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Abstract
Harmful social interactions, such as injurious feather pecking in poultry and tail biting in swine, reduce 
both animal welfare and efficiency. While these traits are heritable, application of breeding is still limited 
due to the lack of proper genetic models and precise phenotyping methods for large groups. In the near 
future, large scale longitudinal data on social interactions will become available thanks to developments in 
computer vision and artificial intelligence. Here we present models to simulate and analyze such data, which 
are an extension of the classic social genetic model. Latent traits were defined to represent the tendency of 
individuals to be engaged in behavioral interactions, distinguishing performer and recipient effects. Binary 
interaction records were simulated and subsequently analyzed using generalized linear mixed models. 
Results show that high accuracies of estimated breeding values can be obtained (0.4-0.7), despite the low 
observed-scale heritability of the binomial trait (0.05-0.2). We conclude that our model can be promising 
for breeding value estimation for social traits in large groups.

Introduction
Livestock regularly engage in behavioral interactions, and modern group-housing systems may increase the 
occurrence of harmful social behaviors, such as injurious feather pecking in poultry and tail biting in swine. 
To reduce the occurrence of harmful social behaviors, management strategies have been proposed (Van 
Krimpen et al., 2016; De Vries et al., 2004). However, the application of breeding strategies to behavioral 
traits is still limited.

One challenge of applying breeding strategies is that the social behavior of an individual may depend not 
only on the effect of the genes of the individual itself (known as the direct genetic effect, DGE), but also on 
that of its group mates (known as the indirect genetic effect, IGE). In the last two decades, genetic models 
for social traits have been developed to estimate DGE and IGE (Muir, 2005; Bijma et al., 2007; Ellen et al., 
2014). These models assume that each individual has the opportunity to affect the phenotype of each of its 
pen mates equally. Therefore, these models are particularly useful in small groups, in which animals have 
ample interactions with all pen mates and the strength of social interaction can be assumed similar between 
all individuals.

For large groups the assumption of equal interaction does not hold anymore. In recent years, social network 
analysis has been successfully applied to large animal populations (Krause et al., 2021; Radersma 2021). 
Social network analysis requires detailed records of the social interactions, including time, physical position, 
duration, and performer and recipient identity. Recording every interaction event between individuals 
in a large population used to be time- and labour-demanding, but is gradually becoming feasible due to 
developments in animal detection and tracking technologies. With these technologies, distinguishing 
performer and recipient effect is possible. Therefore, the terms performer and recipient effect will be used 
in the rest of this paper instead of DGE and IGE. It is expected that in the near future these detailed records 
of social interaction will become available. However, there is still a lack of methods to translate such data 
into estimates of individual performer effect and recipient effect.
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In this study, we: (1) extended the social effect model for genetic analysis of large-scale longitudinal data 
on animal social behaviors; and (2) evaluated the effect of number of individuals and number of social 
interactions on accuracy of breeding values (BV) estimated with this model. First, latent traits were defined 
to represent the tendency of individuals to be engaged in behavioral interactions, distinguishing performer 
and recipient effects. Second, social interactions with known performer and recipient were simulated under 
various population settings based on an assumed genetic structure. Last, statistical models were applied to 
estimate BV of social traits from the simulated records, and to evaluate the accuracies of the EBV.

Materials & methods
Trait definition. For each individual, two latent traits were defined to represent its liability to be engaged 
in a social interaction as a performer (trait α) or a recipient (trait β). Each trait consisted of two parts: a 
heritable effect (the BV) and a permanent environmental effect. The latter was used to account for similarity 
between repeated records on the same individual.

Pα,i = μ + Aα,i + Epα,i� (1)

Pβ,i = μ + Aβ,i + Epβ,i� (2)

where Pα,i and Pβ,i were the individual’s normally-distributed liability for each trait, Aα,i and Aβ,i were the 
individual’s BVs, and Epα,i and Epβ,i were the permanent environmental effects. For the results presented 
here, we assumed that both traits were independent (genetic correlation of 0) and had the same genetic 
variance (σAα

2 = σAβ
2), and that the permanent environmental variances were equal to the corresponding 

genetic variances.

For interaction between individuals i and j (see section ‘Simulations’ for conditions related to their 
proximity), the probability of i performing the social interaction towards j is given by:

pij = logistic(Pα,i + Pβ,i) = 1/ [1+exp(-Pα,i – Pβ,i)]� (3)

Thus, the logistic function was used to rescale (Pα,i + Pβ,i) from the real number domain of the liability to the 
probability domain of 0 to 1. Binary interaction records were then generated by sampling a random number 
from a Bernoulli distribution, where 1 meant the interaction took place, while 0 meant it did not take place.

Simulations. For social interactions to occur, animals need to be in each other’s proximity. In this study, we 
simulated the dynamic physical position of animals through agent-based modelling, using three behaviors 
that were alternated: eating (at feeders in the pen), resting and walking. Only when animals encountered 
each other, a 0/1 interaction record was generated as described above. We generated 2000 individuals from 
100 sires and 400 dams, and each dam produced 5 offspring. Simulations were run for 20 pens, each with 
100 random individuals, and until a total of 10,000 interactions took place in a pen. Given a simulated mean 
interaction probability of 1% (E(p) = 0.01), this implied a total of ~1,000,000 encounters per pen.

Finding realistic input values. Observed-scale heritabilities for binomial traits related to animal behavior 
are typically in the range of 0.05 to 0.20. Kjaer and Sørensen (1997), for example, found heritabilities in 
this range for number of pecks performed, based on an average of ~25 interactions per individual. To find 
realistic input values for our simulations, we simulated a dataset where individuals performed on average 
25 pecks, then estimated the observed-scale heritability with ordinary linear mixed models, and tuned the 
input value for the genetic variance until observed-scale heritability was either 0.05, 0.1 or 0.2 (Table 1).
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Breeding value estimation. To estimate BV for the performer effect (α) and the recipient effect (β), a 
generalized linear mixed model with a logit link-function and a binomial distribution was fitted in ASReml 
4.1 (Gilmour et al., 2015):

logit(pij) = μ + Penk + Aα,i + Aβ,i + Epα,i + Epβ,i� (4)

where pij is the probability that i performs a social interaction towards j, Penk is a fixed pen effect, A is the 
BV and Ep is the permanent environment effect.

Results
Table 1 shows the genetic variances (σA

2) that correspond to observed scale heritabilities of total number 
of interactions performed (ho

2) of 0.02, 0.05 and 0.1. These genetic variances correspond to interaction 
probabilities of top and bottom ranking individuals (± 2σA) that differed by a factor of 1.5 for ho

2 = 0.05, 
2.5 for ho

2 = 0.10, and 5.5 for ho
2 = 0.20. Hence, despite the low observed-scale heritability, the genetic 

differences between individuals in their tendency to engage in social interactions were very large.

To examine the relationship between the number of individuals and the accuracy of EBV, we included 5, 6, 
…, up to 20 pens in the genetic analysis (thus 500, 600, …, 2,000 individuals). When 500 individuals were 
included, the GLMM yielded an accuracy of EBV of 0.30, 0.36 and 0.44, given heritabilities of 0.05, 0.10 and 
0.2, respectively (Figure 1a). When all the 2,000 individuals were included in the analysis, the accuracies 
were 0.47, 0.59 and 0.71.

To investigate the effect of the number of interactions on accuracy of EBVs, the GLMM was fitted by 
including the first 5, 10, 20, 50 or 100 thousand interaction records. Accuracy increased with an increasing 
number of records because more observations of sibs were included, but benefit was small above 20 
thousand records (Figure 1b).

Table 1. Simulated genetic variances (σA
2) required to obtain a certain observed-scale heritability (ho

2), the 
corresponding m ± 2σA range of expected interaction probabilities, and accuracy of EBV yielded by the ordinary 
linear mixed model, using data from all 20 pens.

h2
0 σ2

A p̄(Aa = µ-2σA) p̄(Aa = µ+2σA) Accuracy LMM
0.05 0.012 0.008 0.012 0.173
0.1 0.038 0.006 0.015 0.195
0.2 0.170 0.004 0.022 0.241

Figure 1. Accuracy of EBV from the GLMM for (a) different numbers of individuals involved and (b) different 
numbers of observed interactions.
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Discussion
Here we developed an individual-based simulation method to generate social interaction events, and a 
GLMM to estimated breeding values for performer and recipient effect from the resulting data. Results 
showed that our method yielded a high accuracy of EBV (of 0.47, 0.59 and 0.71 for 2,000 individuals with 
ho

2 of 0.05, 0.1 and 0.2, respectively) in comparison to an ordinary LMM (accuracies of 0.17, 0.20 and 0.24), 
and that genetic differences in the tendency to express a behavior can be large despite a low observed-scale 
heritability (Table 1).

This simulation shows that, even though the genetic variance (σA
2) was the same as the permanent 

environment variance (σEp
2) on the liability scale, the observed-scale heritability can still be very low (e.g. 

0.05). This low heritability is due to the random sampling of the event, which introduces extra variance in 
the observed records.

Our results indicate that the breeding values can be accurately estimated for social interaction traits even 
if the observed level heritability is very low. Similar results were found when both traits were positively or 
negatively correlated (results not shown). Note that in these simulations, the maximum information used 
for BV estimation was own performance, 4 full sibs and 15 half sibs. The accuracy was quite high with this 
amount of information, and we expect that higher accuracy can be achieved with genomic prediction. 
This high accuracy can partly be explained by the repeated measures of the trait. In our simulations, one 
individual could interact with 99 pen mates and was on average engaged in 200 interactions and 20,000 
encounters. This means that the breeding value of each individual was expressed 20,000 times. While this 
may seem a large amount of data, one can easily imagine that an animal performs 10 tail bites or feather 
pecks a day in total. In that case, our data would correspond to one month of recording, which is shorter 
than the typical duration of, e.g. the fattening period in pigs or the laying period in laying hens.

In summary, we presented methods to simulate and analyse behavioral data, which distinguishes between 
performer and recipient effects, and is applicable to large-scale longitudinal data on animals kept in large 
groups, which will become available in the near future.
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