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Abstract
To genetically improve resilience, the autocorrelation between subsequent deviations from fitted curves 
of longitudinal data was proposed. Autocorrelation is related to the speed of recovery after a disturbance: 
a high autocorrelation means slow recovery, while a low autocorrelation means fast recovery. It is known 
that estimated autocorrelations are biased, while the genetic properties of the autocorrelation are largely 
unknown. The aims of this research were to investigate the bias and the heritability of the autocorrelation. 
Deterministic expressions were derived and evaluated with Monte Carlo simulation. The estimated 
autocorrelation was 0.2-0.3 lower than the true value when the number of records was 10. The heritability 
was between 0.05 and 0.10 in most situations. It is recommended to have at least 50 records per animal. This 
shows good opportunities for genetic improvement. This study is a first step towards better understanding 
of the mathematical and genetic properties of the autocorrelation.

Introduction
In recent studies on genetics of resilience indicators, the lag-one autocorrelation, or simply called 
autocorrelation, based on subsequent deviations from fitted curves of longitudinal data from an animal, 
was found to be a promising resilience indicator. Berghof et al. (2019) and Poppe et al. (2020, 2021a) showed 
that the autocorrelation is a heritable trait, with a heritability between 0.05 and 0.1. Autocorrelation based 
on milk yield deviations was related to recovery from environmental perturbations, e.g. from a heat wave 
or an unspecified herd disturbance (Poppe et al., 2021b). Cows with genetically a low autocorrelation had 
a faster recovery than cows with a high autocorrelation. This means that cows with a low autocorrelation 
need less time until their milk yield reaches normal levels after a disturbance than cows with a high 
autocorrelation. Genetic correlations between the autocorrelation based on milk yield deviations and 
health and longevity traits were weak in dairy cattle (Poppe et al., 2020). No relationships were found 
between the autocorrelation based on body weight deviations and lesion scores or mortality upon a 
disease challenge in chickens (Berghof et al., 2019). These weak or absent relationships may be partly due 
to properties of the autocorrelation.

The autocorrelation is new to quantitative geneticists, although it has been studied for many years in 
resilience research (Scheffer et al. 2015) or in research using time series (Arnau and Bono, 2001). It is 
already known for many years that estimates of autocorrelation are biased, especially with a small number 
of records (Kendall, 1954; Marriott and Pope, 1954; Arnau and Bono, 2001). The mathematical properties 
of the autocorrelation are largely unknown for geneticists. Furthermore, there is no equation to understand 
the relationship between the heritability of the autocorrelation and the number of records. Such an equation 
would help in optimizing breeding schemes to genetically improve resilience.

The aim of this study was to investigate the bias and the heritability of the estimated autocorrelation. Monte 
Carlo simulation was used to evaluate the deterministic equations.
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Materials & methods
Genetic model and Monte Carlo simulation. Phenotypes were generated following a Markov process 
with autoregressive environmental effects. For simplicity, the phenotype was equal to the environmental 
effects and did not include additive genetic effects on the level of the phenotype, i.e. the normal additive 
genetic variance utilized in breeding programs:

𝑃𝑃𝑖𝑖,𝑡𝑡 = 𝜇𝜇𝑃𝑃 + 𝐸𝐸𝑖𝑖,𝑡𝑡 = 𝜇𝜇𝑃𝑃 +  𝑟𝑟𝑎𝑎𝑖𝑖𝐸𝐸𝑖𝑖,𝑡𝑡−1 + 𝑒𝑒𝑖𝑖,𝑡𝑡 � (1)

where Pi,t is the phenotype at time t of individual i, μP is the mean of the trait and assumed to be zero, 𝑟𝑟𝑎𝑎𝑖𝑖 
is the lag-one autocorrelation, or simply called autocorrelation, of individual i, 𝐸𝐸𝑖𝑖,𝑡𝑡 = 𝑟𝑟𝑎𝑎𝑖𝑖𝐸𝐸𝑖𝑖,𝑡𝑡−1 + 𝑒𝑒𝑖𝑖,𝑡𝑡  is the 
environmental effect at time t and ei,t is the random environmental effect specific to time t. Since μP = 0, Ei,t = 
Pi,t here. The initial environmental variance 𝜎𝜎𝐸𝐸2 , e.g. for the first environmental effect to be sampled Ei,l, was 
1.0. The variance of ei,t was 1 − 𝑟𝑟𝑎𝑎

2
𝑖𝑖𝑖,, so that the phenotypic variance is one. The 𝑟𝑟𝑎𝑎𝑖𝑖  had a mean 𝜇𝜇𝑟𝑟𝑎𝑎, a random 

additive genetic effect 𝐴𝐴𝑟𝑟𝑖𝑖 (N(0, 𝜎𝜎𝐴𝐴𝑟𝑟2 )) and a random environmental effect 𝐸𝐸𝑟𝑟𝑖𝑖 (N(0, 𝜎𝜎𝐸𝐸𝑟𝑟2 )):

𝑟𝑟𝑎𝑎𝑖𝑖 = 𝜇𝜇𝑟𝑟𝑎𝑎 + 𝐴𝐴𝑟𝑟𝑖𝑖 + 𝐸𝐸𝑟𝑟𝑖𝑖 � (2)

Monte Carlo simulations were used to evaluate the deterministic expression for the estimated autocorrelation 
𝑟𝑟𝑎̂𝑎. In the simulations to evaluate the expression for the estimated autocorrelation, 𝜎𝜎𝐴𝐴𝑟𝑟2  = 0 and 𝜎𝜎𝐸𝐸𝑟𝑟2  = 0, while 
𝜇𝜇𝑟𝑟𝑎𝑎 was varied between -0.9 and 0.9 and the number of records was varied between 10 and 300. In the 
simulations to evaluate the simple expression for heritability, the maximum heritability was set to 0.1 and 
𝜎𝜎𝐴𝐴𝑟𝑟2  = 0.003 and 𝜎𝜎𝐸𝐸𝑟𝑟2  = 0.027, which approximately resemble estimated parameters by Poppe et al. (2020). 
The results were averages of 100 replicates.

Deterministic equation for the estimated autocorrelation. The estimated autocorrelation 𝑟𝑟𝑎̂𝑎 can be 
approximated with a Taylor series approximation (Lynch and Walsh, 1998):

𝑟𝑟𝑎̂𝑎 ≅
𝜎𝜎𝐸𝐸𝑡𝑡,𝐸𝐸𝑡𝑡−1̂

𝜎𝜎𝐸𝐸2̂
(1 + 𝑣𝑣𝑣𝑣𝑣𝑣(𝜎𝜎𝐸𝐸2̂)

𝜎𝜎𝐸𝐸2̂
− 𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎𝐸𝐸2̂,𝜎𝜎𝐸𝐸𝑡𝑡,𝐸𝐸𝑡𝑡−1)̂

𝜎𝜎𝐸𝐸2̂𝜎𝜎𝐸𝐸𝑡𝑡,𝐸𝐸𝑡𝑡−1̂
)� (3)

where 𝑣𝑣𝑣𝑣𝑣𝑣(𝜎𝜎𝐸𝐸2̂) is the variance of 𝜎𝜎𝐸𝐸2̂, i.e. the variance of a variance estimate, 𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎𝐸𝐸2̂, 𝜎𝜎𝐸𝐸𝑡𝑡,𝐸𝐸𝑡𝑡−1)̂  is the 
covariance between 𝜎𝜎𝐸𝐸2̂ and 𝜎𝜎𝐸𝐸𝑡𝑡,𝐸𝐸𝑡𝑡−1̂  i.e. a covariance between a variance and a covariance estimate. The 
required expressions for 𝜎𝜎𝐸𝐸2̂, 𝜎𝜎𝐸𝐸𝑡𝑡,𝐸𝐸𝑡𝑡−1̂ , 𝑣𝑣𝑎𝑎𝑎𝑎(𝜎𝜎𝐸𝐸2̂) and 𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎𝐸𝐸2̂, 𝜎𝜎𝐸𝐸𝑡𝑡,𝐸𝐸𝑡𝑡−1̂ ) were derived and will be shown in a 
full paper.

Simple equation for the heritability. The heritability of the autocorrelation ℎ𝑟𝑟𝑎𝑎2  is a function of the 
number of records. The number of records determines the sampling variance of the autocorrelation, which 
can be approximated as 𝜎𝜎𝑟𝑟𝑎𝑎2 ≅ (1 − 𝑟𝑟𝑎𝑎2)2

𝑛𝑛 − 2  (Lynch and Walsh, 1998), where n is the number of records. The 
heritability can therefore be approximated as:

ℎ𝑟𝑟𝑎𝑎2 = 𝜎𝜎𝐴𝐴𝑟𝑟
2

𝜎𝜎𝐴𝐴𝑟𝑟
2 +𝜎𝜎𝐸𝐸𝑟𝑟

2 +𝜎𝜎𝑟𝑟𝑎𝑎
2 = 𝜎𝜎𝐴𝐴𝑟𝑟

2

𝜎𝜎𝐴𝐴𝑟𝑟
2 +𝜎𝜎𝐸𝐸𝑟𝑟

2 +(1−𝑟𝑟𝑎𝑎
2)2

𝑛𝑛−2

� (4)

Equation 4 makes it feasible to quickly evaluate the effect of the number of records on the heritability of the 
autocorrelation and therefore also the accuracy of selection when used as selection criterion.

Results
The estimated autocorrelation was substantially lower than the true autocorrelation, indicating bias, as 
shown in Figures 1A and 1B. The curves show that the bias was as large as 0.2-0.29 when the number of 
records was 10. The bias decreased slowly when the number of records increased, but even with 200-300 
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records the bias was 0.005-0.013 when the autocorrelation was 0.3 or 0.5. The bias was larger when the 
autocorrelation was larger. The deterministic prediction using Equation 3 resembled results from Monte 
Carlo simulation, while a small deviation was observed when the number of records was 10. If an acceptable 
bias is smaller than 0.05, the minimum number of records is 40 when the autocorrelation is 0.3 and >50 
when the autocorrelation is 0.5. In summary, the estimated autocorrelation can be substantially lower than 
its true value; therefore it is recommended to have at least 50 records per individual.

The simple equation for heritability (Equation 4) accurately predicted the heritability when the number of 
records was large, e.g. 80-100, or when the autocorrelation was 0.1 (Figure 2A). However, when the number 

Figure 1. The estimated autocorrelation (panel A) and its bias (estimated – true autocorrelation; panel B) as a 
function of the number of records per animal when the true autocorrelation (ra) is 0.3 and 0.5 using deterministic 
Equation 3 (panel A and B) or Monte Carlo simulation (panel A).

Figure 2. The heritability of the autocorrelation as a function of the number of records when the mean 
autocorrelation is 0.1, 0.3, 0.5 and the maximum heritability is 0.1 using the deterministic Equation 4 or Monte 
Carlo simulation.
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of records was smaller than 50 and the autocorrelation was 0.5, the simple equation overpredicted the 
heritability by 8-65%. Figure 2B shows that the heritability was larger when the mean autocorrelation was 
higher. Given a number of records, the heritability was lowest when the mean autocorrelation was zero. The 
increase in heritability was small when the number of records was larger than 200. Figure 2B shows that the 
heritability was between 0.06 and 0.1 when the number of records was at least 50 and when the maximum 
heritability was 0.1.

Discussion
In this study, the bias in the autocorrelation and the heritability of the autocorrelation were investigated and 
deterministic equations were presented. The bias in the autocorrelation was already studied in detail by 
Marriot and Pope (1954) and Kendall (1954). The bias is due to the dependency between the estimated 
covariance and the estimated variance, which is shown in Equation 3 by the term 𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎𝐸𝐸2̂,𝜎𝜎𝐸𝐸𝑡𝑡,𝐸𝐸𝑡𝑡−1)̂

𝜎𝜎𝐸𝐸2̂𝜎𝜎𝐸𝐸𝑡𝑡,𝐸𝐸𝑡𝑡−1̂
.  

The estimated autocorrelation may be corrected by adding the predicted bias based on the 
number of records (Arnau and Bono, 2001). Alternatively, a fixed polynomial regression on the number of 
records may be included in the model to account for the non-linear effect of number of records on the 
estimated autocorrelation.

The bias in the mean autocorrelation also affects the heritability of the autocorrelation, because the 
genetic covariance between the breeding value for the autocorrelation and the estimated autocorrelation, 
i.e. the numerator of the heritability, was smaller than the true value. Furthermore, the variance of the 
autocorrelation, the denominator, was underestimated in Equation 4. However, the simple equation gave a 
very good prediction of the heritability when the number of records was larger than 50. The equation can 
be used to get more insight in the accuracy of selection for different types of longitudinal data in animal 
breeding. In general, given the range of heritabilities between 0.05 and 0.10, there are good opportunities 
for genetic improvement of resilience by selecting on a lower autocorrelation. This study is a step forward in 
quantitative genetic understanding of the autocorrelation used as resilience indicator in breeding.
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