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Abstract
Introduction  To decrease antibiotic resistance, their use as growth promoters in the agricultural sector has been largely 
abandoned. This may lead to decreased health due to infectious disease or microbiome changes leading to gut inflammation.
Objectives  We aimed to generate a m/z signature classifying chicken health in blood, and obtain biological insights from 
the resulting m/z signature.
Methods  We used direct infusion mass-spectrometry to determine a machine-learned metabolomics signature that classifies 
chicken health from a blood sample. We then challenged the resulting models by investigating the classification capability 
of the signature on novel data obtained at poultry houses in previously unseen countries using a Leave-One-Country-Out 
(LOCO) cross-validation strategy. Additionally, we optimised the number of mass/charge (m/z) values required to maximise 
the classification capability of Random Forest models, by developing a novel ranking system based on combined univariate 
t-test and fold-change analyses and building models based on this ranking through forward and reverse feature selection.
Results  The multi-country and LOCO models could classify chicken health. Both resulting 25-m/z and 3784-m/z signatures 
reliably classified chicken health in multiple countries. Through mummichog enrichment analysis on the large m/z signature, 
we found changes in amino acid metabolism, including branched chain amino acids and polyamines.
Conclusion  We reliably classified chicken health from blood, independent of genetic-, farm-, feed- and country-specific 
confounding factors. The 25-m/z signature can be used to aid development of a per-metabolite panel. The extended 3784-
m/z version can be used to gain a deeper understanding of the metabolic causes and consequences of low chicken health. 
Together, they may facilitate future treatment, prevention and intervention.
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1  Introduction

Due to the rise of antibiotic resistance and a growing pub-
lic awareness of health and food safety issues, the chronic 
use of antibiotics as growth promotors in chicken has 
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been forbidden in many countries (Roth et al., 2019). As 
a result, however, this may lead to lower performance, 
higher mortality, and deteriorated animal welfare. Such 
suboptimal health conditions are often characterised by 
a high incidence of wet litter (WL), which may cause 
footpad dermatitis and hock burns (Bessei, 2006). This 
encouraged researchers to investigate the origin of WL and 
low chicken health in order to combat the problem through 
approaches that do not require chronic antibiotic use. As 
reviewed by Gilbert et al. (2018), gut health aetiology is 
multifactorial and has been connected to both parasites 
and bacterial pathogens in the intestinal tract.

However, due to differences in housing environment, 
management practices and genetic strain of chickens used, 
the physiological causes may differ between countries and 
farms, making health classification a challenge. Gaining 
more insight into the molecular signature of chicken health 
is highly desired to facilitate future treatment, prevention 
and intervention. The current state-of-the-art metabo-
lomics technology allows for the generation of decision-
making tools that enable data-driven health monitoring, 
enabling timely interventions to improve animal health.

Direct infusion mass spectrometry (DI-MS) is an untar-
geted metabolomics method which only requires a single 
drop of blood, is fast, scalable to high-throughput and 
involves no chromatography. DI-MS has the additional 
advantage that no pre-selection is done and thus a global 
overview of the entire metabolome is collected in a matter 
of minutes (de Sain-van der Velden et al., 2017). Annota-
tion of identified m/z values in DI-MS is the largest chal-
lenge, as it is done on highly accurate m/z values with no 
additional information, unlike in other mass spectrometry 
approaches where the retention time is used in addition to 
m/z to annotate the metabolites (D’Atri et al., 2017). To 
streamline statistical analysis and annotation, we devel-
oped a software solution, MetaboShiny and its companion 
database suite MetaDBparse (Wolthuis et al., 2020).

A metabolite signature should be independent of the 
genetic background, farm conditions, country of origin 
and food source because of the potential different aeti-
ologies of chicken health across countries. This is neces-
sary to interpret the biological insights from the resulting 
signature on a global level. Metabolites defining such a 
signature provide valuable information on the biological 
processes underlying chicken health, forming a foundation 
on which to build preventative solutions and interventions.

In this manuscript, we collected blood samples of both 
healthy and unhealthy chickens from three countries from 
two continents, from 22 farms in total, and used machine 
learning methods to define two metabolic signatures char-
acteristic for chicken health.

2 � Methods

2.1 � Sample collection

Samples were obtained from 197 individual broiler chickens 
from 22 farms spanning 3 countries. Per chicken, four drops 
of blood were sampled in independent spots on “Whatmantm 
903 Protein Saver Cards” blood spot cards (BSC) (Sigma-
Aldrich Merck KGaA, Darmstadt, Germany). Countries 
were selected based on availability of on-site experts to 
perform the sampling and willingness of local farmers to 
participate in the experiment. Furthermore, the participat-
ing countries are important chicken-producing countries in 
their respective continents and thus well suited for an ini-
tial impression of the variation present in chicken metabo-
lomes. In general, each continent uses a different basal feed 
composition based on agricultural availability, which was 
an additional reason for including multiple countries across 
continents.

Sampling was performed by the country broiler expert/
coordinator together with the local farmer. Prior to sampling, 
instructions and BSCs, together with sealing bags, moisture 
indicators and desiccant bags were sent by the UMC Utre-
cht team to the country expert/coordinator. The instruction 
video provided to the on-site experts for sampling can be 
found at https://​tinyu​rl.​com/​bscumc.

In this rather uncontrolled field experiment, we wanted 
to capture a maximum amount of variation, to understand 
whether metabolic health classification is feasible on the basis 
of the perceived overall health status of the broilers as clas-
sified by the local farmers and country experts. Rather than 
registering specific characteristics, country experts registered 
a healthy (‘high’ health) and unhealthy (‘low’ health) label 
for each chicken, on the basis of several commonly seen and 
widely accepted characteristics: reduced animal size relative 
to the farm average, rough feathers, reduced activity, and/or 
presence of dirty feathers near the vent (Fig. 1a).

Each farm sampled 50% healthy and 50% unhealthy 
chickens regardless of on-site health distribution. Blood 
was drawn through syringe from the brachial wing vein and 
dripped onto the BSC. In total, Brazil supplied 98 BSCs 
distributed across 10 farms, Italy supplied 30 BSCs distrib-
uted across 5 farms and Spain supplied 69 BSCs distributed 
across 7 farms.

After being dried at room temperature, ranging from 5 h 
to overnight, the BSCs were stored in sealed plastic bags 
with desiccant and moisture level monitoring cards and 
stored at 4 °C. After collection of cards from all farms within 
a country was completed, they were shipped to the UMC 
Utrecht (transit time: 2–7 days) for further processing, Upon 
arrival BSCs were stored at -80 °C until analysis. BSCs on 

https://tinyurl.com/bscumc


Multi‑country metabolic signature discovery for chicken health classification﻿	

1 3

Page 3 of 14  9

which the blood spots were not dripped as instructed or 
those that contained smears were excluded from the analysis.

2.2 � Data acquisition

Data acquisition was performed using our in-house pipe-
line for direct infusion mass spectrometry, as described by 
(de Sain-van der Velden et al., 2017). In short, from each 
blood spot card a 3 mm disk was punched and extracted 
in an ultrasonic bath with acetonitrile, formic acid and 
internal standards. Run order was randomised based on 
farm and, if multiple countries were measured simultane-
ously, country.

Following extraction, the samples were filtered and 
subjected to chip-based nano electrospray DI-MS analysis 
in positive and negative mode using an Advion TriVersa 
Nanomate combined with a Thermo Scientific Q-Exactive 

HF high resolution mass spectrometer. In positive and 
negative ion modes, the signal was collected for 3 min 
and 1.5 min, respectively, using a Thermo Scientific Q 
Exactive high resolution mass spectrometer. Three techni-
cal replicates were measured per blood spot and the result-
ing signal was saved as a.raw Thermo file for each repli-
cate. The raw files and metadata including country, breed, 
temperature at sampling, sex, and feed type is hosted on 
MetaboLights alongside the raw data.

2.3 � Processing

ThermoFileReader was used to convert raw files to.mzML. 
Using the xcms package, files were divided into positive 
and negative mode scans based on the available metadata 
(Domingo-Almenara & Siuzdak, 2020). Samples with a 

Fig. 1   Using multi-country metabolomics data from blood drawn 
from chickens to find a molecular signature for chicken health. a, b 
Sample collection, mass spectrometry and pre-processing through 
MetaboShiny. SP = Spain, IT = Italy, BR = Brazil. c ‘Leave-One-
Country-Out’ analysis used one left out country as the testing set in 
a random forest (RF) model, as opposed to a regular train/test split. 
This process was repeated for each country. d 50% of samples of each 
country were used for either feature selection or machine learning. e 
For feature selection, t-test and fold-change analyses were combined 

into a volcano plot and the ‘V-score’ (see Methods) was calculated 
per m/z. f The top or bottom ranking m/z values were used to limit 
the number of m/z values used in the subsequent feature selection 
step. g For each m/z selection, 3 types of models were built. Origi-
nal label order representing the v-score, non-permuted data, shuffled 
labels representing negative control on the class label, and an equal 
number of random m/z values and regular label order. h With the 
optimal number of features, the final model was built and evaluated 
on a separate test set
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low total intensity in either positive or negative mode were 
excluded from further analysis.

Scans were aligned to each other per mode and replica-
tion, using a list of m/z values observed in > 80% of samples, 
only found in internal standards. The spectra of each mode 
were then collected, yielding one positive and one negative 
spectrum per sample. Per sample, the MALDIquant program 
was used to call peaks (Gibb & Strimmer, 2012). Next, all 
files associated with the aforementioned experiments were 
gathered, and a summary of all peak tables was created. To 
facilitate statistical analysis, spectra were binned/aligned to 
each other using MALDIquant at 2 ppm (parts per million).

The binned spectra were combined into a table and 
exported to a MetaboShiny-supported table. Only the peaks 
observed in 2/3 technical triplicates were kept, and the peak 
signals of the replicates were averaged. A table including 
data on the day-of-run batch and injection order was also 
exported for batch correction purposes. The raw file pipeline 
can be found on Github for SLURM-supporting compute 
clusters in the joannawolthuis/MassChecker repository.

2.4 � Filtering and normalization

Peaks with more than 20% missing samples were excluded 
from the analysis based on Bijlsma et al. (2006)’s recom-
mendation. Peak intensities were quantile-adjusted for each 
sample and then auto-scaled to Z-score format per m/z value. 
The WaveICA package was then used to correct any batch 
effect, using both the day-of-run batch and injection order 
(Chong & Xia, 2018; Deng et al., 2019; Gibb & Strimmer, 
2012; Wolthuis et al., 2020). Post batch-correction, batches 
no longer clustered together majorly in UMAP (Fig. S1).

2.5 � Machine learning and cross‑validation

We used the Random Forest (RF) model as implemented 
in the caret package for training predictive models. For 
the Leave-One-Country-Out (LOCO) experiment, we built 
a model for each country, with the mtry parameter of the 
model set to the square root of all m/z values available in 
the dataset. The LOCOCV Receiver Operator Characteristic 
(ROC) and Precision-Recall (PR) curves were calculated by 
combining the country-fold classifications.

Before any analysis takes place the dataset is split in two 
equal folds using caret’s createFolds function (Fig. 1a). One 
fold (50% of the data) is used for feature selection and deter-
mination of the number of top ranking m/z values. Within 
the other 50% data fraction, 80% of the data was used to 
construct a model on the top N m/z values ranked on the 
V-score, where N is determined by the feature selection 
procedure (see below). The resulting RF model was tested 
on the remaining 20%, and the model creation and testing 
process was repeated 10 times.

2.6 � Feature selection

Within the feature selection fold, we further defined 10 folds. 
In each fold, we performed t-test and fold-change analyses 
through MetaboShiny. To enable ranking of m/z-values in 
further steps we use the T-test -log(p) and log2(FC) outcome 
of the fold-change analysis. To this end, we visualised these 
two outcomes in a volcano plot and calculated a combined 
V-score per m/z value.

The columns in the dataset were ranked in order of 
descending absolute V-score (Fig. 1b). We next evaluated 
classification capability for subsets of the datasets by pro-
gressively adding or removing m/z columns according to the 
V-score ranking. For each evaluation the mtry parameter of 
the RF model was set to the square root of the amount of m/z 
values present in that subset of the dataset (Fig. 1c).

For each evaluation we included two negative controls. 
Negative control 1 (‘shuffled’) is defined as the dataset using 
permuted class labels, which acts as a control of the clas-
sification quality. Negative control 2 ('randomised m/z’) is 
defined as the dataset using a randomly selected same-sized 
set of m/z values taken from the complete dataset, which was 
used to assess if the V-score ranked classifier outperforms a 
classifier based on randomly selected m/z columns. The final 
number of selected m/z values was determined by compar-
ing the AUROC for negative control 2 to the V-score ranked 
dataset (Fig. 1d).

To obtain a compact signature, models were first built 
adding 10 m/z values per step (starting with 2, 12, 22, etc.), 
and additionally on a per-m/z basis for the top 300 m/z val-
ues to more accurately determine the optimum amount of 
m/z values necessary.

For the experiment removing high-ranking m/z values 
(‘expanded’ signature), the complete experiment used mod-
els built by removing 10 m/z values per step. For each sub-
set of m/z values, the tenfold cross-validated AUROC was 
calculated. Lines were fit to the V-score ranked and both 
negative control AUROCs using ggplot2’s geom_smooth 
function.

For both signature determinations, the line fit summa-
rising the V-score-ranked AUROC was used. For the com-
pact signature, peak detection was used to find a peak in 
the top 300 V-score-ranked m/z values. For the expanded 
signature, the elbow point of the line removing m/z val-
ues in descending absolute V-score order (high-ranking 
first) was used as the signature threshold. The m/z val-
ues included in the expanded signature were used in the 
enrichment analysis.

V - score = − log10 (p - value) × log2 (fold - change)
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2.7 � Correlation analysis

Correlation between m/z values was calculated using the 
cor function in R, specifying Pearson correlation. We visu-
alised the heatmap using the ggplot2 package, where only 
correlation pairs with a p-value < 0.05 were coloured.

2.8 � Enrichment

Using the expanded signature, we performed mummichog 
enrichment analysis using the MetaboShiny-integrated 
MetaboAnalystR package. We adapted the algorithm to 
use adducts selected by the user (in our case the adducts 
provided in Table S1). Necessary pathway databases ‘Gal-
lus gallus’ (KEGG ID: gga01100) and ‘microbial metabo-
lism in diverse environments’ (KEGG ID: map01120) were 
newly generated using the build.pathway.KEGG function 
which uses the KEGGREST package to retrieve necessary 
organism, pathway and compound information. In addi-
tion, custom adducts were generated for each compound 
(table S1).

The KEGG chicken pathway collection includes amino 
acid synthesis pathways for amino acids that chickens cannot 
synthesise. For this reason, after first downloading the com-
plete gga01100 pathway collection, we next removed path-
ways involved in synthesising any of the thirteen chicken 
essential amino acids: arginine, cysteine, histidine, isoleu-
cine, leucine, lysine, methionine, phenylalanine, proline, 
threonine, tryptophan, tyrosine and valine as described by 
He et al. (2021). To that end, pathways featuring the fol-
lowing modules were excluded: ‘proline biosynthesis, 
glutamate > proline’, ‘cysteine biosynthesis, homocyst-
eine + serine > cysteine’, and ‘arginine biosynthesis, orni-
thine > arginine’. These filtering steps lead to the exclusion 
of the pathways ‘arginine biosynthesis’, ‘valine, leucine and 
isoleucine biosynthesis’ and ‘phenylalanine, tyrosine and 
tryptophan biosynthesis’.

In determining the enriched pathways in the expanded 
signature, we relied on the previously published mummic-
hog method (Li et al., 2013). A predetermined amount of 
m/z values was marked as significant based on if they were 
present in the 3784-m/z signature or not. Enriched pathways 
with mummichog EASE p ≤ 0.05 were included in further 
interpretation.

2.9 � Visualization

We used the ggplot2, ggrepel, ggbeeswarm, ggsignif, 
ggforce, moonBook, visNetwork and plotly packages, most 
through our application MetaboShiny, to visualise most 
results (Sievert et al., 2016; Wickham, 2011). An adapted 
version of the pathview package was implemented in 

MetaboShiny and used to generate KEGG metabolic path-
way images and project V-scores onto these pathway dia-
grams (Luo & Brouwer, 2013).

3 � Results

3.1 � Leave‑One‑Country‑Out analysis demonstrates 
model flexibility

Our goal was to define a chicken health m/z signature that is 
globally applicable and thus may also be applied to chicken 
samples from other countries not presented in the training 
dataset, irrespective of environment, housing and feed-
ing conditions. To emulate this scenario, we designed and 
applied a ‘Leave-One-Country-Out’ (LOCO) strategy, where 
data from one country were excluded from the training set, 
and used as the testing set instead.

We first used Random Forest (RF) classifiers to con-
struct classifying models whilst allowing the RF access to 
all m/z features, i.e. no feature selection was part of this 
setup (Fig. 1c). Figure 2 reports the AUROC (Area Under 
the Receiver Operating Characteristic) and AUPRC (Area 
Under the Precision-Recall Curve) for each model.

We built two types of models; a multi-country model and 
a Leave-One-Country-Out model. For the multi-country 
model tenfold cross validation was used, where the splits 
were stratified based on health label and country. This model 
used samples from all countries in both the training and test-
ing set. The model reached an AUROC of 0.80 and AUPRC 
of 0.82 (Fig. 2a). As a negative control, we include a model 
using permuted health labels and these models showed low 
classification capability as the AUROC and AUPRC were 
close to 0.5.

To train the LOCOCV model, we used threefold cross 
validation (CV) such that each left out fold was a complete 
country (Fig. 2b). The LOCOCV model is aimed at esti-
mating how well the model would do on a novel country, 
where the desired maximum AUROC/AUPRC would be 
close to the multi-country model. The resulting model had 
an AUROC of 0.75 and AUPRC of 0.68.

The LOCOCV model has a similar classification capabil-
ity to the multi-country model (ΔAUROC = 0.05), and this 
suggests both inter-country similarity and potential usability 
of the multi-country model in novel countries.

To give further insight into which countries had the 
most classification capability, we dissected the LOCOCV 
curve into its separate test countries (Fig. 2c).

The LOCO model tested on Italy and trained on the 
other countries classified best with an AUROC of 0.91 and 
AUPRC of 0.89. The Spain models had an AUROC of 0.81 
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and AUPRC of 0.82, and Brazil had an AUROC of 0.65 
and AUPRC of 0.56.

In two out of three country folds, the model classifies 
better than the multi-country model, further suggesting 
inter-country similarity in terms of health metabolomic 
signature and suitability of the multi-country model for 
use in novel countries.

3.2 � Compact 25‑m/z signature stratifies health 
with high accuracy

Next, we aimed to create a model that is both compact and 
optimally discriminative, as a model with few metabolites 
facilitates the creation of a testing panel in future applica-
tions, where metabolite concentrations can be quantified on 
an a per-metabolite basis using preselected standards. To 
find the minimum set of metabolites required for accurate 
classification, we performed a forward feature selection 
strategy. To this end, we first ranked the m/z values based 

Fig. 2   AUROC and AUPRC of 
LOCOCV models. AUC of both 
original and shuffled models is 
displayed in the lower right of 
each curve. a LOCOCV curves 
were drawn and evaluated by 
combining the three separate 
‘folds’ of LOCO analysis into 
one pool and calculating the 
resulting complete cross-
validated curves. b Per-country 
LOCO model evaluation. Coun-
try in header indicates country 
used as testing set. c ‘Multi-
country’ model is a general 
model evaluated using tenfold 
CV without removal of specific 
countries



Multi‑country metabolic signature discovery for chicken health classification﻿	

1 3

Page 7 of 14  9

on the ‘V-score’, a score combining T-test and fold-change 
analysis results.

To estimate the optimal number of m/z values that should 
be used in a model, we compared the AUROC of models 
using m/z values ranked by decreasing absolute V-score 
(black curve) with the AUROC of a model using a random 
equal number of m/z values as a negative control (blue 
curve) for all top ranking m/z values, starting with top 2 
up to 7672 m/z values (Fig. 3a). We observed the highest 
AUC for a model trained on 25 m/z values, referred to as 

the compact signature. Importantly, at this threshold, the 
model classified better than a model using 25 random m/z 
values. Furthermore, using fewer m/z values caused a rapid 
decrease in AUROC.

In the validation set, the average AUROC of the compact 
signature was above both the random 25-m/z model and 
shuffled health label models (Fig. 3b), demonstrating that a 
model based on the top 25 m/z values was significantly more 
effective (p = 1.9e-10; t-test) than using randomly selected 
m/z values in an independent validation set.

Fig. 3   Using V-score ranking to find the smallest most classifying set 
of top ranking m/z values. a AUROC plot against the number of m/z 
values used. Bottom panel zooms in on the top m/z values. Calculated 
peak of the fit curve is labelled at x = 25. The grey shading around 
each fit visualises the 95% confidence interval of the line fit by the 

geom_smooth algorithm. b AUCs of 10 original ranked models vs. 
10 randomised m/z models. T-test p-value is noted above the box-
plots. c ROCs of test sets of 10 original models, 10 shuffled models 
using original m/z order, and 10 models using randomised m/z values
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Furthermore, as shown in Fig. 3c, both using the compact 
signature and a random signature classify significantly better 
than a negative control model with permuted health labels 
(signature vs. shuffled: p < 2.2e−16, randomised vs. shuf-
fled: p < 2.2e−16, t-test).

3.3 � Model interpretation using mummichog 
enrichment analysis

To gain biological insights and understand which metabolic 
pathways play a role in chicken health, we performed enrich-
ment analysis of the metabolites in the signature. However, 
while the compact signature worked well for classifying 
chicken health, due to the presence of adducts and meta-
bolic pathway interactions, the metabolites corresponding 
to the 25 m/z-values likely do not capture the full biological 
signal (Fig. 4a).

To quantify the degree of correlation in the data, we 
calculated the Pearson correlation between each pair of 
V-score ranked top 300 m/z values. The m/z values in the 

top 25 signature were often highly correlated to m/z values 
within the top 300 (Fig. 4b). Therefore, we defined a second 
signature capturing the full biological signal including all 
correlated m/z. This signature used more m/z values than 
strictly necessary for an accurate classification, but included 
the complete set of m/z values defining what differentiated 
healthy and unhealthy chickens and may therefore be more 
suitable for interpretation.

The expanded signature size was defined as the number 
of features that needed to be removed before the difference 
between a completely random classifying model and our 
model missing top ranking features reached a low plateau. 
This resulted in selection of the 3784 top ranking m/z values 
in our expanded signature (Fig. 5a).

Pathway enrichment analysis was performed using the 
m/z values in the expanded signature. Only a limited num-
ber of methods is available to achieve this for untargeted 
metabolomics data. We utilised the mummichog enrichment 
method within the MetaboAnalystR package and adapted 
for custom adducts and pathway filtering, integrated in 

Fig. 4   M/z values are highly correlated. a Volcano plot of the 25-m/z signature. b Heatmap of Pearson correlation between the top 25 (y-axis) 
and top 300 V-score ranked (x-axis) m/z values
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MetaboShiny (Chong et al., 2018; Li et al., 2013; Wolthuis 
et al., 2020). We first ran mummichog using the gallus gallus 
KEGG pathway collection (Fig. 5b, Table S2).

In this pathway collection, four pathways were signifi-
cantly altered: ‘D-amino acid metabolism’, ‘glycine, serine 
and threonine metabolism, ‘phenylalanine metabolism’ and 
‘valine, leucine and isoleucine degradation’. Furthermore, 
we included potential bacterial metabolites being produced 
and absorbed into the bloodstream, such as bacterial protein 
fermentation end products known to impact host metabolism 
(Gilbert et al., 2018). We did so by searching the ‘micro-
bial metabolism in diverse environments’ KEGG pathway 
collection. Two pathways were significantly enriched, ‘gly-
cine, serine and threonine metabolism’ and ‘phenylalanine 
metabolism’, both of which were also significantly enriched 
in the gallus gallus pathway collection (Fig. 5c, Table S3).

We projected the V-score onto the top ranking enriched 
pathways (Fig. 6, Figs. S2–S4) and compared our results 
to previously conducted pathway enrichment experiments 
across species and in poultry, relying on the fact that mum-
michog compound matches are more likely to be true 
matches due to random matches not being enriched within 
pathways (Li et al., 2013). With that in mind, this allowed 
for a careful interpretation of individual metabolites in the 
context of poultry health, gut health, feed intake and body 
weight gain, while it should be noted that these are putative 
annotations, annotated at level 2 (Sumner et al., 2007).

In D-amino acid metabolism we saw potential increases 
in unhealthy chickens in lysine, diamino-hexanoate, amino-
oxohexanoate, glutamine, threonine, cysteine, methio-
nine, putrescine, pyrrole-carboxylate, dioxopentanoate, 
phenylalanine and serine, and potential decreases in ala-
nine, pyruvate, arginine, hydroxyproline, oxoglutarate, and 

Fig. 5   Determining expanded V-score based m/z signature. a Black 
line represents non randomised health based on V-score-ordered m/z 
values; peaks in this line are of interest. Blue line represents mod-
els made with random m/z values. Red line represents label-shuffled 
models. The grey shading around each fit visualises the 95% confi-

dence interval of the line fit by the geom_smooth algorithm. b Enrich-
ment analysis result using the KEGG gallus gallus pathway collec-
tion. c Enrichment results using the pathways in the KEGG microbial 
metabolism in diverse environments pathway collection
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amino-oxopentanoate (Fig. 6a, Table S4). Within the valine, 
leucine and isoleucine degradation pathway, we saw potential 
increases in leucine and valine, alongside metabolites hydrox-
yisovalerate and hydroxyisobutyrate, alongside decreases in 
aminoisobutanoate, methyl-oxobutanoate and aminoisobu-
tanoate (Fig. 6b, Fig. S2, Table S5). Glycine, serine and thre-
onine metabolism pathway members affected were mainly 
ectoine-related compounds such as ectoine, 5-hydroxy-ectoine 
and n-acetyl-2,4-diaminobutyrate, which were increased in the 
unhealthy group, alongside creatine, cysteine serine, threo-
nine, homoserine, propane-1,3,-diamine, allothreonine, glyc-
erate and phospho-d-glycerate. Furthermore, we observed 
potential decreases in pyruvate, 5-aminolevuliate, 5-ami-
nolevulinate, O-phospho-homoserine and dimethylglycine 
(Fig. S3, Table S6). Within phenylalanine metabolism we 
again mainly saw decreases in the unhealthy group in tyrosine, 
phenylethylamine, 2,6-dihydroxyphenylacetate, phenylaceta-
mide, phenylpyruvate, N-Acetyl-phenylalanine, hydroxy-
phenylpropanoate, phenylacetaldehyde, phenylethylalcohol, 

2-hydroxy-3-phenylpropanoate, 2-hydroxy-6-oxonona-2,4-di-
ene-1,9-dioate, cis-2-hydroxypenta-2,4-dienoate and, again, 
pyruvate. 4-Hydroxy-2-oxopentanoate was however increased 
in the unhealthy group, alongside possibly phenylalanine, phe-
nylacetate, phenylglyoxylate and phenylpropanoate (Fig. S4, 
Table S7).

These results demonstrated that the health signature was 
enriched in changes to m/z values corresponding to metabo-
lites featured mainly in amino acid metabolic pathways. This 
suggests that the healthy and unhealthy chickens differ in 
amino acid metabolism.

4 � Discussion and conclusion

To build models classifying chicken health and use 
these models to gain insight in the potential causes and 
metabolic consequences, we investigated the connection 
between the chicken blood metabolome and health label. 
We explored this connection in order to test if metabolic 

Fig. 6   a Visualisation of the ‘D-amino acid metabolism’ KEGG path-
way, the largest affected pathway featuring most discussed amino 
acids. b Part of the ‘valine, leucine and isoleucine degradation’ 
KEGG pathway. Colour of nodes indicates V-score. Vertical lines 

within a node represent V-scores for multiple adducts of a given com-
pound. Grey nodes represent metabolites with potential matches out-
side of the signature used for enrichment. Pathway image was gener-
ated using the R pathview package
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differences exist between the two groups, and if so, gain 
biological insights from the resulting m/z signatures.

We first aimed to gain knowledge that is not specific to 
a single country which is why we collected samples from 
three countries on two continents. However, to determine 
if the multi-country model could also classify chicken 
health in a country not presented in the training dataset, we 
designed the ‘Leave-One-Country-Out’ (LOCO) experi-
ment. This was with the assumption that intra-country and 
farm-based differences would likely be smaller than inter-
country differences in living conditions and feed. Overall, 
the similar classification success of the LOCOCV and 
multi-country model, alongside the AUCs of on average 
0.8 of the separate folds of LOCOCV, suggests that the 
multi-country model resulting from these data may clas-
sify health status in a novel country in future applications. 
It should be noted that, there was some country-specific 
fitting as the AUCs of the LOCOCV model were lower 
than the multi-country model (Fig. 2b). The high classi-
fication capability suggests similarities between the par-
ticipating countries in terms of metabolomic profile. The 
multi-country model can be used to classify chicken health 
in any of the participating countries using DI-MS data.

To enable potential application of the classification 
model without relying on full mass spectrometry pro-
files, we aimed to determine a compact group of metabo-
lites that can achieve a good classification. To do so, we 
ranked all m/z values based on two common univariate 
analyses often used in omics studies—the t-test and fold-
change analyses. By combining these two into a volcano 
plot and giving each m/z value a corresponding combined 
‘V-score’, we could rank m/z values in both magnitude and 
significance of the effect. The advantage of this approach 
is that the high-ranking m/z values each differ in abun-
dance between chicken health groups, facilitating inter-
pretation later on.

In order to find the minimal number of high-ranked m/z 
values necessary to build a good classifying model, we 
built cross-validated RF models classifying health from a 
limited number of m/z values, starting at the top V-score-
ranked to the lowest ranking m/z values, measuring classi-
fication capability of the model at each iteration of adding 
additional m/z values. This resulted in a compact 25-m/z 
signature that could classify health accurately. Using these 
25 m/z values resulted in a better classifying model than 
using 25 random m/z values, and this compact m/z signa-
ture could potentially be used to develop a per metabolite 
panel in future applications. This would require identifica-
tion of which compounds these 25 m/z values represent, 
and, if any m/z values cannot be identified, re-evaluating 
classification capability with alternative or without the 
missing signature members.

In the expanded m/z signature, which rather than mini-
mizing the number of m/z used, maximised the number of 
m/z containing predictive information, we aimed to gain bio-
logical insights through enrichment analysis. Within path-
ways of interest that were enriched in this m/z signature, 
we found changes to pathways involved in amino acid (AA) 
metabolism (Fig. 6).

Within the amino acid group, levels of m/z predicted to 
match the branched chain amino acids (BCAAs) leucine and 
valine were increased which have been previously associated 
with fasting in humans (Ding et al., 2021). Furthermore, 
changes to phenylalanine metabolism, specifically lower lev-
els of the predicted pathway members in unhealthy chickens, 
have also been found to connect to fasting in chickens by 
Wang et al. (2021). This may suggest that unhealthy animals 
were not consuming as much feed as the healthy animals, 
possibly due to illness, leading to metabolic adaptations in 
ways that have previously been connected to fasting (Ding 
et al., 2021; Wang et al., 2021).

Glutamine and serine were predicted to increase in the 
unhealthy chickens. These amino acids are connected to 
nitrogen excretion by playing an important role in uric acid 
synthesis, and threonine can also be degraded into serine. 
Furthermore, we observed potential increased levels of cre-
atine and creatinine which are also nitrogen excretion prod-
ucts (van Milgen, 2021). These changes are indicative of 
excess protein intake. Feed composition is determined based 
on healthy animals, and the same feed may cause imbalances 
in unhealthy animals, as unhealthy chickens may have differ-
ent requirements in terms of amino acid intake. Given this 
hypothesis, this signal is more likely to be a consequence 
than a cause of low health.

As we both saw a signal associated to fasting (increased 
BCAA’s), and with excess protein intake, a contradiction is 
present in the results. We hypothesise that the signal corre-
sponding to fasting is the end-state of a process that started 
with a decrease in digestive efficiency, excess protein flow 
into the caeca and thus increased protein fermentation, lead-
ing to local inflammation and overall reduction in health 
and a further decrease in digestive efficiency due to the 
body needing to manage the disease process. Subsequently, 
these sick chickens likely ate less and could not compete 
with healthy, more dominant broilers in terms of feeding 
behaviour.

Furthermore, threonine has been connected to increased 
gut health due to being abundantly present in the chicken 
mucin (MUC2) protein which is an essential to form the 
gut mucus protective layer (Jiang et al., 2013). Addition-
ally, Zhang et al. (2017) observed that threonine is required 
to synthesise both mucin and immunoglobulin in LPS-
challenged broilers, suggesting that threonine also plays a 
role in the immune response. Cysteine may also have an 
immunoregulatory role (Qaisrani et  al., 2018). Further 
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research into this connection may elucidate the significance 
of increased threonine and cysteine levels in the blood of 
unhealthy chickens.

Metzler-Zebeli et  al. (2019) investigated the serum 
metabolome in the context of chicken feed efficiency using 
the residual feed intake (RFI), where a high RFI corresponds 
to poor feed efficiency and thus likely unhealthy chickens 
in our situation. They noticed significant metabolomic dif-
ferences between chickens with low or high feed efficiency, 
and that ‘low efficiency’/unhealthy animals at equal feed 
amounts showed increased relative serum levels of proline, 
serine, leucine, isoleucine, carnosine and valine. This cor-
responds to the changes in m/z values predicted to annotate 
for serine, leucine, valine and carnosine metabolites in our 
dataset, which would suggest that unhealthy animals were 
indeed less ‘feed efficient’. Their study suggests physiologi-
cal differences in feed efficiency. On top of that, our data 
suggests that physiology is different between healthy and 
unhealthy animals, which may result in lower feed efficiency 
in unhealthy birds.

Similarly, Beauclercq et al. (2018) investigated the con-
nection between chicken digestive efficiency and the metab-
olome. In serum, five metabolites were connected to a lower 
digestive efficiency—proline, valine, isoleucine, methionine 
and glutamine. In our results, we also observed higher levels 
of m/z values corresponding to (iso)leucine, valine, methio-
nine and glutamine in the unhealthy group. These increases 
in blood amino acid levels may be due to altered protein 
metabolism and amino acid utilization in the low efficiency 
/ unhealthy birds. In our data, this suggests that chickens in 
the ‘unhealthy’ group have a lower digestive efficiency as 
compared to chickens in the ‘healthy’ group.

We also observed an increase in m/z values matching 
putrescine in unhealthy chickens. Putrescine is produced 
by E. coli and other bacteria from dietary ornithine, and 
among other biogenic amines is also produced by many 
colonic bacterium species, including Lactobacilli (Chander 
et al., 1989), Streptococci (Babu et al., 1986), Bacteroides 
and Clostridia (Allison & Macfarlane, 1989), Furthermore, 
putrescine is suspected to be connected to decreased energy 
supply to colonocytes (Villodre Tudela et al., 2015) and thus 
decreased gut health as reviewed by Gilbert et al, (2018). 
Altogether, this suggests that excessive protein fermentation 
is involved in the chicken’s reduced health.

The protein fermentation in unhealthy chickens seems 
to occur despite chickens being fed the same feed within a 
farm. Therefore, the protein fermentation is likely attribut-
able to physiological differences, such as the microbiome, 
including the presence of pathogenic bacteria, differences 
in digestive capacity or subtle differences in genetics. If 
indeed protein fermentation is the underlying cause of our 

classifying signature for unhealthy chickens, then inter-
ventions, nutritional or otherwise, could be specifically 
targeted to this.

By sharing the raw data and metadata of the samples we 
have collected, we facilitate future research. On the open 
data platform MetaboLights, only two datasets featuring 
chicken blood samples are currently hosted, together num-
bering almost 300 samples. Addition of our dataset of 197 
samples would significantly increase the number of openly 
available chicken blood samples for fellow researchers.

In conclusion, we compared and characterised the 
metabolomes of healthy and unhealthy chickens using 
unbiased, untargeted mass spectrometry metabolomics. 
Future work may include a more fine-grained phenotyp-
ing effort that would enable signature discovery charac-
terising specific sub-components of the health phenotype. 
To our knowledge, this is the first time such an approach 
was used to find a classifying signature for chicken health 
and to gain biological insights from this signature. The 
obtained compact m/z signature may be used in the future 
to aid development of a testing panel to selectively treat 
groups of chickens. Furthermore, the expanded signature 
and enriched pathways and the metabolites within those 
pathways could guide dietary adjustments and illumi-
nate potential causes and metabolic consequences of low 
chicken health.
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