiability it is often recommended to take separate 
measurements (e.g. for exposure) and/or conduct separate small scale experiments to estimate some 
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of the parameters independently from transmission data (Eisenberg et al., 2013). While sometimes it is 
the only possible way to obtain the estimates, it can also be problematic, especially for processes that 
are poorly understood. 

The survival of C. jejuni is an example of such a poorly understood process; better understanding of the 
survival and transmission of C. jejuni in poultry was recognised as an important knowledge gap for farm 
level control of C. jejuni (Hansson et al., 2018). As many survival mechanisms could be involved, such 
as biofilm formation and/or viable but non-culturable states (Murphy et al., 2006), it is difficult to assess 
the limitations of designing the separate survival experiment to mimic the exact conditions of animal 
transmission experiments. For that reason, one of the objectives of this study was to estimate decay 
rate (together with remaining parameters) from transmission data only. Previously, the decay rate was 
estimated in the separate survival experiment to be α=2.25 day-1 by fitting exponential decay curve to 
enumeration of C. jejuni in faeces (van Bunnik et al., 2014). Now, based on transmission data only we 
find a decay rate estimate that is significantly different: α=0.153 day-1 (CI: 0.072-0.295). Also, our 
current model (when fitted with fixed α=2.25 day-1) is not able to reproduce the observed delay in 
transmission and its AIC value (503.169) is much higher than the one obtained while fitting all three 
parameters (490.125) (see Supplementary Note 3 for details). This difference between estimates is 
consistent with several hypotheses. During the separate survival experiment, the authors mimicked 
environmental (climate) conditions of transmission experiments and were careful to use the same type 
of infected animals to produce the infectious material and use the same bacterial strain; however, the 
estimation was based on enumerations of culturable bacteria made from samples of faeces (van Bunnik 
et al., 2014). While only culturable forms of C. jejuni were measured in the experiment, there is some 
support for the hypothesis that viable but non-culturable forms can also successfully colonize chickens 
(Battersby et al., 2016; Bronowski et al., 2014; Cappelier et al., 1999). Moreover, it is not well studied 
in what form C. jejuni contaminated material is dispersing spatially; a faecal sample may not be 
representative for the actual infectious particles that diffuse in the environment and thus were studied 
in transmission experiment. Most likely infectious material is dispersed in smaller particles, for example 
with dust or water droplets. As these small particles are likely to have different micro-conditions than 
big particles of faeces, the decay rate of C. jejuni, even in similar environmental (macro)conditions, may 
be different for these two situations. Additionally, when fitting an exponential decay curve to survival 
data, the assumption is made that each particle has the same mean probability for decay. It is possible 
that particles that contribute significantly to transmission between separated broilers, survived in the 
environment much longer than the average. Further study is needed to explore which hypotheses (or 
combination thereof) can explain the observed difference. From a modelling perspective it could be 
addressed as a biphasic environmental decay (Brouwer, Eisenberg, et al., 2017), while from an 
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experimental perspective methods for detection of VBNC could be included (Lv et al., 2020)  to study 
decay in various conditions. 

The spatial dispersion of infectious material produced with faeces is another poorly understood process 
that we aimed to understand better. Although for some diseases with faecal-oral transmission 
dispersion between separate hosts was studied experimentally (Holt et al., 1998; van Bunnik et al., 
2012; van Bunnik et al., 2014), the specific mechanisms of pathogen dispersion are not well understood. 
In our mechanistic model the diffusion coefficient describes how the spatial distribution of particles 
changes in time as the diffusion is one of the simplest ways to mechanistically describe dispersal. The 
mechanism underlying standard diffusion is a random walk of individual particles and if many particles 
are involved, the resulting distribution can be interpreted as a relative amount of material present at 
each location (Chandrasekhar, 1943). The estimate for the diffusion coefficient we obtained 
(0.013 m2day-1; CI: 0.008-0.023) as well as a delay of transmission observed in our experiments (and 
consistently in the fitted model) indicates that the dispersion of infectious material is relatively slow for 
C. jejuni. Most likely the spatial dissemination of material is a multistep process, influenced by factors 
such as caretaker movements, birds behaviour (e.g. wing flapping, water spilling), ectoparasites or 
ventilation. During our experiments, no directional pattern was observed that could be explained by air 
flow (controlled in our experimental rooms), order of sampling (with inoculated broilers always being 
sampled last) or other caretaker actions (that were preformed following strict hygienic measures; see 
detailed description of experiments provided in Methods section). Collectively, our experimental 
observations indicate that a direct (one-blow) air-borne transfer of C. jejuni carrying particles is unlikely. 

While both the decay rate parameter α and the diffusion coefficient D used in the current version of 
the model describe single, well defined biological processes, interpretation of the transmission rate 
parameter β is less straightforward. It is in fact the combination of parameters describing three host 
dependent processes: 1) a shedding rate describing the amount of material that is produced by the 
infectious host; 2) an exposure rate describing how recipient hosts contact the infectious material 
dispersed and accumulated in the environment, and 3) a probability of becoming colonised per one unit 
of ingested dose describing dose response. A way to ease the interpretation of the transmission rate 
parameter in our model, and to aid comparison between systems, is by bringing the infectious unit on 
the same footing as in direct transmission models. In a direct transmission model the exposure unit is 
usually defined as the exposure due to one infectious individual across a timestep ∆𝑡𝑡𝑡(usually of one 

day) and this exposure is taken proportional to 𝑡��∆��  (N being the number of hosts). In models describing 

transmission through the environment the infectious unit can still be defined such that it corresponds 
to one infectious individual, according to the following recipe: starting from a well-defined state of the 
environment (equilibrium or clean) at the beginning of a timestep ∆t, one integrates the environmental 
load originating from a single infectious individual (source host) across the timestep ∆t and across the 
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recipient exposure area. Mathematical formalism of the standardization should be developed further 
in future studies. 

Given that our model has only three estimable parameters, we believe that the model fit demonstrates 
a very good description of the observations. The delay of transmission observed in the experiments for 
all distanced ranges is consistent with the model fit. In addition, the model also describes satisfactorily 
that the delay was much shorter when recipient hosts were placed in already contaminated 
environment (type 2 experiments, groups A and B) that when experiment started from clean 
environment (type 1 experiments and group C of type 2 experiment). This all indicates that observed 
delay is a result of decay and diffusion dynamics rather than a result of overall low transmission rate 
(constant in time).  

In the type 2 experiment we classified animals in direct contact as separated by distance 0m (therefore 
assuming only indirect transmission) as C. jejuni is mainly transmitted via faecal-oral route. Generally, 
for both experimental groups (A and B) the observed number of cases is slightly higher than the model 
predicts. This could be an indication that if recipient and source hosts are housed together additional 
routes of infections are present in comparison to situation when they are housed separately; for 
example sharing drinkers and feeders may contribute to transmission. We had only small sample size 
(10 broilers in group B and 5 in group C) for both pairwise groups, so more data should be collected to 
assess the effect size of potential additional sources on transmission. 

Here, we used C. jejuni transmission in broilers as a host-parasite model system. The motivation for this 
was two-fold. First, C. jejuni is a zoonotic pathogen transmitted through the environment via the faecal-
oral route that remains a major public health problem despite many control programs that have been 
applied (Efsa Panel on Biological Hazards et al., 2020). To further develop intervention strategies, a 
better understanding of its transmission dynamics is crucial. Second, C. jejuni transmission in poultry is 
a convenient system to study small scale environmental transmission. Fast transmission dynamics 
(extremely short incubation period, relatively short survival in environment) reduces time of 
experiments, clear manifestation (high, consistent shedding) facilitates the detection and sustainability 
of transmission chains; while low pathogenicity in broilers is important for animal welfare (Newell, 
2002). As we show here, this model system is also suitable to study distance dependence of 
transmission: using practical between-host distances of up to 2 meters enabled us to combine 
observations ranging from extremely fast transmission (when hosts are housed together), via slower 
transmission (across middle distances) to absence of transmission (across longer distances). 

By estimating all the parameters with transmission data (i.e. exposure and infection data) only, we were 
able to validate our mechanistic model and gain further insights into environmental transmission of C. 
jejuni. The model fit confirms that a delay (to onset) of distant transmission observed in experiments 



Chapter 2

44
 

can be explained by the dynamics of decay and diffusion of infectious material. The estimated diffusion 
rate indicates that dispersion of infectious material for faecal-oral diseases is rather slow. Moreover, 
estimating the decay rate together with other parameters opens new opportunities to study the decay 
process of pathogens. Generally, insights obtained from transmission data for validated models can be 
analysed together with the data from separate pathogen survival experiments to study further 
mechanisms of C. jejuni decay in animal systems. 

We formulated a methodological framework based on a parsimonious, yet mechanistic model and 
proved that it can be calibrated and validated with spatiotemporal transmission data. This approach 
does not require any prior knowledge on detailed transmission routes which are often difficult to 
determine. Additionally, using our methodological framework the impact of efficient intervention 
strategies targeted on the environmental stage of transmission, such as cleaning regimens, can be 
assessed quantitatively through experimental study, supported by mechanistic modelling of 
transmission, dispersion and decay. 

Methods: 
Model 
We constructed a spatiotemporal, mechanistic, yet parsimonious transmission model that takes into 
account the dispersion and decay of the assumed infectious material and for the probability of infection 
the dose response given the exposure (equation 3). Our model can be classified as individual based, 
where each host is described with the spatial coordinates of the area it occupies and from that the 
exposure for a particular period and recipient area (occupied by recipient hosts) is calculated based on 
the infectious period and source area (occupied by infectious hosts). The dispersion of material is 
described as a diffusion process, which is based on the assumption that particles can be modelled as 
moving according to a random walk (each particle is making random steps through the environment, 
where each step has a random direction and the step length is a normally distributed random variable). 
The decay is described using an exponential function, thus assuming that every infectious unit has the 
same probability of survival (Crane & Moore, 1986). The instantaneous rate of infection at any location 
and time is given as a mathematical expression and from that infection probabilities can be calculated 
in any spatiotemporal resolution of choice (equation 3). This makes the model easily adaptable to 
transmission systems that vary in spatial organisation or temporal dynamics of exposure. 

Thereout these experiments, host position was restrained within pen boundaries, and hosts occupied  
areas separated from the source by a fixed distance, so the probability of infection can be modelled 
based on time independent source and recipient areas. Moreover, we assumed in the model that 
source areas emit infectious material continuously throughout the whole shedding period. 

The definition of all parameters and variables is provided in table 2.2.  
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Table 2.2. Parameters and variables for the spatial model of environmental transmission. 

Parameters   

α [day-1] Decay rate parameter 

β [day-1] Transmission rate parameter 

D [m2day-1] Diffusion coefficient 

Configuration parameters   

Q [m-2day-1] Source strength  

𝐴𝐴inf
�  [m2] Source area occupied by infectious 

host(s) i 

𝐴𝐴exp
�  [m2] Exposure area occupied by recipient 

host(s) r 

Temporal variables   

�𝑇𝑇��, 𝑇𝑇��� [day] Emission period of the source area i 

(𝑡𝑡��, 𝑡𝑡��) [day] Exposure period of the recipient area r 
 

The density function of environmental load generated by a given source area 𝐴𝐴inf
�  occupied by an 

infectious individual i is described by the following equation: 

𝑊𝑊���, �, �, 𝑇𝑇��, 𝑇𝑇��, 𝐴𝐴���
� � �

⎩⎪
⎨
⎪⎧

0 𝑡𝑡 𝑡 𝑡𝑡��

𝑄𝑄 � � �
���(���) ��� �𝑡�(𝑡𝑡 𝑡 𝑡𝑡) − (����)��(����)�

��(���) � 𝑑𝑑�� 𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑�inf�
�

���
𝑇𝑇�� ≤ 𝑡𝑡 𝑡𝑡𝑡 ��

𝑄𝑄 � � �
���(���) ��� �𝑡�(𝑡𝑡 𝑡 𝑡𝑡) − (����)��(����)�

��(���) � 𝑑𝑑�� 𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑�inf�
���

���
𝑇𝑇�� < 𝑡𝑡

  (4) 

Where the 𝑊𝑊� definition distinguishes three cases: 1) if the source is not yet emitting (time of 
observation is earlier than start of emission) 𝑊𝑊� is equal to 0; 2) if the source has started continuous 
emission (time of observation is somewhere during the emission period) the environmental load is 
represented as diffusion with continuous source and decay and accounts for all the material that was 
released from the start of emission to the time of observation; 3) if the source has already stopped 
emitting (time of observation is after emission period) the 𝑊𝑊� accounts for all the material that was 
released in the past during emission period and its decay and further diffusion up to the time of 
observation. We assume that the source area is emitting infectious material as soon as at least one host 
housed inside the area starts shedding. Q is a factor that scales the source strength level to account for 
differences in density of infectious host per square meter of area, for example in situations when 
infectious host are occupying areas of various sizes.  
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For a given recipient area 𝐴𝐴exp�  that is exposed to multiple sources (more than one source area present), 
the source term is implemented as a set  �𝑇𝑇��, 𝑇𝑇��, 𝐴𝐴inf

�  ��, and equation 3 that describes the probability of 

infection for particular recipient host r turns into: 

Pinf�𝑡𝑡��, 𝑡𝑡��, 𝐴𝐴exp𝑟𝑟 , �𝑇𝑇1
𝑖𝑖 , 𝑇𝑇2

𝑖𝑖 , 𝐴𝐴inf
𝑖𝑖  }𝐼𝐼� � 1 � �xp ��� ∑ � � 𝑊𝑊𝑖𝑖(t, x, y, 𝑇𝑇1

𝑖𝑖 , 𝑇𝑇2
𝑖𝑖 , 𝐴𝐴inf

𝑖𝑖 )𝐴𝐴exp𝑟𝑟 𝑑𝑑𝐴𝐴exp𝑟𝑟  𝑑𝑑𝑑𝑑���
���� �(5) 

where ∑  � is the sum over the set of source areas. 

 

Experimental data 
Spatiotemporal data used to fit the model were obtained in series of experiments on indirect 
transmission of C. jejuni in broilers. In total, data from five experiments, each with multiple groups, 
were included. The animal experiments and associated procedures were in accordance with the 
national regulations on animal experimentation and the project licenses were approved by the Dutch 
Central Authority for Scientific Procedures on Animals (CCD) (permit numbers for previously 
unpublished experiments: AVD4010020172784 for experiment 4; AVD4010020198586 for experiment 
5). Here we follow the ARRIVE guidelines; the detailed description of previously unpublished 
experiments is provided below (in the Detailed description of transmission experiments section). 

All experiments lasted 35 days and the status of broilers was recorded daily by testing cloacal swabs for 
the presence of C. jejuni. We used data from four type 1 experiments, where exposure of the recipient 
from the source hosts started in a clean (i.e. C. jejuni free) environment, and one type 2 experiment 
where recipient hosts were placed in experimental room 20 days after the source animals were 
inoculated with C. jejuni. The schematic spatial organisation of all experimental rooms is provided as 
supplementary figures (Fig. S2.7 to S2.15). 

All type 1 experiments had a similar design. In this analysis we included rooms were five source broilers 
were orally inoculated with C. jejuni on day 0 and placed in one pen situated in the centre of the 
experimental room. On the same day, C. jejuni negative recipient broilers were individually placed in 
smaller recipient pens spatially separated from the source pen. For experiments 1-3 the spatial setup 
was similar, the source and recipient pens were approx. 0.75-1.06 m apart in each experimental room; 
as detailed between-pen distance measurements were not collected during those experiments, 
coordinates used in the model likelihood calculation were determined based on assumption that all 
rooms had identical, symmetrical design. For experiment 4 spatial setup was different, border to border 
distance between pens ranged from 0.35 to 2.00 m and the pens were divided over 6 experimental 
rooms; for this experiment between-pen distances in all rooms were recorded such that pen 
coordinates could be calculated for each pen separately for use in the model likelihood calculation. 
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All rooms in the experiments 1-3 had 10 recipient pens. Experiments 1 and 2 were identical in design 
and each had animals housed in 2 separate experimental rooms. In experiment 3 animals were housed 
in 8 experimental rooms; in 4 rooms 5 inoculated broilers were used; in the remaining 4 rooms 20 
inoculated broilers were used and these were excluded from analysis presented here. In 2 out of 4 of 
the included rooms, the broilers in the central pen were also inoculated with E.coli. It has been shown 
in (van Bunnik et al., 2014) that E.coli infection is not likely to influence C. jejuni results. In the current 
analysis, we therefore included the C. jejuni data of these rooms. In experiment 4 there were 6 
experimental rooms, four with 10 recipient pens and two with 4 recipient pens (separated from the 
source by larger distances). In all type 1 experiments recipient broilers that were detected positive for 
C. jejuni during the experiment were immediately removed from the experimental room to make sure 
their contribution to the probability of infection was minimal. 

The last experiment (experiment 5) was a type 2 experiment with a modified design. The initial 
conditions were similar to previous experiments: 5 broilers per experimental room were inoculated 
with C. jejuni and placed together in a central pen at day 0. On day 20, the central pen was divided into 
5 adjacent sub-pens similar in size, each housing 1 of the inoculated broilers. On the same day, recipient 
broilers were placed in the experimental room. Three groups of recipients were distinguished: group A 
consisted of  ‘distant’ recipients placed in ten pens separated from the central pen by 0.43- 0.89 m; 
each of these pens housed a pair of recipient broilers; Group B was a pairwise type of recipients for 
which C. jejuni free broilers were added to the 5 central sub-pens, so each sub-pen was housing 1 
inoculated and 1 recipient broiler; this group was included to study the transmission when the distance 
between source and recipient host was assumed to be 0 m. Group C, classified after the experiment, 
was also a pairwise type of recipients, but housed in distanced pens; the recipient was classified to 
group C after their pen mate started shedding C. jejuni during the experiment (becoming the source of 
the infectious material). 

Both experimental rooms in experiment 5 had a similar spatial setup and the size of the central pen was 
bigger than the size used in type 1 experiments; again all between-pen distances were measured. In 
each room 5 central sub-pens and 10 recipient pens were present. The source broilers in this 
experiment were also inoculated with Salmonella enterica serovar Enteritidis. Previous transmission 
experiments, where broilers were inoculated with the same bacterial strains, showed that it is unlikely 
that inoculation with Salmonella had an influence on C. jejuni transmission (Heres et al., 2004; Heres et 
al., 2003). In the current analysis, we used the C. jejuni data only, as we estimated only parameters for 
C. jejuni transmission. In contrast to previous experiments, recipient broilers that were detected 
positive for C. jejuni were not removed during the experiment.  
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Likelihood formulation and parameter estimation 
To estimate parameters for the spatiotemporal model (with data from transmission experiments) 
several assumptions were made. We assumed that once any broiler is detected positive for C. jejuni it 
starts to shed pathogen continuously until the end of the study period. This was based on the fact that, 
in our experiments, all broilers, detected to be positive for C. jejuni once and not removed form 
experiment, remained positive for the rest of the experimental period. This assumption applies for all 
inoculated broilers in all experiments and all recipient broilers in experiment 5. For experiments 1-4 
recipient broilers who became infected were removed immediately when detected positive; 
considering the fact that the shedding periods of those individuals were short and diffusion of C. jejuni 
is relatively slow, their contribution to the probability of infection up until the end of the study period 
was considered to be negligible and not included in likelihood function (see Supplementary Note 4 for 
details). These approximations allowed us to proceed with a simplified likelihood function. 

In the model, sources of infectious material are described in terms of areas that C. jejuni shedding hosts 
occupy. For all experiments, the central pen housing inoculated broilers was considered source area 
since the day of inoculation, considering the short incubation time of C. jejuni; the source strength for 
all central pen areas (occupied by multiple source broilers) was modelled as constant in time. For the 
type 2 experiments, where positive recipient host were not removed, newly positive broilers were 
included into the model as new source areas from the day of detection onwards. As the source areas 
had a different size in type 1 as compared to type 2 experiments and additional source areas were 
present in the latter, we standardized the source for all experimental rooms by using the host density 
(number of broilers per square meter) as a source scaling factor for each particular source area. 

In contrast to type 1 experiments, where recipient broilers were housed individually, in type 2 
experiments each pen housed a pair of broilers. For model fitting we assumed that these paired broilers 
do not compete for infectious material and treat them as independent recipients.  

To estimate the model parameters, we maximized the likelihood function given by:  

∏ �1 − Pinf �𝑡𝑡��, 𝑡𝑡��, 𝐴𝐴exp
� ,���𝑇𝑇��, 𝑇𝑇��, 𝐴𝐴inf𝑖𝑖 ����� ∙������,���, �exp

� ���esc
∏ ��1 − Pinf �𝑡𝑡��, 𝑡𝑡�� − 1, ������,���, �exp

� ���inf

𝐴𝐴exp
� ,���𝑇𝑇��, 𝑇𝑇��, 𝐴𝐴inf𝑖𝑖 ���� ∙ Pinf �𝑡𝑡�� − 1, 𝑡𝑡��, 𝐴𝐴exp

� ,���𝑇𝑇��, 𝑇𝑇��, 𝐴𝐴inf𝑖𝑖 �����. (6) 

Where ���𝑡𝑡��, 𝑡𝑡��, 𝐴𝐴exp
� ���esc

is a set of data of all recipients that escaped from infection, while���𝑡𝑡��, 𝑡𝑡��, 

𝐴𝐴exp
� ���inf

 is a set of data of all recipients that were found positive during the experiment. 

The data input system, automatic likelihood formulation, three-step maximization procedure, statistics 
performed for model validation and all addition calculations were programmed in Mathematica 12.0 
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(Wolfram Research, 2019); the code is available in Zenodo repository (Gamża, 2021). In detail, the log-
likelihood function was formulated jointly for the spatiotemporal C. jejuni transmission data from all 
experimental rooms from all experiments. In the maximization procedure, all spatial integrals (integrals 
over source areas as well as recipient area) in the expression for the probability of infection were 
analytically solved using the Integrate function, which significantly reduced computation time. 
Temporal integrals were solved numerically using the “NIntegrate” function. The log-likelihood function 
was maximized for all 3 parameters using a three-step procedure. First, a univariate profile likelihood 
was calculated for the diffusion coefficient D using “NMaximize” function. We used the D profile 
likelihood as a first step in our optimization, because the maximization with fixed D was the fastest and 
most prone to find only global maxima. Second, based on the generated D profile likelihood, we 
manually set suitable constraints for all three parameters within which the “NMaximization” function 
maximized their values. These constraints were applied to speed up the calculations and prevent the 
“NMaximization ,” function from returning only local maximum. Lastly, the univariate profile likelihoods 
were obtained for remaining two parameters (α and β), using the same procedure as for the parameter 
D, including the application of constraints when needed to prevent the “NMaximization” function from 
returning local maxima. Confidence bounds for parameters were obtained from the corresponding 
profile likelihoods using the likelihood ratio test; if needed additional points were calculated in regions 
near the bounds to achieve the desired accuracy of 0.001. 

Statistical analysis of model fit 
To validate the model, we aggregated model fits and experimental data into spatiotemporal bins. For 
type 1 experiments, we defined 4 distance bins (0.35- 0.60 m, 0.61- 1.00 m, 1.01- 1.30 m, 1.31- 2.00 m) 
and these were divided further into 5 spatiotemporal bins of 1 week each, which gave us total of 20 
spatiotemporal bins. For type 2 experiment, in group A (distant recipients) there was only one distance 
bin because all but one of the pens were separated by 0.61- 1.00 m; one pen was separated by 0.43 m 
but was also included in the same bin for statistical analysis. The distance bin was divided into two 
spatiotemporal bins of 1 week. For group B and group C (pairwise groups) there was one distance bin 
of 0 m divided into 1 or 2 spatiotemporal bins of 1 day, as for these groups the dynamics of transmission 
was much faster.  

For each spatiotemporal bin we compared the sum of positive cases observed in experiments to the 
probability of infection calculated from model fit obtained for parameter values that globally maximized 
the likelihood (point estimates). The probability of infection for each bin was calculated as probability 
of being infected anytime during this particular bin. In group A (distant recipients) in type 2 experiment, 
a pair of broilers occupied each pen, and the probability of infection was defined as probability of 
observing at least one of the two broilers becoming colonized. We note that the probabilities of being 
colonised (in general) differed between the individual pens belonging to the spatiotemporal bin, as the 
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probability varied depending on distance and position to the source and it was calculated using 
recipient (pen) areas coordinates. Therefore, the probability mass function (PMF) for number of 
colonised pens in each spatiotemporal bin was calculated using the Poisson Binomial distribution, being 
the distribution for the sum of independent Bernoulli distributed variables with varying p. In the 
calculations we used the discrete Fourier transform formula to calculate PMF (Hong, 2013), as in some 
of the bins the number of cases was (much) bigger than 10 and those were therefore non-computable 
from exact PMF formula.  

Next, from the PMFs we calculated the p-value as the probability of observing the particular 
experimental outcome or more extreme values; for outcomes occurring in the first half of the 
distribution this meant integrating over the left tail of the distribution and for outcomes in the second 
half it meant integrating over the right tail. P-values lower than 0.025 were considered as significant. 

To further diagnose the model fit we used Fisher's combined probability test to combine p-values 
generated for spatiotemporal bins. 

Detailed description of transmission experiments 
Results from experiments 1-3 were previously published, thus their description can be found in (van 
Bunnik et al., 2012) (experiments 1 and 2) and (van Bunnik et al., 2014) (experiment 3). 

Description of experiment 4 

Experimental Design 
The experiment was carried in six experimental rooms. Five broilers inoculated with C. jejuni were 
housed together in one pen in the centre of every experimental room (a separate climate-controlled 
room in an experimental facility of the Wageningen Bioveterinary Research). In four rooms 10 recipient 
animals and in two rooms 4 recipient animals (all C. jejuni negative at the beginning of experiment) 
were housed individually in pens placed at various distances (see Fig. S2.7-S2.12 for spatial design and 
pen coordinates) from the central pen.  

During the experiment, all source and recipient animals were sampled by means of a cloacae swab. To 
confirm their Campylobacter status, the swabs were tested for the presence of C. jejuni. If a tested 
recipient animal was found C. jejuni positive it was immediately removed from the experiment, 
euthanised and the cecum was removed and tested for C. jejuni.  A broiler was considered infected 
when both swab and caecal sample were found positive for C. jejuni; this was the case for all positive 
recipients. The experiment ended 35 d post inoculation. All remaining source and recipient animals 
(that had not been found C. jejuni positive until that moment) were euthanized after which the cecum 
was removed, and a caecal sample was tested for C. jejuni. 
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Animals and housing  
One-day-old broilers (type Ross 308, females) were obtained from a commercial hatchery. Only female 
broilers were used to prevent overgrowing of broilers and health problems attributed to that. 

88 chicks were housed together in auxiliary room from day -14 to day -2. At day -6 and -2, cloacal swabs 
taken from each chick were tested to confirm the absence of C. jejuni. 

On day -2, 78 chicks were randomly distributed to six experimental rooms for the transmission 
experiment. Remaining reserve broilers were euthanised. Four rooms contained 5 source animals 
housed together in one central pen and 10 recipient animals individually housed in 10 pens surrounding 
the central pen as shown in Fig. S7-S10. The other two rooms contained 5 source animals housed 
together in one central pen and 4 recipient animals individually housed in 4 pens surrounding the 
central pen as shown in Fig. S2.11-S2.12. All animals were housed on wood shavings and the drinking 
water was supplied through a nipple drinking system. In each setup, the drinking nipples in the pens on 
the long sides of the area were supplied from one common water container, and the central pen had a 
separate drinking water supply. This precluded transmission via a shared drinking water system. Before 
the start of the experiment, all experimental rooms were cleaned and disinfected with formaldehyde. 
Subsequently, samples were taken from inside the room to check for the absence of C. jejuni. 

Inoculation 
At day 0 source broilers were inoculated with 1 ml of the inoculum containing Campylobacter jejuni, 
dose 5.4*106 CFU/ml applied to the crop. For inoculation with C. jejuni, the C. jejuni strain 356 was used. 
The strain was cultured in hearth infusion broth (WBVR BM332) microaerobically at 37 °C, overnight, 
and diluted in buffered peptone water to obtain the intended inoculation dose [∼1 × 106 colony forming 
units (CFU)/mL]. The precise concentration (CFU per milliliters) of C. jejuni in the administered inoculum 
was determined by plating serial 10-fold dilutions on modified cefoperazone charcoal deoxycholate 
agar (mCCDA; WBVR BM322). 

Sampling and detection 
To check their status all broilers were tested by taking cloacae swabs. The sampling scheme is provided 
in Table 2.3. 
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Table 2.3. Sampling scheme for experiment 4 

Day post inoculation  

-6 Cloacal swabs of all broilers 

-2 Cloacal swabs of all broilers 

0 Cloacal swabs of all broilers (before inoculation) 
Inoculation 

0-6 Cloacal swabs of all broilers 

7-11 Cloacal swabs of all recipients 

12 Cloacal swabs of all broilers 

13-18 Cloacal swabs of all recipients  

19 Cloacal swabs of all broilers 

20-25 Cloacal swabs of all recipients  

26 Cloacal swabs of all broilers 

27-32 Cloacal swabs of all recipients  

33 Cloacal swabs of all broilers 

35 Cloacal swabs of all recipients; 
Caecal samples from all remaining broilers. 

 
Swab samples were collected using sterile swabs (sterile plain dry swabs; Copan Diagnostics, Inc.). For 
C. jejuni, swabs were directly plated on mCCDA (WBVR BM332), incubated microaerobically at 41.5 °C 
and examined for the presence of C. jejuni after 24 and 48 h. After streaking on mCCDA, the swab was 
placed in Preston enrichment medium [nutrient broth no. 2, Oxoid CM0067 with Campylobacter 
selective supplement (Oxoid SR0204E) and Campylobacter growth supplement (Oxoid SR0232E)], and 
incubated microaerobically at 41.5 °C for 24 h. After incubation, it was plated on mCCDA and incubated 
microaerobically at 41.5 °C, and examined for the presence of C. jejuni after 24 and 48 h. Confirmation 
of suspect colonies was done by MALDI (Biotyper®, Bruker). 

At the end of experiment caecal samples were collected from all broilers and tested for C. jejuni using 
the same culturing methods. 

Humane endpoints and euthanasia 
Disease was not expected to arise as a consequence of infection, because the bacteria which were used, 
normally do not lead to clinical signs nor to mortality in broilers. 

The humane endpoints were defined as follows: 1) not being able to stand up; 2) not being able to eat 
or drink; 3) severe depression (hardly any response on stimuli); 4) other severe discomfort. The broilers 
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were observed twice a day. During the experiment no animal reached any of the humane endpoints. 
Euthanasia methods are listed in table 2.4. 

Table 2.4. Euthanasia methods for experiment 4. 

Animal Method 

Broilers <250 g cervical dislocation 
Broilers 250-1000 g sedation (Xylazine and Ketamine) followed by cervical dislocation 
Broilers >1000 g sedation (Xylazine and Ketamine) followed by T61 admission 

For a sedation 10 mg/kg Xylazine and 30 mg/kg Ketamine was applied IM. 

Hygienic measures 
To prevent animal caretakers from acting as a vector of transmission between experimental rooms, 
strict hygienic measures were used during the entire experiment. Clean coveralls were used at every 
entry into the experimental rooms. A pair of boots was dedicated to each room, cleaned on entering 
and exiting it by means of wading through a chlorinated bath. To prevent direct transport from one bird 
to the next bird, sterile gloves were changed between handling individual animals. The same order of 
sampling and movement direction within a room during sampling and welfare checks was followed 
during the full experimental timespan. Inoculated animals were always sampled last.  

Description of experiment 5 

Experimental Design 
Five groups of broilers were used in this experiment; half of each group was housed in experimental 
room 1 and half in room 2. Ten broilers from source broilers group were inoculated with C. jejuni and 
Salmonella Enteritidis. Five of inoculated animals were housed together in one pen in the centre of 
each experimental room from day 0 to day 20 (a separate climate-controlled room in an experimental 
facility of the Wageningen Bioveterinary Research). From day 20 onwards, central pen was divide into 
5 sub-pens each was housing one broiler form source group and one from non-inoculated (C. jejuni 
negative) direct recipient group (10 in total); in both rooms 20 non-inoculated (C. jejuni negative) 
animals from indirect recipient groups were housed in pairs in 10 pens surrounding this central pen 
placed at various distances (see Fig. S2.13-S2.14 for spatial design and pen coordinates). 

During the experiment, all source and recipient animals were sampled by means of a cloacae swab. To 
confirm their C. jejuni and Salmonella Enteritidis status, the swabs were tested for the presence of both 
bacteria. Recipients positive for C. jejuni were not removed from experimental room as also Salmonella 
transmission was studied during the experiment. Broiler was considered infected by C. jejuni when 
swab samples were found positive for three consecutive days, and assumed to be infected from the 
day when first positive sample was recorded. The experiment ended 35 d post inoculation. All source 
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and recipient animals were euthanized and the cecum was removed and caecal sample was tested for 
C. jejuni. 

Animals and housing  
One-day-old broilers (type Ross 308, females) were obtained from a commercial hatchery. Only female 
broilers were used to prevent overgrowing of broilers and health problems attributed to that. 

After arrival at day -14 all 66 chicks were housed together in auxiliary room in the communal pen. At 
day -6 they were randomly assigned to experimental group: 10 to source group, 10 to direct recipient 
groups (I or II), 40 to indirect recipient groups (I or II) and 6 to replacement broiler groups (I or II). 

Three rooms were used during experiment: 1 auxiliary room and 2 experimental rooms. The auxiliary 
room had 3 pens: one communal pen and two marked pens: I and II. The housing scheme for each group 
is described in table 2.5. 

Table 2.5. Housing scheme for experiment 5 

Day  
-14  All chicks placed together in auxiliary room in the communal pen 
-6 Broilers randomly assigned to experimental group (source broiler, direct 

recipient I or II, indirect recipient I or II and replacement broiler I or II) 
-2 Source broilers moved to 2 experimental rooms (5 broilers per room): housed 

together in one pen in the center of the room 
Remaining broilers moved to one of two marked pens in auxiliary room: groups 
with number I to pen I and groups with number II to pen II 

20 The central pen divided into 5 sub-pens through placement of four meshes. The 
source broilers, housed before in the central pen, are divided into the 5 sub-
pens. In each sub-pen a source broiler is housed together with one direct 
recipient taken from marked pen I or II. 
Indirect recipients placed in distanced pens in pairs: one indirect recipient from 
pen I and one from pen II.  

 
All animals were housed on wood shavings and the drinking water was supplied through a nipple 
drinking system. In each setup, the drinking nipples in the pens on the long sides of the area were 
supplied from one common water container, and the central pen had a separate drinking water supply, 
afterday 20 each central sub-pen had separate water supply. This precluded transmission via a shared 
drinking water system. Before the start of the experiment, all experimental rooms were cleaned and 
disinfected with formaldehyde. Subsequently, samples were taken from areas inside the room to check 
for the absence of C. jejuni and Salmonella Enteritidis. 

Additionally, from day 0 to day 20, a small pilot experiment was conducted to study the detection of C. 
jejuni from environmental samples. In both rooms the sampling board covered with wooden shavings 
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was placed in pseudo-pen between pens 2-3. The board was removed before any recipients were 
placed in experimental room. 

Inoculation 
At day 0 source broilers were inoculated with 1 ml of the inoculum which was a mixture (1:1) of 
Campylobacter jejuni, dose 6.0*105 CFU/ml and Salmonella Enteritidis, dose 1.2*105 CFU/ml applied to 
the crop. 

For inoculation with C. jejuni, the C. jejuni strain 356 was used. The strain was cultured in Heart Infusion 
Broth (WBVR BM332) (microaerobically, 37 °C, overnight) and diluted in buffered peptone water to 
obtain the intended inoculation dose [∼1 × 106 colony forming units (CFU)/mL]. The precise 
concentration (CFU per milliliters) of C. jejuni in the administered inoculum was determined by plating 
on modified cefoperazone charcoal deoxycholate agar (mCCDA; Oxoid CM 793) with selective 
supplement (Oxoid CM 155) before and after the inoculation of the animals.  

For inoculation with Salmonella Enteritidis, a nalidixic resistant (MIC >128 mg/l) Salmonella enterica 
serovar Enteritidis phage type 4 was used. The strain was cultured on Heart Infusion Agar with 5% Sheep 
Blood (HIS, WBVR BM20) (37°C, overnight) and next diluted in buffered peptone water to obtain the 
intended inoculation dose [∼1 × 105 colony forming units (CFU)/mL]. The precise concentration (CFU 
per milliliters) of Salmonella Enteritidis in the administered inoculum was determined by plating serial 
dilutions on HIS (WBVR BM20) before and after the inoculation of the animals.  

Sampling and detection 
To check their status all broilers were tested by taking cloacae swab. The sampling scheme is provided 
in Table 2.6.  

Table 2.6. Sampling scheme for experiment 5 

Day post inoculation  
-6 Cloacal swabs of all broilers 
-2 Cloacal swabs of all broilers 
0 Inoculation 
1-6 Cloacal swabs of all source broilers 
14 Cloacal swabs of all source broilers 
20 Cloacal swabs of all broilers (before relocation)  
21-24 Cloacal swabs of all broilers 
25-27 Cloacal swabs of all recipients 
28 Cloacal swabs of all broilers 
34 Cloacal swabs of all recipients 

35 Cloacal swabs of all broilers; 
Caecal samples from all broilers. 
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Swab samples were collected using sterile swabs one swab for each bacterium (sterile plain dry swabs; 
Copan F155CA). For C. jejuni, swabs were directly plated on mCCDA (WBVR BM332), incubated 
microaerobically at 41.5 °C for 48 h and examined for the presence of C. jejuni after 24 and 48 hours. 
After streaking on mCCDA, the swab was placed in Preston enrichment medium [nutrient broth no. 2, 
Oxoid CM0067 with Campylobacter selective supplement (Oxoid SR0204E) and Campylobacter growth 
supplement (Oxoid SR0232E)], and incubated microaerobically at 41.5 °C for 24 h. After incubation, it 
was plated on mCCDA and incubated microaerobically at 41.5 °C, and examined for the presence of C. 
jejuni after 24 and 48 h. Confirmation of suspect colonies was done by MALDI (Biotyper®, Bruker) 

For Salmonella enteritidis, swabs were incubated in Buffered Peptone Water for 18 hours, from which 
0,1 ml was plated on MRSV (WBVR 334), incubated at 37 °C for 24h and plated out on XLD and BGA, 
both added with 100 ppm naladixic acid (in-house prepared). After 24 hours of incubation, plates were 
examined for the presence of Salmonella Enteritidis. Suspected cultures were confirmed by MALDI 
typing (Biotyper®, Bruker). 

At the end of experiment caecal samples were collected from all the broilers and tested for 
Campylobacter using the same culturing methods.  

Humane endpoints and euthanasia 
Disease was not expected to arise due to infection, because the bacteria which were used, normally do 
not lead to severe clinical signs nor to mortality in broilers. The humane endpoints were defined as 
follows: 1) not being able to stand up; 2) not being able to eat or drink; 3) severe depression (hardly 
any response on stimuli). The broilers were observed twice a day. During the experiment no animal 
reached any of the humane endpoints. Euthanasia methods are listed in table 2.7. 

Table 2.7. Euthanasia methods for experiment 5 

Animal Method 

Broilers <250 g cervical dislocation 
Broilers 250-1000 g sedation (Xylazine and Ketamine) followed by cervical dislocation 
Broilers >1000 g sedation (Xylazine and Ketamine) followed by T61 admission 

For a sedation 10 mg/kg Xylazine and 30 mg/kg Ketamine was applied IM. 

Hygienic measures 
To prevent animal caretakers from acting as a vector of transmission between experimental rooms, 
strict hygienic measures were used during the entire experiment. Clean coveralls were used at every 
entry into the experimental rooms. A pair of boots was dedicated to each room, cleaned on entering 
and exiting it by means of wading through a chlorinated bath. To prevent direct transport from one bird 
to the next bird, sterile gloves were changed between handling individual animals. The same order of 
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sampling and movement direction within a room during sampling and welfare checks was followed 
during the full experimental timespan. Inoculated animals were always sampled last.   

Data and code availability 
The authors declare that the input experimental data supporting the findings of this study are available 
within the paper and its supplementary information files, and in Zenodo with the identifier(s) 
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The authors declare that computer code developed in Mathematica 12 (Wolfram Research, 2019) 
supporting the findings of this study is available in Zenodo with the identifier(s) 
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Supplementary Information 
Understanding environmental transmission mechanisms: a parsimonious mathematical model 
validated with infection data from tailor-made experiments 
 
Other supplementary materials for this manuscript include the following: Supplementary dataset 1 
 
Supplementary Note 1: Fisher's combined probability test for spatiotemporal bins 
Combined p-value for Fisher's combined probability test for p-values of all the bins from all experiments 
was: p=0.000637. Combined p-value for Fisher's combined probability test for p-values of all the bins 
from all experiments, except for p-values smaller than 0.0125 that were removed from the analysis 
(distance bin 3, week 4 & week 5) was: p=0.166430. P-values for all spatiotemporal bins and 
combinations of thereof are presented in Table S2.1 and S2.2. 

Table S2.1. P-values for all spatiotemporal bins for type 1 experiments and p-values for the Fisher's combined probability 
test (FCP) calculated for combinations of bins; four distance bins were used: bin 1: 0.35-0.60 m, bin 2: 0.61-1.00 m, bin 3: 
1.01-1.30 m, bin 4: 1.31-2.00 m. 

 Week 1 Week 2 Week 3 Week 4 Week 5 FCP FCP with 
removal1 

Bin 4 1.000000 0.999861 0.998330 0.994730 0.990828 1.000000 1.000000 

Bin 3 0.999352 0.954489 0.808321 0.000046 0.001221 0.000192 0.997586 

Bin 2 0.207664 0.038413 0.154957 0.238544 0.119903 0.024861 0.024861 

Bin 1 0.723084 0.418276 0.184279 0.175687 0.209769 0.260686 0.260686 

FCP 0.875264 0.399545 0.479563 0.000927 0.007696 0.004953  

FCP with 
removal1 0.875264 0.399545 0.479563 0.384611 0.286783  0.591502 

1) p values smaller than 0.025 removed from analysis (bin 3, week 4 & week 5) 
 
 

Table S2.2. P-values for all spatiotemporal bins for type 2 experiment 
with p-values for the Fisher's combined probability test (FCP) calculated 
for combinations of bins. 

 Week 4 Week 5 FCP 

Group A 0.152642 0.263318 0.169377  
Day 1 Day 2 FCP 

Group B 0.086540 
 

0.086540 

Group C 0.043229 0.125820 0.033799 

FCP 0.024648 0.125820 0.017891 
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Supplementary Note 2: Model (un)identifiability from transmission data on a single distance band only 
In (van Bunnik et al., 2014) data from C. jejuni and E.coli transmission experiments between broilers 
separated by either 0.75 or 1.06 m were used to estimate three out of four parameters for a model 
version with one additional parameter: exposure capacity. The remaining parameter, the decay rate 
parameter α was estimated from data obtained in a separate survival experiment in which the 
concentration of culturable forms of  C. jejuni and E.coli was measured in faeces daily (van Bunnik et 
al., 2014). Up until the time of counting, the faeces were kept in the same environmental conditions as 
transmission experiment was conducted in. The diffusion coefficient was assumed to be the same for 
both bacteria. 

To investigate if the three-parameter version of the model, i.e. the model that we present in the main 
manuscript, is identifiable with data of only a single distance band, we fitted our model to the previously 
published data of C. jejuni. We estimated all three parameters simultaneously from the data published 
in (van Bunnik et al., 2014) (including only data on C. jejuni transmission for experiments that started 
with 5 inoculated broilers) together with the data from experiments of the same design published 
earlier in (van Bunnik et al., 2012) (included to increase the sample size). The estimates for parameters 
were as follows: decay rate parameter α=0.000 day-1 (CI: 0- 0.083), the transmission rate parameter 
β=0.008 day-1 (CI: 0.005- 0.027), and the diffusion coefficient D=0.089 m2day-1 (CI: 0.026- 0.826). 
Univariate profile likelihoods are shown in Fig. S2.1. 

 

Figure S2.1. Profile likelihoods for model parameters estimated with previously published data on a single distance band 
only: decay rate parameter α, transmission rate parameter β and diffusion coefficient D, horizontal lines mark the likelihood 
value for the confidence bounds. 
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Supplementary Note 3: Model fit and validation for fixed decay rate α=2.25 day-1 
A decay rate value α=2.25 day-1 was estimated in a separate C. jejuni survival experiment, where faeces 
stored in environmental conditions similar to those used in transmission experiment were sampled and 
Campylobacter enumeration was performed. The estimate was obtained by fitting an exponential curve 
to temporal data. See (van Bunnik et al., 2014) for details. 

For the model fitting here, based on setting α=2.25 day-1 and estimating the two remaining parameters 
from the transmission experiment data, the same methodology was used as presented in the main text 
for the estimation of all three model parameters, except that confidence bounds were calculated with 
lower accuracy. 

The likelihood was maximized for two remaining parameters transmission rate was estimated to be 
β=4.32 day-1 [CI: 2.2-7.8] and diffusion rate was estimated to be D=0.15 m2day-1 [CI: 0.10-0.23]. 
Univariate profile likelihood for both parameters are shown in Fig. S2.2. 

 
Figure S2.2. Profile likelihoods for model parameters for a model with fixed α=2.25 day-1: transmission rate parameter β 
and diffusion coefficient D; horizontal lines mark the likelihood value for the confidence bounds.  

The Akaike information criterion (AIC) value was calculated form maximum loglikelihood values for this 
model with fixed α=2.25 day-1 (2 parameters; AIC: 503.169) and for original model where all three 
parameter were estimated together (3 parameters; AIC: 490.125). The difference in AIC is bigger than 
10 which indicates that original model where all three parameters were estimated provides a 
significantly better fit (Burnham, 1998).To assess the fit the same methodology was used as presented 
in the main text for model with estimation of all three model parameters; the results for the type 1 
experiments are presented in Fig. S2.3, the results for the type 2 experiments are presented on Fig. S2.4 
(group A) and S2.5 (group B & C).  
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Figure S2.4.  Probability mass functions generated from model 
predictions with fixed α=2.25 day-1  in type 2 experiment for group A 
representing total number of cases per week; on the x axis is the 
number of positive cases observed during a 1-week interval, and the y 
axis shows the probability. The vertical line marks the outcome 
observed in the experiments. 

 
 
 

 
Figure S2.5. Probability mass functions generated from model 
predictions with fixed α=2.25 day-1 in type 2 experiment for group 
B & C (pairwise groups) representing total number of cases per day; 
on each plot the x axis is the number of positive cases observed 
during a 1-day interval, and the y axis shows the probability. The 
vertical line marks the outcome observed. 

 
P-value for the Fisher's combined probability test for p-values of all the bins form all experiments 
was: 0.000637. P-values for all spatiotemporal bins and combinations of thereof are presented in 
Table S2.3 and S2.4. 
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Table S2.3. P-values for all spatiotemporal bins for type 1 experiments with p values for the Fisher's combined 
probability test (FCP) for model with fixed α=2.25 day-1 
 

Week 1 Week 2 Week 3 Week 4 Week 5 FCP 

Bin 4 0.997422 0.996178 0.996177 0.996178 0.996178 1.000000 

Bin 3 0.831535 0.781862 0.791078 0.000003 0.000052 0.000001 

Bin 2 0.039308 0.002585 0.334424 0.398640 0.001385 0.000099 

Bin 1 0.094025 0.274093 0.318458 0.405202 0.479225 0.230265 

FCP 0.171188 0.059063 0.762311 0.000329 0.000035 0.000002 
 
Table S2.4. P-values for all spatiotemporal bins for type 2 experiment with p-
values for the Fisher’s combined probability test (FCP) for model with fixed 
α=2.25 day-1 

 Week 4 Week 5 FCP 

Group A 0.130534 0.186576 0.114832  
Day 1 Day 2 FCP 

Group B 0.044103 
 

0.044103 

Group C 0.603160 0.423824 0.604320 

FCP 0.123053 0.423824 0.175216 
 

Supplementary Note 4: Additional analysis 
a) Experiment type 2 group C- contributions of main and additional sources 

For group C from the type 2 experiment (pairwise transmission in recipient pens), using the fitted 
model with point estimate values for all three parameters  α=0.153 day-1, D=0.013 m2day-1 and 
β=0.372 day-1 we evaluated the contribution to the probability of infection from the main source 
which is the pen mate of the recipient as well as the contribution from all the other sources 
(central area source and other recipient pens if they became infected before).  

Table S2.5. Mean probability of infection estimated from our model with point estimate values of parameters (α=0.153 
day-1 , D=0.013 m2day-1 and β=0.372 day-1) for pens in type 2 experiment: group B (n=10 pens) and group C (n=5 pens); 
additionally for group C the contribution to probability was estimated separately for main source (their pen mate) and 
additional sources (separated by distance). 
 

Day 11 Day 21  Day 31 

Group B from all sources together 0.783854 0.816726  0.859933 

Group C from all sources together 0.179582 0.414533  0.591947 

from main source only 0.138976 0.317660  0.423870 

from additional sources only 0.039521 0.041396  0.043592 
1) Day of exposure to the main source 
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b) Removed (potential) sources contribution for type 1 experiment 
For type 1 experiments recipient broilers that were tested positive were removed 
immediately once cloacal swab collected from them was detected positive for 
Campylobacter; in modelling those broilers were not included as new sources as they were 
shedding only for a short period.  

To estimate the effect that these additional sources may have on transmission we use point 
estimate values of the model parameters α=0.153 day-1, D=0.013 m2day-1 and β=0.372 day-1 
to calculate what contribution these sources would make to the probability of transmission. 

 

 
Figure S2.6. Schematic representation of experimental room with 
named pens from type 1 experiments 1-3.  

As an example we consider one of the pens (pen 2, see Fig. S2.6) separated from the central 
pen and neighboring pens by 0.75 m (border to border distance) and calculate its 
contribution to the infection probability in the remaining 9 pens and compare to the 
contribution from the central pen (main source); the results are presented in tables S2.6 and 
S2.7. 
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Table S2.6. Probability of being infected by 1 source broiler housed in pen 2 that started shedding on 
day 1 for all remaining pens for 5 consecutive days. 

 Day 1 Day 2 Day 3 Day 4 Day 5 

Pen 1 1.50∙10-10 5.44∙10-07 1.64∙10-05 1.06∙10-4 3.46∙10-4 

Pen 3 1.50∙10-10 5.44∙10-07 1.64∙10-05 1.06∙10-4 3.46∙10-4 

Pen 4 0 0 0 4.44∙10-16 1.44∙10-13 

Pen 5 0 0 0 0 4.44∙10-16 

Pen 6 0 0 0 0 0 

Pen 7 0 0 0 0 0 

Pen 8 0 0 0 0 6.66∙10-16 

Pen 9 0 0 0 0 0 

Pen 10 0 7.51∙10-12 2.42∙10-09 6.31∙10-08 5.15∙10-07 
 

 
Table S2.7. Probability of being infected by 5 source broilers housed in central pen that started 
shedding on day 1 for all remaining pens for 5 consecutive days. 
 

Day 1 Day 2 Day 3 Day 4 Day 5 

Pen 1 0 1.25∙10-11 4.03∙10-09 1.05∙10-07 8.58∙10-07 

Pen 3 1.96∙10-10 7.26∙10-07 2.21∙10-05 1.46∙10-04 4.82∙10-04 

Pen 4 0 1.25∙10-11 4.03∙10-09 1.05∙10-07 8.58∙10-07 

Pen 5 2.50∙10-10 9.07∙10-07 2.73∙10-05 1.77∙10-04 5.76∙10-04 

Pen 6 0 1.25∙10-11 4.03∙10-09 1.05∙10-07 8.58∙10-07 

Pen 7 1.96∙10-10 7.26∙10-07 2.21∙10-05 1.46∙10-04 4.82∙10-04 

Pen 8 1.96∙10-10 7.26∙10-07 2.21∙10-05 1.46∙10-04 4.82∙10-04 

Pen 9 0 1.25∙10-11 4.03∙10-09 1.05∙10-07 8.58∙10-07 

Pen 10 2.50∙10-10 9.07∙10-07 2.73∙10-05 1.77∙10-04 5.76∙10-04 
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c) Boundary conditions  
 
To keep our model simple and easily computable, we assumed absorbing boundary 
conditions in our systems, treating each experimental room as an area of infinite size. In 
experiments, some pens in a room were placed near the wall, so theoretically it is possible 
that portion of infectious material that reached the wall stayed in the pen (instead of diffusing 
further) and influenced probability of infection. To assess how the boundary conditions 
assumption influenced our results, we compared the probability of being infected calculated 
for point estimate parameter values (α=0.153 day-1, D=0.013 m2day-1 and β=0.372 day-1) for 
one, chosen recipient area from type 1 experiments 1-3 (pen 2, see Fig. S2.6) to that for a 
recipient area that is extended (virtually) in the direction of the room wall by an area of the 
same size (virtual mirror pen). 

For both areas the probabilities estimated for day 1, 10, 20 and 30 when exposed to the main 
source area (central pen) are shown in table S2.8. The difference between these probability 
estimates is small, which supports our decision to use absorbing boundaries.   

 
Table S2.8. Probability of being infected by 5 source broilers housed in central pen that started shedding on day 1 
for one chosen recipient area (pen 2) from type 1 experiment 1-3 and for area of double size extended in the 
direction of the room wall. 

 Day 1 Day 10 Day 20 Day 30 

Original recipient area (0.75 m2) 1.96∙10-10 0.006105 0.021043 0.027634 

Extended recipient area (1.5 m2) 1.96∙10-10 0.006109 0.021249 0.028208 

Difference  0 4.19∙10-06 0.000206 0.000574 
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Supplementary Figures S2.7 to S2.15: Spatial organization of experimental rooms 
 

 
Figure S2.7. Schematic spatial organization for type 1 experiments 1-3, all rooms; as detailed 
between-pen distance measurements were not collected during those experiments, 
coordinates were prepared based on the assumption that all rooms had identical, 
symmetrical design. 
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Figure S2.8. Spatial organization for type 1 experiment 4, room 1.  

 

 
Figure S2.9. Spatial organization for type 1 experiment 4, room 2.  
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Figure S2.10. Spatial organization for type 1 experiment 4, room 3.  

 

 
Figure S2.11. Spatial organization for type 1 experiment 4, room 4.  
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Figure S2.12. Spatial organization for type 1 experiments 4, room 5.  

 

 
Figure S2.13. Spatial organization for type 1 experiment 4, room 6.  
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Figure S2.14. Spatial organization for type 2 experiment, room 1. 

 

 
Figure S2.15. Spatial organization for type 2 experiment, room 2. 
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Dataset S1. Input data for modelling: spatiotemporal data for all recipient and source areas for all experiments: 
type 1 experiments 1-4 and type 2 experiment groups A-C.
12.10.2021
Contact: anna.gamza@wur.nl; 
thomas.hagenaars@wur.nl

Dataset coding
Dataset Experiment type Experimental group(s)
Type1exp_1&2_rec Type 1 Recipient broilers
Type1exp_1&2_source Type 1 Inoculated source broilers
Type1exp_3_rec Type 1 Recipient broilers
Type1exp_3_source Type 1 Inoculated source broilers
Type1exp_4_rec Type 1 Recipient broilers
Type1exp_4_source Type 1 Inoculated source broilers
Type2exp_groupsAB&C_rec Type 2 Recipient broilers; groups A, B, C
Type2exp_source Type 2 Inoculated source broilers

Columns description
Collumn Description Remarks

For recipient datasets:
Room nb Room number
Pen nb Pen number
Pen coordinates
Exposure start Start of the exposure period
Exposure end End of exposure period Exposure period ends when recipient is found positive or 

removed from experiment
Removal time For the type 1 experiments the removal date of recipients was 

set equal to their infection date, as any shedding of infected 
recipients between infection and detection and removal was 
neglected in the model.

S count Number of recipient 
(susceptible) hosts

C count Number of positive cases 
when exposure period ended

For source datasets:
Room nb Room number
Pen nb Pen number
Pen coordinates
Shedding start Start of the shedding period For all experiments the start of shedding of inoculated broilers 

was set to be on the day of inoculation, any delay in shedding 
was neglected in the model to keep the source strength for 
those source areas constant in time.

Shedding end End of shedding period
Removal time
I count Number of inculated broilers

Further remarks
Experiment Remark
Type1exp_1&2 and Type1_exp_3

Type2exp_groupsAB&C_rec

Type1exp_4_source

Detailed between-pen distance measurements were not collected; coordinates were 
determined based on assumption that all rooms had identical, symmetrical design

In room 2 pen 10, both recipients were found infected on the same day; as the latent period 
for Campylobacter in broilers is extremely short, most likely one of the recipients was a 
source to the other, so we made the assumption that one of these recipients became 
infected 0.5 days after the other.
In room 2 one inoculated broiler died shortly after inoculation; any shedding of this broiler 
was neglected, i.e. we assumed that throughout the experimental period, 4 instead of 5 
inoculated broilers acted as a source in this room.
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Type1exp_1&2_rec
Room nb Pen nb Pen coordinates Exposure start Exposure end Removal time S count C count

1 1 {0., 0., 0.75, 1.} 0 23 23 1 1
1 2 {1.5, 0., 2.25, 1.} 0 15 15 1 1
1 3 {3., 0., 3.75, 1.} 0 15 15 1 1
1 4 {4.5, 0., 5.25, 1.} 0 28 28 1 1
1 5 {4.5, 1.75, 5.25, 2.75} 0 15 15 1 1
1 6 {4.5, 3.5, 5.25, 4.5} 0 29 29 1 1
1 7 {3., 3.5, 3.75, 4.5} 0 26 26 1 1
1 8 {1.5, 3.5, 2.25, 4.5} 0 35 35 1 0
1 9 {0., 3.5, 0.75, 4.5} 0 20 20 1 0
1 10 {0., 1.75, 0.75, 2.75} 0 22 22 1 1
2 1 {0., 0., 0.75, 1.} 0 30 30 1 1
2 2 {1.5, 0., 2.25, 1.} 0 30 30 1 1
2 3 {3., 0., 3.75, 1.} 0 35 35 1 0
2 4 {4.5, 0., 5.25, 1.} 0 35 35 1 0
2 5 {4.5, 1.75, 5.25, 2.75} 0 35 35 1 0
2 6 {4.5, 3.5, 5.25, 4.5} 0 35 35 1 0
2 7 {3., 3.5, 3.75, 4.5} 0 35 35 1 0
2 8 {1.5, 3.5, 2.25, 4.5} 0 35 35 1 0
2 9 {0., 3.5, 0.75, 4.5} 0 35 35 1 0
2 10 {0., 1.75, 0.75, 2.75} 0 35 35 1 0
3 1 {0., 0., 0.75, 1.} 0 35 35 1 0
3 2 {1.5, 0., 2.25, 1.} 0 3 3 1 1
3 3 {3., 0., 3.75, 1.} 0 35 35 1 0
3 4 {4.5, 0., 5.25, 1.} 0 35 35 1 0
3 5 {4.5, 1.75, 5.25, 2.75} 0 28 28 1 1
3 6 {4.5, 3.5, 5.25, 4.5} 0 35 35 1 0
3 7 {3., 3.5, 3.75, 4.5} 0 35 35 1 0
3 8 {1.5, 3.5, 2.25, 4.5} 0 35 35 1 0
3 9 {0., 3.5, 0.75, 4.5} 0 35 35 1 0
3 10 {0., 1.75, 0.75, 2.75} 0 35 35 1 0
4 1 {0., 0., 0.75, 1.} 0 35 35 1 0
4 2 {1.5, 0., 2.25, 1.} 0 35 35 1 0
4 3 {3., 0., 3.75, 1.} 0 35 35 1 0
4 4 {4.5, 0., 5.25, 1.} 0 35 35 1 0
4 5 {4.5, 1.75, 5.25, 2.75} 0 35 35 1 0
4 6 {4.5, 3.5, 5.25, 4.5} 0 35 35 1 0
4 7 {3., 3.5, 3.75, 4.5} 0 35 35 1 0
4 8 {1.5, 3.5, 2.25, 4.5} 0 35 35 1 0
4 9 {0., 3.5, 0.75, 4.5} 0 35 35 1 0
4 10 {0., 1.75, 0.75, 2.75} 0 35 35 1 0

Type1exp_1&2_source
Room nb Pen nb Pen coordinates Shedding start Shedding end Removal time I count

1 N/a {1.5, 1.75, 3.75, 2.75} 0 35 35 5
2 N/a {1.5, 1.75, 3.75, 2.75} 0 35 35 5
3 N/a {1.5, 1.75, 3.75, 2.75} 0 35 35 5
4 N/a {1.5, 1.75, 3.75, 2.75} 0 35 35 5
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Type1exp_3_rec
Room nb Pen nb Pen coordinates Exposure start Exposure end Removal time S count C count

1 1 {0., 0., 0.75, 1.} 0 8 8 1 0
1 2 {1.5, 0., 2.25, 1.} 0 34 34 1 1
1 3 {3., 0., 3.75, 1.} 0 34 34 1 1
1 4 {4.5, 0., 5.25, 1.} 0 12 12 1 0
1 5 {4.5, 1.75, 5.25, 2.75} 0 34 34 1 1
1 6 {4.5, 3.5, 5.25, 4.5} 0 33 33 1 0
1 7 {3., 3.5, 3.75, 4.5} 0 13 13 1 0
1 8 {1.5, 3.5, 2.25, 4.5} 0 35 35 1 0
1 9 {0., 3.5, 0.75, 4.5} 0 35 35 1 0
1 10 {0., 1.75, 0.75, 2.75} 0 35 35 1 1
2 1 {0., 0., 0.75, 1.} 0 35 35 1 1
2 2 {1.5, 0., 2.25, 1.} 0 33 33 1 1
2 3 {3., 0., 3.75, 1.} 0 35 35 1 0
2 4 {4.5, 0., 5.25, 1.} 0 35 35 1 0
2 5 {4.5, 1.75, 5.25, 2.75} 0 24 24 1 1
2 6 {4.5, 3.5, 5.25, 4.5} 0 35 35 1 0
2 7 {3., 3.5, 3.75, 4.5} 0 35 35 1 0
2 8 {1.5, 3.5, 2.25, 4.5} 0 35 35 1 0
2 9 {0., 3.5, 0.75, 4.5} 0 35 35 1 0
2 10 {0., 1.75, 0.75, 2.75} 0 33 33 1 1
3 1 {0., 0., 0.75, 1.} 0 35 35 1 0
3 2 {1.5, 0., 2.25, 1.} 0 21 21 1 0
3 3 {3., 0., 3.75, 1.} 0 35 35 1 0
3 4 {4.5, 0., 5.25, 1.} 0 35 35 1 0
3 5 {4.5, 1.75, 5.25, 2.75} 0 35 35 1 0
3 6 {4.5, 3.5, 5.25, 4.5} 0 35 35 1 0
3 7 {3., 3.5, 3.75, 4.5} 0 35 35 1 0
3 8 {1.5, 3.5, 2.25, 4.5} 0 35 35 1 0
3 9 {0., 3.5, 0.75, 4.5} 0 35 35 1 0
3 10 {0., 1.75, 0.75, 2.75} 0 35 35 1 0
4 1 {0., 0., 0.75, 1.} 0 35 35 1 0
4 2 {1.5, 0., 2.25, 1.} 0 2 2 1 0
4 3 {3., 0., 3.75, 1.} 0 35 35 1 0
4 4 {4.5, 0., 5.25, 1.} 0 35 35 1 0
4 5 {4.5, 1.75, 5.25, 2.75} 0 35 35 1 0
4 6 {4.5, 3.5, 5.25, 4.5} 0 35 35 1 0
4 7 {3., 3.5, 3.75, 4.5} 0 35 35 1 0
4 8 {1.5, 3.5, 2.25, 4.5} 0 35 35 1 0
4 9 {0., 3.5, 0.75, 4.5} 0 35 35 1 0
4 10 {0., 1.75, 0.75, 2.75} 0 35 35 1 0

Type1exp_3_source
Room nb Pen nb Pen coordinates Shedding start Shedding end Removal time I count

1 N/a {1.5, 1.75, 3.75, 2.75} 0 35 35 5
2 N/a {1.5, 1.75, 3.75, 2.75} 0 35 35 5
3 N/a {1.5, 1.75, 3.75, 2.75} 0 35 35 5
4 N/a {1.5, 1.75, 3.75, 2.75} 0 35 35 5
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Type1exp_4_rec
Room nb Pen nb Pen coordinates Exposure start Exposure end Removal time S count C count

1 1 {0.16, 0.04, 0.91, 1.04} 0 35 35 1 0
1 2 {1.66, 0.04, 2.41, 1.04} 0 29 29 1 1
1 3 {3.6, 0., 4.35, 1.} 0 11 11 1 1
1 4 {5.1, 0., 5.85, 1.} 0 31 31 1 1
1 5 {4.8, 1.49, 5.55, 2.49} 0 29 29 1 1
1 6 {4.94, 2.98, 5.69, 3.98} 0 35 35 1 0
1 7 {3.44, 2.98, 4.19, 3.98} 0 27 27 1 1
1 8 {1.5, 2.98, 2.25, 3.98} 0 35 35 1 0
1 9 {0., 2.98, 0.75, 3.98} 0 35 35 1 0
1 10 {0.64, 1.49, 1.39, 2.49} 0 35 35 1 0
2 1 {0.34, 0.02, 1.09, 1.02} 0 35 35 1 0
2 2 {1.84, 0.02, 2.59, 1.02} 0 35 35 1 0
2 3 {3.8, 0., 4.55, 1.} 0 35 35 1 0
2 4 {5.3, 0., 6.05, 1.} 0 35 35 1 0
2 5 {4.2, 1.48, 4.95, 2.48} 0 35 35 1 0
2 6 {5.28, 2.94, 6.03, 3.94} 0 35 35 1 0
2 7 {3.78, 2.94, 4.53, 3.94} 0 35 35 1 0
2 8 {1.83, 2.91, 2.58, 3.91} 0 18 18 1 1
2 9 {0.33, 2.91, 1.08, 3.91} 0 35 35 1 0
2 10 {0., 1.48, 0.75, 2.48} 0 35 35 1 0
3 1 {0., 0., 0.75, 1.} 0 35 35 1 0
3 2 {1.5, 0., 2.25, 1.} 0 35 35 1 0
3 3 {3.32, 0., 4.07, 1.} 0 35 35 1 0
3 4 {4.82, 0., 5.57, 1.} 0 35 35 1 0
3 5 {5.01, 1.78, 5.76, 2.78} 0 35 35 1 0
3 6 {4.75, 3.48, 5.5, 4.48} 0 35 35 1 0
3 7 {3.25, 3.48, 4., 4.48} 0 35 35 1 0
3 8 {1.5, 3.48, 2.25, 4.48} 0 35 35 1 0
3 9 {0., 3.48, 0.75, 4.48} 0 35 35 1 0
3 10 {0.03, 1.78, 0.78, 2.78} 0 19 19 1 1
4 1 {0.2, 0.02, 0.95, 1.02} 0 26 26 1 1
4 2 {1.7, 0.02, 2.45, 1.02} 0 30 30 1 1
4 3 {3.47, 0., 4.22, 1.} 0 29 29 1 1
4 4 {4.97, 0., 5.72, 1.} 0 22 22 1 1
4 5 {4.83, 1.76, 5.58, 2.76} 0 28 28 1 1
4 6 {4.91, 3.53, 5.66, 4.53} 0 28 28 1 1
4 7 {3.42, 3.53, 4.17, 4.53} 0 31 31 1 1
4 8 {1.5, 3.53, 2.25, 4.53} 0 29 29 1 1
4 9 {0., 3.53, 0.75, 4.53} 0 35 35 1 0
4 10 {0.17, 1.76, 0.92, 2.76} 0 27 27 1 1
5 1 {0.2, 0., 0.95, 1.} 0 35 35 1 0
5 2 {6.4, 0., 7.15, 1.} 0 35 35 1 0
5 3 {6.25, 4., 7., 5.} 0 35 35 1 0
5 4 {0., 4., 0.75, 5.} 0 35 35 1 0
6 1 {0.04, 0., 0.79, 1.} 0 35 35 1 0
6 2 {6.05, 0., 6.8, 1.} 0 35 35 1 0
6 3 {5.84, 4., 6.59, 5.} 0 35 35 1 0
6 4 {0., 4., 0.75, 5.} 0 35 35 1 0
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Type1exp_4_source
Room nb Pen nb Pen coordinates Shedding start Shedding end Removal time I count

1 N/a {1.75, 1.49, 4., 2.49} 0 35 35 5
2 N/a {1.55, 1.48, 3.8, 2.48} 0 35 35 4
3 N/a {1.53, 1.78, 3.78, 2.78} 0 35 35 5
4 N/a {1.75, 1.76, 4., 2.76} 0 35 35 5
5 N/a {2.41, 2., 4.66, 3.} 0 35 35 5
6 N/a {2.19, 2., 4.44, 3.} 0 35 35 5
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Type2exp_groupsAB&C_rec
Room nb Pen nb Pen coordinates Exposure start Exposure end Removal time S count C count

1 1 {0.47, 0., 1.22, 1.} 20 35 35 1 0
1 1 {0.47, 0., 1.22, 1.} 20 35 35 1 0
1 2 {1.97, 0., 2.72, 1.} 20 28 35 1 1
1 2 {1.97, 0., 2.72, 1.} 20 29 35 1 1
1 3 {3.32, 0.04, 4.07, 1.04} 20 28 35 1 1
1 3 {3.32, 0.04, 4.07, 1.04} 20 30 35 1 1
1 4 {4.82, 0.04, 5.57, 1.04} 20 35 35 1 0
1 4 {4.82, 0.04, 5.57, 1.04} 20 35 35 1 0
1 5 {5.35, 1.67, 6.1, 2.67} 20 24 35 1 1
1 5 {5.35, 1.67, 6.1, 2.67} 20 25 35 1 1
1 6 {4.83, 3.42, 5.58, 4.42} 20 35 35 1 0
1 6 {4.83, 3.42, 5.58, 4.42} 20 35 35 1 0
1 7 {3.33, 3.42, 4.08, 4.42} 20 35 35 1 0
1 7 {3.33, 3.42, 4.08, 4.42} 20 35 35 1 0
1 8 {1.85, 3.44, 2.6, 4.44} 20 35 35 1 0
1 8 {1.85, 3.44, 2.6, 4.44} 20 35 35 1 0
1 9 {0.35, 3.44, 1.1, 4.44} 20 35 35 1 0
1 9 {0.35, 3.44, 1.1, 4.44} 20 35 35 1 0
1 10 {0., 1.67, 0.72, 2.67} 20 35 35 1 0
1 10 {0., 1.67, 0.72, 2.67} 20 35 35 1 0
1 11 {1.55, 1.67, 2.17, 2.67} 20 21 35 1 1
1 12 {2.17, 1.67, 2.82, 2.67} 20 21 35 1 1
1 13 {2.82, 1.67, 3.38, 2.67} 20 21 35 1 1
1 14 {3.38, 1.67, 4., 2.67} 20 21 35 1 1
1 15 {4., 1.67, 4.55, 2.67} 20 21 35 1 1
2 1 {0.27, 0., 1.02, 1.} 20 35 35 1 0
2 1 {0.27, 0., 1.02, 1.} 20 35 35 1 0
2 2 {1.77, 0., 2.52, 1.} 20 35 35 1 0
2 2 {1.77, 0., 2.52, 1.} 20 35 35 1 0
2 3 {3.21, 0., 3.96, 1.} 20 35 35 1 0
2 3 {3.21, 0., 3.96, 1.} 20 35 35 1 0
2 4 {4.71, 0., 5.46, 1.} 20 35 35 1 0
2 4 {4.71, 0., 5.46, 1.} 20 35 35 1 0
2 5 {4.85, 1.72, 5.53, 2.72} 20 22 35 1 1
2 5 {4.85, 1.72, 5.53, 2.72} 20 24 35 1 1
2 6 {4.78, 3.44, 5.53, 4.44} 20 35 35 1 0
2 6 {4.78, 3.44, 5.53, 4.44} 20 35 35 1 0
2 7 {3.28, 3.44, 4.03, 4.44} 20 35 35 1 0
2 7 {3.28, 3.44, 4.03, 4.44} 20 35 35 1 0
2 8 {1.79, 3.44, 2.54, 4.44} 20 35 35 1 0
2 8 {1.79, 3.44, 2.54, 4.44} 20 35 35 1 0
2 9 {0.29, 3.44, 1.04, 4.44} 20 35 35 1 0
2 9 {0.29, 3.44, 1.04, 4.44} 20 35 35 1 0
2 10 {0., 1.68, 0.76, 2.68} 20 29 35 1 1
2 _S {0., 1.68, 0.76, 2.68} 20 29.5 35 1 1
2 11 {1.42, 1.72, 2.06, 2.72} 20 21 35 1 1
2 12 {2.06, 1.72, 2.65, 2.72} 20 21 35 1 1
2 13 {2.65, 1.72, 3.24, 2.72} 20 21 35 1 1
2 14 {3.24, 1.72, 3.83, 2.72} 20 21 35 1 1
2 15 {3.83, 1.72, 4.42, 2.72} 20 21 35 1 1



 

 

Type2exp_source
Room nb Pen nb Pen coordinates Shedding start Shedding end Removal time I count

1 N/a {1.55, 1.67, 4.55, 2.67} 0 35 35 5
2 N/a {1.42, 1.72, 4.42, 2.72} 0 35 35 5
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Abstract: 
Traditional mathematical modelling of infection transmission does not explicitly consider the decay 
and dispersion of infectious material during its environmental stage. However, to improve 
understanding of both environmental transmission dynamics and the effect of control measures, 
the explicit inclusion of these aspects in the modelling is desirable for many host-pathogen-
environment systems. As including additional processes comes with additional model parameters, 
it intensifies the challenge of parameter estimation. 

Previously, we demonstrated by example that spatiotemporal data on host infection status 
collected in transmission experiments is sufficient to estimate transmission rate, decay and 
dispersion parameters. Here, to inform future studies and sampling protocols, we investigate in 
detail which spatiotemporal resolution of the observations on host infection status is required for 
full parameter inference. We perform an identifiability analysis of a parsimonious environmental 
transmission model. The model provides a simple mechanistic representation of the environmental 
processes, namely decay and diffusion of infectious material. Additionally, the structurally 
unidentifiable host dependent processes, namely shedding of infectious material by the infectious 
host and exposure response of recipient hosts, are estimated as a combination by a single 
transmission rate parameter. 

In a structural identifiability analysis, we show that in the presence of a continuous infectivity 
source, the resulting three parameter model is structurally non-identifiable if the environmental 
load is in equilibrium, whilst it is identifiable if transient states are observed with sufficient 
spatiotemporal resolution. These findings are confirmed by a practical identifiability analysis using 
both simulated and experimental data of varying spatiotemporal resolution. In particular, we show 
that an informative experimental design can be obtained by tailoring the temporal and spatial 
resolution of the experiment to designed values of the model parameters. This work provides a 
systematic basis for future study of environmental transmission dynamics. 
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Author summary: 
In most cases infectious disease transmission involves a transfer of infectious material through the 
environment between the hosts. During this transfer two important processes occur: 1) infectious 
material survives in the environment usually only for a finite time after which it no longer is 
infectious, and 2) the material may be moved (dispersed) from one place to the other, for example 
with fomites, air or water flow. These survival and dispersal processes provide a basis for non-
pharmacological intervention strategies such as “social distancing” and decontamination of 
surfaces. To evaluate the efficacy of such measures, a suitable mathematical modelling approach 
for the environmental transmission process is desired, integrated with the collection of 
observational data that can reliably reflect environmental levels of infectiousness. Such data can be 
obtained by placing susceptible hosts at different distances from a source with infected hosts, and 
taking samples from these hosts to check if, when and where the hosts become infected. Here, we 
study in detail which design of the host placement and sampling strategy enables the quantification 
of both environmental survival and dispersion parameters as well as a transmission parameter. This 
study will help to design future studies and further explore the dynamics of environmental 
transmission. 
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Introduction 
For infections transmitted through the environment, a susceptible host, in order to become 
infected, must encounter infectious material deposited in the environment rather than to have 
”direct contact” with an infectious host. In other words, in this context an infectious individual can 
be separated in time and/or space from the susceptible host whilst still being a source of infectious 
material to which the susceptible host is exposed. Indeed, it has been shown in transmission 
experiments that transmission via the environment is possible when an infectious host is no longer 
present in the environment (Colenutt et al., 2020) or when the infectious and recipient host are not 
occupying the same location (Asadi et al., 2020; Herfst et al., 2012; Holt et al., 1998; van Bunnik et 
al., 2012; van Bunnik et al., 2014; Zhou et al., 2018).  

Traditionally, mathematical modelling of infectious diseases is based on the concept of host-to-host 
contact, i.e. assumes that the exposure of susceptible hosts is determined by the number of 
infectious hosts at the present moment in combination with mixing patterns in the host population 
(Heesterbeek, 2005). In contrast, in models that describe environmental transmission this exposure 
is usually assumed to be determined by the environmental infectivity load, the dynamics of which 
is determined by the (cumulative) shedding of infectivity by past and present infected hosts and the 
subsequent decay of this infectivity in time. In the latter models, the environmental load is most 
often modelled as a single compartment (Breban, 2013; Lanzas et al., 2020), and as a consequence, 
dispersion of infectious material from one place to another as a mechanism of infection between 
spatially separated hosts cannot be described. Recently, it has become increasingly clear that for 
many host-pathogen-environment systems the explicit inclusion of both decay and spatial 
dispersion of infectious material in the modelling is desired for an improved understanding of both 
transmission dynamics (van Bunnik et al., 2014) (Chapter 2) and the effect of interventions. In 
particular, this is the case for non-pharmaceutical interventions based on spatial separation such as 
host distancing and quarantining.  

As including the decay and dispersion of infectious material in the modelling comes with additional 
model parameters, it intensifies the challenge of model parameter quantification. One approach to 
this challenge is to supplement data on host status with samples taken from the environment to 
estimate environmental exposure levels and/or a survival parameter for the agent in the 
environment (Brouwer, Weir, et al., 2017; Colenutt et al., 2020; van Bunnik et al., 2014). Another 
approach is to focus on obtaining maximally informative data on host status. 

Animal transmission experiments (Velthuis et al., 2007) (Chapter 2) and rapidly developing methods 
for gathering individualized data (Barrat et al., 2014; Wirth et al., 2020) open the possibility to study 
mechanisms of transmission using data on host infection status of tailored temporal and spatial 
resolution. Such data can be used to make inference on decay and dispersion of infectious material, 
by estimating the model parameters: transmission rate parameter, decay rate parameter and 
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diffusion coefficient (adopting diffusion as the simplest mechanistic description of dispersion) 
(Chapter 2). The use of host status information only, means that one can avoid the use of samples 
of the environmental contamination level, and thereby avoid the use of additional modelling 
assumptions that are often difficult to validate, in particular the assumption that the environmental 
samples taken are representative of the true exposure of susceptible hosts. This assumption does 
not hold when the environmental load is highly heterogenous (such that practical spatial resolutions 
of sampling points are too sparse to reflect the true distribution of infectious material), when there 
are different potential transmission routes (such that e.g. it is unclear whether samples from air 
and/or from surfaces are representative of exposure) or when microbiological testing is not able to 
account for (only) the infectious forms of pathogens (e.g. PCR detecting genetic material from both 
live and dead bacteria). 

Recently, our team demonstrated that data on host infection status of suitable temporal resolution 
can indeed be used to jointly estimate the transmission rate parameter and decay rate parameter 
in a non-spatial compartmental model provided that  information on the past and current infectious 
sources is used in the estimation (Chang & de Jong, 2023). Moreover, in (Chapter 2) we showed by 
example that data on host infection status of suitable temporal and spatial resolution from indirect 
transmission experiments can be sufficient for making inference on transmission rate parameter, 
decay rate parameter and diffusion coefficient in a parsimonious mechanistic model constructed to 
describe infections resulting from decay and dispersion of infectious material (van Bunnik et al., 
2014)(Chapter 2). Moreover, we have shown that using only the host infection status data resulted 
in much better model fit than when host status data were supplemented with data from separate 
survival experiment designed to estimate decay rate parameter (Chapter 2). Here, in order to 
provide a systematic basis for future study of environmental transmission dynamics, we investigate 
in detail which spatiotemporal resolution of the observations on host infection status is required for 
full parameter inference. 

Our mechanistic model contains only three separately identifiable parameters: a decay rate 
parameter α describing decay of infectious material, a diffusion coefficient D describing the 
dispersion of infectious material and a transmission rate parameter β. The transmission parameter 
β is a combination of individually unidentifiable parameters: the infectious host shedding rate ρ that 
determines host infectivity, and the recipient’s exposure response parameter ξ that determines 
recipient’s susceptibility and depends on pick up of material by the recipient host and its within-
host infection dynamics (the dose response): 

𝛽𝛽 𝛽ρξ.           (1) 

In our spatial model, both source and recipient hosts are confined within areas they occupy, while 
infectious material is not confined and thus can diffuse freely through the whole environment. In 



Chapter 3

86
 

such a model the probability of infection for an exposed host occupying an area 𝐴𝐴exp during a time 
period (𝑡𝑡�,𝑡𝑡�) is described as follows: 

Pinf�𝑡𝑡�,𝑡𝑡�, 𝐴𝐴exp� 𝑠 � � ��� ��� � � 𝑊𝑊��exp
(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝛼𝛼𝛼 𝛼𝛼) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��

��
],   (2) 

where we define 

𝑊𝑊�(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝛼𝛼𝛼 𝛼𝛼) ≡ �
� 𝑊𝑊(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  )        (3) 

and where the environmental load density function 𝑊𝑊(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  ) is a continuous, mean-field 
description of the spatio-temporal distribution of (infectious) material and accounts for three 
processes occurring simultaneously: 1) shedding, 2) decay (inactivation) and 3) diffusion (dispersal) 
of infectious material. The density function 𝑊𝑊(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  ) is the solution of the two-dimensional 
reaction-diffusion equation with decay: 

��
�� 𝑠 𝛼𝛼 ����

��� + ���
��� � � 𝛼𝛼𝑊𝑊 + 𝜌𝜌𝑠𝑠,          (4) 

where  𝑠𝑠 𝑠 𝑠𝑠(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) is the spatiotemporal infectivity source pattern determined by the location of 
each infectious host and their shedding period, during which the infectious material is produced 
continuously with constant shedding rate ρ. When assuming a single point source, located in 
(𝑥𝑥𝑥𝑥𝑥 ) = (0,0), starting at time 𝜏𝜏 𝜏𝜏  and terminating at  𝜏𝜏 𝜏 𝜏𝜏,  the solution reads as follows: 

W(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  ) = 𝜌𝜌 � �� �����
��(���)��(���)

���(���) d𝜏𝜏
���(�𝑡�)

�
.      (5)  

In Equation 2, to account for structural unidentifiability of shedding rate and exposure response 
(Equation 1), we use the relative environmental load function 𝑊𝑊�(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝛼𝛼𝛼 𝛼𝛼) such that the 
equation for probability of infection only features the (identifiable) transmission rate parameter. 

Assuming that the environment is clean at 𝑡𝑡 𝑡𝑡 𝑡 and the constant infectivity source, being for 
example a particular infectious host, is active long enough we can distinguish two periods of 
environmental load: a transient period, during which the environmental load is increasing in time 
as long as the amount of material produced is larger than the amount of material that decays per 
time unit; and an equilibrium state when those two amounts have become equal. In case the 
duration of infectivity source is not infinite, thus when the infectious period is shorter than 
observation period (𝑇𝑇 𝑇 𝑇𝑇𝑇, a second transient can be identified, during which the infectious 
material accumulated in the environment is only decaying (and not being replenished anymore) 
(Chapter 2). 
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In Chapter 2, it was shown that all three model parameters (the decay rate parameter, the diffusion 
coefficient and the transmission rate parameter) are identifiable from a specific set of 
spatiotemporal data from animal transmission experiments. The question remained unanswered 
what is the minimal amount of data and its spatiotemporal resolution that is required for successful 
estimation of all three model parameters. This information is needed for future studies, i.e. for the 
design of new transmission experiments or of sampling strategies in the field.  

The model parameter estimation studied here can be viewed as inferring a continuous 
spatiotemporal environmental load pattern from binary data on host status (where a host can have 
one of two statuses- infected or non-infected). When designing animal experiments where such 
binary data is gathered, several trade-offs have to be considered. First, the number of host must be 
minimized for ethical, financial and/or practical reasons; yet, it must be ensured that the amount 
and quality of data collected is sufficient for making the desired model parameter inference. Second, 
for the same reasons the sampling interval (the temporal resolution of the data) has to be 
maximized; yet, if a suitable temporal resolution is not obtained (e.g. host are not sampled often 
enough), this may compromise model parameter inference. Third, for practical reasons the spatial 
setup (spatial resolution of host placement) has to be optimized as well, e.g. conducting animal 
experiments with hosts separated by long distances requires correspondingly large experimental 
rooms in the facility; yet, as we have shown in Chapter 2, in absence of sufficient spatial resolution 
the decay and diffusion parameters cannot be both inferred. 

To address these trade-offs and inform about optimizing study design, we aim to define “suitable 
spatiotemporal resolution” by analysing the identifiability of the parsimonious mechanistic 
transmission model described above. To obtain a full picture, we study structural and practical 
identifiability, both in equilibrium and transient states of the system. For the structural identifiability 
analysis, we combine analytical and numerical solutions of the model. For the practical identifiability 
analysis, we use simulated data as well as transmission data from animal experiments.  

Results 
Our analysis is structured as follows. For both structural and practical identifiability analysis we 
assume, a single constant infectivity source that starts shedding at time τ=0 and is active beyond 
the observation period, i.e. 𝜏𝜏 𝜏 𝜏 , and in most cases assume that the environment is clean at the 
start of the observation period 𝑡𝑡 𝑡 𝑡. For clarity of exposition, we assume that when an exposed 
host is found to have become infected, it will be removed from the experiment so that its 
contribution to the environmental load may still be neglected (see Chapter 2). For the structural 
identifiability analysis, first we consider the one-dimensional version of the environmental load 
density function 𝑊𝑊(𝑡𝑡𝑡 𝑡𝑡|𝜌𝜌𝜌 𝜌𝜌𝜌 𝜌𝜌) as it is more accessible to formal analysis. We perform an a priori 
identifiability analysis to explore what parameters or combinations thereof can be identified 
depending on the spatiotemporal resolution of data. To confirm if the findings are applicable to the 
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two-dimensional model we conduct an a posteriori identifiability analysis using data created for a 
predefined set of parameters. Finally, we perform a practical identifiability analysis for the two-
dimensional model using simulated and experimental data of varying spatial resolution. 

The model described in Equation 2 that we examine here has three parameters that are presented 
in Table 3.1. The model is considered to be identifiable if all of its parameters are jointly identifiable 
(Wieland et al., 2021). 

Table 3.1. Parameters for the spatial model of environmental transmission. 

Parameter Unit Description 
α [day-1] Decay rate parameter 

β [day-1] Transmission rate parameter 

D [m2day-1] Diffusion coefficient 
 

Structural identifiability 
One dimensional model 
In the one-dimensional case, the spatial distribution of infectious material, as described by the 
environmental density function W(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝜌𝜌𝜌 𝜌𝜌𝜌 𝜌𝜌), reads: 

W(𝑡𝑡𝑡 𝑡𝑡|𝜌𝜌𝜌 𝜌𝜌𝜌 𝜌𝜌) = 𝜌𝜌 � �� ��
��(���)��(���)

�√���(���) d𝜏𝜏
�

�
        (6) 

In equilibrium, i.e. when 𝑡𝑡� → ∞, Equation 6 solves to: 

Weq(𝑥𝑥|𝜌𝜌𝜌 𝜌𝜌𝜌 𝜌𝜌) = 𝜌𝜌 ��|�|��
�

�√��   .        (7) 

To analyse the structural identifiability of our three-parameter model we use the 
function 𝛽𝛽𝛽𝛽𝛽�

eq(𝑡𝑡𝑡 𝑡𝑡|𝛼𝛼𝛼𝛼𝛼 ) with 𝑊𝑊�
eq being the equilibrium relative environmental density function: 

𝛽𝛽𝛽𝛽𝛽�
eq(𝑡𝑡𝑡 𝑡𝑡|𝛼𝛼𝛼𝛼𝛼 )= 𝛽𝛽 ��|�|��

�

�√��  .         (8) 

The function 𝛽𝛽𝛽𝛽𝛽�
eq(𝑡𝑡𝑡 𝑡𝑡|𝛼𝛼𝛼𝛼𝛼 ) is plotted in Fig. 3.1; the shape of the function is determined by both 

decay rate parameter α and diffusion coefficient D, while the transmission rate parameter β is acting 
as a scaling factor. 
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Figure 3.1 One dimensional 𝛽𝛽𝛽𝛽𝛽�

eq(𝑡𝑡𝑡 𝑡𝑡|𝛼𝛼𝛼 𝛼𝛼) generated for the point source located in point x=0 
in function of distance from the source generated for a set of parameters: α=0.15 day-1, β=0.40 
day-1, D=0.013 m2day-1.  

The three-parameter model is structurally non-identifiable in equilibrium if for a particular 
combination of parameters (𝛼𝛼�, 𝛽𝛽�,𝐷𝐷 �) we can find at least one other combination of parameters 
(𝛼𝛼�, 𝛽𝛽�,𝐷𝐷 �) that gives the same shape of the 𝛽𝛽𝛽𝛽𝛽�

eq(𝑡𝑡𝑡 𝑡𝑡|𝛼𝛼𝛼 𝛼𝛼) function. To prove that, we just need 
to find two points, namely x1 and x2 for which the function gives the same result for two given sets 
of parameter values. This requirement yields the following system of equations: 

𝛽𝛽� �
��������
������

= 𝛽𝛽� �
��������
������

𝛽𝛽� �
��������
������

= 𝛽𝛽� �
��������
������

               (9) 

These conditions are satisfied only in two cases: 

1. x1=x2 and β� = ���
������������

�����������
���������

 β� 

2. ��
��
= ��

��
 and β� = ���������

���������
 β� 

Case 1 is the trivial solution corresponding to the situation when the environmental load is known 
just for one space point. This solution shows that when data is not provided in any spatial resolution 
the model is not identifiable as the same probability can be obtained for every α & D combination 
and accordingly scaled β. 
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Case 2 is the situation when data is provided with spatial resolution; it shows that the constant 
source model is still non-identifiable in the equilibrium, but a reduced model with an identifiable 
combination of parameters can be defined: 

𝛽𝛽𝛽𝛽𝛽�
eq(𝑥𝑥|𝜓𝜓𝜓 𝜓𝜓) = 𝜔𝜔 ��|�|�

�
�

���  ,         (10) 

where 𝜓𝜓 𝜓 �
� and 𝜔𝜔𝜔  �

�. In contrast to the original three parameters, these two newly defined 

parameter combinations have a less obvious biological interpretation. 

While in equilibrium the amount of infectious material is constant in time, for a transient state, i.e. 
when the system is not yet in equilibrium (for t<∞), the environmental load density func�on is both 
time and space dependent and instead of Equation 8 we have for x>0 (see Methods section for full 
solution): 

𝛽𝛽𝛽𝛽𝛽�(𝑡𝑡𝑡𝑡𝑡 |𝛼𝛼𝛼 𝛼𝛼) = �
�√�� e

����� �1 + erf ������√���√�� � + e���
�
� �−1 + erf �����√���√�� ��� . (11) 

To analyse the identifiability in this transient state, it is helpful to derive the following condition 
based on linearization. A model is non-identifiable if we can find a line or surface in parameter space 
for which the value of 𝛽𝛽𝛽𝛽𝛽�(𝑡𝑡𝑡𝑡𝑡 |𝛼𝛼𝛼 𝛼𝛼) is the same for (at least) two points in space and (at least) 
two points in time, so on this line or surface, infinitesimal parameter changes parallel to the line or 
surface do not change the shape of the 𝛽𝛽𝛽𝛽𝛽�(𝑡𝑡𝑡𝑡𝑡 |𝛼𝛼𝛼 𝛼𝛼). Therefore, if the model is unidentifiable the 
following equation is satisfied:  

Δ�𝛽𝛽𝛽𝛽�(𝑡𝑡𝑡𝑡𝑡 |𝛼𝛼𝛼 𝛼𝛼)� 𝛽= ∑ Δ��∈(�𝜓�𝜓�) 𝑢𝑢� �����(���⃗ )�
���

= 0.     (12) 

In the Supplementary Note 1 we work out this condition in detail and show that there are no 
solutions. Thus, we can conclude that the model is structurally identifiable if data on the transient 
state are available and infectious sources contributing to the environmental load in past and present 
are known. 

Two-dimensional model 
To examine the structural identifiability of the two-dimensional model, we performed an a 
posteriori identifiability analysis by estimating parameters with “perfect data”. Usually, the 
likelihood function is based on a finite sample of data, e.g. for one time period of exposure from t1 
to t2 and two different (types of) exposure areas 𝐴𝐴exp,1, 𝐴𝐴���𝜓�  the likelihood function is:   

𝐿𝐿 𝐿 𝐿inf�𝑡𝑡�,𝑡𝑡�, 𝐴𝐴exp���inf� �1 − Pinf�𝑡𝑡�,𝑡𝑡�,𝐴𝐴exp���
�esc� Pinf�𝑡𝑡�,𝑡𝑡�,𝐴𝐴exp���inf� �1 − Pinf�𝑡𝑡�,𝑡𝑡�,𝐴𝐴exp���

�esc� ; (13) 
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where 𝑁𝑁inf�� and 𝑁𝑁esc,� are the number of new infection cases and the number of escapes respectively 
that are calculated from data provided from a finite sample. When creating “perfect data” we used 
the calculated probabilities of infection 𝑃𝑃�inf calculated from the model for the predefined set of 
parameter values (α=0.15 day-1, β=0.40 day-1, D=0.013 m2day-1),and a given source location and 
time, to calculate the true expected proportions of infection days and of escape days: 

�Inf
�Tot

=𝑃𝑃�inf�𝑡𝑡�,𝑡𝑡�, 𝐴𝐴exp����Esc
�Tot

= 1 − 𝑃𝑃�inf�𝑡𝑡�,𝑡𝑡�, 𝐴𝐴exp�.       (14) 

Based on this, a sample of any size 𝑁𝑁Tot can be created and the corresponding likelihood can be 
maximized. If the model is identifiable, the predefined set of parameters should be estimated back 
as for any sample size the maximum likelihood estimator would return true parameter value. 

To confirm (for the 2D case) structural unidentifiability when only data for environmental-load 
equilibrium states is known we maximized the log-likelihood for two space points, each for a time 
point t=1000 days that was representing the system in equilibrium as confirmed by numerical 
integration over the model with predefined parameters (see Methods for details). Fig. 3.1 and 3.2 
show two-dimensional profile likelihoods obtained for perfect data calculated for the parameter 
combination α=0.15 day-1, β=0.40 day-1, D=0.013 m2day-1. 

 
Figure 3.2. Two-dimensional profile likelihood for the decay rate parameter α and the 
diffusion coefficient D calculated for data from one day in equilibrium created for a 
predefined set of parameter values (α=0.15 day-1, β=0.40 day-1, D=0.013 m2day-1). The black 
line marks the maximum value of the log-likelihood.  
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Figure 3.3. Two-dimensional profile likelihood for the decay rate parameter α and the transmission 
rate parameter β calculated for data from one day in equilibrium created for a predefined set of 
parameter values (α=0.15 day-1, β=0.40 day-1, D=0.013 m2day-1). The black line marks the maximum 
value of the log-likelihood, the ragged parts of the profile surface are artifacts from maximization 
procedure.    

The two-dimensional profiles generated for the model in equilibrium illustrate that the likelihood is 
maximal for any combination of parameters that yields the optimal values for the parameter ratios 
�
� = 2.667 and �� = 0.087m2. Clearly there is an infinite number of combinations of three parameter 

values that give the same parameter ratios: �� = 2.667 and �� = 0.087m2 and thus yield the same 

maximum log-likelihood value. This shows that the identifiable parameter combinations derived for 
the one-dimensional system are also valid for the two-dimensional system. 

To confirm the structural identifiability for the case that data from transient states are included, we 
maximized the log-likelihood functions created for the two-dimensional model with perfect data for 
two scenarios. In both scenarios  two space points were sampled. In the first scenario we sampled 
day 1 and 10 (both representing a transient stage) and in the second scenario we sampled day 1 
(representing a transient stage) and day 1001 (representing equilibrium). For both scenarios, the 
point estimates that maximized the log-likelihood were consistent with the predefined parameter 
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values: α=0.15 day-1, β=0.40 day-1, D=0.013 m2day-1. This confirms the findings from the one-
dimensional model analysis that for transient states all three parameters are fully identifiable when 
data of sufficient spatiotemporal resolution is provided.  

Practical identifiability 
A structural identifiability analysis yields information on whether parameters are identifiable in 
principle. In practice, the finite sample size and finite resolution of sampling may still prevent the 
identification of structurally identifiable parameters, e.g. when all samples are tested negative or 
when the resolution is insufficient (e.g. all samples test positive at the first sampling moment). We 
therefore also conducted a practical identifiability analysis, considering various spatiotemporal 
sampling strategies with finite sample size. 

To study practical identifiability, we used a two-dimensional model with one constantly shedding 
area source and multiple recipient areas as presented in Chapter 2. We considered parameter 
identifiability for two types of data. First, we used data simulated for predefined parameter values. 
Second, we used data from Campylobacter jejuni (abbreviated further as C. jejuni) transmission 
experiments in broilers previously published in Chapter 2. For both data sets the ‘spatial resolution’ 
as well as the ‘distance from the source’ of recipient areas was varied. 

Simulated data 
We used the predefined parameter values (α=0.15 day-1, β=0.40 day-1, D=0.013 m2day-1) as a 
reference and compared results for 12 scenarios, which included 4 scenarios covering one distance 
band, 4 scenarios covering two distance bands and 1 scenario covering four distance bands, as 
illustrated in Fig. 3.4a, and additionally 1 scenario was included in which all the grid cells were 
sampled. In other words, the scenarios differed in the number of distance bands included for which 
cells were occupied by recipient hosts and/or the number of cells included per distance band 
(“spatial resolution”) and the distance(s) from the source at which the distance band(s) with 
recipients were placed (“distance to the source”). By including a suitable number of experimental 
repetitions per scenario we ensured that the scenarios all had the same sample size (a total number 
of areas n=128 sampled daily) and the same spatiotemporal infectivity source pattern (infectious 
hosts occupying a single central area source consisting of 4 unit cells and shedding continuously 
throughout the experimental period). The experimental period was 30 days, with the source 
shedding continuously all the time (from t=0 to t=30) with source strength 1.0 (1 host/m2) and with 
recipients exposed, and sampled daily, from day 0 to day 30. 

The estimates and confidence bounds obtained for all scenarios are depicted in Fig. 3.4b-d. 
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Figure 3.4. Parameter estimates (panels b-d) for a set of 11 experimental design scenarios (panel a), obtained from 
simulated data using given parameter values (α=0.15 day-1, β=0.40 day-1, D=0.013 m2day-1); a) design of the scenarios 
indicating the areas sampled around a single area source located in the four central squares (marked in red) and 
shedding continuously from t=0 until the end of the experiment set at t=30 days. In each labelled grid cell of size 0.5 m 
x 0.5 m one recipient host was housed, and for each scenario the experiment was repeated until the n=128 recipient 
areas were sampled, each was sampled daily. In scenario ‘Full’ (not depicted) the full grid of 64 cells was sampled daily 
(and there were two experimental repetitions); b) diffusion coefficient estimates for all scenarios; c) decay rate 
parameter estimates for all scenarios; c) transmission rate parameter estimates for all scenarios.  

In scenario ‘Full’ in which all 64 grid cells were sampled daily in 2 repetitions, such that full spatial 
resolution was included, the estimates obtained for all three parameters were not significantly 
different from the a priori parameter values (α=0.15 day-1, β=0.40 day-1, D=0.013 m2day-1), with 
confidence bounds for the decay rate spanning a wide uncertainty range. 

In scenarios A-D, only one distance band with recipient data was included, and the scenarios differed 
in its distance to the source. The point estimates for all three parameters were different from the 
predefined values for three scenarios (A, B, C). In all scenarios A−C the range spanned by the 
confidence bounds was very broad with the bounds often reaching extreme values. For scenario D, 
(longest distance from the source considered), no estimates were obtained as there were no 
positive cases in the simulated sample. These results indicate that parameters are not practically 
identifiable when data on only one distance band data is included and confirm the findings from the 
structural identifiability analysis that when the observations are lacking spatial resolution the model 
is not identifiable. 
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The scenarios E-J were defined as different combinations of two distance bands. For three of these 
scenarios (E, H, I) all three parameters were estimated satisfactorily: the point estimates were not 
significantly different from the a priori values and the range spanned by the confidence bounds was 
narrow. For two scenarios (F, G) satisfactory estimates were obtained for the transmission rate 
parameter β and the diffusion coefficient D; although the decay rate parameter α estimates are not 
significantly different from the predefined value, the confidence bounds span a broader range than 
in the scenarios E, H and I. For one scenario (J), the maximum likelihood cannot be obtained, as the 
optimization algorithm does not converge, most likely because the simulated number of positive 
cases (2/128) was too small.  

In scenario K, where four distance bands were included, the three parameters were estimated 
satisfactorily, as the point estimates were not significantly different from the predefined value and 
the range spanned by the confidence bounds was narrow. 

Overall, the best fit was obtained for the scenario E where the two distance bands closest to the 
source were included. This fit was even better than the fit for scenarios that have a better spatial 
resolution - scenario ‘Full’ of samples from the whole grid and scenario K with all four distance 
bands. Our interpretation of this result is as follows; in the scenarios ‘Full’ and K, areas far from the 
source were sampled, and the high probability of escaping from infection across the experimental 
timespan for these areas resulted in much more escapes than infection cases. As the sample size 
was the same for all scenarios, the scenario E profited from having a larger number of samples 
obtained from areas close to the source where probability of being infected anytime during the 
experiment is similar to the probability of escaping, which made the data from these samples more 
informative. Overall, these results show that while spatial resolution is crucial to obtain satisfactory 
estimates, the most informative data is obtained from sampling areas where the probability of being 
infected during the experiment is similar to the probability of escaping from infection. 

Experimental data 
To examine practical identifiability using real world data, we used previously published data from  
C. jejuni transmission experiments between spatially separated broilers (van Bunnik, 2014; van 
Bunnik et al., 2014)(Chapter 2). As a reference we used the estimates obtained when all 
experimental data was included (Chapter 2). Considering variability in spatial organization (one 
distance band vs multiple distance bands) and temporal design (starting the exposure of recipients 
in a clean environment vs starting the exposure of recipients in an already contaminated 
environment) we divided the experimental data into 5 parts that we will refer to as “experimental 
data parts”. Table 3.2 shows the most important differences in spatio-temporal experimental design 
between these experimental data parts. 
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Table 3.2. Spatio-temporal differences in the quality of previously published data from C. jejuni transmission 
experiments between spatially separated broilers 

Experimental data part  Distances 
covered [m](1) 

Start in clean 
environment 

Proportion of 
infected hosts 

Detailed 
description 

Intermediate-Clean  (In-Cl) 0.75 and 1.06 YES 20/80 

(van Bunnik, 
2014; van 
Bunnik et al., 
2014) 

Range-Clean  (Ra-Cl) 0.35−2.00 YES 16/48 Chapter 2 
Intermediate-Contaminated  (In-Co) 0.70−0.90(2) NO 5/40 Chapter 2 
Zero-Contaminated  (Ze-Co) 0.00(3) NO 10/10 Chapter 2 
Zero-Clean  (Ze-Cl) 0.00(3) YES(4) 5/5 Chapter 2 

1) Approximate border to border distance;  
2) Except for one recipient area that was separated by 0.43 m; 
3) Source and recipient hosts housed together;  
4) Start before main source started shedding, possible small contamination beforehand from distance sources. 

We created alternative datasets though making different combinations of the data parts, each 
dataset containing a subset from the five experimental data parts listed in Table 3.2. Parameter 
estimates for all combinations are depicted in Fig. 3.5-3.7. 

 

Figure 3.5. Parameter estimates for the decay rate parameter α obtained for various subsets of experimental data from 
Campylobacter transmission experiments between spatially separated broilers differing in spatio-temporal design; “All 
exp.” represents the estimate obtained using all available experimental data, which was 0.153 day-1 (CI: 0.072- 0.295) 
and is used as reference value (red lines);  a) all sub-sets containing a single experimental data part each; b) all sub-sets 
containing 2 experimental data parts each; c) all sub-sets containing 3 experimental data parts each; d) all sub-sets 
containing 4 experimental data parts each. 
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Figure 3.6. Parameter estimates for the transmission rate parameter β obtained for various subsets of experimental 
data from Campylobacter transmission experiments between spatially separated broilers differing in spatio-temporal 
design; “All exp.” represents the estimate obtained using all available experimental data 0.372 day-1 (CI: 0.125- 0.989) 
and is used as reference value (red lines); a) all sub-sets containing a single experimental data part each; b) all sub-sets 
containing 2 experimental data parts each; c) all sub-sets containing 3 experimental data parts each; d) all sub-sets 
containing 4 experimental data parts each. 
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Figure 3.7. Parameter estimates for the diffusion coefficient obtained for various combinations of experimental data 
parts from Campylobacter transmission experiments between spatially separated broilers differing in spatio-temporal 
design; “All exp.” represents the estimate obtained using all available experimental data 0.013 m2day-1 (CI: 0.008- 
0.023) and is used as reference value (red lines);  a) all sub-sets containing a single experimental data part each; b) all 
sub-sets containing 2 experimental data parts each; c) all sub-sets containing 3 experimental data parts each; d) all sub-
sets containing 4 experimental data parts each. 

Parameter estimates for all combinations of experimental data parts were compared to estimates 
obtained for the complete set of all available experimental data. When only data from one 
experimental data part was studied the model is clearly not identifiable; in most cases a value of 0 
is obtained for the point estimates for all three parameters and/or confidence bounds are reaching 
extreme values; for one of the experimental data parts (Ze-Co) the maximization does not converge 
(and this is explained by the observation that all host were infected within one day after exposed to 
the contaminated environment (Chapter 2). For sub-sets with combinations of two experimental 
data parts most parameter estimates are still unsatisfactory, with point estimates not being close 
to the reference value and/or the confidence bounds being  wide apart. An exception that provides 
fairly good estimates for all three model parameters is the combination of data from the 
experimental data parts Ra-Cl and Ze-Co. For sub-sets with combinations of three experimental data 
parts, all three parameters were estimated satisfactorily (point estimate not significantly different, 
not reaching extreme value, confident bounds narrow) for all combinations that contained both 
data parts Ra-Cl and Ze-Co, and for the combination of Ra-Cl, In-Co and Ze-Cl. For sub-sets with 
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combinations of four experimental data parts all three parameters were estimated satisfactorily for 
all combinations that contained both data parts Ra-Cl and Ze-Co. 

Overall, we can conclude that including data from experimental data part Ra-Cl is a necessary but 
not sufficient condition to ensure  parameter identifiability. This part contains data from an 
experiment where the recipient areas were separated from the source area by various distances 
ranging from 0.35 to 2.00 m (border to border distance). When experimental data part Ze-Cl is also 
included, the data are sufficient to obtain satisfactory estimates. In the data part Ze-Cl proportion 
of positive cases was the largest amongst all data parts (10/10 hosts infected). 

Discussion 
In Chapter 2, we have shown, for a particular example, that with our parsimonious spatial 
environmental transmission model it is possible to gain insight into transmission resulting from 
decay and diffusion of infectious material by estimating the three model parameters using 
transmission data only, provided data with suitable spatiotemporal resolution is available. Here, to 
inform about the design of future experiments and sampling protocols, we aimed to define the 
“suitable spatiotemporal resolution” needed to estimate model parameters by performing both 
structural and practical identifiability analyses for equilibrium and transient states of the 
environmental load. We showed that in exposure equilibrium the one-dimensional model is 
structurally unidentifiable; identifiable combinations of parameters can be defined, but those two 
new parameters, contrary to original three-parameter model (Chapter 2), have a less obvious 
biological interpretation. For transient states, we showed that the one-dimensional model is 
structurally identifiable even with minimal spatiotemporal resolution (two points in space each and 
two points in time). 

To study real life scenarios, where sample size is always finite, and address the trade-offs with 
identifiability for experimental design we conducted a practical identifiability analysis of the two-
dimensional model using both simulated and real-life experimental data. Simulated data was 
analysed to check if a predefined parameter value set can be estimated back from simulated data. 
Because this part of the study was done in silico, we were able to analyse various scenarios and fully 
control the spatiotemporal resolution and sample size included in the analysis. Analysis of this 
simulated data confirms the findings from structural identifiability analysis. When only one distance 
band is studied the model is not identifiable, while if data for a minimum of two distance bands are 
included the model is identifiable (providing a sufficient number of positive cases). By comparing 
estimates based on the same sample size but on data varying by distance from the source we 
showed that the best estimates are obtained when areas are sampled where the probability of being 
infected anytime during experimental period is comparable to the probability of escaping from 
infection in fact the optimum is expected when both probabilities are equal to 0.5.  
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To further explore practical identifiability we have also analysed data from C. jejuni transmission 
experiments between spatially separated broilers (Chapter 2) (van Bunnik, 2014; van Bunnik et al., 
2014). The structural identifiability analysis, and the practical identifiability analysis using simulated 
data, showed that including just two suitable distance bands should be sufficient in principle for 
ensuring identifiability. However, the practical identifiability analysis using experimental data shows 
it is not necessarily easy to determine suitable distance bands: although the most valuable data 
come from an experiment that that covered a wide distance range (Ra-Cl), the parameters became 
identifiable only after also including the experimental data part Ze-Co for “zero distance” between 
source and recipients. 

While in this study only one set of parameter values was explored, the methodological framework 
we developed can easily be used for identifiability and power analysis for systems with various 
parameter sets. Moreover, using Equation 5 we can define a characteristic time 1/α that governs 
the temporal dependence of the environmental load function (Chang & de Jong, 2023) and a 

characteristic distance �(𝐷𝐷𝐷𝐷𝐷𝐷𝐷governing the distance dependence. Consequently, for design 
values of 𝐷𝐷 and α different from the values studied/estimated above, appropriate spatial and 
temporal resolutions in the experimental design can be readily obtained by correspondingly 
rescaling the resolutions used in the simulations. In more detail, for the values 𝛼𝛼=0.15 day-1, 𝛽𝛽=0.40 

day-1, 𝐷𝐷=0.013 m2day-1 we obtain 1/𝛼𝛼= 6.67 days and �(𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =0.29 m. Therefore, as we found 

that a temporal resolution of 1 day = 0.15∗1/𝛼𝛼 and a spatial resolution of 0.35 m = 1.2�(𝐷𝐷𝐷𝐷𝐷𝐷𝐷were 
sufficient in this case, for general design values 𝛼𝛼𝛼𝛼𝛼  d and 𝐷𝐷 𝐷 𝐷𝐷d a rule thumb is that sufficient 

temporal and spatial resolutions can be calculated as 0.15∗1/𝛼𝛼d and 1.2∗ �(𝐷𝐷d/𝛼𝛼d), respectively. 

We analysed identifiability in the context of spatial resolution of data, assuming that the status of 
hostS was assessed daily. Such a time series of infections is usually recorded in transmission studies. 
Our structural identifiability analysis shows that it is crucial to obtain a temporal resolution that is 
able to capture the transient states of the system. It is possible that for extremely fast system 
dynamics (fast/high shedding, fast decay and dispersion), the sampling would be needed so 
frequently that it would not be practically feasible.  

Here, we mostly studied the situation where one source area housing infectious hosts was shedding 
continuously during the whole observation period. Thus, we defined the transient as a state before 
equilibrium is reached. In (Chapter 2) we showed that in this case the environmental load density 
function has three modes: 1st mode- before the source starts shedding (no infectious material 
present), 2nd mode- when source is producing infectious material continuously, 3rd mode- after the 
source stopped producing infectious material. The second mode is the equivalent of the model we 
used in this chapter. For the 3rd mode, the source has ceased but infectious material is still present 
in the environment, where it decays and diffuses further, i.e. it also is a transient state and can be 



Identifiability of environmental transmission parameters: quantifying dispersion and decay

Ch
ap

te
r 3

101
 

used for parameter estimation with suitable data. Although this second transient state was beyond 
the scope of our analysis, our work indicates that the model would be structurally identifiable with 
data from this state. 

We note that in real life situations the environmental load is rarely in equilibrium. Newly infected 
hosts become new sources and these sources are not removed from the system as it was the case 
for the in-silico data used here and for most of the experiments used here. Nevertheless, analyzing 
the environmental-load equilibrium is still relevant as it may apply to a very good approximation in 
certain situations, for example when the incubation period is longer than the remaining observation 
period such that observed transmission events can be approximated as independent form each 
other. Our model can be used in situations when sources are changing as we showed when 
constructing the likelihood based on data from one of our experiments where newly infected 
recipients were not removed (here experimental data part In-Co). 

Here, we analysed model identifiability based on host infection status data only. In principle, any 
binary data that would allow us to estimate the probability of infection in a spatiotemporally 
resolved manner can be used in the framework we developed. In practice, the detection of colonised 
hosts remains the best observation strategy available. As an alternative or supplementary strategy 
one can use environmental monitoring to gather information about the exposure to infectious 
material deposited in the environment (Brouwer, Weir, et al., 2017; Eisenberg et al., 2013). For 
infectious disease, environmental monitoring can be defined as detecting pathogens in the 
environment using direct or indirect indicators. Among direct methods are microbiological sampling 
and detection, often used to determine contamination of farms, hospital wards or food 
establishments. Clearly, the detection of pathogens and/or the failure to do so does not necessarily 
or fully inform about the probability of infection. Perhaps, the most important reason is that for 
many situations, the relevant exposure mechanisms are not sufficiently understood: e.g. there are 
multiple transmission routes and their relative importance is poorly known. Also, even if all samples 
are found negative, infectious material can still be present in the environment, but just escaping 
from detection. Failure of detection can occur due to detection limits and/or because of inadequate 
sampling. In particular, if the environmental load is highly heterogenous, it may be very difficult to 
design an adequate sampling strategy, i.e. one obtaining a set of environmental samples that is 
representative for exposure. Representativity of environmental sampling results for the actual 
exposure is also becoming problematic when pathogens detected by environmental monitoring can 
be of a form that is not infectious to susceptible hosts. For example, PCR detected genetic material 
of pathogens may not come from live/infectious forms or may be detected in material that is not 
infectious for the hosts (e.g. pathogens transmitted aerobically detected in water) (Yang & 
Rothman, 2004).  
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Indirect indicators for pathogen presence in the environment may also be of interest and can be of 
two kinds. For specific systems, it is possible to measure some characteristics of environment, for 
example water turbidity to assess its contamination which is correlated with presence of 
Cryptosporidium (Brouwer, Weir, et al., 2017). Yet, for most systems finding such environmental 
indicators is not possible. The most generally applicable indirect detection method for infectious 
material remains the monitoring the infection of sentinel hosts placed in the environment. The 
observation of a (newly) infected host shows that the infectious material was present in the 
environment when transmission happened. Moreover, this type of indirect pathogen “detection” 
by definition, concerns only infectious forms of pathogens and pathogens residing in material that 
causes the actual (natural) exposure of the hosts. 

Here, we showed how the decay and diffusion of infectious material can be studied using 
transmission data provided in spatialotemporal resolution, i.e. combining host infection status 
observations with observations on host locations. Such data can be collected in animal transmission 
experiments or from outbreaks in the field, such as for example cases from seated events, hospital 
wards and animals housed in separate buildings, pens or fenced pastures. 

As our practical identifiability analysis shows that while the spatial resolution of data is crucial for 
the quality of parameter estimates, increasing the spatial resolution while keeping the same sample 
size is not beneficial when newly added areas are located in a region where the total probability of 
being infected during experimental period is much lower than the probability of escaping from 
infection. Combining data from at least two areas where the probability of being infected anytime 
during the experiment is not much different from the probability of escape seems to be the best 
sampling strategy to ensure practical identifiability when sample size is limited. This can be done by 
calibrating the experimental timespan and the spatial organisation of recipient areas based on the 
characteristic time and distance of the system for a set of design values for the parameters. Clearly, 
in many situations even the approximate parameter values may not be known. If suitable estimates 
of parameters are not available, literature data on time and distance dependence maybe be used 
to predict areas with suitable probability of infection. If such data is not available for the system at 
hand, a good option would be to inform the design by a pilot study where a wide distance range is 
covered, and the experimental timespan is flexible (e.g. observation until 1/3 of recipient hosts is 
infected or maximum period is reached). 

In summary, our analyses show that spatiotemporal sampling protocols based on host infection 
status and designed to quantify environmental transmission parameters, should take into account 
three requirements: 1) to sample the transient state(s) of the system; 2) to obtain a specified 
minimum spatial resolution of data; 3) to sample areas where the design value of the total 
probability of infected during experimental period is not much different from the probability of 
escape. If these requirements are fulfilled, inference can be made on the microscopic processes of 
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decay and dispersion of infectious material, together with estimate describing host dependent 
processes, using only host infection status data. 

Methods 
System 
The model we analysed accounts for decay and diffusion of infectious material and for the relevant 
host dependent processes. It uses areas occupied by source and recipient hosts as configuration 
parameters. The mathematical details were previously described in detail in Chapter 2 and derived 
in (van Bunnik et al., 2014). The environmental load density function published in Chapter 2 has 
three modes. Here, we analysed the second mode of this function (Equation 5) therefore assuming 
that in our system, the source is producing infectiously material continuously throughout the 
experimental period. 

To examine the structural identifiability based on observations for the equilibrium and transient 
states, we first analytically explored the one-dimensional version of the model. Next, we confirmed 
the findings for the two-dimensional version by performing numerical calculations. To examine the 
practical identifiability, we estimated parameters for various combination of simulated and 
experimental data using a constraint maximization algorithm we developed in Mathematica 12 
(Wolfram Research, 2019). 

Structural identifiability 
One dimensional model 
We calculated the time integrals in W(𝑡𝑡𝑡 𝑡𝑡|𝜌𝜌𝜌 𝜌𝜌𝜌 𝜌𝜌) (Equation 6) in 2 steps. First, the integral from  
𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡 was solved:  

W(𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡 𝑡𝑡|𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  ) = 𝜆𝜆
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Next, the limit 𝛥𝛥𝛥𝛥 𝛥 𝛥 was taken: 
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where the first term (for x>0) is used to derive Equation 6 presented in the Results section.  

To solve the model for equilibrium, we took the limit 𝑡𝑡 𝑡 𝑡, as follows:  

Weq(𝑥𝑥|𝛼𝛼𝛼 𝛼𝛼𝛼 𝛼𝛼) = lim�𝑡� W(𝑡𝑡𝑡𝑡𝑡 |𝛼𝛼𝛼 𝛼𝛼𝛼 𝛼𝛼) =

⎩
⎪
⎨
⎪
⎧𝜆𝜆 �����

�

�√�� 𝑥𝑥 𝑥 𝑥

𝜆𝜆 ����
�

�√�� 𝑥𝑥 𝑥 𝑥
    (17) 

Both, for obtaining these solutions and for developing the numerical calculations we used 
Mathematica 12 (Wolfram Research, 2019).  

Two-dimensional model 
For the two-dimensional model we performed a numerical analysis of the environmental load 
function for a predefined parameter set (α=0.15 day-1, β=0.40 day-1, D=0.013 m2day-1) and for a 
point source located in the point (0, 0). We used our maximization algorithm (see below) to estimate 
back the parameters using a likelihood function based on perfect data points for two points in space: 
(0.5, 0.5) and (1, 1). To study the system in equilibrium we mimicked the equilibrium state by 
calculating the probability of infection and generating log-likelihood function for day 1001 of 
observation for both space points. Based on the time profile of the environmental load density 
function we confirmed numerically that the system is in (close to) equilibrium state at this day for 
those two points, see Fig. 3.8. 

  

Figure 3.8. Environmental load density function 𝛽𝛽𝛽𝛽𝛽�(𝑡𝑡𝑡𝑡𝑡𝑡  𝑡𝑡|𝛼𝛼𝛼 𝛼𝛼) value for two points in space (0.5,0.5) and 
(1,1) as a function of time since the start of shedding, calculated for parameters values: α=0.15 day-1, β=0.40 
day-1, D=0.013 m2day-1 and a single point source located in point (0,0).   

For transient states we calculated the probabilities and generated the log-likelihood function for 
two scenarios. In scenario 1, we used two time points (both transient): day 1 and day 11. In scenario 
2, we used different time points: day 1 (transient) and day 1001 (representing the equilibrium). 

All log-likelihood functions are provided with a code on Zenodo with the identifier(s) 
[10.5281/zenodo.7428123](Gamża, 2023a).  
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Maximization algorithm 
We conducted all modelling and analysis in Mathematica 12 (Wolfram Research, 2019). 

For numerical analysis we developed an automatic constraint maximization algorithm to obtain 
point estimates for all three parameters, with respective confidence bounds and univariate profile 
likelihoods. The code for the algorithm is provided in Zenodo (Gamża, 2023a). 

As the log-likelihood functions we maximize are prone to return only local maxima when numerically 
maximized by the “NMaximize” function without constraints and as we, in addition to the 
maximum-likelihood estimates, need to obtain confidence bounds based on profile likelihoods, we 
developed a four-step constraint maximization algorithm. Each step is coded using one fully 
automatic function, and the schematic description of the algorithm is provided in Fig. 3.9. 
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Figure 3.9 Scheme of the constrained maximization algorithm. The detailed 
purpose-written code in Mathematica can be found in Zenodo 
[10.5281/zenodo.7428123] (Gamża, 2023a) 

In the first step, an initial profile generation was implemented by searching broadly using 
exponential bins within parameter space of one chosen parameter to find in which region the global 
maximum is most likely to be found and indicate constraints for the next step - constraint 
maximization. In the second step, constraint maximization is performed to find constraints for 
parameters and maximize the likelihood for all three parameters simultaneously. In the third step, 
the profile likelihood and confidence bounds are produced for each parameter. The profile 
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likelihood is calculated across a range designed to cover the region spanned by the 95% confidence 
bounds (based on the likelihood ratio test); to produce smooth profiles, any running parameter 
point profile values that most likely corresponded to a local maximum (log-likelihood value lower 
than both neighboring running parameter points) are detected and re-estimated using neighboring 
estimates as bounding box constraint on the search range; running parameter regions around the 
maximum-likelihood value and around the confidence bounds are sampled with a preset desired 
accuracy. The confidence bound values are determined from the profile likelihood. The last step is 
designed to check if the initially obtained maximum was indeed the global maximum: information 
from full profiles for all parameters is used to create new constraints to maximize the log-likelihood 
and compare to the previous maximum. The parameter estimates for the overall maximum are 
returned with confidence bounds as final output. 

Algorithm implementation for transmission data 
Bins used to estimate parameter values for both simulated and experimental data are presented in 
Table 3.3. The exponential profile was generated using an exponential profile bin list while the initial 
profile was generated by choosing from the initial profile bin list the parameter bins that covered 
the maximum-likelihood value and the confidence bounds. 

Table 3.3. Profile bins provided for the maximization algorithm to estimate parameters from transmission data. 

Exponential profile bins lists 
{d, {0.0005, 0.005, 0.05, 0.5, 5}}; 
{α, {0.0005, 0.005, 0.05, 0.5, 5., 50.}}; 
{β, {0.0005, 0.005, 0.05, 0.5, 5., 50., 500., 5000.}}; 

Initial profile bins lists1 

{{d, 0.0001, 0.0009, 0.0001}, {d, 0.001, 0.009, 0.001},  
{d, 0.01, 0.09, 0.01}, {d, 0.1, 0.9, 0.1}, {d, 1., 9., 1.}};  
{{α, 0.0001, 0.0009, 0.0001}, {α, 0.001, 0.009, 0.001},  
{α, 0.01, 0.09, 0.01}, {α, 0.1, 0.9, 0.1},   { α, 1., 9., 1.},  
{ α, 10., 90., 10.}}; 
{{β, 0.0001, 0.0009, 0.0001}, {β, 0.001, 0.009,  0.001},  
{β, 0.01, 0.09, 0.01}, {β, 0.1, 0.9,  0.1}, {β, 1., 9., 1.},  
{β, 10., 90.,  10.}, {β, 100., 900., 100.}, {β, 1000., 9000.,  1000.}}; 

1) each bin is in a form {parameter, {min value, max value, step size}} 

If confidence bounds were not found within the initial profile bins of the search region (given in 
Table 3.3), these would still be calculated using the algorithm when located between the following 
minimal and maximal values of parameters were used: for D min 10-5 and max 10 m2day-1, for α min 
0 and max 10 day-1, for β min 10-5 and max 1000 day-1.  Otherwise, the confidence bound was listed 
as infinite. All finite confidence bounds values were calculated with a numerical accuracy of 0.001. 

Simulated data 
We simulated data on a 4x4 m grid with 64 cells each of size 0.5x0.5 m. The (area) source of infection 
was located in the 4 central cells and was assumed to continuously shed infectious material during 
the whole experimental period. It was assumed that each cell can become infected only once 
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(equivalent of having one recipient host in each cell). We created 4 scenarios: 1) all grid cells were 
sampled; 2) only one distance band with cells on the diagonal of the grid was sampled, repeated for 
4 different distance bands; 3) 2 out 4 distance bands were sampled, repeated for all 6 possible 
combinations of distance bands; 4) all 4 distance bands were sampled. The scheme of areas included 
in scenarios 2-4 is shown in Fig. 3.4. The cells included in each scenario are presented in Table 3.4. 
For each repetition in each scenario the same total amount of data points was used: 128 cells 
sampled daily for 30 days. The function used to generate the simulated data is provided in Zenodo 
(Gamża, 2023a). 

Table 3.4. Recipient cells included in each scenario of simulated data analyzed. 

Scenario 1 All grid cells sampled 2 x 64 cells separated by various 
distances 

Scenario 2 Sampling of four equidistant cells 
located on diagonal 

A: 32 x 4 cells separated by 0.00 m 
B: 32 x 4 cells separated by 0.71 m 
C: 32 x 4 cells separated by 1.42 m 
D: 32 x 4 cells separated by 2.12 m 

Scenario 3 
Sampling of 8 cells separated by 2 
different distances; six versions with 
varying distances 

E: 16 x 4 cells separated by 0.00 m  
& 16 x 4 cells separated by 0.71 m 
F: 16 x 4 cells separated by 0.00 m  
& 16 x 4 cells separated by 1.42 m 
G: 16 x 4 cells separated by 0.00 m  
& 16 x 4 cells separated by 2.12 m 
H: 16 x 4 cells separated by 0.71 m  
& 16 x 4 cells separated by 1.42 m 
I: 16 x 4 cells separated by 0.71 m  
& 16 x 4 cells separated by 2.12 m 
J: 16 x 4 cells separated by 1.42 m  
& 16 x 4 cells separated by 2.12 m 

Scenario 4 Sampling of 16 cells separated by 4 
different distances 

K: 8 x 4 cells separated by 0.00 m  
&  8 x 4 cells separated by 0.71 m 
&  8 x 4 cells separated by 1.42 m  
&  8 x 4 cells separated by 2.12 m 

 

For each combination in each scenario the log likelihood function (being the sum of all log-likelihood 
functions of all groups in the combination) was automatically constructed and the algorithm 
described above was used to maximize the function and generate univariate likelihood profiles for 
all three parameters. The likelihood profiles for all combinations are provided as Supplementary 
Figure S3.1. 

Experimental data 
We used previously published data from C. jejuni transmission experiments between spatially 
separated broilers. The details on experimental design, the assumptions made in the likelihood 
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formulation, and experimental data were published in Chapter 2 and in (van Bunnik, 2014; van 
Bunnik et al., 2014). To study practical identifiability, we divided the data into 5 experimental data 
parts as presented in Table 3.2. 

We estimated parameters for all 31 combinations of experimental data parts: 1 combination with 
all 5 parts, 5 combinations with 4 parts, 10 combinations of 3 parts, 10 combinations of 2 parts, 5 
contaminations of 1 part. For each combination in each scenario the log likelihood function (being 
the sum of all log-likelihood functions of all data parts in the combination) was automatically 
constructed and our algorithm was used to maximize the function and generate univariate 
generated likelihood profiles for all three parameters. The likelihood profiles for all combinations 
are provided as Supplementary Figures S3.2-S3.4. 

Data and code availability 
The authors declare that data and computer code developed in Mathematica 12 (Wolfram Research, 
2019) supporting the findings of this study is available in Zenodo with the identifier(s) 
[10.5281/zenodo.7428123] (Gamża, 2023a). 
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Supplementary Figures S1 to S4: Full profile likelihoods 

 

Figure S3.1. Full likelihood profiles for all three model parameters for a set of 12 experimental design scenarios, 
obtained from simulated data using given parameter values (α=0.15 day-1, β=0.40 day-1, D=0.013 m2day-1); (see 
main manuscript for details). 
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Figure S3.2. Full likelihood profiles for the decay rate parameter α obtained for various combinations of 
experimental data parts from Campylobacter transmission experiments between spatially separated broilers 
differing in spatio-temporal design (see main manuscript for details) 
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Figure S3.3. Full likelihood profiles for the transmission rate parameter β obtained for various combinations of 
experimental data parts from Campylobacter transmission experiments between spatially separated broilers 
differing in spatio-temporal design (see main manuscript for details) 
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Figure S3.4. Full likelihood profiles for the diffusion coefficient obtained for various combinations of experimental 
data parts from Campylobacter transmission experiments between spatially separated broilers differing in 
spatio-temporal design (see main manuscript for details) 
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Abstract 
Spatial host density can be an important determinant of transmission in host-pathogen-
environment systems, particularly in situations where social behaviour of the hosts is strictly 
confined within a given area such as for a seated audience or for livestock separated in smaller 
groups. Considering that most infectious agents are transmitted between hosts via the 
environment, here we explore the use of environmental transmission models to understand how 
transmission depends on host density. We first provide a generic viewpoint based on analytical 
arguments and subsequently study a number of specific spatial host mixing scenarios. The 
numerical study uses a parsimonious spatial modelling approach in which both infectious and 
recipient (susceptible) hosts are represented by individual areas they occupy, and where the host 
mixing scenarios are defined by constraints on host movement. Our results suggest that for 
uniform, unconstrained spatial host mixing, a linear dependence of R0 on host density is obtained, 
as expected. For a scenario where the movement of each host is constrained within a sufficiently 
small individual area while these areas can overlap or be adjacent, the linear dependence is still 
present, although the R0 is much lower than for the unconstrained scenario. As we argue from 
analytical reasoning, for mixing scenarios with either host clustering behaviour or spatial 
distancing of hosts, non-linear relationships between R0 and host density are expected. In the host 
clustering scenario, for a given host density the R0 is bigger than in the uniform mixing scenario, 
while in the spatial distancing scenario the opposite result is obtained. The deviations from 
linearity can be substantial, and our numerical results obtained for spatial distancing scenarios 
provide an indication for which scenarios and parameter settings these deviations cannot be 
neglected. In such cases, obtaining data on the density dependence of 𝑅𝑅�, for example in animal 
transmission experiments, could potentially allow inference on the host mixing pattern in 
combination with the spatial range of environmental transmission. 
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Introduction 
Spatial host density can be an important determinant of transmission risk in host-pathogen-
environment systems. In particular, when social behaviour of the hosts is strictly confined within 
a given area such as for livestock housed in small, separated groups or for a seated audience, 
spatial host density is a parameter that can both be clearly defined as well as be relevant to 
transmission. The problem of how transmission scales with density of hosts is important for the 
extrapolation of small-scale animal transmission studies to field situations with a different animal 
density. Additionally, a difference in host density may be encountered when comparing one 
husbandry system to another (e.g. intensive and organic animal farming) or when comparing 
different periods in time for the same system (e.g. before and after thinning in broiler farming). 
We note that for constant host density, the related scaling issue of transmission with population 
size is addressed in (Bouma et al., 1995; De Jong et al., 1994) 

The notion of host density as a parameter underlying pathogen transmission and control extends 
of course to pathogens in human populations as is apparent from intervention measures during 
the recent SARS-CoV-2pandemic  that were not only based on host distancing but also implicitly 
on reducing the local host density (Nightingale et al., 2021; Smith et al., 2021). Among these are 
the intervention strategies aimed to limit the number of hosts that can be present in a given space 
(e.g. visitors’ or travellers’ limits), and the ones assigning spatial locations (seats) to hosts.  

Thus far, the host-density dependence of pathogen transmission has not been studied in detail 
from an environmental transmission viewpoint. Related earlier work is mostly directed towards 
answering the question how the transmission risk scales with population size in non-spatial models 
(Bouma et al., 1995; De Jong et al., 1994). While change in population size may result in change of 
density it is not always the case. Yet the earlier work did consider host density as a determinant, 
as is manifest from the concept of “density dependent mixing” next to ”frequency dependent 
mixing” (Begon et al., 2002).  

As for most host-pathogen systems the pathogen is transmitted from one host to another via the 
environment we believe that it has a broad relevance to study the effect of host density on 
transmission from an environmental transmission viewpoint. Environmental transmission may 
occur when a recipient host is exposed to infectious material at a certain location in the 
environment, which has accumulated there as a result of previous shedding by infectious hosts, 
not necessarily at that location, and subsequent dispersal and decay of the infectious material. 
Therefore, we here use a mathematical model for environmental transmission that takes into 
account the processes involved: shedding, dispersal, decay and absorption of infectious material, 
and the response to the dose that is absorbed. The environment in the model is explicitly spatial 
such that the release of infectious material at the locations of infectious individuals through time 
can be mathematically “propagated” to the exposure arising at a given time at the location of a 
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susceptible individual (van Bunnik et al., 2014)(Chapter 2). Using the spatial approach, we discuss 
density dependence of R0 for uniform mixing, as well as clustering and distancing of hosts. We 
defined a number of specific spatial host mixing scenarios by imposing constraints on host 
movement. Next, we explored the host-density dependence of transmission, by calculating how 
the density of hosts may influence the basic reproduction ratio R0 for these different scenarios. 

Methods 
Diffusion-based environmental transmission model:  
The spatial environmental transmission model we use was previously published in (van Bunnik et 
al., 2014)(Chapter 2). The two-dimensional diffusion is a parsimonious model for the dispersal of 
infectious material through the environment through time, and assumes that the infectiousness 
of the material declines exponentially with sojourn time in the environment (i.e. time since 
shedding). Each individual host is described with a location of a movement area of given 
dimensions - the source area 𝐴𝐴inf. Shedding of infectious material by infectious hosts is assumed 
to lead to a uniform contamination of the host movement area. Similarly, the exposure level 
experienced by susceptible individuals is assumed to be determined by the average infectious 
material load across their movement area – the exposure area 𝐴𝐴exp. The infectious material is 
described in our model by an environmental load density function 𝑊𝑊(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝜌𝜌𝜌 𝜌𝜌𝜌 𝜌𝜌) which serves 

as a continuous, mean-field description of the spatio-temporal distribution of infectious material. 
As described in Chapter 3, the relative density function 𝑊𝑊�(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝛼𝛼𝛼𝛼𝛼 )  ≡ �

� 𝑊𝑊(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝜌𝜌𝜌 𝜌𝜌𝜌 𝜌𝜌) 

depends only on two parameters, namely the decay rate parameter 𝛼𝛼 and the diffusion coefficient 
𝐷𝐷, whilst 𝑊𝑊(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝜌𝜌𝜌 𝜌𝜌𝜌 𝜌𝜌) is the solution of the two-dimensional reaction-diffusion equation with 
decay: 

��
�� 𝑠 𝜌𝜌 ����

��� + ���
��� � � 𝜌𝜌𝑊𝑊 + 𝜌𝜌𝑠𝑠,         (1) 

where  𝑠𝑠 𝑠 𝑠𝑠(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) is the spatiotemporal infectivity pattern determined by the location and 
dimensions of the movement areas of each infectious host and their shedding period, during which 
the infectious material is assumed to be produced continuously with constant shedding rate 𝜌𝜌 and 
uniformly across the host’s movement area. For reasons of unidentifiability, the relative 
environmental load density function is defined (𝑊𝑊�(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝛼𝛼𝛼𝛼𝛼 )), and magnitude of the shedding 
rate 𝜌𝜌𝜌is absorbed into the transmission rate parameter 𝛽𝛽, and its unit of 1/day is absorbed into 
the infectivity pattern 𝑠𝑠. Considering an infectivity pattern 𝑠𝑠 consisting of one movement area 
shared by a number of infectious (i.e. infectivity shedding) hosts, we define the source strength 
configuration parameter 𝑄𝑄 for that area as the number of infectious hosts per one day divided by 
the size of the movement area in m2.This scaling corresponds to the assumption that when a given 
host has larger area available, it will spend on average less time in one particular location, resulting 



Using spatial modelling to explore the host-density dependence of R0 

Ch
ap

te
r 4

121
 

in correspondingly reduced shedding at that location. Then the solution to Equation 1 reads as 
follows: 

𝑊𝑊�(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝛼𝛼𝛼 𝛼𝛼) = 𝑄𝑄 ∑ � ∬ �
���(���) ��� �𝑡𝛼𝛼(𝑡𝑡 𝑡 𝑡𝑡) − (����)��(����)�

��(���) � 𝑑𝑑𝑡𝑡� 𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑�inf�
�����𝑡����

���
𝐼𝐼 , (4)  

where ∑  � is the sum over the set of source areas, described with source infectivity pattern s. The 
infection probability across an exposure time interval [𝑡𝑡�, 𝑡𝑡�] of a given recipient individual with 
exposure area 𝐴𝐴exp is given by: 

Pinf�𝑡𝑡�,𝑡𝑡�, 𝐴𝐴exp� = � 𝑡 ��� [𝑡� 𝐸𝐸 � ∬ 𝑊𝑊��exp
(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝛼𝛼𝛼 𝛼𝛼) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��

��
],      (5) 

where 𝐸𝐸𝐸is the exposure dilution configuration parameter defined as the host density of the 
recipient exposure area (measured as one host per size of the exposure area in m2). On the one 
hand, the exposure model is based on the notion that in some unspecified manner, recipient hosts 
absorb infectious material from the environment. On the other hand, the absorption of infectivity 
is assumed to be small enough to neglect any resulting reduction in the remaining environmental 
load. In line with this, in our model there is also no competition between hosts for the infectious 
material when their movement areas overlap. The definitions of the three model parameters and 
their units are listed in Table 4.1, spatiotemporal configuration parameters as used in the 
calculated scenarios are listed in Table 4.2. 

Table 4.1. Parameters of the spatial model of environmental transmission. 

Parameter Symbol Units 

Decay rate parameter α [day-1] 

Transmission rate parameter β [day-1] 

Diffusion coefficient D [m2day-1] 

 

Table 2. Spatiotemporal configuration parameters as used in the calculated scenarios. 

Parameter Symbol and value Units 

Shedding period of the infected hosts �𝑇𝑇��, 𝑇𝑇���= (3, 10) [day] 

Exposure period of the recipient hosts [𝑡𝑡�, 𝑡𝑡�]= (0, 100) [day] 

Source strength parameter  𝑄𝑄 [m-2day-1] 

Exposure dilution parameter 𝐸𝐸 [m-2day-1] 
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Spatial host mixing scenarios and 𝑅𝑅� 
First, we will use analytical arguments to derive the expected shapes of the host-density 
dependence of 𝑅𝑅� for three types of spatial host mixing: spatially uniform mixing, host clustering 
and host distancing. Second, to confirm the findings from the analysis we use the diffusion-based 
environmental transmission model to explore several specific homogeneous mixing and distancing 
scenarios in more detail. This is done by numerically calculating 𝑅𝑅� as the expected value for the 
number of newly infected recipients by a single primary infective with source area 𝐴𝐴inf and 
shedding period [𝑇𝑇�, 𝑇𝑇�] in an otherwise susceptible population as follows: 

𝑅𝑅� = ∑ Pinf�𝑡𝑡�,𝑡𝑡�, 𝐴𝐴exp
� �� .               (6) 

To keep the computational intensity tractable, this calculation of R� neglects local depletion 
effects that are to be expected if transmission takes place across a sufficiently short spatial range 
in a spatial setting (Boender et al., 2007; Danon et al., 2011; Diekmann et al., 1998). For all 
scenarios we assume that all individuals have a movement area of the same size (but in general, 
each one is located at a different point in space). For ease of calculation, the locations of all 
individual recipient movement areas are chosen from a regular two-dimensional grid. For 
scenarios in which movement area configurations were chosen randomly, we performed 100 
(scenario III) or 50 (scenario IV) realizations for each host density considered. Full spatial 
configurations for all realizations are provided with the code in Zenodo 
[10.5281/zenodo.7430198](Gamża, 2023b). We use absorbing boundary conditions, which means 
that infectious material can diffuse outside the total environmental area considered. We use a 
10m x 10m total area with grid cell size of 0.25m x 0.25m, i.e. consisting of 1600 grid cells. In order 
to explore how the decay rate parameter and diffusion coefficient influence the host-density 
dependence of 𝑅𝑅�, we considered four sets of parameter values, all with constant transmission 
parameter 𝛽𝛽=0.37 day-1, and with values for 𝛼𝛼 and 𝐷𝐷 as listed in Fig. 4.1.  
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Figure 4.1 Time evolution of the total environmental load integrated across an environmental area of 100 m2, for 
a primary infectious host shedding from 𝑇𝑇�=3 day to 𝑇𝑇�=10 day. 

Parameter set 1 corresponds to parameter estimates obtained for Campylobacter in broilers based 
on data from indirect transmission experiments (Chapter 2). In addition, a stocking density of one 
broiler per 0.25m x 0.25m grid cell, i.e. 16 broilers per square meter, is representative for stocking 
densities on broiler farms in the EU (Council Directive 2007/43/EC, 2007). The infectious individual, 
located in the centre of the grid, was assumed to have a  shedding period extending from day 3 
(𝑇𝑇�) until day 10 (𝑇𝑇�), and the total exposure time for the recipient hosts was 100 days, which for 
all parameter sets considered was long enough for the total environmental load to have declined 
to a negligible level, as can be seen from Fig. 1.  

In Fig. 4.2 we show the spatial shape of the time-integrated total environmental load for the four 
parameter sets considered, illustrating how these parameters sets differ in terms of the spatial 
range covered by viable infectious material spreading outside the movement area of the shedding 
host. Whilst for parameter set 2 the spatial range covered by viable infectious material extends for 
a small part to outside the total environmental area considered, for the other three parameters 
sets this is not the case and therefore for these three sets no strong border effect is expected to 
occur in the calculation of 𝑅𝑅�. 
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Figure 4.2. Spatial shape of the time-integrated environmental load for a primary infectious host 
shedding from 𝑇𝑇�=3 day to 𝑇𝑇�=10 day, integrated across an observation period from 𝑡𝑡� =0 day to  
𝑡𝑡� =100 day. 

Detailed spatial host mixing scenarios 
An overview of the five detailed mixing scenarios is given in Table 4.1.  

Table 4.1. Overview of five detailed mixing scenarios. The scenarios I and III are of ‘spatially homogeneous 
mixing’ type; the scenarios II, IV and V are of ‘host distancing’ type.  

Scenario Host movement 
within local area 

Random 
configurations 

Scenario I: Uniform mixing No N/A 
Scenario II: Uniform host density with non-overlapping movement areas  Yes No 
Scenario III: Poisson-process mixing Yes Yes 
Scenario IV: Poisson-process mixing with non-overlapping movement areas Yes Yes 
Scenario V: Maximal distancing Yes No 

Scenario I: Uniform mixing 
All host movement areas fully overlap, all being equal to the full environmental area; this means 
that all hosts can freely move across the whole environmental area whilst either shedding or 
absorbing infectious material. This scenario corresponds to a situation where no particular piece 
of environment is preferred by any particular host, hosts are moving randomly independent of 
other hosts, and the speed of movements is fast enough for an individual to (to a good 
approximation) uniformly visit the full environmental area well within the time period of shedding 
and/or exposure. 
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Scenario II: Uniform host density with non-overlapping movement areas:   
The full environmental area is divided into adjacent host movement areas, with each area being 
occupied by one host. For this scenario, different values for the host density were obtained by 
scaling the size of the total area, whilst keeping the total number of 39601 movement areas 
constant, the big sample size was possible because of the symmetry of the system only a portion 
of areas had to be sampled to extrapolate over whole area (see Fig. 4.3). 

 

 

Figure 4.3. Uniform host density with non-overlapping movement areas: three examples of the different area scales 
considered to obtain results for different host density values; Shown is only a central fragment of the total 
environmental area; the source of infection localised in the middle (red rectangle) due to the symmetry of the sampled 
area, probability of infection was sampled only for a fragment of the grid (blue rectangles) and extrapolated to the 
whole area. 
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Scenario III: Poisson-process mixing 
Individual host movement areas are small compared to the full environmental area, can overlap 
and are placed randomly according to a two-dimensional Poisson process (see Fig. 4.4 for the 
example of randomly generated host movement areas). This scenario and all further scenarios 
below correspond to situations where hosts are moving only through a small piece of the 
environment within the period of shedding and/or exposure. 

 

 

Figure 4.4. Poisson-process mixing: Two examples of randomly generated host movement areas, based on the two-
dimensional Poisson process, for each of four different host-density values. Shown is only a central fragment of the 
total environmental area; the source of infection located in the middle of the grid (red rectangle); the random 
realizations were constructed by first drawing the total number of hosts from a Poisson distribution with a mean 
corresponding to the value of the host density considered and then randomly adding the host movement areas; partial 
or total overlap of areas was allowed.  

  



Using spatial modelling to explore the host-density dependence of R0 

Ch
ap

te
r 4

127
 

Scenario IV: Poisson-process mixing with non-overlapping movement areas 
Host movement areas cannot overlap and are placed randomly (see Fig. 4.5 for the example of 
randomly generated host movement areas). This scenario corresponds to situations where hosts 
have exclusive movement territories. 

 
Figure 4.5. Random local mixing with non-overlapping host movement areas: two examples of randomly generated 
host movement areas for each of four different host-density values. Shown is only a central fragment of the total 
environmental area; the source of infection located in the middle of the grid (red rectangle); the random realizations 
were constructed by first drawing the total number of hosts from a Poisson distribution with a mean corresponding 
to the value of host density considered and then adding the host movement areas one by one to the grid using 
randomly proposed locations not creating overlap with movement areas already present, until the total number of 
hosts was reached or until there was no suitable location left (if the second case occurred, for that data point the host 
density was calculated a posteriori as the mean across the 50 realizations). 
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Scenario V: Maximal host distancing 
Individual host movement areas are placed with maximum distance to their neighbours’ (see Fig. 
4.6). This model corresponds to situations where host have assigned spots or seats such that they 
are separated for each other by the largest distance possible for the given host density value, e.g. 
seating of audiences or placement of cages in animal exhibitions. For high density values we allow 
host movement areas to overlap.  

 

Figure 4.6. Maximal host distancing: configurations of host movement areas used for increasing host density. Shown 
is only a central fragment of the total environmental area; the source of infection located in the middle of the grid 
(red rectangle); for each density areas were distributed such that they are separated from each other by the maximum 
distance possible, considering the fixed environmental area available. 

Results 
Analytical arguments 
We assume a given finite spatial range of transmission around a movement area of an infectious 
individual beyond which the environmental load is negligible, as illustrated by Fig. 4.2. 

Case 1 
In the first case, we consider situation when all individual host movement areas coincide with the 
full environmental area considered (this applies to the uniform mixing scenario I). As the areas 
where infected individuals shed infectious material and the exposure areas of recipient individuals 
coincide, the model is reduced to an effectively non-spatial model. Under the assumption, made 
in the environmental transmission model we consider, that the loss of environmental load due to 
absorption of infectious material by a recipient host is negligibly small, it is easy to see that the 
expected number of secondary cases arising from a single infectious host is then proportional to 
the total number of hosts minus one (discounting the primary infective itself). For a large enough 
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population this is well approximated by the total number of hosts, and therefore 𝑅𝑅� is, to a good 
approximation, proportional to the host density. 

Case 2 
In this case, the individual host movement ranges are smaller than the spatial range of 
transmission (this applies to mixing scenarios III-V). First, we note that, assuming a given spatial 
range of transmission (which we denote by 𝑟𝑟T), we may for any specific location define the local 
host density using a circular area centered at that location and with a radius equal to the range of 
transmission; namely as �

�(�T)�
, with 𝑛𝑛 the number of hosts with movement area that is located 

within the circular area of transmission. Second, we note that the expected number of secondary 
infections from a given primary infective at any specific location is proportional to the local density 
of neighboring individuals within the range of transmission, i.e. within the circular area. In other 
words, this number is proportional to 𝑋𝑋 𝑋 𝑋, where 𝑋𝑋 is the local number of hosts within the 
circular transmission area, and the −1 serves to discard the primary infective from the count. 𝑅𝑅� 
can then be written as proportional to the average value of 𝑋𝑋 𝑋 𝑋 across all possible selections of 
the primary infective within and across random spatial host configurations. Considering that the 
local number of hosts from which the primary infective is randomly selected in the calculation of 
this average is (again) proportional to the local host density, this average value can be written as 
being proportional to a weighted spatial average as follows: 

𝑅𝑅�~ 〈�(���)〉
〈�〉 = 〈𝑋𝑋〉 + ��(�)

〈�〉 −1 .             (7) 

This is reminiscent of a similar result for a “network of acquaintances”(Diekmann et al., 1998), and 
it states that 𝑅𝑅� is proportional to the sum of the mean host density 〈𝑋𝑋〉 and the host-density 
variance-to-mean ratio minus one. For Poisson variation in the local host density, the variance-to-
mean ratio equals one so that the relationship simplifies to 𝑅𝑅�~〈𝑋𝑋〉, i.e. it states that the 
transmission intensity scales linearly with host density (corresponding to the ‘density-dependent 
mixing’ assumption). If the local density distribution is over-dispersed (variance-to-mean ratio >1), 
which is the case if hosts tend to cluster (flock together) e.g. due to social behavior or preference 
for certain parts of environment, Equation (7) predicts that this enhances 𝑅𝑅� relative to a situation 
with Poisson variation. In contrast, if the local density distribution is under-dispersed (variance-to-
mean ratio <1), which is the case if hosts avoid each other e.g. due to social distancing, Equation 
(7) predicts that this reduces 𝑅𝑅� relative to a situation with Poisson variation. Finally, we note that 
for high host densities, deviations from Poisson variation in the local host density will start to 
average out within the local transmission range. This implies that for high host density, the density-
dependence curves for Poisson-process mixing, host clustering and host distancing will be 
approaching each other asymptotically. From these considerations it follows that for host 
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clustering and host distancing scenarios the scaling of transmission intensity with host density will 
exhibit the nonlinearities depicted in Fig. 4.7. 
 

 

Figure 4.7. General picture for the host-density dependence of 𝑅𝑅� for environmental transmission depending on the 
spatial host-mixing scenario, as arising from Equation (7) and further considerations.            

Results for detailed scenarios 
Density dependence curves generated for the first three scenarios and for all parameters sets are 
presented in Fig. 4.8. 
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Figure 4.8. Host-density dependence curves for three scenarios: Scenario I (Uniform mixing), Scenario II (Uniform host 
density with non-overlapping movement areas), Scenario III (Poisson-process mixing) for four parameter sets. 

For parameter set 1 and 3, for all the densities the R0 value is much larger for the uniform mixing 
scenario (Scenario I), where host were allowed to move through the whole environment, than for 
than for Scenarios II and III where host movements were constrained: uniform host density with 
non-overlapping movement areas (Scenario II) and Poisson-process mixing (Scenario III). This 
indicates that intervention strategies aiming at constraining movements of hosts would be 
effective for systems where the diffusion of infectious material, across a median between-host 
distance, is slow relative to the infectivity decay. For parameter sets 2 and 4, for all densities the 
value of R0 is smaller for the uniform mixing scenario than for remaining two scenarios. As these 
two parameters sets characterise systems with relatively fast diffusion and the environment is 
assumed to have an absorbing boundary, in the uniform mixing scenario some portion of infectious 
material is diffusing away from the whole environment. Assuming reflective boundary conditions 
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(such that all material stays in the environment), for all densities the value of R0 for the uniform 
mixing scenario is slightly larger than for the remaining two scenarios (see Fig. S4.1).  

Density dependence curves obtained for the scenarios III-V and for all parameters sets are 
presented in Fig. 4.9.  

 
Figure 4.9. Host-density dependence curves for three scenarios: Scenario III (Poisson-process mixing), Scenario IV 
(Poisson-process mixing with non-overlapping movement areas), Scenario V (Maximal  distancing) for four parameter 
sets. 

For the scenarios III-V, the results agree with the pattern predicted in Fig. 4.7 based on our 
analytical arguments. The Poisson-process mixing yields a linear dependence, and Maximal 
distancing scenario V shows the expected nonlinearities, which are most pronounced for 
parameter set 3 which has the shortest transmission range. Scenario IV, Poisson-process mixing 
with non-overlapping host movement areas, also yields a nonlinear dependence, with 𝑅𝑅� values 
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below that of the unconstrained Poisson scenario (scenario III). For this scenario, a maximum host 
density is reached as expected from not allowing host movement areas to overlap.  

Discussion 
Here, we used an environmental transmission viewpoint on the host-density dependence of 𝑅𝑅�. 
We presented analytical arguments for the expected linear or nonlinear shape of this host-density 
dependence depending on host spatial mixing characteristics (uniform mixing, clustering and 
distancing), and demonstrated how a parsimonious spatial environmental transmission model can 
be used to study this in detail for various mixing scenarios. We considered five such detailed 
scenarios, including two with different forms of spatial uniformity, and three further ones allowing 
for spatial variation in local host density.  

In scenario I, we assumed uniform mixing, i.e. that hosts can move freely within the whole 
environment and visit every space point with equal probability. This corresponds to a non-spatial 
limit of the system, and we observe a linear host-density dependence for each of the considered 
parameter sets, consistent with expectations  based on analytical arguments. When comparing 
scenario I to scenario II, where host movement areas are non-overlapping, but host are 
homogenously distributed across the environment, 𝑅𝑅� is reduced in comparison to homogenous 
mixing (Fig. 4.8) when infectious material spreads slowly. Similar observation can be made when 
comparing scenario I to scenario IV, where host movements are constrained by a relatively small 
movement area, but the location of the recipient areas is chosen randomly. This corresponds to 
the intuition that for the same host density, an event where hosts movements are constrained e.g. 
have been assigned homogenously distributed spots (e.g. seats) would be significantly safer than 
event where hosts can move freely for pathogens that spread slowly. Interestingly, when 
infectious material spreads quickly, R0 is reduced for the uniform mixing scenario as long as it is 
assumed that infectious material can escape out from the environment. As for our scenarios with 
constrained hosts the source was located in the middle of environment and thus away from the 
borders of the environment, only a small portion escaped from the environment, such that hosts 
were ultimately exposed to more infectious material than in the uniform mixing scenario. 

For detailed scenarios where movement ranges of individual hosts are smaller than the spatial 
range of transmission (scenarios III-V), the results conform to the pattern predicted based on 
analytical arguments, showing nonlinear behaviour for a maximal distancing scenario that is most 
pronounced for relatively short-ranged environmental transmission (parameter set 3). For a given 
host density, the maximal distancing scenario yields a lower 𝑅𝑅� than for the Poisson-process 
mixing, as is expected for host distancing, cf. safe distance policies, such as those that were 
implemented during SARS-CoV-2pandemic. A scenario of Poisson-process mixing with non-
overlapping host movement areas, also yields a nonlinear dependence, which we interpret as 
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being a result from the host distancing that is caused by not allowing overlap of host movement 
areas.  

In our model we assumed that recipient hosts are not in competition for infectious material, which 
means that the exposure experienced by a host at a given location is not influenced by with how 
many other hosts the access to this location is shared. This assumption may be appropriate e.g. 
for airborne transmission if the fact that one host inhaled pathogens has negligible influence on 
the probability of infection for the second exposed host that is located nearby. For systems where 
the access to infectious material may be reduced when host are sharing the same part of 
environment, for example because they would need to compete for resources such as for access 
to food or water source the competition should be implemented in a model by appropriately 
scaling the force of infection that particular infectious host experiences. 

We note that our calculation of R� neglects local depletion effects that are to be expected if 
transmission takes place across a sufficiently short spatial range (Boender et al., 2007; Danon et 
al., 2011; Diekmann et al., 1998). It remains to be investigated in what way such effects would 
influence the non-linear host-density dependences observed. 

The reduction of R0 for scenarios with constrained hosts indicates that indeed, constraining 
mobility of hosts is an effective intervention strategy, and the effect size depends on the speed of 
dispersion (the smaller the diffusion parameter, the more reduction is observed) and the 
distancing strategy (with the most reduction observed for scenario with maximal distancing). 

The deviations from linearity in the density dependence of R0 we observe can be substantial, and 
our results provide an indication for which scenarios and parameter settings these deviations 
cannot be neglected. In such cases, obtaining data on the density dependence of 𝑅𝑅� could allow 
inference on the host mixing pattern combined with the spatial range of environmental 
transmission. 

To explore this type of inference in a controlled way, the density dependence of R0 can be studied 
in transmission experiments. In the past, transmission experiments were designed to study 
transmission in populations of varying sizes (Bouma et al., 1995), whilst keeping the density 
constant. Moreover, experiments with host separated in space were conducted and used 
previously to validate the environmental transmission model we used here (Chapter 2) (van 
Bunnik, 2014; van Bunnik et al., 2014). While we studied the distance dependence of transmission 
in those experiments, the density dependence was not an objective of that work. For human 
studies, data from small outbreaks in well controlled environments, such as in certain public events 
or mass transport vehicles can potentially be used to compare the density dependence of R0 for 
various distancing strategies. 
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Overall, the methods presented here, once validated with data can be used to quantify the effect 
of intervention strategies aimed at constraining host movement and/or imposing distancing rules. 
Moreover, they can be a basis for a systematic study of density dependence needed to compare, 
aggregate and/or extrapolate the transmission studies. 

Data and code availability 
The authors declare that data and computer code developed in Mathematica 12 (Wolfram 
Research, 2019) supporting the findings of this study is available in Zenodo with the identifier(s) 
[10.5281/zenodo.7430198] (Gamża, 2023b) 
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Supplementary Information 
Using spatial modelling to explore the host-density dependence of R0 for environmental 
transmission 

Supplementary Figure S4.1 

 

Figure S4.1. Host-density dependence curves for three scenarios: Scenario I (Uniform mixing) for absorbing and 
reflective boundary conditions, Scenario II (Uniform host density with non-overlapping movement areas), Scenario III 
(Poisson-process mixing) for four parameter sets. 
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All main mechanistic modelling approaches to infectious disease transmission, such as 
compartmental mass action based models (Heesterbeek, 2005), network models (Bansal et al., 
2010; Danon et al., 2011) or individual based simulation models (Willem et al., 2017) used to study 
transmission of infectious disease are based on the concept of contact that infectious hosts have 
with susceptible (recipient) ones. While such approaches are suitable for directly transmitted 
disease or ones that can be approximated that way, for many host-pathogen-environment 
systems, the last part: the environment that surrounds hosts should be considered to quantify the 
transmission and ultimately find and test suitable intervention strategies. While the modelling 
approaches mentioned are often applied to environmental transmission (for example by 
introducing the environmental compartment), their contact-based structure hampers the study of 
the processes underlying the environmental stage of transmission. As these processes are 
generally not well understood, it is often not known how infectious hosts contact the environment 
to deposit infectious particles nor how recipient hosts contact the environment to absorb the 
infectious particles. As has been shown in this thesis and elsewhere (Brouwer, Weir, et al., 2017), 
those two processes are not separately identifiable during parameter inference using host status 
data. 

In this thesis, I have examined transmission of infection from an infectious material perspective 
using models based on an environmental load density function that describes the spatiotemporal 
relationship between the host presence and the probability of transmission. The parsimonious 
model, presented here, focuses on the two most important processes happening in the 
environment: the decay and spatial dispersion of infectious material and host dependent process 
described by joint parameter (transmission rate). In this thesis I have used C. jejuni in broilers as a 
model system to prove that such modelling can be combined with host status data to obtain 
valuable methodological and biological insights. I went through calibration and validation (Chapter 
2, Chapter 3) of our parsimonious environmental transmission model with data from tailor-made 
transmission experiments and demonstrated how it can be applied to study density dependence 
of transmission for various systems (Chapter 4).  

Modelling and data framework development cycle 
To create useful methodology to study the mechanisms underlying poorly known biological 
systems, such as environmental transmission of infectious diseases, modelling frameworks should 
be developed together with data frameworks. The development is a cycle of constructing 
mathematical models and designing new experiments or sampling protocols that can be used to 
calibrate and validate the models. It usually starts with formulation of the simplest model that can 
possibly explain the observations using the hypothesised mechanisms. Next, the model is 
challenged with data to check if it can be calibrated and validated. If calibration fails, e.g. no 
optimal parameter values are found or the confidence bound are infinite (or too broad to make 
any biological conclusions) the decision has to be made whether the model needs to be adjusted 
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or if new data needs to be gathered. If validation fails and there is enough confidence to reject the 
first model, a subsequent model has to be formulated and tested with the data. The main goal of 
the cycle is to obtain a mechanistic, (yet as simple as possible) model that can usefully depict the 
reality, together with data gathering protocols of how to obtain sufficient data quality and quantity 
to use the model for various systems, e.g. to assess the efficacy of intervention strategies. 

 

Figure 5.1. Schematic representation of the modelling and data-framework development cycle. 

In this thesis, I applied the development cycle to tailor the modelling and data framework to study 
mechanisms underlying environmental transmission. The spatial model describing environmental 
transmission with decay and diffusion of infectious material was previously presented in (van 
Bunnik et al., 2014); compared to the model presented in the thesis, the previous version of the 
model had one more parameter (carrying capacity). In Chapter 2, we show that with newly 
gathered transmission data of improved spatial resolution a simpler, three-parameter model 
version can satisfactorily explain the experimental observations. Therefore, after confronting the 
model with data, we decided to accept the simpler version of the model to follow the principle of 
parsimony. 
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To calibrate the previous model, the available data was from C. jejuni transmission experiments 
where recipient broilers were separated from the infectious ones by a fixed distance band (van 
Bunnik et al., 2014). The model was not identifiable with these data (see Chapter 2), which in 
Chapter 3 we confirmed to be due to insufficient spatial resolution. So in (van Bunnik et al., 2014) 
the additional data from a separate survival experiment was used to estimate the decay rate 
parameter. As we show in Chapter 2, the estimate from the survival experiment was not 
representative of the survival of infectious form(s) of Campylobacter contributing to the 
transmission. We designed and conducted a (new) series of experiments in which the spatial 
resolution was enhanced − various distance bands were added, including experimental groups 
designed to study transmission across extremely short distances (infectious and recipient hosts 
housed together). In Chapter 3, we demonstrate that data from these new experiments was crucial 
to obtain informative parameter estimates. In Chapter 2, we show that using all (previous and 
new) experimental data, all three parameters can be estimated using transmission data only. 
Additionally, we show that the estimated decay rate gives a model fit that is much better than the 
fit generated using the (significantly different) value for the decay rate estimated from the survival 
experiment. In summary, we gathered data from new sources − transmission experiments that 
were tailored to the model in mind and thanks to that we were able to successfully calibrate and 
validate the model aimed to study mechanisms of the environmental transmission from an 
infectious material perspective. Consequently, we provided insight into processes underlying 
environmental transmission of C. jejuni in broilers (Chapter 2), sampling strategy protocols for 
future studies of environmental transmission for other systems (Chapter 3) and provided validated 
tools to start the study of density dependence on transmission looking from an infectious material 
perspective (Chapter 4). 

The lattice organised spatial models, used to study the density dependence of transmission in 
Chapter 4, represent the first step of the new cycle of creating modelling and data framework 
specifically designed to study density of transmission of environmentally transmitted infectious 
diseases. The next (future) step would be to gather data tailored to validate the presented models 
and decide if they can be rejected or developed further. 

Methodological challenges 
Biological models, when developed, need to be supported with data to check their validity and 
form biologically relevant conclusions. Many mechanistic models are developed to describe 
transmission of infectious diseases, unfortunately often these models are not connected to data 
that is or may be acquired nor describe what kind of data can be obtained in the future to validate 
their findings. In a recent review, it has been shown that for environmentally transmitted zoonotic 
diseases, such as Campylobacter spp., the calibration and validation of the models, while highly 
recommended, is often not performed (Rees et al., 2021). At the same time, due to the fast 
development of accessible testing methods more and more data is collected on population as well 
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as individual level from both humans and animals (Barrat et al., 2014; Jønsson et al., 2016; Wirth 
et al., 2020). As was exposed during the recent SARS-CoV2 pandemic, connecting various data 
sources with mathematical modelling comes with several methodological challenges (Kretzschmar 
et al., 2022). 

Complexity challenge 
One of the challenges encountered when challenging models with data is managing the balance 
between model complexity and its identifiability with data that is or can be obtained to glean 
useful unbiased outcome (Kretzschmar et al., 2022). In this thesis I demonstrate that a strategy in 
which development of the modelling framework and data acquisition procedures, such as the 
design of suitable experiments or sampling protocols, are pursued in parallel is a promising 
strategy to ensure both model parsimony and utility. 

Often mechanistic models are describing in detail certain mechanisms that have to be known or 
hypothesised a priori. Our infectious material-based modelling perspective provides a mechanistic, 
yet parsimonious framework, where general processes of environmental transmission are 
modelled mechanistically by simple stochastic processes. The mean field approximation of these 
stochastic processes is used in an environmental load density function that describes the 
spatiotemporal distribution of infectious material. As such, the framework can be used to study 
host-pathogen-environment systems for which detailed mechanisms of transmission are not 
understood, such as C. jejuni transmission in broilers, which we used as a model system in our 
study. Moreover, as in the framework, the underlying stochastic processes used to derive the 
mean field approximation on the general processes are well defined (see Chapter 1), the model 
can be adapted to incorporate more specific mechanisms if available data show the need to do so 
and can be used to estimate the effect. 

In our spatiotemporal framework, the infectivity pattern is defined in terms of area(s) that 
infectious hosts occupy, time periods of the shedding (during which the shedding is assumed to be 
continuous) and a shedding rate parameter. While we used rectangular shape areas, in fact any 
source area shape can be incorporated as long as integration over this region is computable. 
Moreover, here we assumed that an infectious host homogenously visits the whole area. From 
that, easily a grid model can be created, where the host is able to move from area to area. For 
example, the grid models presented in Chapter 4 can be used to model different types of 
movement behaviour of and mixing between hosts. Heterogeneity can also be added as a layer 
describing the probability for individuals of occupying certain part of the source area. Such 
heterogeneity is often encountered in biological systems, for example flock animals tend to cluster 
with each other and many hosts tend to occupy more often certain areas around important parts 
of the environment they occupy, e.g. near water and food sources (Collins et al., 2011; Febrer et 
al., 2006).  
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The framework assumes that during a shedding period, described as part of an infectivity pattern, 
the shedding of infectious material is constant. Intermitted shedding, reported for pathogens such 
as Salmonella spp (van Immerseel et al., 2004), can be implemented by turning the infectivity 
pattern of a given host (with given movement area) into a sequence of continuous shedding 
periods. In our framework, the shedding is described by a shedding rate parameter. As the 
shedding rate is not identifiable separately from the exposure rate parameter, in the thesis these 
two parameters are described jointly with the transmission rate parameter. To account for the 
influence the host density has on the infectious patterns, we used a source strength configuration 
parameter to scale the source areas with density of hosts assuming that the shedding rate scales 
linearly with number of hosts occupying a particular area. It is not clear how the source strength 
would scale for most biological systems. In (van Bunnik et al., 2014) the source with 20 hosts was 
compared to 5 hosts; when supplemented with more data of suitable spatial distribution this can 
potentially be used to investigate the source strength for C. jejuni in broilers. 

In the modelling framework, the survival process is approximated by constant independent decay 
i.e. an exponential distribution. As it has been shown that within a pathogen population two (or 
more) subpopulations can exist that differ in survival rate, for example bacteria can be infectious 
in culturable as well as viable but non-culturable form (Ramamurthy et al., 2014), the framework 
can further be developed to incorporate biphasic decay. Apart from heterogeneities in the 
pathogen population, the environmental conditions that influence the survival of pathogens, such 
as temperature or humidity, may vary both in time and space, in which case the decay process 
could be modelled with a  time and space variable decay rate. 

In our implementation, dispersion of infectious material was modelled assuming that the 
infectious material diffuses through the environment. Diffusion is based on the simple random 
walk mechanism, where particles are moving in random directions and step size is a Gaussian 
distributed random variable (Chandrasekhar, 1943). The elegance of using the random walk as 
underlying mechanism is the existence of a simple mean field solution- the diffusion equation, that 
in a one-particle regime describes the probability of finding a particle after walking for a particular 
time starting from the source and in the many particle regime describes the distribution of the 
particle load (Chandrasekhar, 1943). In this thesis, I did not go beyond this mean field 
approximation. Potentially, anomalous diffusion, e.g. based on Levy flight mechanisms (Klafter et 
al., 1996), could be used for example to study systems where material spreads heterogeneously. 
Such a situation can occur when multiple biological mechanisms, such as dispersion via mechanical 
vectors and/or via air, are contributing to the dispersion of infectious material. 

In the infectious material-based framework, also the exposure process is implemented as a simple 
mechanism and is characterised by an exposure rate parameter that is constant in time and space. 
The exposure depends on host behaviour and biology as well as on properties of the specific 
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environment in mind (which in most cases varies in time and space). Therefore, the exposure can 
be seen as a system specific feature. For example, the exposure will look differently for broilers 
and laying hens, the former moving less and eating more than the latter. Generally, caution is 
needed, as the exposure process in general is not well understood. For many systems, the exact 
route or multiple routes of exposure that determine the way the pathogen is absorbed by the 
hosts are not known. The exposure rate parameter is not separately identifiable from the shedding 
rate (and hence these are described jointly with the transmission rate parameter) when using 
transmission data only. When considering host densities in Chapter 4, we scaled the exposure with 
the exposure strength configuration parameter to scale the exposure areas with density of hosts 
if the exposure rate scales linearly with the area that is available for host. It is not clear how the 
exposure strength would scale for most biological systems, and most likely it is a system specific 
feature. In all our experiments on C. jejuni transmission, recipient broilers occupied areas of the 
same (or similar) size. More studies are needed to explore how the available area influences the 
exposure to infectious material. 

For biological systems the level of model complexity should not only be determined by the biology 
of the processes described mechanistically in the model but also by it’s potential to be calibrated 
(and subsequently validated) with data that is or can be obtained. Such potential is assessed during 
identifiability analysis. The identifiability analysis for the infectious material-based framework and 
host status data is presented in Chapter 3. 

Identifiability analysis, while well developed for some dynamic models based on differential 
equations such as systems biology models (Wieland et al., 2021), for the infectious material based 
spatial model was never done in a systematic manner. Full identifiability analysis consists of 
structural identifiability analysis, studying if parameters (or combination of thereof) can be 
estimated for an infinite sample size, and practical identifiability analysis, studying if parameters 
can be estimated when data are of limited quality or quantity (Wieland et al., 2021). In Chapter 3, 
we address both structural and practical identifiability of our infectious material based 
spatiotemporal model using both simulated as well as experimental host status data. In particular, 
we showed the importance of the spatial resolution on the identifiability of parameters describing 
the decay and dispersion of the infectious material. 

As we show in Chapter 2 and Chapter 3 and as was reported for compartmental models of 
environmental transmission (Brouwer, Weir, et al., 2017), shedding and exposure are structurally 
not jointly identifiable when using host data only. This means that even if an infinite number of 
hosts is sampled with fine-grained resolution, the shedding rate parameter and exposure rate 
parameter cannot be estimated separately. Therefore, in our infectious material-based modelling 
framework a joint parameter – transmission rate parameter (being the product of shedding rate 
parameter and exposure rate parameter) was defined. When some parameters of the model are 
structurally unidentifiable, the only way to estimate those parameters separately is to use data 
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that provides additional information. In a transmission study, this means collecting data on 
measurements different than host status. Such data can come either from the same study, but 
from different samples or from a separate experiment or field study. In both cases, additional 
uncertainty is added as every (type of) measurement or experiment comes with its own limitations 
such as measurement errors, detection limits or biological model assumptions. Sometimes such 
limitations can significantly influence the model calibration and result in uninformative model 
estimates, which consequently leads to wrong biological conclusions. Examples can be found in 
Chapter 2 where we compared the decay rate parameter estimates obtained for two different data 
sources: 1) host status data of sufficient resolution, and 2) data on survival of culturable forms of 
C. jejuni obtained from environmental samples collected in the same experimental conditions as 
the transmission data. These estimates were significantly different, and as we have shown the 
model fit is much better when the decay rate parameter is estimated from transmission data 
(together with remaining two parameters) than when estimate from the additional survival 
experiment is used. 

To solve the lack of the structural identifiability of the shedding rate parameter with the other 
parameters of the model, the amount of infectious material per time unit produced by infectious 
hosts, in excreted material e.g. the faeces (see Salmonella model in (Collineau et al., 2020)) can 
potentially be used. However, for some systems assumption that all pathogen shed is in a form 
available and infectious for other hosts may significantly influence the model outcome. When little 
is known about the form of infectious material that the recipient hosts are exposed to, using 
shedding rate to approximate source strength should be done with caution. 

In Chapter 3, we have shown that, in order to obtain informative estimates, the host status data 
have to be collected in sufficient spatial and temporal resolution. In practice it means that (at least 
some) measurements have to be taken at time points when the environmental load is not in 
equilibrium and information about environmental load in areas distanced from the source by 
various distances have to be collected. When such data is not available, the theory of fluctuations 
could be considered as a solution to these identifiability problems.  

The theory describes how the auto correlation time of fluctuations in the particle load observed in 
diffusion equilibrium depends on the diffusion coefficient (Chandrasekhar, 1943; Smoluchowski, 
1916), and the diffusion coefficient can be estimated from counts of particles observed  within one 
area in time. As we show below, for a model with added decay when only viable (infectious) 
particles can be measured (e.g. by being detected by hosts that can be infected by them) just one 
area is not enough; as it is not known if the short auto-correlation time of fluctuations is the result 
of the particles moving out of the area or dying within, it cannot be determined how fast the 
particles are spreading. In the future, one can explore if by observing the fluctuations in two 
neighbouring areas and their corelation with each other, it could be determined how the diffusion 
and decay influence the fluctuations. 



General discussion

Ch
ap

te
r 5

147
 

 



Chapter 5

148
 

Computability challenge 
Another challenge when developing a modelling and data framework is ensuring that computation 
tools are available for the model to be calibrated and validated with data that is gathered. As 
presented in Chapter 3, we developed a complete methodological framework for calibration of 
the spatiotemporal infectious material-based model including an input system, automatic log 
likelihood function generation, log likelihood maximization algorithm and identifiability analysis 
tools. Our parsimonious model, while conceptually simple, when calibrated with individual level 
data on host status in time and position, leads to construction of a rather complicated likelihood 
function containing multiple space and time integrals (see Fig. 1.4 in Chapter 1). Numerical 
maximization of such function is time consuming and/or prone to errors (e.g. returning a local 
maximum). To make the likelihoods more tractable, we optimized model implementation (Chapter 
2) as well as maximization algorithm (Chapter 3). In the constraint maximisation algorithm, the 
univariate profile likelihoods are generated for all parameters in a multistep procedure, where the 
information from the profiles obtained in previous steps is used in current step of maximization to 
set constraint on remining (running) parameter values. This improves the maximisation 
performance (reducing the probability of returning local maxima instead of global maxima) and 
speed (as narrower parameter range is searched during numerical maximisation). 

While we have studied mostly experimental data where newly infected host were removed such 
that a chain of transmission was avoided, our framework can also be used to estimate the 
parameters when source patterns are dynamic i.e. infectious areas are emerging and disappearing. 
An example of such use is provided in Chapter 2; to analyse an experiment where newly infected 
broilers were not removed (and therefore were considered new sources) we developed tools to 
create infectious patterns for multiple sources. Usually, the data showing the number of infectious 
individuals in time are decomposed vertically (into discrete time intervals) to construct the input 
data for parameter estimation. In techniques such as the GLM based estimation, the model is fit 
to the time series of data where the total environmental load generated by all infectious were 
present in the environment at the moment and in the past is updated every time interval e.g. a 
day by using recurrence formula (Chang & de Jong, 2023). In our methodological implementation, 
we decomposed data using a technique we called “horizontal decomposition”. Rather than 
creating a time series, a set of the infectivity patterns can be composed, in which every infectious 
pattern describes the area and period where and when the number of infectious hosts was 
constant. The details on both approaches are presented in table 5.1. 
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Sampling and detection challenge 
When considering what data should be used to calibrate and validate environmental transmission 
models (e.g. aimed to study the decay and dispersion of infectious material), the environmental 
monitoring indicating the amount of infectious material accumulated in the environment in time 
and space is often considered. Such monitoring can be classified in two types of methods: measuring 
direct or indirect indicators. Among direct indicators are microbiological sampling and detection 
methods, often used to determine the contamination of farms, hospital wards or food 
establishments. While helpful to assess the general health risk, the detection of pathogens or lack 
of thereof does not necessarily inform about the risk of transmission. On the one hand, pathogens 
detected by these methods can be of a form that is not infectious to susceptible hosts. For example, 
PCR detected genetic material of pathogens may not come from live/infectious forms or it may be 
detected in material that is not infectious to the hosts (e.g. pathogens transmitted via air detected 
in food). For example, PCR SARS-CoV-2 tests are extremally helpful to detect (and isolate) new cases 
but are not a good indicator of infectiousness due to high sensitivity to remnant viral RNA (Johnston 
et al., 2022; Singanayagam et al., 2020). On the other hand, even if all samples are found negative, 
infectious material can still be present in the environment, but just not being detected because of 
inadequate sampling or detection limits. In one of our experiments, where recipient broilers entered 
experimental room 20 days after the infectious broilers started contaminating the room (see 
Chapter 2 for details), we conducted small pilot study, where the litter samples from non-occupied 
pens were sampled just before recipients were placed in the adjacent pen and checked for C. jejuni; 
despite all samples returning negative, few days later the transmission of C. jejuni was detected in 
the same room. 

Indirect indicators for pathogen presence in the environment can also be of two kinds. For specific 
systems, it is possible to measure some characteristics of the environment; for example water 
turbidity was used to assess its contamination which is correlated with presence of Cryptosporidium 
(Brouwer, Weir, et al., 2017). However, as such indicators are only indirectly connected to the 
infectious material, their limitations must be addressed really carefully on case-by-case basis. 
Moreover, for most systems finding such environment indicators is simply not possible. The only 
generally applicable indirect detection method for infectious material is monitoring the infection of 
sentinel hosts placed in the environment such as we present in Chapter 2 and Chapter 3. The 
observation of a (newly) infected host shows that obviously the infectious material was present in 
the environment when transmission occurred. This latter type of indirect pathogen detection 
obviously measures only the infectious forms of pathogens and the portion of infectious material 
that is (naturally) accessible to the hosts. 
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Methodological perspectives 
While Chapters 2 and Chapter 3 focused on validation and calibration of the model, in Chapter 4 we 
used our infectious material based spatiotemporal model to study the density dependence of 
transmission. When interpreting transmission from contact-based perspective, the density 
dependence is defined as the influence of the density on the host-to-host contact rate, defining 
contacts as potentially infectious contacts that are relevant for transmission. As often those contacts 
are not well defined, the influence that density may have on the contact rate cannot be modelled 
satisfactorily.  

While some studies estimated the density dependence of R0 from density and prevalence data (Sy 
et al., 2021), a mechanistic basis for the density dependence was never proposed. From an 
infectious material perspective, for those infections that are transmitted via environment, such a 
basis can be developed using our spatiotemporal modelling framework. Homogenous mixing is one 
of the main assumptions of the non-spatial, compartmental models of transmission. From this 
assumption, it follows for environmental transmission, that hosts are exposed to infectious material 
(have contact with environmental compartment) while they are accessing freely the whole 
environment with equal probability. While some individual based models were proposed to 
incorporate heterogeneity in visiting the environment, they were constructed for highly specific 
systems such as a cow barn (Chen et al., 2013). A systematic approach to study density dependence 
is lacking. In Chapter 4, we attempt to start such a study by constricting a few infectious material-
based scenarios with either homogenously mixing or spatially constraint hosts. The models can be 
used to calculate the density dependence of R0 for various scenarios and indicate how the 
transmission is reduced when various intervention strategies aimed at constraining hosts 
movements are considered. As a next step, outcomes of such models should be validated with data 
to guide following development of the modelling framework. 

Insights for Campylobacter transmission in broilers 
Being a widespread zoonotic bacterium, Campylobacter spp. is one of the main concerns in public 
health. Despite many efforts, Campylobacter is still highly prevalent in broiler flocks, and broilers 
are considered to be the main source of Campylobacteriosis in human (Mota-Gutierrez et al., 2022; 
Wagenaar et al., 2013). Despite its ubiquity, there are still important knowledge gaps regarding 
Campylobacter transmission in broilers that hamper the identification of effective intervention 
strategies (Hansson et al., 2018). This thesis provided insight into a few of them, namely: unknown 
transmission route, causes of the Campylobacter lag phase observed in the field, and survival of 
Campylobacter in the environment.  

Campylobacter spreads in a poultry flock through a contaminated environment. It is well 
documented that it can be detected in high amounts in faeces of colonised chickens and other 
animals  (Stern et al., 2001; Stern & Robach, 2003) and that chicken become colonised after oral 
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inoculation (Line et al., 2008). It was shown that chicken can get colonised not only when in contact 
with faeces, but also in cleaned and disinfected broiler houses (Agunos et al., 2014) or in a clean pen 
separated from Campylobacter positive broilers (van Bunnik, 2014; van Bunnik et al., 2012; van 
Bunnik et al., 2014). Many hypotheses were raised to explain this route of transmission, e.g. 
contaminated water, material carried on by workers, visitors or other animals, yet no consensus 
was reached (Hansson et al., 2018; Sahin et al., 2002). Most likely, material contaminated with 
Campylobacter can be spread via many routes (Frosth et al., 2020). Because this host-pathogen-
environment system is not well studied its modelling is challenging. The parsimonious model I 
present in this thesis and that was first presented by (van Bunnik et al., 2014), does not specify the 
exact route of Campylobacter spatial spreading. Rather, it uses the diffusion process as 
approximation of all possible routes that might be present. Therefore, the information about 
transmission can be obtained without modelling all possible routes of transmission. The spatial 
spread is incorporated in a diffusion equation that is a mean field representation of all the possible 
transition routes. In experiments presented in Chapter 2 and in (van Bunnik, 2014; van Bunnik et al., 
2012; van Bunnik et al., 2014) we show that C. jejuni can be transmitted even when broilers do not 
share environment (nor feeders or water source) with infectious birds. This indicates that contact 
with contaminated faeces or water source is not the only route of transmission. The relatively low 
diffusion coefficient estimated for our experimental data indicates that a purely airborne route of 
C. jejuni transmission between separated broilers is unlikely. If an infectious particle were moved 
from source to recipient area with air flow, the diffusion rate would be much higher, and no distance 
dependent delay of transmission would be observed. This distance dependence of the delay 
observed in our experiments, would also not be observed if a fast mechanical vector such as fly or 
animal caretaker was the main source of transmission. The spread of infectious material most likely 
happens in slow, multistep process. 

Another poorly understood aspect of the transmission is the survival of Campylobacter. While there 
were experiments studying survival of C. jejuni in faeces, used litter or water (Ahmed et al., 2013; 
Bronowski et al., 2014; Smith et al., 2016; van Bunnik et al., 2014), in a majority of these only the 
culturable forms of C. jejuni were counted. As we show in Chapter 2, the survival characteristics of 
culturable forms of C. jejuni are not necessarily representative for those of all the transmissible 
forms of C. jejuni. Moreover, the estimate of the decay rate obtained in our model, where infectious 
forms were considered by including only host infection status data, was much lower than for a 
separate survival experiment studying only culturable forms. This shows that some infectious forms 
of C. jejuni survive better in the environment than culturable forms measured in survival 
experiment. The reasons of this disparity should be explored further. It was suggested that viable 
but non culturable forms of bacteria such as E.coli may contribute to the transmission (Ding et al., 
2017; Li et al., 2014). The transmission potential of viable but non culturable forms of Campylobacter 
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is still not well studied and further research is needed to determine if these forms contribute to 
transmission (Kassem et al., 2017; Moore, 2001). 

In Chapter 2, where we presented all the experimental data, we demonstrated that, as was 
previously noted by (van Bunnik et al., 2014), when C. jejuni transmission between separated 
broilers is studied experimentally, there is a notable delay between beginning of shedding of the 
infectious material and first detected positive sample among recipients. As it is shown in Chapter 2, 
said delay is correlated with distance between source (infectious) hosts and recipient ones, the 
bigger the distance the delay is longer, being extremally short when infectious and recipient hists 
are housed together. 

Another interesting phenomenon reported for Campylobacter is known as the “lag phase”. The lag 
phase is described in the literature as the period between the placement of a new flock on the 
broiler farm and the first detected colonisation with Campylobacter (Newell, 2002). Therefore, it is 
a different concept than delay observed experimentally. To explore the possible causes of such a 
lag phase, it is necessary to consider all the processes that are happening in the beginning of the 
broiler production cycle (see the box below for details). 
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Conclusions 
Overall, in this thesis, we use a cycle of modelling and experimental design development to study 
the mechanisms of environmental transmission from the infectious material perspective. We have 
developed tools that assist both modelling framework development, including calibration, full 
identifiability analysis and validation, and design of (future) experiments and/or data sampling 
protocols. Additionally, we demonstrated that our spatial approach can be used to study density 
dependence of transmission. The methodology can be used in future studies to compare various 
systems and quantify effect of intervention strategies. Also, we have provided new insights on C. 
jejuni transmission in broilers. Specifically, we have demonstrated that infectious forms of C. jejuni 
most likely survive longer in the environment than forms culturable in laboratory conditions, and 
that dispersion of infectious material carrying C. jejuni is a slow, most likely multistep process.  
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As most pathogens are transmitted through the environment, the environment plays an important 
role in sustaining transmission, which is presenting opportunities for developing effective 
intervention strategies targeted on the environmental stage of transmission. To better understand 
the processes of environmental transmission and subsequently design and quantify relevant 
intervention strategies, both formulating and implementing the models as well as designing 
experiments or sampling protocols to gather data are necessary. In this thesis, I presented the 
development cycle of modelling and experimental work designed to study mechanisms of 
environmental transmission from the perspective of the infectious material that accumulates in the 
environment. One of the advantages of the infectious material perspective is that it avoids unnatural 
representations of environmental transmission - the perspective of between-host contact. 
Unnatural perspective can lead to confusion during the communication of findings and therefore 
hinder the policy development. 

In Chapter 1, (General introduction), the full modelling framework was described in detail, together 
with a brief description of the available data types and the model system that I presented here being 
C. jejuni transmission in broilers. The parsimonious model we constructed describes mechanisms of 
pathogen transmission via the environment using only three parameters: the decay rate parameter, 
describing decay (inactivation) of infectious material in the environment, the transmission rate 
parameter, describing jointly shedding of the infectious material by infectious hosts, absorption of 
(portion of) this material by recipient hosts and probability of infection once the material is 
absorbed, and the diffusion coefficient describing spatial spread of infectious material.  

In Chapter 2, we presented the calibration and validation of our model, using a series of experiments 
on C. jejuni transmission between spatially separated broilers (including two unpublished 
experiments designed for the purpose of the study presented in this thesis). Our analysis showed 
that the spatiotemporal model is fully identifiable with data we collected and that after calibration 
the model satisfactorily describes the experimental observations. We prove that data obtained in 
new experiments, providing data of necessary spatial resolution, was crucial to ensure the model 
identifiability. Moreover, as we were able to obtain informative estimates of all parameters, new 
insights into Campylobacter biology were obtained. We demonstrated that environmental decay of 
infectious forms of C. jejuni is much slower than decay observed for its culturable form, and 
discussed the model result that suggests that spatial dispersion of infectious material (containing C. 
jejuni ) is most likely a result of multistep/multi-route dispersion process.  

In Chapter 3, we analysed in more detail model identifiability, to inform the design of future 
transmission experiments. We conducted both structural and practical identifiability analyses, using 
a combination of methods, including mathematical analysis of the model, and analysis of the profile 
likelihoods for numerous combinations of simulated and experimental data. Subsequently, we 
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proposed a strategy to obtain the most informative experimental design, which is crucial from 
ethical, economical, and scientific points of view.  

In Chapter 4, we demonstrated how our validated modelling framework can further be used to 
explore the density dependence of homogenous mixing, clustering, and distancing of hosts in the 
context of environmental transmission. As the analysis of density dependence is, by nature, a spatial 
problem, our spatial framework was used to generate a number of scenarios describing 
homogenous mixing, Poisson process mixing and strong distancing of hosts. We quantified, how 
constraining of host movements reduces the basic reproduction ratio, which can be used to assess 
nonpharmaceutical intervention strategies targeted towards reducing host mobility. Moreover, we 
explored for which parameter combinations host clustering or distancing, as opposed to random 
host placement, needs to be considered in the model as they diverge from linear relationship 
predicted for random mixing models. This study, when supplemented with relevant data, would 
serve as a basis for future studies exploring hosts-clustering and distancing behaviour and its 
influence on transmission and population dynamics.  

Overall, as it is discussed in Chapter 5, in this thesis I presented a development cycle, in which 
models were developed together with experimental design to obtain useful data and modelling 
results. During the process, on the one hand, new methodology with broad applicability was 
developed, and on the other hand, new insights into our model system- Campylobacter transmission 
in broilers- were gained.  
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